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OPERATOR INTERACTION WITH CENTRALIZED VERSUS 
DECENTRALIZED UAV ARCHITECTURES 
 

M.L. Cummings 

Abstract  
There has been significant recent research activity attempting to streamline Unmanned Aerial Vehicle 

(UAV) operations and reduce staffing in order to invert the current many-to-one ratio of operators to 
vehicles. Centralized multiple UAV architectures have been proposed where a single operator interacts with 
and oversees every UAV in the network. However, a centralized network requires significant operator 
cognitive resources. Decentralized multiple UAV networks are another, more complex possible architecture 
where an operator interacts with an automated mission and payload manager, which coordinates a set of tasks 
for a group of highly autonomous vehicles. While a single operator can maintain effective control of a 
relatively small network of centralized UAVs, decentralized architectures are more scalable, particularly in 
terms of operator workload, and more robust to single points of failure. However, in terms of operator 
workload, the ultimate success of either a centralized or decentralized UAV architecture is not how many 
vehicles are in the network per se, but rather how many tasks the group of vehicles generates for the operator 
and how much autonomy is on board these vehicles. Task-based control of UAV architectures with higher 
degrees of autonomy (i.e., decentralized networks) can mitigate cognitive overload and reduce workload. 
Mutually exclusive boundaries for humans and computers in multiple UAV systems should not be the goal of 
designers for either centralized or decentralized architectures, but rather more effort needs to be spent in 
defining mutually supportive roles such that humans and computers complement one another. 

Introduction 
The use of unmanned aerial vehicles (UAVs), often referred to as drones, has recently revolutionized 

military operations worldwide and holds similar promise for commercial settings. The U.S. Air Force now has 
more UAVs than manned aircraft, small UAVs are now used worldwide by various first response and police 
units, and they can be found fighting forest fires, monitoring wildlife and possible poachers, in cargo 
missions, and even in entertainment.  

UAVs require human guidance to varying degrees and often through several operators. Most military and 
government UAVs require a crew of two to be fully operational. Conventional stick-and-rudder skills have 
been replaced by point-and-click control so that traditional pilots are no longer needed to control such 
systems. Onboard automation currently determines the most efficient control response, which is true in many 
commercial aircraft. While one operator supervises the actual flight activity of the UAV (the ‘pilot’), the other 
operator typically monitors the UAVs sensors, such as a camera, and coordinates with the ‘pilot’ so that he or 
she can maneuver the UAV for the best system response. 

There has been significant recent research activity attempting to streamline UAV operations and reduce 
staffing in order to invert the current many-to-one ratio of operators to vehicles. This is important not just 
for military operations, but also for future commercial operations where air traffic controllers will direct both 
manned and unmanned aircraft. This chapter will discuss the implications of this staffing inversion for 
multiple UAV control, particularly in terms of two UAV control architectures, centralized and decentralized. 
It should be noted that these two architectures are not mutually exclusive and that there really exists a 
continuum of architectures in between these two bookends. Moreover, while there are many aspects of 
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control architectures that are critical to consider, this chapter focuses on the human implications of such 
control architectures. 

 

Operator Interaction In Centralized UAV Architectures  

The shift from stick and rudder to point and click control in UAVs represents a shift in the role of humans 
from the need for highly rehearsed skill sets to more knowledge-based reasoning inputs. For UAVs and for 
fly-by-wire military and commercial aircraft, pilots are less in direct manual control of systems, but more 
involved in the higher levels of planning and decision-making, particularly for remote operations. This shift in 
control from lower level skill-based behaviors to higher-level knowledge-based behaviors is known as human 
supervisory control (HSC). HSC is the process by which a human operator intermittently interacts with a 
computer, receiving feedback from and providing commands to a controlled process or task environment, 
which is connected to that computer (Sheridan and Verplank 1978) (Figure 1).  

In a centralized UAV control architecture, human supervisory control in UAV operation is hierarchical, as 
represented in Figure 2. The innermost loop of Figure 2 represents the basic guidance and motion control 

loop, which is the most critical loop that must obey physical laws of nature such as aerodynamic constraints 
for UAVs. In this loop, the autopilot optimizes local control (keeping the aircraft in stable flight), and while 
UAV pilots could theoretically take control in this loop, with inherent time latencies that can cause pilot-
induced instabilities, this loop is generally left to the automation.  

The second loop, the navigation loop, represents the actions that some agent, whether human or computer, 
must execute to meet mission constraints such as routes to waypoints, time on targets, and avoidance of 
threat areas and no-fly zones. In most current systems, humans enter GPS coordinates as waypoints, and then 
the system automatically flies to these waypoints. Only now are more advanced automated path planners that 
generate entire missions instead of serial waypoints starting to appear in operationally deployed UAV systems. 

The outermost loop of Figure 2 represents the highest levels of control, that of mission and payload 
management. In this loop, sensors must be monitored and decisions made based on the incoming 

Figure 2: Hierarchical Control Loops for a Single UAV 
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information to meet overall mission requirements. In the mission management loop, human operators 
provide the greatest benefit since their decisions require knowledge-based reasoning that include judgment, 
experience, and abstract reasoning that in general cannot be performed by automation.  

Finally, the system health and status monitoring loop on the right side of Figure 2 represents the continual 
supervision that must occur, either by a human or automation or both, to ensure all systems are operating 
within normal limits. The control loop is dashed as is represents a highly intermittent loop in terms of the 
human, i.e., if the human is engaged in another task, with the highest priority given to the innermost loop, 
health and status monitoring becomes a distant, secondary task. 

From the human-in-the-loop perspective, if the inner loops fail, then the higher (outer) loops will also fail. 
The dependency of higher loop control on the successful control of the lower loops drives human limitations 
in control of a single, and especially so, for multiple UAVs. If humans must interact in the guidance and 
motion control loop (manually fly a UAV), the cost is high because this effort requires significant cognitive 
resources. What little spare mental capacity is available must be divided between the navigation and mission 
management control loops. Violations of the priority scheme represented in Figure 2 have led to numerous 
crashes (Williams 2004). When operators become cognitively saturated or do not correctly allocate their 
cognitive resources to the appropriate control loops in the correct priorities, they violate the control loops 
constraints, potentially causing catastrophic failure.  

 

Operator Capacity in Centralized UAV Architectures 
In centralized UAV systems supervised by a human, the primary consideration for system design is how 

many vehicles a single controller can effectively supervise. Since this supervisor has to interact with each 
vehicle individually, just how many vehicles can be effectively and safely controlled will primarily be driven by 
the amount of autonomy on board the aircraft, which is subsumed across the four loops as shown in Figure 
2.  

By increasing UAS autonomy, operator workload will theoretically be reduced as it could reduce the number 
of tasks for the operator, and it should reduce the level of interaction even at the highest levels of control in 
Figure 2. For example, those UAVs that are flown in an autopilot mode relieve the operator from the manual 
flying tasks that require significant cognitive resources. This frees the operator to perform other critical tasks 
like mission planning and imagery analysis.  

While there have been many studies that have attempted to experimentally derive the number of UAVs a 
single operator can control in a given setting (e.g., (Ruff, Narayanan et al. 2002, Dixon, Wickens et al. 2003, 
Cummings and Guerlain 2007)), model-based approaches are generally more useful in determining not only 
an upper bound, but also provide insight into how much autonomy will be needed if a certain number of 
UAVS in a system is desired. 

One such approach is the Fan-Out approach (Olsen and Wood 2004), which predicts the upper bound of 
the number of vehicles a single operator can control given the amount of autonomy in a vehicle as 
represented through its Neglect time (NT) and the required human-computer interaction called Interaction 
Time (IT). The Fan Out model was later modified to account for wait times that would inevitably be 
experience by the system due to human inefficiencies. This adjustment provides a more realistic and lowered 
upper bound (Cummings and Mitchell 2008). For example, one UAV can operate in a period of NT, and 
during that period of NT, the operator can attend to other vehicles. However, if an operator fails to notice 
that a UAV needs assistance (such as needing a new goal once a waypoint has been achieved), or becomes 
engrossed in a mission plan for a UAV with a system malfunction, one or more UAVs can wait for the 
operator’s attention, causing a delay for one or more vehicles.  
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Figure 3 represents how NT, IT, and Wait Times (WT) interrelate. Point A represents a discrete event that 
occurs after a period of neglect time, which causes the vehicle to require immediate operator assistance such 
as an engine loss. NTs may not be so clearly observable, as exemplified by Point B, which represents 
performance degradation causing vehicle performance to drop below the NT performance threshold, e.g., a 
slow degradation of an inertial navigation system. In both NT cases in centralized UAV architectures, once 
performance has dropped below an acceptable level requiring human interaction, the UAV must wait until 
the operator recognizes and solves the problem, and so that the UAV can move to another NT state. Point C 
illustrates the system time delay if the problem is not addressed at the appropriate time.  

Equation 1 represents the Fan Out mathematical relationship where NT and IT are as defined above. 
However, it should be noted that IT should account for not just the time an operator inputs commands to a 
UAV but also it should include delays where an operator has entered a command and waits for a system’s 
response. Wait times that add delays to the necessary ITs are accounted for in a separate term as defined by 
Equation 2.  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Equation 2, WTQ, or Wait Time due to Queue results when multiple UAVs require attention, but the 
operator can only serially attend to them, effectively causing a queue to form for the operator’s attention. For 

example, if an operator is controlling two UAVs on a 
search mission and both require the operator to insert 
waypoints near-simultaneously, the second UAV may 

have to loiter in place while the operator attends to the first. Assuming the operator can switch attention 
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wait times (Cummings and Mitchell 2008) 
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quickly once the first UAV is back to NT, the time the second UAV waits in the queue (WTQ) is effectively 
the IT for the first vehicle.  

WTSA, or Wait time due to a loss of Situation 
Awareness, is perhaps the most difficult wait time 
component to model because it represents how 
effectively an operator can manage his or her attention. 
Situation Awareness (SA) is generally defined as having 
three levels, which are: 1) the perception of the elements 
in the environment, 2) the comprehension of the current 
situation, and 3) the projection of future status (Endsley 
1995). While SA can decrease under high workload due 
to competition for attentional resources (Andre and 
Wickens 1995), it can also decrease under low workload 
due to boredom and complacency (Rodgers, Mogford et 
al. 2000).  If an operator does not realize a UAV needs 
attention (and thus experiences a loss of SA), the time 
from the initial onset of the need for IT to actual 
operator recognition of the problem could range from 
seconds to minutes. 

Thus, Equation 2 categorizes system wait times as the 
summation of wait times that result from queues due to 
near-simultaneous arrival of events that require human 

intervention plus the wait times due to the operator 
loss of SA. Wait times increase overall IT and reduce 
the number of vehicles a single operator can supervise.  

In terms of operator capacity, Equation 2 
demonstrates that as a UAV’s degree of autonomy 
increases (expressed as an increase in NT), holding all 
other parameters equal mean that a single operator 
could control more vehicles. Consequently, for a fixed 
NT (or degree of autonomy), operator capacity could 
be increased by making the ground control station 
interactions more streamlined (i.e., lower IT), or 
ensuring all the correct alarms are in place so that 
operators do not miss critical points of interventions 
(i.e., lower WTSA). 

A meta-analysis of several previous studies looking at 
various levels or degrees of automation/autonomy in 
centralized single operator control of multiple UAVs, 
particularly at the mission management level (the 
outermost loop in Figure 2), demonstrates that as NT 
increases (meaning the degree of autonomy increases), the maximum number of unmanned vehicles a single 
operator can control increases (Cummings and Mitchell 2008) (Tables 1 and 2, and Figure 4). The Levels of 
Autonomy (LOAs) in Table 1 are loosely modeled on Sheridan’s levels of automation framework (Sheridan 
and Verplank 1978). While there have been numerous other levels of automation and autonomy proposed for 
UAVS, as recently highlighted by a 2012 Department of Defense report (Defense Science Board 2012), such 

Table 2. Multiple UAV Study Comparison 

 

Experiment 
L
O
A 

Max 
UV# 

1 Dixon et al. (2005) (baseline) I 1 

2 Dixon  et al. (2005) (auto-pilot) I 2 

3 Dixon et al. (2005) (auto-alert) I
V 

2 

4 Ruff et al. (2002)  I
V 

4 

5 Dunlap (2006) I
V 

4 

6 Cummings, et al. (2008) I
I
I
-
I
V 

5 

7 Lewis et al.  (2006) I
V
-
V 

8 

8 Cummings & Guerlain (2007) I
V 

12 

9 Hilburn et al. (1997) (ATC) N
/
A 

11 

LOA Automation description 

I 
The computer offers no assistance: 
human must take all decision and 

actions. 

II 
The computer offers a complete set of 

decision/action alternatives. 

III 
The computer offers a selection of 

decisions/actions. 

IV 
The computer suggests a plan, and 

executes that suggestion if the human 
approves (management by consent) 

V 

The computer suggests a plan and 
allows the human a restricted time to 

veto before automatic execution 
(management by exception). 

VI 
The human is not involved in the 

decision-making process, the computer 
decides and executes autonomously. 
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frameworks pose many problems. These LOAs used here only illustrate increasing degrees of autonomy and 
thus NT, and are not meant to be normative. 

As shown in Figure 4, research has previously demonstrated that with very low levels of mission 
management automation, a single operator can supervise at best only two UAVs. However, given high 
neglect times enabled by higher degrees of autonomy (i.e., UAVs plan their own routes and obstacle 
avoidance, only seeking high level mission plan approval), experimentally operators have successfully 

controlled up to 12 Tomahawk Land Attack Missiles (TLAM), which are highly automated missiles that 
navigate on their own. These vehicles are effectively one-way UAVs, controlled in much the same way as 
UAVs through GPS commands. WASMs, or Wide Area Search Munitions, are also similar weapons that are 
launched from another aircraft, and then fly themselves until they find their assigned target. Curiously the 
number of WASMs and TLAMs, which are highly automated and operate in centralized control systems, a 
single operator can simultaneously control (8-12) is very similar to the number of airplanes a single air traffic 
controller can handle (~11, (Hilburn, Jorna et al. 1997)). Arguably, manned aircraft have similar degrees of 
autonomy since the pilot on board is expected to obey all the high levels commands of the controller. 

One of the limitations common across the studies in Table 2 is the lack of measurable system-level 
performance metrics. In general for the studies in Table 2, the performance of the operators was deemed 
acceptable as a function of expert observation, which is a valid method for performance assessment (Endsley 
and Garland 2000) but is not generalizable across domains and only useful as a descriptive and not predictive 
metric. Thus a system-level performance metric should capture both aspects of human and automation 
performance, which indicates an objective level of goodness and/or satisficing (Simon, Hogarth et al. 1986) 
(i.e., a “good enough” solution as opposed to optimal.) Such system-level metrics are often referenced as key 
performance parameters (KPPs) (Joint Chiefs of Staff 2007). 

Towards this end of developing more comprehensive KPPs for multiple UAV systems, a recent study 
demonstrated that the number of UAVs that a single operator can control in a centralized architecture is not 
just a function of the level of decision support automation, but is inextricably tied to both mission complexity 
and overall system performance (Cummings, Nehme et al. 2007). Using human experimentation in a multiple 
UAV simulation test bed and a simulated annealing (SA) technique for heuristic-based optimization, operator 
performance was predicted to be significantly degraded beyond approximately five UAVs with approximately 

Figure 4: Meta-Analysis of Previous Experiments Demonstrating Increased Operator Capacity for 
Increasing Neglect Time (as expressed by Levels of Automation) 
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levels 3-4 of autonomy as defined in Table 1. The optimal range was predicted to be between 2-4 vehicles 
(Figure 5). Interestingly, in a different single operator-multiple UAV study with an entirely different test bed 
but similar levels of autonomy and centralized architecture, the optimal number was experimentally 
determined to be ~ 4 UAVs (Cummings and Mitchell 2008). 

The KPP in Figure 5 is cost, which takes into account not just operational costs such as fuel, but also the 
cost of missed targets and cost in terms of mission delays introduced by inefficient human interactions. The 
solid curve in Figure 5 represents a theoretically perfect human operator, and the dotted line represents more 
realistic human performance that accounts for delays due to inefficient decision making, communication 
problems, cognitive load, etc.  Thus, the performance of the system (the automation and the operator) can 
vary both as a function of the operator, but also can vary due to the operational constraints such as number 
of targets, operational costs, etc. This variation is why it is important to explicitly link system performance to 
operator capacity. 
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Figure 5:  Operator Capacity as a Function of Mission Constraints  

 

Operator Interaction in Decentralized UAV Architectures 
While Figure 2 demonstrates supervisory control at the single vehicle level, which for centralized multiple 

UAV control is simply replicated for each vehicle under control, Figure 6 represents a notional system 
architecture that will be required for single operator control of multiple decentralized UAVs. In order to 
achieve this futuristic system, operators will need to interact with an overall automated mission and payload 
manager, which coordinates a set of tasks for a group of vehicles, instead of individually tasking each vehicle. 
This effectively represents a decentralized architecture, where operators convey high level goals to an 
automated mission manager (such as requesting that an area be searched), which then allows the UAVs to 
coordinate across the group to determine how to assign particular tasks, which may be dynamic. In a 
decentralized architecture, navigation and motion control tasks are necessarily subsumed by automation.  

The decentralized architecture provides a substantial benefit in that the operator and his or her ground 
control station does not become a single point of failure, i.e., if the operator has intermittent or loss of 
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communications with the vehicles, the system can still function. For example, because the network of 
vehicles communicates with one another, if one vehicle breaks down, another can take its place.  Another 
advantage is that the system is robust to lapses in operator situation awareness and delays since vehicles do 
not necessarily have to wait for commands. However, emergent UAV behavior in such systems can be 
complex and confusing for an operator, and if the system operates in a sub-optimal fashion, it could be 
difficult for operators to correct problems unless they have the ability to understand and then execute the 
necessary commands to correct the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For operators supervising a decentralized system, the Fan Out approach as depicted in Equation 1 cannot 
be used to estimate operator capacity, since for centralized systems, the assumption is that the vehicles have 
their own independent NTs and ITs, which drives the overall number of vehicles that can be controlled. 
Since operators only provide high level goals at the mission and payload management level, they do not have 
an IT for each vehicle, but rather an IT for high level interaction with the team. Similarly for NT, there is not 
distinct per vehicle NT, since they work together.  

In control of a decentralized UAV network, the question of operator capacity is driven by how many tasks 
an operator can handle instead of how many vehicles. Under task-based, decentralized control, a human 
operator provides high-level control by approving which tasks should be completed by the team of vehicles 
without directly tasking a particular vehicle. Then the decentralized network of vehicles chooses how to 
allocate the approved tasks among themselves and can make tactical-level changes on their own, such as 
switching tasks.  

In controlling a network of collaborative, decentralized UAVs, the operator could control, for example, 2, 
20, 200 or even 2000 UAVs, as long as the tasks generated by the group of UAVs was manageable by a single 
operator. Determining the task load manageable by a single operator can roughly be thought of as the 
number of tasks that can be successfully accomplished over the course of the mission. While this number 
will, of course, vary widely across different missions and with different mixes of vehicles and people, there is 
one proxy metric that can be used across any decentralized UAV system for workload comparison, which is 
the concept of utilization.  

 

Figure 6: Decentralized Control for Multiple UAVs 
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Table 3: Task Load, Workload, and Performance for Three Multiple UAV Architectures with 
Increasing Autonomy 

 

Experiment Architecture Primary 
Task Load 

Average 
Tasks/Min Performance Average 

Utilization 

#1: 
Unmanned 

Ground 
Vehicles 
(Nehme, 

Crandall et al. 
2008) 

Mostly 
centralized, 
with some 
navigation 

sharing 

2 vehicles 1.70 Low  .59 

4 vehicles 4.02 Medium .68 

6 vehicles 5.34 Medium .70 

8 vehicles 8.09 Medium .78 

#2: 
Unmanned 
Aerial and 

Underwater 
Vehicles 
(Nehme 

2009) 

Somewhat 
centralized with 

some 
autonomous 
path planning 

and goal 
selection, 
5 vehicles 

Same type 
vehicles 

4.90 Medium .52 

2 different 
types 5.59 High .64 

All different 
vehicles 

8.00 Low .70 

#3-4: 
Unmanned 
Ground & 

Aerial 
Vehicles 
Medium 

(Cummings, 
Clare et al. 
2010) and 

High (Clare 
and 

Cummings 
2011) 

Workload 

Decentralized, 
5 vehicles 

23.3 tasks 3.96 High .44 

30 tasks 4.05 High .48 

43.3 tasks 7.30 Medium .65 

50 tasks 7.90 Medium .67 

 
Utilization refers to the “percent busy time” of an operator, i.e., given a time period, the percentage of time 

that person is busy. In supervisory control settings, this is generally meant as the time an operator is directed 
by external events to complete a task (e.g., replanning the path of a UAV because of an emergent target), or 
attending to internal tasks like responding to text messages. What is not included in this measurement is the 
time spent monitoring the system, i.e., just watching the displays and/or waiting for something to happen. 
The concept of utilization as a mental workload measure has been used in numerous studies examining 
supervisory controller performance (Schmidt 1978, Rouse 1983, Cummings and Guerlain 2007, Donmez, 
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Nehme et al. 2010). These studies generally support that when tasked beyond 70% utilization, operators’ 
performances decline.   

In terms of the previously discussed IT and NT terms, utilization can generally be thought of as 
IT/(NT+IT) on the aggregate task level. It can be used to describe an operator’s response to task load in 
centralized UAV architectures as well as decentralized, but it is especially useful for decentralized system 
analysis given the operator’s interaction at the meta-level instead of the individual vehicle level, which reflects 
the architecture of Figure 6. 

In order to determine whether decentralized systems provide any utility in terms of reduced workload and 
improved performance as compared to centralized UAV architectures, a set of studies was compared that 
span increasing degrees of autonomy and increasing task loads, summarized in Table 1. In the first 
experiment at the lowest degree of autonomy (Nehme, et al., 2008), mostly centralized, operators controlled 
2-8 Unmanned Ground Vehicles (UGVs), which resulted in four different experiment levels. For this 
experiment set, the individual vehicles relied on the human for goal setting, but had some ability to share local 
navigation information with one another.  

In the second experiment with three experimental levels (Nehme, 2009), a single operator controlled various 
mixes of 5 multiple unmanned aerial and underwater vehicles, with slightly more autonomy in the sense that 
vehicles would not only path plan themselves, but if the operator did not assign an ultimate goal within a pre-
specified time, the vehicles would assign themselves to the nearest target.  However, the operator could 
override any individual vehicle and redirect not only its path, but its ultimate goal as well. 

The last experiment with four increasing task load levels represented the highest degree of decentralization, 
in that operators could only specify a task list to a group of 5 unmanned aerial and unmanned surface ships. 
The vehicles negotiated amongst themselves through a consensus-based bundled algorithm which vehicle 
would be assigned to which task, and each vehicle determined its own route. The operator could only insert 
and reprioritize tasks, but never direct and individual vehicle. Two different studies were included that used 
this test bed which focused on medium (Cummings et al., 2010) and high (Clare and Cummings, 2011) levels 
of task loading. 

In order to directly compare these different studies, the average tasks per minute were listed, which shows 
how many tasks in each experiment the operator was expected to complete over an average one-minute time 
interval. Performance scoring was aggregated into low, medium, and high categories since the performance 
metrics used in each of the sets of experiments could not be directly compared. Low means that for the 
specific study, that condition resulted in the worse performance, and respectively for the high performance 
ranking. Lastly, the average utilization, which is the percentage of time the operator was busy performing 
tasks required by the system, was also listed. 
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Figure 7 illustrates that for each of the 3 sets of experiments, utilization increased with an increasing task 
load, which is expected and also an internal validity check. In addition, Figure 7 also illustrates that as the 
degree of decentralization increases, (i.e., more autonomy across a network of vehicles and less direct control 
by a human operator), utilization decreases. Interestingly all three experiments had an experimental level of 
~8 tasks per minute and the most decentralized architecture allowed the average operator to work less by 

11% as compared to the more centralized architecture (and 3% less than the somewhat centralized 
architecture (Nehme, 2009)). And in no case did the centralized architectures produce lower utilizations for 
similar task loads.  

In terms of performance, each of the observed data points in Table 3 are color-coded in Figure 7 to reflect 
the relative performance score, with red indicating the worst performance, yellow demonstrates moderate 
performance, and green represents the best performance. Recall that each of these scores is a relative ranking 
so caution is advised in interpretation. In general the lower utilizations produced the best performances, with 
the caveat that little work has been done in terms of the possible negative impact of low task load on 
performance  (in one exception, see (Cummings, Mastracchio et al. 2013)). For all studies, performance 
suffered when the 70% utilization threshold was exceeded, with only the somewhat centralized study 
participants exhibited markedly worse performance. 

For the somewhat decentralized (Nehme, 2009) and more decentralized experiments (Cummings et al., 
2010; Clare and Cummings, 2011), there appears to be a non-linear relationship in the 6 tasks/minute and 
below regions, which is not evident in the centralized experiment (Nehme et al., 2008). More work is needed 
to determine why such non-linear relationships exist, the nature of the critical point for the sharp rise, and 
how a system could be better designed to reduce the sharp increases in workload. 

 

Conclusion 
Taken together, the results from both the centralized and decentralized sets of experiments demonstrate 

that decentralized, task-based control of UAV architectures with higher degrees of autonomy can mitigate 

Figure 7: Utilization for the Average Tasks/Minute for the Experiments in Table 3 
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cognitive overload and reduce workload. While a single operator can maintain effective control of a relatively 
small network of centralized UAVs, decentralized architectures are more scalable, since adding additional 
agents also adds computational capability (assuming the tasks generated by the system do not linearly 
increase). Moreover, the decentralized UAV framework is robust to a single point of failure, since no single 
agent is globally planning for the fleet.  

In terms of workload for a supervising operator, the ultimate success of either a centralized or decentralized 
UAV architecture is not how many vehicles are in the network per se, but rather how many tasks the group 
of vehicles generates for the operator and how much autonomy is on board these vehicles so that neglect 
time can be increased. And while this increasingly autonomy in a decentralized network of UAVs can mean 
reduced workload for the operator, it also adds significant more complexity to the system, which not only 
means increased developmental costs than a centralized network, but also one that is much harder to certify 
as safe. 

Another caveat to the use of increased autonomy to mitigate workload across a UAV network is that such 
increased autonomy and increased neglect times can exacerbate a loss of operator situation awareness, as well 
as promote complacency and skill degradation (Parasuraman, Sheridan et al. 2000). Management-by-
exception architectures, which occur when automation takes action based on some set of pre-determined 
criteria and only gives operators a chance to veto the automation’s decision, have been shown to improve 
operator performance (Cummings and Mitchell 2006). However, in such control schemes, operators are also 
more likely to exhibit automation bias, a decision bias that occurs when operators become over-reliant on the 
automation and do not check to ensure automated recommendations are correct (Mosier and Skitka 1996). 
Automation bias is a significant concern for command and control systems so it will be critical to ensure that 
when higher levels of automation are used, especially at the management-by-exception level, that this effect is 
minimized. 

Lastly, while it is critical to consider the mental workload of a supervisor of multiple UAVs, the ability of 
the human to add value to the performance of a team of UAVs cannot be overlooked. In one study that 
examined whether human supervisors added value in a search and track task for a decentralized, highly 
autonomous network of UAVs, results in a controlled study shows that a 30-50% increase in overall system 
performance, particularly in the search task, could be achieved by letting humans coach the automation 
(Cummings, How et al. 2012). Thus, instead of attempting to dictate mutually exclusive boundaries for 
human and computers in multiple UAV systems, either centralized or decentralized, more effort needs to be 
spent in trying to define mutually supportive roles such that humans and computers complement one 
another. 
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