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A method for determining the self-confidence of autonomous systems is proposed to assist operators in 
understanding the state of unmanned vehicles under control. A sensing-optimization/verification-action 
(SOVA) model, similar to the perception-cognition-action human informational processing model, has been 
developed to illustrate how autonomous systems interact with their environment and how areas of 
uncertainty affect system performance. LIDAR and GPS were examined for scenarios where sensed 
surroundings could be inaccurate, while discrete and probabilistic algorithms were surveyed for situations 
that could result in path planning uncertainty. Likert scales were developed to represent sensor and 
algorithm uncertainties, and these scales laid the foundation for the proposed Trust Annunciator Panel 
(TAP) consisting of a series of uncertainty level indicators (ULIs). The TAP emphasizes the critical role of 
human judgment and oversight, especially when autonomous systems operate in clustered or dynamic 
environments.
 
 

INTRODUCTION 
 

    In human-autonomy interactions, a human operator’s 
insight into the ability of an autonomous agent to achieve a 
successful level of performance in complex task environments 
is often obscured by the limited communication channel 
characteristics of such interactions. This is particularly 
problematic when task demands approach, or exceed, the 
competency boundaries of assigned agents.  It would seem 
that the ability of autonomous agents to self-report a level of 
confidence under such circumstances would be extremely 
helpful in supporting effective human-agent coordination. 
     While computers are capable of performing complex 
computations much faster than humans, there still exists the 
need for operators to oversee and make critical decisions that 
computers are not yet capable of making. This inherent 
brittleness is exacerbated in autonomous systems that must 
deal with significant environmental uncertainty as well as 
uncertainty inherent in probabilistic reasoning (Cummings, 
2014). Because humans rely on the information relayed by 
these systems to make critical decision, it would be useful for 
these autonomous systems to relay confidence of derived 
information and the potential courses of action, whether 
through sensors or decision algorithms, to operators who need 
to calibrate their trust in decisions and actions.  
     Issues related to human trust in autonomous systems have 
been well established as a fundamental issue in human-robot 
collaboration (Lee & See, 2004; Hoffmann, Johnson, et al., 
2013); however it is possible that by bridging the path from 
robot-to-operator, the operator’s trust in the autonomous 
system will be calibrated to the robot’s potential (Clare, 2013). 
Figure 1 illustrates the human-machine trust loop in which an 
operator assigns a task to an autonomous system, in this case 
an Unmanned Vehicle (UV), with some trust that the task can 
be completed, and the feedback loop indicates the “awareness” 

that the UV has of its surroundings and the vehicle’s 
confidence that it can complete the assigned mission.  
     To evaluate the ability of a UV to generate some measure 
of self-confidence to an operator, the methods by which the 
vehicle perceives the environment will be investigated. In 
addition, representative algorithms that use this collection of 
sensor data will be evaluated to determine the scenarios where 
(1) false perception of the UV’s environment is present, or (2) 
an inability to properly use the sensor data due to mission 
constraints is possible. 

 
Figure 1:  Human-Machine Trust Loop 

 
     This paper will focus on the navigation aspect of unmanned 
aerial vehicle (UAV) control as it relates to path planning, 
which is a common UV function. Two of the most common 
methods of UAV perception (LIDAR and GPS), two discrete 
path planning algorithms (Dijkstra’s Algorithm and A*), and 
two probabilistic algorithms (probabilistic road mapping and 
rapidly exploring random trees (RRT)) are investigated for 
scenarios that could result in mission failure due to incomplete 
or inefficient path planning. By scaling the uncertainty in the 
discussed scenarios, a configural display for growing 
uncertainties is discussed. Finally, a Trust Annunciator Panel 



 

(TAP) is described that could increase the operator’s 
situational awareness as it is relates to the UAV’s world model 
across a set of functions, beyond just that of path planning. 

 
AREAS OF UNCERTAINTY 

 
     Human supervisory control paradigms typically involve an 
operator overseeing the performance of a robot or autonomous 
system and making decisions that the system is not capable of 
making on its own. In such supervisory control settings, both 
humans and autonomous systems have a parallel information 
processing structure, which follows an input-processing-
output model (Parasuraman, Sheridan, & Wickens, 2000). We 
propose that for autonomous systems, this model can be 
represented by the sensing-optimization/verification-action 
(SOVA) model in Figure 2. 
 

 
Figure 2:  SOVA Model for Autonomous Systems 

 
     The method by which an autonomous UV perceives its 
surroundings is through series of sensors that work in concert 
to accomplish assigned tasks. The methods of perceiving the 
world model for the robot are quite different from those of the 
human model. While humans rely on their five senses, 
memory, and/or expectations to intervene with the 
surrounding world, the robotic system must rely on various 
types of sensors to view its much different world model. For  
example, LIDAR, GPS, infrared, and radar are all common 
methods of robot sensors used for environment perception 
(Hargis, Lang, et al., 1998). 
     Progressing past sensing the UV’s environment is 
optimization/verification of the perceived surroundings. 
During this section of the SOVA model the underlying 
algorithms determine what course of action the autonomous 
vehicle should take, such that the assigned task can be 
completed in a safe and efficient manner. Navigation via path 
planning and image recognition are examples of two such 
tasks that require complex processing. 
     The final block, the action block, is where the autonomous 
system relies upon preprogrammed scripts to determine how 
to execute the plan based primarily on the world model 
formed by the sensors, which will undoubtedly be incomplete. 
     The SOVA model is of particular interest when supervising 
non-deterministic (stochastic) controlled UVs. The 
intermediate feedback loop between sensing and 
optimization/verification allows for replanning when 

unexpected events occur, such as interlopers, rapid weather 
change, and/or waypoint changes. 
     In order to determine whether an autonomous system can 
estimate its own competency limits, we propose that the 
uncertainty surrounding the SOVA elements must be 
understood and communicated to the operator. Towards this 
end, we will discuss how this could possibly be done, given 
current state-of-the-art technologies and algorithms. 
 

Sensing 
 

     Two commonly used sensing methods were investigated 
that are often used on autonomous systems in an effort to 
generate a world model. The first of these methods was 
LIDAR. LIDAR is commonly used in air and ground UVs for 
mapping and object detection. However, during rainfall 
LIDAR provides inaccurate data due to the scattering of light 
from the sweeping laser. In addition, LIDAR only partially 
detects some transparent objects, such as glass, due to light 
being transmitted and detecting objects through these surfaces 
(Hernandez-Marin, Wallace, & Gibson, 2008). 
     The second sensing method analyzed was GPS. GPS has 
become the standard for automobile, air traffic, and maritime 
navigation over the past several years and can work in 
conjunction with LIDAR for UV location and path planning 
(and potentially other inertial navigation systems). However, 
for present-day UAV systems, GPS is typically a stand-alone 
navigation system, but it has limitations with coverage and 
location accuracy. UAVs that are tasked with operating in 
either an urban environment, densely vegetated area, 
mountainous locations, etc. are at risk of GPS signal loss, 
especially if the network is in low-altitude, uncontrolled 
airspace, typically under 1,200 ft.  
     The loss of GPS is especially problematic for control of 
UAVs if GPS is the only way that the operator can locate the 
vehicle or team of vehicles. In addition to reception loss, GPS 
struggles to relay accurate altitude measurements. In some 
cases altitude inaccuracies can be up to 2-3 times the 
uncertainty associated with planar GPS measurement error 
(U.S. Geological Survey, 2014). 
     We propose that there are two core dimensions of 
competency boundary estimation for autonomous sensors, that 
of output quality (i.e., can the sensor generate accurate data?), 
and mission impact (i.e., if the sensor output is inaccurate, 
how would the mission be affected?). While the first 
dimension provides clear quantitative metrics, the second is 
more contextual, i.e., a poorly performing sensor may not 
affect a mission if high degrees of accuracy are not needed. 
    Figure 3 represents these two uncertainty scales that rank 
problematic scenarios for LIDAR and GPS sensors. The initial 
scale in Figure 3(a) is an output quality scale with Likert 
rankings from 1-5, with 1 meaning a very accurate reading 
from the sensing device and a 5 meaning that there is a greater 
than 50% chance that the collected reading is inaccurate. 
These thresholds are notional and could be modified for the 
sensor under consideration. 
     The increase in uncertainty for Figure 3(b) is based on 
whether the acquired data from the sensing device has the 
potential to impact mission performance. Therefore, if 
anomalies in the collected data have a high probability of 



 

jeopardizing the mission, that sensor will be ranked high on 
the mission impact uncertainty scale. 
     For example, it is known that readings for planar (x-y) GPS 
coordinates are reasonably accurate (within a few inches of the 
true value) (Du, Du, & Wang, 2009). Therefore, for the output 
quality scale, planar GPS was ranked as a 2, indicating that the 
acquired measurements are highly accurate. Given that planar 
GPS measurements might be inaccurate, as ranked in Figure 
3(a), this inaccuracy would not be high enough to unfavorably 
affect the mission. Thus, it was ranked as a 2 on the mission 
impact scale, indicating that any inaccuracies in the sensor 
output will not adversely affect the mission.  
     A similar method was used to scale the altitude GPS 
coordinates, GPS reception, LIDAR during rainfall, and 
LIDAR through glass, recalling that just the function of 
navigation is the context. It was determined that the most 
uncertain scenarios for these sensors is in GPS altitude 
measurements (z) and LIDAR detection through transparent 
objects, such as glass (Figure 3(b)). Moreover, since GPS 
altitude measurements can be so inaccurate, low altitude 
operations for UAVs could be a significant driver of system 
trust (or the lack thereof). 
     The scales in Figure 3(a) and 3(b) are ordinal 
representations of the limits of the sensors’ capabilities, and 
thus, represent the competency boundaries of these systems. 
By using such a scale, humans can better understand how 
sensor output can change under different conditions and when 
they should adjust their perception and confidence about a 
system’s ability to meet mission goals. Once data has been 
sensed, it must be processed to lead to an actionable decision, 
as demonstrated by the optimization/verification block in the 
SOVA model (Figure 2). However, this processing can 
introduce additional layers of uncertainty. For the example of 
UV navigation, significant computation occurs in the task of 
path planning. Thus, two well-known discrete path planning 
algorithms and two common probabilistic path planning 
algorithms were investigated to determine what scenarios 
could result in uncertainty when applying sensor information 
to construct global paths.  
 

 
(a) 

 
(b) 

Figure 3:  Uncertainty Scales for Autonomous System Sensing (a) 
Output Quality Scale, (b) Mission Impact Scale 

   
  Path Planning Algorithms 
 

     The first algorithm investigated was Dijkstra’s Algorithm, 
which is a greedy algorithm that will always find the least 
costly path without using a heuristic. However, since 
Dijkstra’s Algorithm searches all possible local paths for the 
least costly, a large nodal network could require a vast amount 
of computational time and capabilities to determine a solution, 
which might be outside of the mission constraints in terms of 
time available.  
     A second discrete path planning algorithm that was 
examined is A* Search. A* applies a heuristic, which 
generates the sum of the cost to get to a state plus the 
estimated cost from that state to the goal. While A* performs 
better than Dijkstra’s Algorithm in larger nodal networks, it 
might find a suboptimal solution in a multi-goal scenario due 
to the choice of the heuristic. 
     In addition to discrete path planning algorithms, two 
popular probabilistic path planning algorithms were 
considered, which generally treat the problem space as 
continuous instead of discrete. In Probabilistic Road Mapping 
(PRM), a sample of the UAV’s location, velocity, etc. is used 
to predict collision-free paths. After possible paths have been 
projected, graph algorithms, such as Dijkstra’s or A* can be 
used to develop a global solution. One of the central issues 
with probabilistic path planning algorithms is the time 
associated with developing a global path. While constructing 
local paths is relatively straightforward, the construction of a 
global path from these local paths can be time consuming. 
     The other probabilistic path planning algorithm considered 
was rapidly exploring random trees (RRT). For RRTs, random 
nodes are generated and a branch is formed from the nearest 
node already on the tree and extends out towards the new 
random node. The algorithm builds local paths from the new 
branches until a global solution is found. RRT* is an extension 
of RRT that continuously optimizes its paths to determine if a 
more optimal solution exists.   
     Figure 4 depicts similar uncertainty scales to the sensing 
uncertainty scales in Figure 3. Output quality (i.e., can the 



 

algorithm generate feasible solutions?), and mission impact 
(i.e., if the solution is viable, how could variation in output 
affect the mission?) are representations of the competency 
boundaries of the optimization/verification block in Figure 2. 
Both discrete and probabilistic algorithms are listed in the 
scales together. The probabilistic algorithm blocks span 
multiple categories due to the random nature of the 
algorithms. Therefore, the environment that the UAV is 
operating in strongly influences the performance of these 
probabilistic algorithms. The uncertainty rankings in the 
output quality scale in Figure 4(a) are dependent on whether 
an operator has any ability to rectify a potentially infeasible 
solution. The mission impact scale in Figure 4(b) addresses 
the spatial and temporal constraints of the mission and how 
useful the solutions are. 
     For Figure 4, it is important to discuss the notion of 
feasibility. While the algorithms in Figure 4 will generate 
feasible solutions given known variables and state spaces, one 
problem common to military command and control systems is 
the rapidly and ambiguously changing battlefield. For 
example, if state space changes, such as a rapidly emerging 
no-fly zones, cannot be communicated in time to mission 
planners, then despite producing technically ‘feasible’ 
solutions, the solutions will be practically infeasible since any 
path planned through the no-fly zone (unknown to the 
algorithm) is an unacceptable path to the operator. 

 

 
(a) 

 
(b) 

Figure 4:  Uncertainty Scales for Autonomous System Path 
Planning Algorithms (a) Output Quality Scale, (b) Mission 

Impact Scale 
 

TRUST ANNUNCIATOR PANEL (TAP) 
 

     Using the scales presented in Figures 3 and 4, a configural 
display (Gibson, 1979) was designed to better illustrate the 
potential for growing uncertainty based on the navigation 
environment of one or more UAVs. The display shown in 
Figure 5 is called the uncertainty level indicator (ULI), which 
is composed of four quadrants, each of which represent one of 
the four scales presented in Figures 3 and 4. It is intended to 
represent uncertainty along a single dimension, which in this 
case is the navigation function. 
     The empty ULI in Figure 5(a) indicates that the UAV is 
operating in an area that has few obstacles and detrimental 
conditions, therefore allowing the sensing hardware and 
algorithms to function properly. A ULI begins to fill due to 
some environmental constraint that causes the level of 
uncertainty to increase relative to the inaccuracies provided by 
sensing systems (Figure 5(b)). After the second tick mark has 
been reached, the sensor inaccuracy rises to a level such that 
the quality and the mission impact of recommended solutions 
from the algorithm are brought into question (i.e., the Sensor 
Mission Impact quadrant is red and the Algorithm Output 
Quality and Mission Impact quadrants are yellow) (Figure 
5(c)). The final color change occurs after the third tick mark 
where the quadrant(s) turn red indicating high levels of 
uncertainty. As the situation approaches these conditions, 
reliance on the solutions provided by the algorithms should be 
questioned in terms of both their quality and mission impact. 
At this point, the operator should contemplate planning the 
path for the UAV to ensure a safe path is constructed in order 
for the UAV to complete its assigned mission (Figure 5(d)). 

 



 

 
                        (a)                                            (b) 

 
                        (c)                                            (d) 

Figure 5:  Uncertainty Level Indicator (ULI) with Increasing 
Uncertainties Proceeding From (a) to (d) 

 
     The navigation ULI only expresses the uncertainty of the 
ability of the sensors and algorithms to formulate a feasible 
and robust path. Given that this ULI only addresses one 
dimension of UAV control, other aspects of the mission might 
need to be included, such as payload management and 
communications. So to accurately represent to the user a 
multi-dimensional representation of uncertainty across various 
UV functions, ULIs could be grouped.  
     Figure 6 illustrates the Trust Annunciator Panel (TAP), 
which is a combination of ULIs that account for various 
mission aspects. The operator would have the TAP available 
for a high level status review of one or more UAV’s self-
confidence for its assigned tasks and mission. This 
communication method allows for an operator to quickly 
grasp when a problem has emerged or has worsened. For 
example, when the lower algorithm quadrants are red, the 
operator knows that a manual path needs to be constructed due 
to some intervening object or mission time constraint.  
 

 
Figure 6:  Proposed Trust Annunciator Panel (TAP) 

 
CONCLUSIONS AND FUTURE WORK 

 
     In this exploratory effort a configural display has been 
proposed that allows for operators to monitor the self-
confidence of a single, or team of UVs. The Trust Annunciator 
Panel (TAP) is comprised of multiple uncertainty level 
indicators (ULIs) that inform the operator of the potential 

inaccuracies in the sensing hardware, as well as the underlying 
algorithms.  
     The ULIs and TAP represent both a bottoms up and top 
down approach to communicating a system’s confidence level 
to an operator so that appropriate trust can be developed. The 
scales, as represented in Figures 3 and 4, represent both a data 
driven approach (i.e., sensor output quality) as well as a goal-
based cognitive approach (i.e., can the operator intervene to 
correct underlying poor assumptions or constraints?) The 
configural implementation of the TAP display reduces the 
level of reasoning to perception-based and reinforces the 
human-value added when completing missions in dynamic or 
unknown environments. Thus the ULI design enables direct 
perception interaction, which is a critical design consideration 
for operators under high workload and time constraints. 
     The preliminary work presented here only addresses the 
navigation ULI, which is strictly the path planning process for 
the UAV. Future work is needed to conduct a similar analysis 
for mission payload and stakeholder communication, both of 
which are fundamental in various missions such as vehicle 
tracking, UAV team operations, supply delivery, etc.  
Moreover, human-in-the-loop testing is needed to further 
calibrate the TAP/ULI displays, as well as determine if it is 
feasible to combine more than a single functionality into one 
ULI, and determine/communicate the utility of the 
manifestation of an autonomous agent’s self-confidence for 
improving human-agent teaming. 
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