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Abstract: 

  With increasing use of automation in complex system operations like air traffic or 
nuclear plant control, the role of human operators is increasingly shifting from hands-on 
control to remote supervision, known as human supervisory control. During a human 
supervisory control task there may be sudden changes in taskload. When critical events occur, 
operators can be overloaded by sudden increases in workload, to the point of making errors. 
The ability to remotely detect a neurophysiological state that is likely to lead to problematic 
human performance is especially useful for supervisors of such systems because it allows us 
to detect when an operator may be bored or overwhelmed by the taskload presented. By 
combining the measured hemodynamic and metabolic responses of indirect brain and 
cognitive activity using functional Near-Infrared Spectroscopy (fNIRS), it may be possible to 
determine a change in a subject’s cognitive activity while performing different tasks. Whether 
such data can be reliably connected to workload and performance in an actual supervisory 
control setting, where most other neurophysiological efforts have failed, is an open question. 
Using fNIRS in a human supervisory control experiment (in this case supervising multiple 
unmanned vehicles), we examined whether measured hemodynamic fNIRS data correlates to 
an actual change in low and high workload in supervisory control settings. Participants (n=36) 
controlled unmanned vehicles in low and high mental workload situations. Overall 
performance scores were significantly higher in low workload scenarios compared to high 
workload scenarios. However, there were no significant differences in HbO percent change or 
HbR percent change based on scenario, which indicates that fNIRS may not be suitable for 
detecting mental workload changes over short periods of time.  
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1. Introduction  

1.1 Research Question 

As technology progresses in society, human operators are being removed from the role 

of direct controller to take on the responsibility of “supervisory controller” or “system 

administrator.” A supervisory controller is someone who intermittently interacts with a 

computer interface to complete a task. During human-automation interaction, supervisory 

controllers are faced with periods of low and high workload. As technology continues to 

increase, the periods of low workload continue to grow. It is important to understand when a 

supervisory controller is subjected to high or low mental workload in order to optimize 

performance of the operator during a human supervisory control task.  

 This investigation aims to expand the understanding of how a neurophysiological 

tool, functional near-infrared spectroscopy (fNIRS), can be used to reliably measure mental 

workload during periods of low and high cognitive task demands. Mental workload is 

important because it is distinguishable from other cognitive constructs such as attention or 

memory (Parasuraman et al., 2008). The study of mental workload aims to improve 

understanding of human interactions with machines in complex environments, such as air 

traffic control, nuclear power plant operations, military unmanned aerial vehicles, and robotic 

manufacturing. The studies of this experiment are aimed at elucidating the relationship 

between measures of brain function and workload in humans using a combination of 

established workload measures.  

Numerous techniques are available for measuring workload in applied and 

experimental settings, including subjective, performance-based, and physiological measures. 

From the latter category, neurophysiological measures are a potential method for objectively 
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viewing mental activity at different levels of workload to achieve a better understanding of 

how humans respond to changes in task loading. This research focuses on understanding the 

cognitive and neural mechanisms underlying workload, using a combination of subjective 

measures of individual differences (e.g., self-report questionnaires), behavioral measures 

obtained from a supervisory control simulation (e.g., response time, accuracy), and non-

invasive neurophysiological measures of oxygenated hemoglobin and deoxygenated 

hemoglobin derived from scalp-recorded fNIRS. More specifically, this research is focused 

on determining the effectiveness of fNIRS as a tool for measuring workload during task 

performance.  

The following sections will provide background on mental workload, including 

various techniques for measuring workload, followed by motivation for an experiment that 

compares performance-based workload measures to measures of cognitive arousal using 

fNIRS. 

1.2 Mental Workload 

Early workload research began with Yerkes and Dodson at the beginning of the 20th 

century. They determined that humans performed greatest at a medium mental workload 

levels and decreased in performance during very low and very high levels during a training 

task. This inverse U relationship can be seen in their Yerkes-Dodson Curve (1908; Figure 1). 

In a more modern version, Hancock and Warm (1989) were able to recreate a similar inverse 

U during training for a learning task that showed a relationship exists between attentional 

resource capacity and stress level. They confirmed that as humans are performing tasks, it is 

important that arousal levels are not too high because a decrease in performance can lead to 

mistakes while performing a task.  
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Figure 1: Yerkes-Dodson Arousal vs. Performance Curve 

 

In the mid 1970s, Moray gave the first concrete definition of mental workload: 

A load is something which imposes a burden on a structure, or makes it 
approach the limit of its performance in some dimension. Go far enough along 
that dimension and the system will fail in some way. In the case of mental 
workload, the central concept is the rate at which information is processed by 
the human operator, and basically the rate at which decisions are made and the 
difficulty of making the decisions. (Moray, 1979)  
 

Many other definitions have been provided over the years but still follow a similar theme. The 

main idea is that the operator regulates a limited pool of mental resources to assign to task 

demands. If task demands are within our resource limits, performance will not be hindered. 

However, if task demands exceed resources, performance may suffer (O’Donnell & 

Eggemeier, 1986).  

1.3 Taskload and Workload 

When discussing mental workload, an important distinction must be made between 

taskload and workload. Taskload is the measure of the actions and procedures required of any 

operator to execute a task and is subject-independent. Workload, in contrast, is the operator’s 

assignment of mental resources to taskload demands. An example of this is two unmanned 

vehicle operators each responsible for controlling the same number of unmanned aerial 

vehicles. These two operators may report different levels of workload due to differences in 
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individual training, experience, skill and fatigue, but have the same taskload because they are 

both controlling the same number of aircraft.  

Wickens’ model of information processing provides a system chart for demonstrating 

the transformation of data from the surrounding environment into a response (Figure 2: 

Wickens & Hollands, 1999). Humans receive stimuli through sensory organs (e.g., nose, eyes, 

ears), process those signals into functional information through perception (e.g., motion, 

speech), access their working and long-term memory to better understand the information, 

and finally use their decision and response selection centers to generate and execute a 

response. A limited pool of attention resources is used to prioritize the various nodes between 

perception and response execution. Understanding the neural correlates to a conceptual model 

of information processing is a growing trend and one of the underpinnings of the present 

research.  

 
Figure 2: Model of Human Information Processing 
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 Human mental workload has been studied extensively. In the aviation domain, 

numerous studies have examined military pilots, airline pilots, and air traffic controllers 

(Battiste & Bortolussi, 1988; Wilson, 2002). In addition to aviation, there have also been a 

plethora of high workload studies that deal with specialized occupations such as surgeons, 

astronauts, and missile defense operators (Klein, Riley, Warm, & Matthews, 2005; Berka et 

al., 2005). The common theme of the previous works is that these tasks deal with high 

workload in critical situations. Endsley and Rodgers (1997) were able to summarize the ideas 

that come from all these high workload situations using operational errors in en route air 

traffic control. They found that there was a positive correlation between workload and 

operational errors in the high-workload domain. This can be put in simpler terms by saying 

that as the workload increases, the number of errors that the user makes also will increase.  

1.4 Workload Measurement 
 
 In order to perform the research on workload discussed in the previous section, it is 

necessary to identify measures that accurately describe workload levels. The four main 

methods of measuring workload are (1) user performance, (2) surveys, (3) physiological 

measures, (4) neurophysiological measures.  

 The first method of measuring workload is looking at user performance. As Wierwille 

and Eggemeier (1993) showed, measures of speed and accuracy can be used to represent an 

objective task performance metric. The use of task performance to measure workload requires 

the assumption that speed and/or accuracy of performance will decrease as workload 

increases beyond a critical value or threshold for unimpaired performance. The main 

drawback to this idea occurs when the user consistently has excess resources available to keep 

task performance at a high level. This could occur during tasks where the user is asked to 

change from a low workload task to a medium workload task and can easily offset the 
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increases in task demands. The issue here is that performance-based measures have been 

shown to be effective at high workload levels, but they may not be reliable when the operator 

is performing well at low or medium workload levels. Therefore, we need a measuring 

technique that is effective across a broader array of workload levels, including medium and 

low. 

The second method of measuring workload uses subjective data captured using 

workload surveys. Some of the most popular surveys include the Cooper-Harper Rating Scale 

(Cooper & Harper Jr., 1969), the NASA Task Load Index (TLX; Hart & Staveland, 1988) and 

the Subjective Work Index Test (SWAT; Reid & Nygren, 1988). These surveys incorporate a 

series of questions to measure workload. The main advantage of these surveys is that they are 

easy to complete and can be compared to previously completed research.  The limiting factor 

in these surveys is that they fail to specifically pinpoint areas of high or low workload 

fluctuations throughout the task.  

 The third method of measuring workload during a task is physiological measures. 

There are many physiological measures that have been shown to reliably predict mental 

workload (Kramer, 1991). Some of these measures, such as heart rate or blood pressure, can 

be directly traced to an increase demand by the brain, but many are responses that are merely 

correlated with increased mental workload. Cardiovascular measures are some of the most 

commonly-used methods for tracking workload over time. Electrocardiogram (ECG or EKG) 

measures heart rate, heart rate variability, blood pressure, and blood volume. Generally, heart 

rate, heart rate variability, and blood pressure all increase during periods of high mental 

workload (Sirevaag et al., 1993). There are also several different measures of eye activity that 

are associated with mental workload. Pupil dilation, for example, has been found to be a good 

measure of workload, with increased dilation occurring during periods of high workload 
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(Beatty, 1982). The third type of physiological workload measurement is through symptoms 

of the sympathetic nervous system (SNS), which is part of the autonomic nervous system 

(ANS). The SNS is commonly associated with the “fight-or-flight” response and stimulates 

many systems in the body when activated. One of the most commonly-used measures is 

galvanic skin response, which measures sweat produced in certain regions of the skin. 

Galvanic skin response has been associated with mental workload in several different 

environments (Wierwille, 1979) and is a relatively low-intrusive technique. 

A fourth approach to measuring workload throughout an experiment or task is 

physiological tracking. Physiological tracking allows for continuous monitoring of subject 

state, whereas many primary and secondary task measures can only measure the subject’s 

state at discreet event times. Research by many such as Koechlin, Basso, Pietrini, Pazner, & 

Grafman (1999) and Miller & Cohen (2001) have shown the firing of neurons to produce 

electrical signals consumes oxygen and glucose and gives off carbon dioxide as byproducts. 

Any of these features (electrical signals, oxygen, glucose, etc.) can be used as a method to 

measure workload.  

  Neurophysiological measurement is another possible way to objectively measure 

mental workload. Other forms of workload measurement rely on subjective input from 

participants, may not be sensitive at low or moderate workload levels, or are only limited to 

measuring workload at isolated times. The continuous ability to measure workload through 

direct contact with the scalp of the head makes neurophysiological tracking the most ideal 

tool to measure workload. The next section will go into further detail about 

neurophysiological tracking, specifically neurocognitive measurement. 
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1.5 Noninvasive Neurocognitive Measurement  
 

The main focus of this research is looking at noninvasive neurocognitive workload 

measurement. Noninvasive neurocognitive measurement, as opposed to invasive 

measurement, does not require inserting sharp probes into the body. When investigating 

cognitive behavior, invasive techniques are not a practical approach because they pose a 

higher risk to the subject and have a very high cost. Therefore, noninvasive techniques are 

widely used in cognitive neuroscience because of their lower cost, lower risk, and higher 

reliability in healthy subjects.  This section will give a brief overview of the noninvasive 

techniques that are used in cognitive neuroscience research.  

The three main stages of brain activity indicators are (1) supply (what is delivered to 

the brain), (2) electrical signals (neuron firing), and (3) by-products (waste that is removed) 

(Pasley & Freeman, 2008). These stages of brain activity are ways in which researchers can 

successfully track what is happening in the brain.  

 When looking at the supply stage, the two main ingredients required for neuronal 

activity are glucose and oxygen. Glucose uptake can be measured using Positron Emission 

Tomography, or PET scan, which uses a radioactive tracer that is analogous to glucose 

(Buckner & Logan, 2001).  Oxygen is able to travel to the brain via hemoglobin and 

transcranial Doppler sonography, or TCD, measures the velocity of the blood flow to the 

brain, or cerebral hemovelocity (Warm et al., 2009). 

 Electrical signals are the most direct method of measuring brain activity because the 

supply (oxygen and glucose) and byproducts are simply a maintenance mechanism. When 

normal levels of glucose and oxygen are available, the firing of the electrical signals occur 

from neuron to neuron. When there is higher mental workload, the nucleus to the neuron 

consumes larger amount of glucose and oxygen to produce more electrical signals. 
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Electroencephalography (EEG) decomposes the complex EEG waveform into its constituent 

frequency bands and quantifies the energy in each band. The standard EEG bands are 

typically used, which include delta, theta, alpha, beta, and gamma. Increased workload 

appears to be associated with decreased activity in the alpha band but increased activity in the 

theta band. Beta and gamma band activity may also increase under conditions of higher 

mental demand. (Wilson & Eggemeier, 1991) The EEG can provide high temporal resolution 

(precision of a measurement with respect to time), but very low spatial resolution (distances 

between different brain regions). Whereas EEG records the electrical activity associated with 

neuronal depolarization oriented perpendicular to the surface of the brain, the technique of 

Magnetoencephalography (MEG) records the magnetic field produced by this electrical 

activity oriented parallel to the surface of the brain. Both the MEG and the EEG struggle with 

noisy signals caused by electrical signals other than the brain (e.g., head movement, blinking, 

etc.). Fortunately, EEG is widely used enough that many algorithms have been created to 

filter out some of these noise artifacts. 

 After supplies have been delivered and the neuron has fired, the third stage of brain 

activity involves the removal of by-products comes in the form of deoxygenated hemoglobin 

carried away in the bloodstream. This deoxygenated hemoglobin can be measured through its 

magnetic properties. Functional Magnetic Resonance Imaging (fMRI) takes advantage of 

these magnetic properties to measure the concentration of deoxygenated hemoglobin with 

great spatial resolution (Bucker & Logan, 2001; Carr, Rissman, & Wagner, 2010). This 

spatial resolution is key in seeing which specific areas of the brain are being activated during 

a task. In recent years there has been a rapid increase in the popularity of fMRI studies. In 

1993, the number of published articles citing functional magnetic resonance imaging was 

fewer than 20. In 2003, that number had increased to almost 1,800 (Berman, Jonides, & Nee, 
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2006). The rise in popularity comes from fMRI’s ability to measure brain activity during 

various tasks to show activation in different regions of the brain (Cabeza & Nyberg, 2000; 

Bunge, Gross, & Gabrieli, 2002) and its capacity to map the entire brain at once to show brain 

regions that work in conjunction with one another (Monchi, Petrides, Petre, Worsley, & 

Dagher, 2001). fMRI has excellent spatial resolution (≤10mm3 ), but does have some 

drawbacks including: limited temporal resolution, expensive operation costs, and their noisy, 

unnatural environment. Subjects have to lie down in a confined space where no metal objects 

are allowed, which severely limits which tasks can be performed.  

Another example of a noninvasive neurocognitive measurement looking at oxygen is 

functional near infrared spectroscopy (fNIRS). fNIRS will be discussed in much greater detail 

in the next section, but simply put fNIRS measures both oxygenated and deoxygenated 

hemoglobin through the absorption of infrared lighting.  

As the previous section shows, there are many different techniques to measure 

workload non-invasively. Each device has its own advantages and drawbacks depending on 

what the researcher is trying to accomplish. fNIRS is promising for workload research 

because it allows the user to test in environments that mimic real working conditions. 

However, its accuracy in predicting workload changes still remains unknown and requires 

further investigation.  Figure 3 below is a visual representation of the different neurocognitive 

measurement tools with spatial resolution vs. temporal resolution. With moderate temporal 

and spatial resolution (compared to EEG and fMRI), the biggest advantage of fNIRS as a 

brain imaging device is its ability to be used outside of tightly controlled research 

environments. Subjects are not forced sit in an fMRI machine or avoid blinking during an 

EEG experiment, so the data that is gathered does not need to take these factors into 

consideration when drawing conclusions from the results.  
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Figure 3: Spatial and temporal resolution of neuroimaging devices (Mehta & Parasuraman, 2013)  

1.6 Neurophysiology and functional Near-Infrared Spectroscopy (fNIRS)  
 
 At the root of all hemodynamic-dependent studies, such as fNIRS and fMRI, is the 

blood oxygen level-dependent (BOLD) signal. A quote from the 2011 Encyclopedia of 

Clinical Neuropsychology: 

BOLD imaging is a version of magnetic resonance imaging that depends on 
the different magnetic properties of oxygenated versus deoxygenated 
hemoglobin and, thus, indirectly, on variations in local tissue perfusion. The 
utility of BOLD imaging for fMRI also depends on the physiological 
phenomenon by which metabolically active cerebral tissue “demands” more 
perfusion than less-active tissue. Thus, populations of neurons that are 
particularly active during a cognitive or motor task actually elicit a surplus of 
perfusion which, in turn, results in an increase in the ratio of oxygenated to 
deoxygenated hemoglobin, detectable as a change in the BOLD signal. 
(Whyte, 2011)  
 

It is generally acknowledged that an increase in neural activity in a certain region of 

the brain will demand greater blood flow in an attempt to supply more oxygenated 

hemoglobin, while removing the deoxygenated hemoglobin. Therefore, it must be 

understood that the blood oxygen level-dependent signal is an indirect measure of 

what researchers are really interested in looking at, neural activity.   

 In 1977 at Duke University, Franci Jöbsis reported that relatively high degree 

of brain tissue transparency in the near-infrared range enables real-time non-invasive 
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detection of hemoglobin oxygenation using transillumination spectroscopy. 

Transillumination spectroscopy uses nonionizing optical radiation to gain information 

about tissue properties and is mainly used today as an assessment of breast cancer risk. 

(Jöbsis, 1977). Jöbsis used this technique to study cerebral oxygenation in sick 

newborn infants. In 1980, Marco Ferrari began using a prototype near-infrared 

spectroscopy instrument to measure changes in brain oxygenation in animals (Ferrari 

et al., 1980) and adult humans for the first time (Ferrari et al., 1982). Subsequent 

development and refinement of this technique to accurately measure oxygenated and 

deoxygenated hemoglobin in the brain and other regions of the body led to the first 

functional near-infrared spectroscopy.  

fNIRS functions by injecting near-infrared light from lasers at certain 

wavelengths (typically 690nm and 830nm) into the region of the brain that the 

researcher is interested in by applying sensors to head. This infrared light is able to 

pass through both skin and bone to be absorbed by hemoglobin in the outer cortex of 

the brain; this can be seen in Figure 4. The increase in oxygenated hemoglobin and the 

associated decrease in deoxygenated hemoglobin reflects an increase in arteriolar 

vasodilation (widening of blood cells within arteries), which increases cerebral blood 

flow and cerebral blood volume. The increased oxygen transported to the area 

typically exceeds the need of the local neuronal rate of consumption, which causes an 

excess of blood oxygenation in active areas. Figure 5 shows the shows this increase in 

oxygenated hemoglobin (red line) coupled with the decrease in deoxygenated 

hemoglobin (blue line) during cortical activation, represented on the x-axis as Time 0 

through 10. The total change in blood flow is represented by the green line.   
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Figure 4: Infrared light traveling through skin and bone to reach the cortex (from ISS, Inc.) 

 
 

 

Figure 5: Oxygenated hemoglobin and deoxygenated hemoglobin during cortical activation (Ferrari & Quaresima, 2012) 

 
After the infrared light leaves the cortex it returns to the detector, and is measured through 

photomultipliers. The photomultipliers are responsible for converting the light into digital 

signals for post-processing purposes. Post-processing of optical signal utilizes the Modified 

Beer-Lambert Law. The Modified Beer-Lambert is an algorithm that derives changes in tissue 

optical properties based on continuous-wave (CW) diffuse optical intensity measurements. In 

its simplest form, the scheme relates differential light transmission changes to differential 

changes in tissue absorption (Baker et al., 2014).  

 Figure 6 shows how the fNIRS sensor is applied to the forehead of a subject with 

corresponding detectors and light sources. This figure is shown using 8 channels. For fNIRS, 

a channel is a system in which several independent signals may be sent down an optical fiber 
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link by monitoring them on light-carriers of different wavelengths. The infrared lasers are 

extremely sensitive to outside light channeling, which can compromise the signal. fNIRS also 

requires very firm contact with the subject’s scalp, with may cause discomfort for participants 

due to compression on the scalp. 

 
Figure 6: fNIRS sensor diagram for prefrontal cortex (from ISS, Inc.) 

 

1.7 fNIRS and Workload  

 As a workload measuring device, fNIRS has been used in cognitive neuroscience in 

addition to other physiological measures of workload such as heart rate, blood pressure, 

galvanic skin response, and respiration. When looking at workload and how it is to be 

measured, the main area of the brain that will be focused on is the prefrontal cortex, which 

plays an important role in the processing of memory and the associated workload. Jelzow et 

al. (2011) showed the correlation between these physiological responses and fNIRS as a way 

to measure workload, but only used 15 participants during their study using a semantic 

continuous performance task (CPT). Findings from Herff et al. (2014) show that measuring 

hemodynamic responses in the prefrontal cortex with fNIRS can be used to quantify and 

qualify high mental workload during the n-back task (a test of working memory), again using 

only 10 participants. A study was conducted in a human supervisory control environment 

(Boyer et al., 2015), which did not detect workload changes with fNIRS using 30 participants. 

This study used a missile defense response task in a supervisory control setting.  From this 
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previous research, it can be seen that there are conflicting results. In previous fNIRS studies 

(e.g., Herff et al., 2014), it was determined that there was a correlation between fNIRS and 

changes in mental workload. However, these studies are limited due to the small number of 

participants and the simplicity of the mental workload tasks. Boyer’s research takes a much 

different approach (increased number of participants and a much more complex workload 

task) and did not detect changes in mental workload using fNIRS. From this point it is 

important there is a conflict in previous results that must be further investigated.  

 
1.8 Summary 

 The study of mental workload in human supervisory control settings is very important 

to our understanding of how humans are able to interact with technology. More specifically, it 

is important to understand when a user is not performing at an optimal level. fNIRS is a 

relatively new method of neurocognitive measurement that may be able to give insight into 

mental workload during human supervisory control tasks, but still remains unproven.  

An experiment was conducted to measure workload while using fNIRS during a 

human supervisory control task. Participants performed a computer-based task under high and 

low workload conditions. Simulator task performance was compared to fNIRS output to 

identify how each techniques responds to changes in workload. It was hypothesized that 

subjects will have lower overall performance scores and accuracy in high workload scenarios 

compared to low workload scenarios. It was also hypothesized that there will be an 

accompanied larger increase in oxygenated hemoglobin (decrease in deoxygenated 

hemoglobin) during high workload scenarios compared to low workload scenarios.  
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2. Experimental Methods 

2.1 Experimental Framework 

This experiment employed a simulation designed to mimic the responsibilities of the 

Unmanned Vehicle (UV) operator. The Research Environment for Supervisory Control of 

Heterogeneous Unmanned Vehicles (RESCHU) simulator was used as a test platform in the 

experiment. RESCHU has been used in previous studies to model workload impact in 

multiple unmanned vehicle supervisory control settings (e.g., Donmez, Nehme, & Cummings, 

2010). This simulation required a single operator to control a team of UVs composed of 

unmanned air and underwater vehicles (UAVs and UUVs). All vehicles were engaged in 

related surveillance tasks, with the ultimate mission of identifying specific targets of interest 

in urban coastal and inland settings. Participants moved multiple UVs from one part of the 

screen to various targets while avoiding obstacles. The overall goal of the task was to get as 

many targets (objects located in a Google Earth image) correct while avoiding threat areas 

(circular areas on the map that will cause damage to a UV if flown over). In order to achieve 

this goal, the participants had many tools at their disposal. A computer mouse was used to 

assign UVs to targets, engage in targets (begin searching the image), and add waypoints 

(coordinates on the map that would route the UV on a different path) to avoid threat areas.  

The RESCHU visual interface consisted of five major sections: map, camera window, 

message box, control panel, timeline (Figure 7). The map (Fig. 7a) displayed the locations of 

UVs, threat areas, and areas of interest. Vehicle control was carried out on the map, such as 

changing vehicle paths, adding waypoints, or assigning a target to a vehicle by selecting the 

UAV with the mouse. In addition, the map contains yellow circles representing threat areas. 

When a UV intersected with a threat area (UV moved to a position where a yellow circle is 
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located on the map), RESCHU recorded the length of time the UV spent there. When the 

vehicles reached a target, a simulated video feed of a Google Earth image was displayed in 

the camera window (Fig. 7b). The participant had to visually identify a target (automobiles, 

landmarks, pools) in this simulated video feed. The main events in the mission (i.e., vehicles 

arriving to goals, or automatic assignment to new targets) were displayed in the message box, 

along with a timestamp (Fig. 7c). The message box was used by the operator to determine 

whether or not they had correctly identified a target, or one of the UVs had arrived at its 

target. There were also additional tools available to the operator such as a control panel (Fig. 

7d) and timeline of expected UV arrival (Fig 7e). This gave the operator more information 

about when a UV would arrive at its target compared to the other UVs in motion.  

 

Figure 7: RESCHU interface (A: map, B: camera window, C: message box, D: control panel, E: timeline)	

 
When a vehicle arrived at a target (flying for UAV and traveling underwater for 

UUV), a visual flashing alert indicated that the operator could engage the target by selecting 

the UV and clicking “engage”. The operator then had to complete a search task by panning 

and zooming the camera with the mouse until the specified target was located (Fig. 7b). Once 

the operator submitted the target identification by right clicking on what they believed to be 
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the correct target, the message box (Fig. 7c) notified the operator on the accuracy of response 

(used to simulate feedback that real operators get from their commanders or teammates as a 

consequence of their actions), and the vehicle was automatically re-assigned to a new target 

without controller input. Figure 8 contains images of what the video feed looked like when 

the operator engaged in a target.  

Participants were instructed to maximize their score by avoiding threat areas that 

dynamically changed (every few minutes the threat areas would move to a new random 

location) and completing as many of the search tasks correctly as possible. In order to do this, 

operators could take advantage of re-planning (making corrections, or reassigning UVs to 

different targets) when possible to minimize vehicle travel times between targets and ensuring 

a vehicle was always assigned to a target whenever possible by clicking on unassigned UVs 

and giving them a target. The UVs were not modeled on real UV performance data as this 

experiment simulated a futuristic system (i.e., there are no operational command and control 

systems with integrated heterogeneous unmanned operations).  
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Figure 8: Activated camera view during search task. 
	

 
2.2 Experimental Design  
 

Thirty-six volunteers participated in the experiment, including 20 male and 16 female 

subjects, with an average age of 25.3 years. All procedures were reviewed and approved by 

Duke University’s Internal Review Board (IRB). All subjects were asked to read and sign a 

consent form (Appendix A). After finishing the consent form, subjects filled out a 

demographic survey (Appendix B) and boredom proneness survey (Appendix C). Then 

subjects were taken to the experiment area where they were trained to use RESCHU. 

Following the training period, the subjects were seated in front of the monitors used to 

interact with the system. The training period lasted for 10 minutes and the entire experiment 

lasted for 60 minutes.   

There were two main scenarios used during the experimental session. The first 
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scenario was a low workload setting in which the user controlled six UVs. During these low 

workload test periods subjects were engaged in controlling the UVs, but had relatively little 

difficulty managing the UVs and successfully identifying targets. The second scenario was a 

high workload setting in which the user controlled twelve UVs. During these high workload 

test periods, subjects again were engaged in controlling the UVs, but were overloaded in 

completing tasks of avoiding threat areas while also correctly identifying targets. The number 

of UVs assigned for low and high workload tasks was determined through pilot testing. After 

testing was completed, subjects completed a post experiment questionnaire (Appendix D) and 

subjects were compensated $45.   

All computer interactions were collected using Camtasia® recording software. 

RESCHU recorded all performance data automatically. The simulation logged all interactions, 

such as engaged targets, correct or incorrect responses, and damage to UV vehicles. The 

subjects stayed seated in the testing room for the entire hour long experiment. The subject sat 

at the end of a 5’x10’ room in front of a computer which was on a desk. The experimenters 

were able to view the subject through a one-way glass window from an observation room 

directly next to the subject. Subjects could communicate with the experimenters and receive 

instructions through an intercom system between the experiment and observation rooms. The 

fNIRS device was placed centered on the subject’s forehead directly between the eyebrows 

and hairline.  

In addition to the computer, data were also collected using a fNIRS measurement 

device. The fNIRS sensor was kept in place using self-adhesive wrapping that went twice 

around the subject’s head. A stretchable cloth cap was placed over the self- adhesive 

wrapping. On the inside of this cap was a piece of suede leather that covered the sensors for 
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additional light blocking. Once securely attached, the fNIRS was calibrated and tested for 

good connection. The fNIRS device employed in this research was the Imagent™ system, 

developed and manufactured by ISS, Inc. This device is a “non-invasive tissue oximeter for 

the absolute determination of oxygenated and deoxygenated hemoglobin concentration, 

oxygen saturation and total hemoglobin content in tissues” (ISS Imagent, Inc). The overall 

process for data collection can be seen below in Figure 9. The data were collected using the 

Boxy software package created by ISS. A low pass filter of 0.15 Hz was applied to remove 

physiological changes such as heart rate and blood pressure. After the low pass filter, a 

discrete wavelet transform was run in MATLAB to remove motion artifacts in the data. The 

Modified Beer-Lambert Law was applied to produce HbO and HbR. These values can be seen 

in Table 1. 

  

Figure 9: fNIRS Data Collection Method 

 
 
 
 
 
 
 
 
 
 
 
 



25 
	

Table 1: fNIRS Parameters 

Parameter Description 
Modulation Frequency 110 MHz 
Sources Spacing (distance between emitters 
and detectors) 

16 emitters, 2 detectors. The fiber length is 
2.5 m. The emitter-detector distances are 2.5, 
3.0, 3.5, 4.0 cm for both right and left 
hemispheres. 

Source Laser Fiber coupled laser diodes  
Wavelengths: 690 nm, 830 nm 

Light Detectors Photomultiplier tubes 
Sensors Selected side-on photomultiplier tubes 

Low Pass Filter 0.15Hz 

 
2.3 Experimental Procedure 
 
  The fNIRS sensor was placed on the subject’s forehead at the beginning of the testing 

period and was worn throughout the experiment. The subjects were instructed to try to avoid 

moving the sensors in any way and to refrain from furrowing the brow to maintain consistent 

data collection from the device (Solovey et al., 2009). While the system is resistant to minor 

movement, it was imperative to closely monitor the data and the subject during the 

experiment to determine if the sensor was moved from its original position.   

The session contained four total test modules alternating between low and high 

workload settings (four modules, total), which each lasted 8 minutes. After each scenario was 

completed, the simulation would end and the subjects would relax during a four-minute break. 

During this break, participants were not allowed to use the computer, a cell phone, or 

anything else that would distract them. Subjects were allowed to close their eyes and focus on 

their breathing to prevent focusing on something mentally strenuous. Table 2 contains a basic 

breakdown of experimental session. 
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Table	2.	Breakdown	of	experimental	session	by	minutes	

Event Duration  
(minutes) 

Tutorial 10 

Break with fNIRS fitting  6 

Test Module “Low” (Low 1) 8 

Break (without distractions)  4 

Test Module “High” (High 1) 8 

Break (without distractions)  4 

Test Module “Low” (Low 2) 8 

Break (without distractions)  4 

Test Module “High” (High 2) 8 

Total  60 

 
The primary independent variable (IV) in this experiment was the two workload levels 

(low and high), determined by the number of UVs controlled by the subject. The primary 

dependent variable was the fNIRS data, specifically oxygenated hemoglobin (HbO) and 

deoxygenated hemoglobin (HbR). For fNIRS, the HbO and HbR levels during specific 

scenarios were compared to its previous rest period (for example: Low 1 was compared to 

Rest 1, High 2 was compared to Rest 4) and a percent change was taken. The formal can be 

seen in HbO percent change (Equation 1) and HbR percent change (Equation 2).  

Equation	1:	HbO	percent	

𝐻𝑏𝑂	𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑐ℎ𝑎𝑛𝑔𝑒	 =
𝐻𝑏𝑂	𝑙𝑒𝑣𝑒𝑙	𝑑𝑢𝑟𝑖𝑛𝑔	𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝐻𝑏𝑂	𝑙𝑒𝑣𝑒𝑙	𝑑𝑢𝑟𝑖𝑛𝑔	𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠	𝑟𝑒𝑠𝑡	𝑝𝑒𝑟𝑖𝑜𝑑

𝐻𝑏𝑂	𝑙𝑒𝑣𝑒𝑙	𝑑𝑢𝑟𝑖𝑛𝑔	𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠	𝑟𝑒𝑠𝑡	𝑝𝑒𝑟𝑖𝑜𝑑
 

 

Equation	2:	HbR	percent	

𝐻𝑏𝑅	𝑝𝑒𝑟𝑐𝑒𝑛𝑡	𝑐ℎ𝑎𝑛𝑔𝑒	 =
𝐻𝑏𝑅	𝑙𝑒𝑣𝑒𝑙	𝑑𝑢𝑟𝑖𝑛𝑔	𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜 − 𝐻𝑏𝑅	𝑙𝑒𝑣𝑒𝑙	𝑑𝑢𝑟𝑖𝑛𝑔	𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠	𝑟𝑒𝑠𝑡	𝑝𝑒𝑟𝑖𝑜𝑑

𝐻𝑏𝑅	𝑙𝑒𝑣𝑒𝑙	𝑑𝑢𝑟𝑖𝑛𝑔	𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠	𝑟𝑒𝑠𝑡	𝑝𝑒𝑟𝑖𝑜𝑑
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The other dependent variables were assessments of performance, including overall 

performance score (Equation 3) and accuracy (Equation 4), as well as assessments of 

demographics, including boredom-proneness, age, or video game experience. The overall 

performance score of the UV simulation was using the system to maximize target 

identification while avoiding threat areas. If an operator’s UVs spent ample time in threat 

areas and did not get many targets correct, the subject would have a negative overall 

performance score. 

Equation 3: Overall Performance Score 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙	𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒	𝑆𝑐𝑜𝑟𝑒 = 	
𝑡𝑜𝑡𝑎𝑙	𝑐𝑜𝑟𝑟𝑒𝑐𝑡

𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑈𝑉𝑠
−

𝑡𝑜𝑡𝑎𝑙	𝑡𝑖𝑚𝑒	𝑈𝑉	𝑠𝑝𝑒𝑛𝑑𝑠	𝑖𝑛	𝑡ℎ𝑟𝑒𝑎𝑡	𝑎𝑟𝑒𝑎
𝑚𝑎𝑥𝑖𝑚𝑢𝑚	𝑡𝑖𝑚𝑒	𝑈𝑉	𝑠𝑝𝑒𝑛𝑑𝑠	𝑖𝑛	𝑡ℎ𝑟𝑒𝑎𝑡	𝑎𝑟𝑒𝑎

𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑈𝑉𝑠
 

 
Equation 4: Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑐𝑜𝑟𝑟𝑒𝑐𝑡
𝑡𝑜𝑡𝑎𝑙	𝑛𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑈𝑉𝑠

 

 
2.4 Analysis 

It was hypothesized subjects will have lower overall performance scores and accuracy 

in high workload scenarios compared to low workload scenarios. There was also interest in 

determining whether there was any impact of demographic data on overall performance score 

in low vs. high workload scenarios. A repeated measures ANOVA was run to identify the 

main effect of overall performance score across all four scenarios as well as interaction effects 

between the overall performance score and BPS, gaming, age, gender. A pairwise comparison 

was then run to identify specifically which workload scenarios differed from one another.   

It was also hypothesized that there will be an accompanied larger increase in 

oxygenated hemoglobin (HbO) (decrease in deoxygenated hemoglobin (HbR)) during high 

workload scenarios compared to low workload scenarios. There was also interest in 
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determining whether there was any impact of demographic data on HbO/HbR percent change 

in low vs. high workload scenarios. A repeated measures ANOVA was run to identify the 

main effect of HbO/HbR percent change for all four scenarios as well as interaction effects 

between the HbO/HbR percent change and BPS, gaming, age, gender. A pairwise comparison 

was then run to identify specifically which workload scenarios differed from one another.   

2.5 Summary  
 
 This section describes the experiment conducted to measure the effect of time in low 

task load and situation difficulty on workload. Thirty-six participants were recruited to take 

part in a UV simulation representing supervisory control of multiple vehicles. The 

hemodynamic response was recorded throughout the entire hour long experiment using 

fNIRS. Subject tasks during low task load included controlling UVs to avoid threat areas 

while correctly identifying targets. Each subject completed the low and high workload 

simulations twice in the same order for each participant. Subjects filled out several surveys 

including a demographic survey, the Boredom Proneness Index, the post-experimental survey. 

Video recording was also performed for each subject. 

3. Results 
 

 This section first introduces data collected from RESCHU and fNIRS. It also explores 

fNIRS data trends in the data relating to changes in workload. The detailed statistical data of 

the results can be seen in Appendix E. 

3.1 Behavioral Results 

 The average overall performance score (Equation 3) and average accuracy (Equation 

4) was computed for each subject under each scenario condition. The table below shows the 

average scores and standard deviation (SD) values for each scenario.  
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Table 3: Average, standard deviation, maximum, and minimum for overall performance score 
 

 Average Standard 
Deviation Maximum Score Minimum Score 

Low 1 0.485 0.781 1.781 -1.434 
High 1 -0.155 0.640 1.040 -1.362 
Low 2 0.774 0.963 2.2382 -1.714 
High 2 0.069 0.668 1.172 -1.280 

 
 

Table 4: Average, standard deviation, maximum, and minimum for average accuracy 
 

 Average Standard 
Deviation 

Maximum 
Accuracy 

Minimum 
Accuracy 

Low 1 1.328 0.547 2.333 0.166 
High 1 1.178 0.386 2.083 0.333 
Low 2 1.547 0.568 3.167 0.166 
High 2 1.492 0.478 2.333 0.333 

 

As Table 3 shows, the highest average score occurred in the Low 2 condition, and the 

lowest occurred in High 1. A similar trend occurred with accuracy (Table 4), with Low 2 

again representing the best mean accuracy and High 1 the lowest. Performance scores ranged 

from -1.714 to 2.238. Accuracy ranged from 0.167 to 3.167. A visualization of the overall 

performance scores can be seen in a side-by-side boxplot in Figure 10. 
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Figure 10: Side-by-side boxplot of comparing overall performance score by scenario 

From Figure 10 we can see that on average, overall performance scores were both 

higher in low workload scenarios compared to high workload scenarios, which confirms the 

first hypothesis of this experiment, which was that subjects will have lower overall 

performance and accuracy scores in high workload scenarios as compared to low workload 

scenarios . This shows good internal validity of the experiment because subjects had a more 

difficult time with the high workload scenarios (High 1 and High 2) as compared to the low 

workload scenarios (Low 1 and Low 2). There is a slight learning effect among subjects. The 

effect is visible in Figure 10, because the average score in scenario Low 2 is higher than the 

average score in scenario Low 1. Also, the average score in scenario High 2 is higher than the 

average score in High 1, suggesting improvements over time.  
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A general linear model was run to compare overall performance scores using subjects’ 

demographic data as covariates. The test was run to identify differences between subjects due 

to BPS, gaming experience, age and gender. The results showed a significant between subject 

effect for score and age (p=0.028). There were no significant effects between score and BPS 

(p= 0.652), gaming experience (p=0.209) or gender (p=0.142).  

While there was no significant overall effect of gaming, BPS, gender, these were still 

included as potential interaction factors in a repeated measures ANOVA comparing the 

overall performance scores. The results of a repeated measures ANOVA, described in section 

2.4, revealed no significant differences in performance scores based on scenario (p=0.192) 

under the full model.  A significant interaction was discovered between score and age 

(p=0.005). There were no significant interaction effects between score and BPS (p= 0.838), 

gaming experience (p=0.103) or gender (p=0.559).  

A repeated measures ANOVA was run again without any demographic factors. It was 

found that there was a significant difference in overall performance scores based on scenario 

(p<0.001). Pairwise comparison were run between scenarios for overall performance score to 

identify significant differences between scenario pairs. This test found that there was a 

significant difference in overall performance score between both low workload scenarios 

compared to both high workload scenarios.  

 Taking a deeper looking into age and its relationship to overall performance score 

(identified as significant by the GLM), a correlation test was run comparing age and overall 

performance score in each scenario. The test revealed a significant correlation between age 

and scenario Low 2 (r=-.528, p=.001). However, there were no significant correlations 

between age and Low 1 (r=-.233, p=.178), High 1 (r=-.090, p=.607), or High 2 (r=-.277, 

p=.107). Figure 11 shows a distribution of subjects’ age.  
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Figure 11: Histogram of Subjects Age 

A general linear model was run on the accuracy score, again accounting for the 

subjects’ demographic data. The test was run to identify differences in subject performance 

due to BPS, gaming experience, age and gender. The results showed a significant between 

subject effect between score and age (p=0.032) and gender (p=0.045). There were no 

significant effects between score and BPS (p=0.942) or gaming experience (p=0.155). 

While there was no significant effect of gaming experience or BPS, these were still 

included as potential interaction factors in the repeated measures ANOVA with accuracy. The 

results of repeated measures ANOVA, described in Section 2.4, revealed no significant 

differences in performance scores based on scenario (p=0.551) under the full model.  There 

were no significant interaction effects between score and age (p=0.311), BPS (p= 0.205), 

gaming experience (p=0.667) or gender (p=0.697).  

A repeated measures ANOVA was run again without any demographic factors. It was 

found that there was a significant difference in accuracy based on scenario (p<0.001). 
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Pairwise comparisons were run between scenarios for accuracy to identify significant 

differences between scenario pairs. The tests found that there was a significant difference in 

accuracy between High 1 and Low 2 scenarios (p=0.002).  

 A correlation test was run comparing age and accuracy. There was a significant 

correlation between age and scenario Low 1 (r=-.381, p=.024) and High 2 (r=-.443, p=.008). 

However, there were no significant correlations between age and High 1 (r=-.310, p=.070) or 

Low 2 (r=-.227, p=.190).  

3.2 fNIRS Results 

The HbO percent change (Equation 1) and HbR percent change (Equation 2) was 

computed for each subject under each scenario condition. Below, Table 5 and Table 6 shows 

the average and standard deviation values for each scenario for HbO percent change and HbR 

percent change. 

Table 5: Average, standard deviation, maximum, and minimum for average HbO percent by condition 
 

Average 
Standard 
Deviation Max Average Min Average 

Low 1 -0.062 0.142 0.117 -0.680 
High 2 0.023 0.028 0.109 -0.023 
Low 2 0.013 0.015 0.053 -0.024 
High 2 0.021 0.038 0.174 -0.022 
 

Table 6: Average, standard deviation, maximum, and minimum for average HbR percent by condition 
 

Average 
Standard 
Deviation Max Average Min Average 

Low 1 0.017 0.031 0.126 -0.032 
High 2 0.019 0.018 0.088 0.001 
Low 2 0.042 0.104 0.5836 -0.014 
High 2 0.017 0.017 0.062 -0.017 
 

As Table 5 shows, the highest average HbO percent change occurred in the High 1 

condition, and the lowest occurred in Low 1. A similar trend occurred with HbR percent 

change (Table 6), with High 1 again representing the best mean HbR percent change and Low 
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1 the lowest. HbO percent change ranged from -0.68 to 0.174. Accuracy ranged rom -0.032 to 

0.583.  

A general linear model was run to compare HbO percent change using subjects’ 

demographic data as covariates. The test was run to identify differences in subjects due to 

BPS, gaming experience, age and gender. The results showed no significant effects between 

HbO percent change and age (p=0.409), BPS (p=0.209), gaming experience (p=0.477), or 

gender (p=0.143). 

While there was no significant overall effect of age, BPS, gaming experience or 

gender, these were still included as potential interaction factors in the repeated measures 

ANOVA with HbO percent change. The results of repeated measures ANOVA, described in 

Section 2.4, revealed no significant differences in HbO percent change based on scenario 

(p=0.483) under the full model.  There were no significant interaction effects between score 

and age (p=0.789), BPS (p= 0.653), gaming experience (p=0.655) or gender (p=0.500).  

Pairwise comparisons were run between scenarios for HbO percent change to identify 

significant differences between scenario pairs. The tests found that there was a significant 

difference in HbO percent change only in Low 1 compared to High 1 (p=0.023), Low 2 

(p=0.019), and High 2 (p=0.029). A visualization of this pairwise comparison can be seen in 

Figure 12.  
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Figure 12: Side-by-side boxplot of HbO percent across all scenarios 

A general linear model was run for HbR percent change based on subjects’ 

demographic data. The test was run to identify differences between subjects due to BPS, 

gaming experience, age and gender. The results showed a significant between subject effect 

between HbR percent change and BPS (p=0.025). There were no significant effects between 

HbR percent change and age (p=0.341), gaming experience (p=0.167), or gender (p=0.260). 

While there was no significant overall effect of age, gaming experience or gender, 

these were still included as potential interaction factors in the repeated measures ANOVA 

with HbR percent change. The results of repeated measures ANOVA revealed no significant 

differences in HbR percent change based on scenario (p=0.901) under the full model. There 

were significant interaction effects between HbR percent change and age (p=0.037).  

Pairwise comparisons were run between scenarios for HbR percent change to identify 

significant differences between scenario pairs. The tests found that there were no significant 
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difference in HbR percent change across all scenarios.  

 Taking a deeper looking into BPS and its relationship to HbR percent change, a 

correlation test was run comparing BPS and HbR percent change. There was a marginal 

correlation between BPS and scenario Low 1 (r=-.316, p=.069) and High 1 (r=-.341, p=.056). 

There were no significant correlations between age and Low 2 (r=-.224, p=.234), High 2 (r=-

.216, p=.251). 

3.3 Models 

Multiple linear regressions were used to identify how the independent variables of the 

experiment were related to dependent variable. The first model created looked at the overall 

performance score during the Low 2 scenario, which immediately followed the first high 

workload scenario. The Low 2 scenario was selected because this was the time immediately 

following the first high workload scenario. Therefore, the model was expected to indicate 

which factors determine how a person will perform after a large shift in workload. The initial 

predictors were Low 2 HbR percent, Low 2 HbO percent, age, BPS, and gender. The multiple 

linear regression model of overall performance score during the Low 2 scenario was created 

and the significant factors included Low 2 HbO percent and age (R=0.682, R Square = 0.465, 

Adjusted R Square = 0.425, Std. Error of the Estimate=0.76302), and the model is shown 

below.  

Overall Performance Score During Low 2 = 0.295(Low 2 HbO) – 0.570(Age)+C 

The second model created looked at accuracy during the High 2 scenario which was 

the final scenario of the test period. This scenario was critical in our understanding of how 

people are able to perform at the end of a long task. The initial predictors were Low 1 HbO 

percent, High 1 HbO percent change, Low 1 HbR percent change, Low 2 HbO percent 

change, High 1 HbR percent change, Low 2 HbR percent change, age, and BPS. A multiple 
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linear regression model of accuracy during the High 2 scenario was created and the significant 

factors included: age, BPS, and Low 1 HBR percent (R=0.606, R Square = 0.368, Adjusted R 

Square = 0.262, Std. Error of the Estimate=0.615) and the model is shown below. 

Accuracy High 2 = 0.364(BPS)-0.498(Age)-0.296(Low 2 HbO Percent) +0.596(Low 1 HbR Percent) + C  

4. Discussion 
 
 This section examines how the results of this experiment fit into the broader context of 

mental workload and fNIRS detection of oxygenated and deoxygenated hemoglobin levels. It 

also identifies possible confounding variables and limitations of this experiment. Finally, it 

provides recommendations for future work using functional brain imaging for workload 

detection.   

4.1 Experiment Discussion 
 
 There are several conclusions that can be drawn from the experiment. First, the two 

dependent behavioral variables measured (overall performance score and average accuracy) 

showed significant differences between low workload scenarios and high workload scenarios. 

As expected, participants had higher overall performance scores and higher average accuracy 

when controlling 6 UAVs compared to 12 UAVs. This confirms the first hypothesis that 

subjects would perform  worse on high workload scenarios compared to low workload 

scenarios based on overall performance score and accuracy.  

 Age proved to be a significant predictor of overall performance score. These is 

precedent for this result, as previous studies (e.g., Deaton & Parasuraman, 1993) have linked 

increasing age to decreases in performance during memory and vigilance tasks. In addition, 

older subjects may not be as comfortable operating a computer interface and dealing with 

complex scenarios, so it is not surprising that higher age was found to be a predictor of 

performance. Interestingly, there was a significant correlation between age and the second 
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low workload scenario (Low 2). It is possible that subjects were mentally fatigued after 

completing the high workload scenario, in general, but older subjects took longer to recover, 

which affected performance on the next scenario.  

Next, the performance data was compared to the resulting oxygenated and 

deoxygenated hemoglobin levels recorded by the fNIRS. It was expected that this increase in 

objective difficulty would correspond to a physiological difference between the low and high 

workload scenarios. However, the results indicate that the physiological differences in mental 

workload were not significantly different between the low and high mental workload 

scenarios. Unlike other studies (e.g., Jelzow et al., 2011; Herff et al., 2014), this study did not 

show fNIRS was capable of distinguishing different levels of mental workload.  

There are many possible reasons for why this experiment did not detect any significant 

HbO or HbR differences with respect to degree of difficulty. First, the volume of data was 

much greater for this fNIRS experiment. There were 36 subjects studied (which is 

significantly more than most previous fNIRS research (Jelzow et al., 2011; Herff et al., 

2014)), and each subject received each workload scenario twice for a total experimental 

runtime of 60 minutes. Another difference between this research and previous work is that 

this test scenario represented a dynamic task in a more realistic environment, compared to the 

simple matching tasks cited in previous work. This is consistent with another study conducted 

in a missile control environment (Boyer et al., 2015), which also did not detect workload 

changes with fNIRS.  

The second factor that could explain lack of sensitivity in the fNIRS results is that the 

subjects in this experiment were inexperienced operators. Even though subjects were provided 

a tutorial, experimental guidance, and a knowledge check, it is possible that subjects were still 

dealing with some uncertainty in using the interface during the first scenario. Subjects could 
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have reached instantaneous peaks of mental workload for the 6 UAV scenario that were 

equivalent to the subsequent 12 UAV scenario because these subjects were not familiar with 

the RESCHU interface.  

However, analysis of the impact of beginning of the experiment showed some 

noteworthy results. The most significant result was that the average difference in HbO percent 

was much more varied during the first workload scenario Low 1, as seen in Figure 11. During 

second, third, and fourth workload scenario there was no significant difference in HbO 

percent.  The best explanation for this observed outcome is that during the first scenario the 

brain is assigning resources to meet the demands of the simulation environment. Once it has 

reached the necessary flow of oxygenated hemoglobin, HbO levels begins to level off for the 

rest of the experiment.  

Interestingly, the timeline of when we observed the increase in HbO change is in line 

with previous research that analyzes the ability to maintain concentration and attention over 

prolonged periods of time. This phenomenon, termed the “vigilance decrement” has been 

studied extensively. According to the experimental timeline, scenario vigilance decrement 

would have occurred around the 20-minute mark in the experiment. This timeline has been 

seen in previous vigilance decrement research (See et al., 1995) that shows the 20 to 35 

minutes is in window where the vigilance decrement traditionally occurs.  

Looking back at Section 1.1, the goal of this experiment was to use behavioral 

measures obtained from a supervisory control simulation (e.g., response time, accuracy), and 

non-invasive neurophysiological measures of oxygenated hemoglobin and deoxygenated 

hemoglobin derived from scalp-recorded fNIRS to determine if fNIRS can be an accurate tool 

for measuring mental workload. This study showed that fNIRS failed to accurately predict 

changes in mental workload over short periods of time, but it did detect an initial change in 
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oxygenation levels that could be associated with the vigilance decrement. This is a promising 

result that should be studied further.  

Our initial goal of conducting this research was to determine a way of remotely 

detecting a workload that could be hindering human performance. By combining the 

measured hemodynamic and metabolic responses of brain and cognitive activity using fNIRS, 

our goal was to determine a change in a subject’s cognitive activity while performing 

different tasks. Unfortunately, fNIRS is not capable of detecting this change in cognitive 

activity during the supervisory control tasks in this study and further models cannot be 

generated to increase training and performance evaluations.  

4.2 Limitations 

While every effort was made to control confounding variables and generate effective 

results, there are some limitations that should be discussed for this work. First, the fNIRS 

needed to be applied to subjects’ forehead and wrapped to prevent light from interfering with 

the infrared lasers. This cap system did cause some subjects discomfort near the end of the 

experiments which could have contributed unexpected rises in mental strain. Second, the 

experiment was conducted under only a single blind condition, with the experimenter having 

knowledge of the experimental condition at all times. This was done in order to properly 

monitor the subject and ensure the simulation was working correctly, but may have 

introduced a bias into the experiment. The experimenter tried to avoid entering the room in 

before the event and avoid interpersonal interaction, but this was not always possible and may 

have resulted in decreasing boredom before an event. Third, increased experience in running 

the experiment may have slightly modified the experimenter conduct over time, especially in 

regards to addressing questions by the subject about how to best utilize the interface.  

Age proved to be a significant factor in predicting overall performance score, but the 
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overall distribution of age was very skewed towards a younger population with only two 

subjects in their 50s. It would be helpful to repeat the experiment with more subjects with an 

even distribution across ages to fully investigate the age correlations. 

4.3 Future Work 

 Since workload research is important for understanding human-supervisory control, 

there are many avenues to explore that are suggested by this work. The first area for further 

research would involve studies similar that had larger breaks between tasks. While this study 

did show that fNIRS was unable to detect workload changes over short periods of time, it 

might be more accurate if longer breaks are taken between tasks. This would allow for the 

brain to return baseline levels of cognitive function before beginning a task again. Other 

permutations of this experiment could modify the overall environment, the amount of training 

time, the amount of low workload vs. high workload time, or the complexity of the task.  

The second area to explore is looking at using fNIRS to specifically focus on 

measuring the initial change in HbO levels during a given task. This research showed that 

fNIRS was able to detect an initial spike in HbO, but it would be interesting to explore if this 

differs with varying tasks.  Adding in a dedicated vigilance task such as monitoring a process 

or video feed could help to elucidate the vigilance findings and increase the similarity to 

many real-world environments. 
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Appendices  

Appendix A: Consent to Participate in Non-medical Research 
CONSENT TO PARTICIPATE IN NON-BIOMEDICAL RESEARCH 
Detecting Long Distance Driver Cognitive Disengagement 
You are asked to participate in a research study conducted by Professor Mary Cummings, Ph.D. from the Department of 
Mechanical Engineering and Materials Science at Duke University.. By signing below, you agree to participate in this 
research. You may keep a copy of this consent form for your records. 
PARTICIPATION AND WITHDRAWAL 
Your participation in this study is completely voluntary and you are free to choose whether to be in it or not. If you choose to 
be in this study, you may quit at any time. The investigator may withdraw you from this research if necessary. A withdraw 
will occur if the investigator is having difficulty fitting fNIRS or EEG to head in order to gain necessary data. You should not 
participate if you have a history of neurological disorders, seizure disorders, or head injury.  
PURPOSE OF THE STUDY 
This study is being conducted as part of a project studying next-generation human-computer interaction techniques in low 
workload/high workload simulations. We are investigating the use of non-invasive brain sensor data as supplemental data to 
compare two different brain sensing devices (fNIRS and EEG).  
PROCEDURES 
If you volunteer to participate in this study, we will follow a given protocol: 
1. You will be given an overview of the experiment. 
2. You will be asked to review and sign an approved informed consent form (this form). 
3. You will be asked a number of questions to ensure your eligibility for the study. 
5. Sensors (functional near-infrared spectroscopy, fNIRS) will be placed on the forehead. This device is non-invasive and 
measures blood oxygen levels in the front part of the brain, which can indicate brain activity. When the sensors are applied, 
the lasers will be turned off to prevent eye exposure, and the system is certified as eye-safe. In addition, we will collect 
electroencephalography (EEG), which records electrical activity in the brain.  This will entail wearing a nylon cap with 20 
electrodes embedded in it. We will place some water-soluble gel in each electrode that will allow the EEG sensors to detect 
your brain’s electrical activity.  At the end of the session both types of sensor will be removed and you will be given a towel 
and shampoo to clean your hair. Both fNIRS and EEG have been widely used in thousands of studies to investigate cognitive 
functions and these non-invasive approaches have no known harmful side effects. 
6. You will be asked to complete the Demographic Survey 
7. You will be instructed to complete the workload tasks. The workload tasks entail two levels of supervisory control that will 
last for 8 minutes each. You will use the RESCHU simulation to complete this task. You will be given a 15 minute training 
period to learn how to use the RESCHU simulation. 
8. The lasers will be turned off to prevent eye exposure and then the sensors will be removed. 
9. You will then be paid for your participation and any final questions can be answered. 
The total experiment will take no more than two hours. During task performance (step 7), measures of your performance will 
be recorded in terms of your position on the road as well as your blood oxygenation measures from the sensors.  
POTENTIAL RISKS AND DISCOMPORTS 
There are no major risks anticipated from participation in this study. The blood flow-monitoring device utilizes Class 3B 
lasers, which presents a minimal risk of eye exposure to laser light during the application and removal of the helmet 
containing the sensors. To prevent such a risk we will turn off the lasers during the application of the headband. Please 
inform the experimenter at the first sign of any discomfort. Should you wish to stop or delay the experiment, you are free to 
do so at any time. If you feel nauseous or sick, please let the experimenter know and the experiment will be stopped; we will 
offer you some water and rest time. You may then choose to continue or end the experiment.  
POTENTIAL BENEFITS 
While you will not benefit directly from this study, the results from this study will assist in the design for future interactive 
systems. 
PAYMENT FOR PARTICIPATION 
You will be paid $45 to participate in this study or $15/hour if the study is not completed. This will be paid upon completion 
of the experiment. Should you elect to withdraw in the middle of the study, you will be compensated for the hours you spent 
in the study.  
CONFIDENTIALITY 
Upon signing this consent you will be assigned a subject number that will be used to track data collected during this study. 
The Duke Humans and Autonomy Lab will maintain a copy of this consent in a secure location for a minimum of three years 
as a record of your participation. Your name, social security number, address and phone number will be provided to Duke 
accounts payables as a record of payment for participation. There will be no key connecting the payment information to the 
data. Data recorded during this experiment has the potential to answer research questions beyond the initial scope of this 
work. Therefore, the deidentified data may be maintained in perpetuity. 
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IDENTIFICATION OF INVESTIGATORS 
If you have any questions or concerns about the research, please feel free to contact the Principal Investigator, Mary L. 
Cummings, through phone: (919) 660-5306, e-mail: mary.cummings@duke.edu, or mailing address: P.O. Box 90300, 144 
Hudson Hall, Duke University, Durham, NC 27708. 
RIGHTS OF RESEARCH SUBJECTS 
If you have questions regarding your rights as a research subject, you may contact the Duke Office of Research Support: 
Suite 710 Erwin Square, 2200 W. Main Street, Durham, NC 27705, Phone (919) 684-3030 
SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE  
By signing below, you agree to participate in this research. If you would like a copy of this consent form, one will be 
provided upon request 
Name of Subject  
__________________________________ 
Signature of Subject   
__________________________________ 
Date: 
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Appendix B: Demographic Survey 

1. Subject number:_____ 
 
2. Age:_____ 
 
3.   Gender:             M          F 
 
4.   Color Blindness:        N             Y              
 
If yes, type:_______________ 
 
5.   Occupation:______________________________ 
 
if student, (circle one):     Undergrad            Masters    PhD 
 
expected year of graduation:_________ 
 
7.   Have you used detailed procedures before (e.g. checklists, model-building)?    
 
No   Yes 
 
If yes, please briefly explain:_____________________________________ 
 
8.   How often do you play computer games?  
 
Rarely         Monthly         Weekly       A few times a week      Daily 
 
Types of games played:______________________________________ 
 
9.   Rate your comfort level with using computer programs. 
 
  Not comfortable  Somewhat comfortable  Comfortable Very Comfortable 
 
10.  What is your attitude toward Unmanned Aerial Vehicles (Drones)? 
 
Intense dislike         Dislike         Neutral         Like         Really Like 
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Appendix C: Boredom Proneness Survey 
 
 1. It is easy for me to concentrate on my activities.  
 

 
T | F  

2. Frequently when I am working I find myself worrying about other things.  
 

T | F  

3. Time always seems to be passing slowly.  
 

T | F  

4. I often find myself at “loose ends,” not knowing what to do.  
 

T | F  

5. I am often trapped in situations where I have to do meaningless things.  
 

T | F  

6. Having to look at someone’s home movies or travel slides bores me tremendously.  
 

T | F  

7. I have projects in mind all the time, things to do.  
 

T | F  

8. I find it easy to entertain myself.  T | F  
 

9. Many things I have to do are repetitive and monotonous.  T | F  
 

10. It takes more stimulation to get me going than most people.  T | F  
 

11. I get a kick out of most things I do.  T | F  
 

12. I am seldom excited about my work.  T | F  
 

13. In any situation I can usually find something to do or see to keep me interested.  T | F  
 

14. Much of the time I just sit around doing nothing.  T | F  
 

15. I am good at waiting patiently.  T | F  
 

16. I often find myself with nothing to do-time on my hands.  T | F  
 

17. In situations where I have to wait, such as a line or queue, I get very restless.  T | F  
 

18. I often wake up with a new idea.  T | F  
 

19. It would be very hard for me to find a job that is exciting enough.  T | F  
 

20. I would like more challenging things to do in life.  T | F  
 

21. I feel that I am working below my abilities most of the time.  T | F  
 

22. Many people would say that I am a creative or imaginative person.  T | F  
 

23. I have so many interests, I don’t have time to do everything.  T | F  
 

24. Among my friends, I am the one who keeps doing something the longest.  T | F  
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Appendix D: Post Experiment Survey 
1.         How confident were you about the actions you took? 
 
Not Confident   Somewhat Confident  Confident    Very Confident Extremely Confident  
 
Comments: 
 
 
2.         How did you feel you performed? 
 
Very Poor        Poor       Satisfactory      Good       Excellent 
 
3.         How stressed did you feel during the difficult situation? 
 
Not Stressed   Somewhat Stressed    Stressed     Very Stressed    Extremely Stressed 
 
4.         How busy did you feel during the more difficult situation? 
 
Idle      Not Busy          Busy          Very Busy        Extremely Busy 
 
5.         Do you feel that the training sufficiently prepared you for the test?  No      Yes 
 
Comments: 
 
 
6.          How well do you feel you understand simulation operation? 
 
Very Poorly      Poorly            Satisfactory          Well        Very Well 
 
7.         Were the procedures easy to understand?  No   Yes 
 
Comments: 
 
8.         Other comments: 
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Appendix E: Statistical Tables from Results 

Repeated	measures	ANOVA	for	overall	performance	score	

Effect Value F p-value 

OverallPerformanceScore Wilks’Lambda .847 1.690 .192 

OverallPerformanceScore 
* BPS 

Wilks’Lambda .971 .282 .838 

OverallPerformanceScore 
* gaming 

Wilks’Lambda .805 2.260 .103 

OverallPerformanceScore 
* age 

Wilks’Lambda .641 5.216 .005 

OverallPerformanceScore 
* gender 

Wilks’Lambda .930 .701 .559 

	
	Repeated	measures	model	for	overall	performance	score	

Source Type III Sum 
of Square 

df Mean Square F p-value 

Intercept .315 1 .315 .273 .605 
BPS .239 1 .239 .208 .652 
Gaming 1.899 1 1.899 1.651 .209 
Age 6.115 1 6.115 5.317 .028 
Gender 2.615 1 2.615 2.274 .142 
Error 34.502 30 1.150   

	
Pairwise	comparison	for	overall	performance	score	

(I) 
Overall Performance 

Score 

(J) 
Overall Performance 

Score 

 (I-J) 
Mean Difference 

p-value 

Low 1 Low 2 
High 1 
High 2 

-.264 
.637 
.427 

.689 
<.001 
.022 

High 1 Low 1 
Low 2 
High 2 

-.637 
-.901 
-.210 

<.001 
<.001 
.846 

Low 2 Low 1 
High 1 
High 2 

.264 

.901 

.691 

.689 
<.001 
<.001 

High 2 Low 1 
Low 2 
High 1 

-.427 
-.691 
.210 

.022 
<.001 
.846 
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Repeated	measures	ANOVA	for	accuracy	

Effect Value F p-vaule 

Accuracy Wilks’Lambda .929 .716 .551 

Accuracy * age Wilks’Lambda .882 1.248 .311 

Accuracy * BPS Wilks’Lambda .851 1.630 .205 

Accuracy * gaming Wilks’Lambda .947 .527 .667 

Accuracy * gender Wilks’Lambda .951 .483 .697 

 

Repeated	measures	model	for	accuracy	

Source Type III Sum 
of Square 

df Mean Square F p-value 

Intercept 3.394 1 3.394 5.552 .025 
BPS 3.082 1 3.082 5.041 .032 
Gaming .006 1 .006 .009 .924 
Age 1.298 1 1.298 2.123 .155 
Gender 2.664 1 2.664 4.357 .045 
Error 18.341 30 .611   
 

Pairwise comparison for accuracy 

(I) 
Accuracy 

(J) 
Accuracy 

 (I-J) 
Mean Difference 

p-value 

Low 1 Low 2 
High 1 
High 2 

-.208 
.144 
-.165 

.068 

.272 

.162 
High 1 Low 1 

Low 2 
High 2 

-.144 
-.352 
-.309 

.272 

.002 
<0.001 

Low 2 Low 1 
High 1 
High 2 

.208 

.352 

.043 

.068 

.002 
1.000 

High 2 Low 1 
Low 2 
High 1 

.165 
-.043 
.309 

.162 
1.000 
<0.001 
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Repeated	measures	ANOVA	for	HbO	percent	

Effect Value F p-value 

HbO percent  Wilks’Lambda .892 .849 .483 

HbO percent * BPS Wilks’Lambda .927 .551 .653 

HbO percent * gaming Wilks’Lambda .927 .548 .655 

HbO percent * age Wilks’Lambda .952 .351 .789 

HbO percent * gender Wilks’Lambda .896 .841 .500 

	
	Repeated	measure	model	for	HbO	percent	

Source Type III Sum 
of Square 

df Mean Square F p-value 

Intercept .008 1 .008 2.516 .126 
Age .002 1 .002 .706 .409 
BPS .005 1 .005 1.670 .209 
Gaming .002 1 .002 .522 .477 
Gender .007 1 .007 2.304 .143 
Error .071 23 .003   

 
Pairwise comparison of HbO percent 

(I) 
HbO Percent 

(J) 
HbO Percent 

 (I-J) 
Mean Difference 

p-value 

Low 1 Low 2 
High 1 
High 2 

.109 

.100 

.111 

.019 

.023 

.029 
High 1 Low 1 

Low 2 
High 2 

-.100 
.009 
.011 

.023 
1.000 
.725 

Low 2 Low 1 
High 1 
High 2 

-.109 
-.009 
.002 

.019 
1.000 
1.000 

High 2 Low 1 
Low 2 
High 1 

-.111 
-.002 
-.011 

.029 
1.000 
.725 

Repeated	measures	ANOVA	for	HbR	percent	

Effect Value F p-value 
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HbR percent  Wilks’Lambda .973 .192 .901 

HbR percent * age Wilks’Lambda .673 3.401 .037 

HbR percent * BPS Wilks’Lambda .951 .363 .781 

HbR percent * gaming Wilks’Lambda .978 .161 .921 

HbR percent * gender Wilks’Lambda .708 2.886 .060 

	
Repeated	measures	model	for	HbR	percent	

Source Type III Sum 
of Square 

df Mean Square F p-value 

Intercept .003 1 .003 2.950 .099 
Age .001 1 .001 .944 .341 
BPS .006 1 .006 5.763 .025 
Gaming .002 1 .002 2.037 .167 
Gender .001 1 .001 1.336 .260 
Error .023 23 .001   

 

 
 
 
 
 
 
 
 


