
A framework is presented that relates skill-, rule-, 
and knowledge-based reasoning to expertise and 
uncertainty. This taxonomy is designed to help people 
from various technical backgrounds conceptualize func-
tional allocation for autonomous systems that interact 
with human decision makers in order to better under-
stand potential design implications.
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In reflecting on the “levels of automation” (LOA) 
debate that Kaber (2017 [this issue]) addresses, I 
agree with his assertion that as a community, we 
are generally asking the right questions but, more 
importantly, we need better strategies that pro-
vide tangible design guidance for a much broader 
class of engineers than just those with a human 
factors background. With the explosion of auton-
omous technologies in the form of self-driving 
cars, drones for both hobbyists and commercial 
operators, and advanced medical technologies, 
more than ever before, engineers and computer 
scientists need a principled way to think about 
designing systems to promote human–automa-
tion and human–autonomy interactions. As oth-
ers have noted (Woods, 2016), risks of autonomous 
systems are often downplayed, and there is a 
need to better communicate where and how 
uncertainty drives such risk.

I, too, have struggled with the inexact nature 
and coarseness of the traditional LOA approach 
but also understand its appeal in terms of sim-
plicity and categorical nature. However, my stu-
dents, who are primarily engineers and computer 
scientists and are going to take only one class 
related to human factors, almost always immedi-
ately pick up on the fact that although helpful for 
perhaps describing a system at a high level, the 
use of LOAs, or any derivative model, leaves 
them frustrated with little understand of how a 
system should be designed.

Because it is not sufficient to consider what 
information-processing stage could be auto-
mated and the degree of that automation (the 
two dimensions highlighted by traditional LOA 
taxonomies; Endsley & Kaber, 1999; Parasura-
man, Sheridan, & Wickens, 2000), I developed 
an alternative model to help them better under-
stand what functions should or could be distrib-
uted either exclusively across or collaboratively 
between humans and autonomous agents. I call 
this model the SRKE (skill, rule, knowledge, 
expertise) model. This model serves as an indi-
cator of how challenging it likely will be to 
develop an automated system, either fully or 
partially, that can reliably perform even when 
uncertainty is at its greatest.

Figure 1 represents this model that links 
information-processing behaviors and cognition 
to increasingly complex tasks, which is based on 
the SRK (skills-, rules-, and knowledge-based 
behavior) taxonomy (Rasmussen, 1983). It 
should be noted that the SRKs do not occur in 
discrete stages with clear thresholds but rather 
are on a continuum.

For Rasumussen (1983), skill-based behav-
iors (SBBs) are sensory-motor actions that are 
highly automatic, typically acquired after some 
period of training. Skills are characterized as 
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motor outputs that are “a response to the obser-
vation of an error signal representing the differ-
ence between the actual state and the intended 
state in a time-space environment” (Rasmussen, 
1983, p. 259). Controls engineers design con-
trols algorithms to minimize error signals in a 
very similar fashion. Piloting an aircraft is an 
example of skill-based control for humans as 
well as for automation. Once this set of skills is 
acquired, which often takes significant time, 
pilots can then turn their attention to higher cog-
nitive tasks.

Assuming SBBs are mastered, humans can 
turn their attention to rule-based behaviors, 
which are actions guided by subroutines, stored 
rules, or procedures, often likened to following a 
cookbook recipe (Rasmussen, 1983). Humans 
can experience problems in the application of 
rule-based reasoning when they fail to recognize 
the correct goal, causing them to select an incor-
rect procedure or set of rules. Recognizing 
which procedure to follow is not always obvi-
ous, as in systems where one aural alert can indi-
cate different alert or failure modes.

The highest level of cognitive reasoning in 
the SRK framework is that of knowledge-based 
behaviors, where mental models that are built 

over time aid in the formulation and selection of 
plans for an explicit goal (Rasmussen, 1983). 
The “Miracle on the Hudson,” the 2009 landing 
of US Airways 1549 in the Hudson River in 
New York, as depicted in Figure 1, is an example 
of a knowledge-based behavior. Faced with a 
complete loss of thrust, the captain had to decide 
whether to ditch the aircraft or attempt to land at 
a nearby airport. Given his mental model, obser-
vations, and the significant uncertainty in the 
environment, his mental simulation led to his 
choosing the ditching option.

Although this example demonstrates the 
power of human reasoning under maximum 
uncertainty, this same accident highlights the 
importance of the need for a collaborative 
approach between humans and autonomous sys-
tems. When a complete engine failure occurs in 
an Airbus 320, as in the previous example, the 
fly-by-wire system automatically trims the 
plane, computes the ideal glide speed, and read-
justs the landing pitch position far more rapidly 
and reliably than a human. Pressing the Ditching 
button seals the aircraft for water entry. This 
mutually supportive flight control environment 
was critical to the successful outcome of this 
potentially catastrophic event.

Figure 1. Role allocation for information-processing behaviors (skill, rule, knowledge, expertise) and the 
relationship to uncertainty (Cummings, 2014).
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One of my additions to the SRK taxonomy is 
that of expertise (leading to the SRKE model) to 
demonstrate that knowledge-based behaviors 
are a prerequisite for gaining expertise. How-
ever, expertise cannot be achieved without sig-
nificant experience in the presence of high 
uncertainty. So although a person can be knowl-
edgeable about a task through repetition, they 
become true experts when they must exercise 
their knowledge under vastly different condi-
tions in the presence of high uncertainty. For 
example, one pilot who has flown thousands of 
hours with no system failures is not as much of 
an expert as one who has responded to many 
system failures over the same time period. 
Moreover, judgment and intuition, which often 
make traditional engineers uncomfortable 
because these concepts lack a mathematical for-
mal representation, are the key behaviors that 
allow experts to quickly assess a situation in a 
fast and frugal method (Gigerenzer, Todd, & 
ABC Research Group, 1999) without necessar-
ily and laboriously comparing all possible plan 
outcomes.

The remaining key addition to Rasmussen’s 
(1983) SRK taxonomy is my representation of 
uncertainty via the y-axis. Uncertainty is not just 
“unanticipated variability,” which has been sug-
gested in previous literature as a key attribute of 
a resilient system (Borst, Flach, & Ellerbroek, 
2015; Roth, Bennett, & Woods, 1987). Uncer-
tainty, which can have very clear mathematical 
representations (and thus is a term engineers feel 
comfortable with), occurs when a situation can-
not precisely be determined, often due to missing 
or imperfect information with potentially many 
unknown (i.e., unanticipated) variables. How-
ever, both external and internal sources of uncer-
tainty need to be considered, including missing 
or erroneous sensor readings, low-probability 
events, and human performance variability but 
also the use of probabilistic reasoning algo-
rithms that can be biased in ways not obvious to 
their human designers (Briscoe & Feldman, 
2011). The use of data-driven machine-learning 
algorithms, for example, to model a process can 
introduce additional uncertainty into the system 
if they or the underlying data are biased, because 
the resulting statistical models do not reflect 
reality.

For complex systems with embedded auto-
mation and autonomy, uncertainty can arise 
from exogenous sources, such as the environ-
ment, for example, late-afternoon low lighting 
conditions that cause sensor washout. However, 
uncertainty can also be introduced from endog-
enous sources—either from human behaviors, 
like distracted driving, or from computer/auto-
mation behaviors, like an erroneous algorithm in 
the Google car that caused it to hit a city bus 
(Shepardson, 2016).

As illustrated in Figure 1, characterizing 
uncertainty is the key to function allocation and 
provides a road map for when and why a human 
versus a computer could or should be part of the 
system. Thus understanding where the greatest 
uncertainty lies, both internally and externally, 
as well as understanding the capabilities of vari-
ous sensors that are often found in autonomous 
systems, like GPS and lidar, provides engineers 
and computer scientists with a starting point for 
function allocation in design.

The bottom of Figure 1 indicates, generally, 
where technology is today in terms of automa-
tion or autonomy being able to deal with increas-
ing uncertainty. If sensors are reliable and func-
tion across a myriad of conditions, and the 
uncertainty is low (much like an automated 
braking system), this function could and should 
be automated. Rule-based reasoning in moder-
ately uncertain conditions likewise can be auto-
mated, as is seen in the relative ease that Teslas 
and other similar cars have in being able to track 
lanes and pass cars automatically on highways. 
However, until self-driving cars can master uncer-
tainty in all conditions that require knowledge-
based reasoning to at least the same degree as 
humans, we will have only partially capable, but 
potentially very dangerous, systems that cannot 
cope with uncertainty.

Another important point to note is that 
although Figure 1 may seem to represent that 
skill-based tasks are cognitively easier than 
knowledge-based tasks, for autonomous sys-
tems, the difficulty of these cognitive behaviors 
for automation will hinge directly upon the 
capability of the sensors that drive skill-based 
behaviors. For example, perception systems for 
driverless cars today are still immature, which 
ultimately influences rule- and knowledge-based 
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reasoning. Many of these cars rely on lidar sys-
tems, which have known issues with moisture in 
the air. So if these cars cannot build an accurate 
world model in inclement weather due to flawed 
sensors, then they cannot execute correct higher 
cognitive behaviors.

Although the SRKE taxonomy can be used to 
describe a system, as I have done here, it is 
meant to provide guidance for those variables 
that need to be considered when designing a sys-
tem for some degree of human–autonomy/auto-
mation interaction. It is meant to highlight those 
areas where sensors may not be up to the task of 
coping with uncertainty and understanding how, 
when, and why humans should be used to aug-
ment such systems. Conversely, this model can 
also be used to understand when automation 
may be able to help humans, particularly as tasks 
grow in complexity. Combing quickly through 
large data sets and seeing patterns in data not 
obvious to humans are strengths of machine 
learning, used in applications like predicting dis-
ease from electronic health care records (Miotto, 
Li, Kidd, & Dudley, 2016). Moreover, humans 
often struggle in decision making involving esti-
mating likelihoods of uncertain events (Tversky 
& Kahneman, 1974), so the ideal system is one 
that is mutually supportive between autonomous 
systems and humans, particularly in knowledge-
based reasoning tasks.

The SRKE framework in Figure 1, in con-
junction with understanding what capabilities 
exist for various sensors and autonomous sys-
tems, can aid engineers and designers in deter-
mining both a feasible and a desirable system 
(which are not always the same). In its current 
form, the SRKE taxonomy is not a model in any 
mathematical sense. However, work is under 
way to determine how such a representation 
could be formulated and whether more specific 
quantitative design guidance could result. The 
goal is to help engineers and computer scientists 
recognize a potential mismatch between a pro-
posed system design and that system’s ability to 
exhibit the required information-processing 
behaviors at the various SRKE levels. Doing so 

is a step toward providing the tangible design 
guidance that Kaber recognizes is needed.
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