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Abstract—Recent advances in unmanned and autonomous vehi-4
cle technology are accelerating the push to integrate these vehicles5
into environments, such as the National Airspace System, the na-6
tional highway system, and many manufacturing environments.7
These environments will require close collaboration between hu-8
mans and vehicles, and their large scales mean that real-world field9
trials may be difficult to execute due to concerns of cost, availabil-10
ity, and technological maturity. This paper describes the use of an11
agent-based model to explore the system-level effects of unmanned12
vehicle implementation on the performance of these collaborative13
human–vehicle environments. In particular, this paper explores14
the introduction of three different unmanned vehicle control archi-15
tectures into aircraft carrier flight deck operations. The different16
control architectures are tested under an example mission scenario17
using 22 aircraft. Results show that certain control architectures18
can improve the rate of launches, but these improvements are lim-19
ited by the structure of flight deck operations and nature of the20
launch task (which is defined independently of vehicles). Until the21
launch task is improved, the effects of unmanned vehicle control22
architectures on flight deck performance will be limited.23

Index Terms—Agent-based modeling, decision support system,24
human–automation interaction, human supervisory control.25

I. INTRODUCTION26

IMPROVING the capabilities of unmanned vehicles has been27

a key area of research over the past several years, but it is28

only relatively recently that they have improved to the point that29

integrating unmanned systems into civilian environments has30

become realistic. Several current examples exist: the Rio Tinto31

mining corporation is currently fielding autonomous hauling32

trucks in several locations [1], [2]; the Kiva systems order ful-33

fillment system, which utilizes robotic pallet carriers, is used34

by online retailers Amazon and Zappos.com, among others [3];35

automobile manufacturers continue to introduce new automated36

features, such as adaptive cruise control, lane departure warn-37

ings, and other technology while continuing to pursue automated38

road train and more advanced driverless technologies. Current39

initiatives by the defense advanced research projects agency40

(DARPA) seek to advance the capabilities of humanoid robotic41
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systems in urban search and rescue scenarios (the DARPA 42

Robotics Challenge), while other research seeks to address how 43

robotic manufacturing systems cannot only work more safely 44

near humans, but how they can also have a better understanding 45

of the roles and tasks of their human collaborators [4]. 46

Each of the domains described above can be characterized 47

as a human centered, or heterogeneous manned-unmanned en- 48

vironment (HMUE): places where unmanned vehicles, human 49

collaborators, and manned vehicles interact in the same physical 50

space. A variety of heterogeneous manned environments, such 51

as airport operations and aircraft carrier flight decks, already ex- 52

ist today. As unmanned vehicles transition into these domains, 53

new paradigms of interaction will be required for human col- 54

laborators to work effectively with these unmanned vehicles. 55

Changes to operating procedures may also be required to ac- 56

commodate differences in capabilities between unmanned and 57

manned vehicles. Very little research has addressed what these 58

changes might be and how these changes, and the resulting in- 59

troduction of unmanned vehicles, might affect the performance 60

of the broader system. 61

Insight into the effects of unmanned vehicle integration on 62

the performance of these larger scale systems could be gained 63

by field testing prototype systems, but these environments are of 64

such large scale (in physical size and number of active elements) 65

that testing them in any meaningful manner would require sig- 66

nificant investments of time, money, and physical resources. 67

Even if these resources could be provided, if the unmanned 68

vehicle systems being tested are not sufficiently similar to the 69

future systems that would be deployed, the results may not be 70

useful. Such tests might also place the autonomous systems, 71

the researchers involved, and other by-standers in unforeseen 72

danger, while also being limited in the number and types of 73

conditions that could be explored. 74

Agent-based modeling [5] is one potential approach for ad- 75

dressing such limitations; these models attempt to replicate the 76

behavior of individual actors within a given environment. Con- 77

structing such models of the real-world system provides an av- 78

enue for testing unmanned vehicle performance under a variety 79

of test conditions that may not be easily achievable in live condi- 80

tions. This paper examines the use of an agent-based simulation 81

of a candidate HMUE, the aircraft carrier flight deck, for which 82

the United States Navy is currently testing an unmanned carrier 83

fighter aircraft that is expected to integrate fully into operations 84

with manned aircraft and human crew [6], [7]. Flight deck op- 85

erations are in many ways analogous to airport operations; in 86

both environments, aircraft begin parked in a designated area, 87

then coordinate with crew (or other controllers) to taxi to one of 88

a few designated launch areas. With the Federal Aviation Ad- 89

ministration’s (FAA’s) mandate to introduce unmanned aircraft 90
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into the national airspace system by 2015, inserting unmanned91

vehicles into ground operations will be a paramount concern.92

While the FAA has recognized the importance of ground oper-93

ations in this integration, their major focus at this time appears94

to be on airborne operations [8]. While there are differences in95

the structure of airport and aircraft carrier operations (runways96

versus an open deck) and the role of human collaborators in97

those environments, lessons learned from the carrier flight deck98

should be applicable to airport operations.99

This paper begins with a brief description of agent-based sim-100

ulation and its applicability to modeling these environments.101

The three different unmanned vehicle control architectures of102

interest are then described, followed by a discussion of cur-103

rent aircraft carrier flight deck operations and how they are104

modeled within the Multi-Agent Safety and Control Simula-105

tion (MASCS). The modeling of the unmanned vehicle control106

architectures within MASCS is then described, followed by a107

description of the testing of these vehicles under mission con-108

ditions utilizing sets of 22 aircraft. Additional tests then ex-109

plored how improvements to the launch task (with properties110

independent of vehicle control architecture) affect flight deck111

performance, as well as how changes to key control architecture112

design parameters can improve vehicle performance under these113

new conditions.114

II. RELATED WORK115

A. Agent-Based Modeling116

As described by Bonabeau [5], agent-based modeling is as117

much a perspective as it is a methodology, whereas the use118

of discrete-event or systems dynamics models may elicit spe-119

cific ideas of structure and constituent components, agent-based120

models vary widely in content and in methods of application.121

Examples range from human decision-making (e.g., [9]) to epi-122

demiology and disease transmission (e.g., [10]) to transportation123

systems involving both ground and aerial vehicles (e.g., [11]),124

among many others. The common theme is that, in each case,125

the agent-based modeling paradigm views the world “from the126

perspective of its constituent units” [5]—that the agents retain127

the same independence and exhibit similar decision-making out-128

comes as the real-world entities they are intended to replicate.129

The agents are then placed into the simulated environment, given130

a set of goals (which may be self-generated during the simula-131

tion), and allowed to make decisions independently from that132

point forward. An additional key to agent-based simulation de-133

velopment is the use of simple rules of behavior [5], [12]: agents134

are given limited options in any given decision they make. The135

simultaneous application of these simple decisions by the sim-136

ulated agents is typically sufficient to replicate the behavior of137

the real-world system.138

While agent-based modeling has been used to validate con-139

trol and sensing algorithms for a variety of Unmanned Aerial140

Vehicle (UAV) systems (e.g., [13]), these studies have primarily141

addressed systems involving the collaboration of multiple ve-142

hicles in performing tasks, such as searching for and tracking143

targets. Another common area of interest is in the modeling and144

control of UAV “swarms” (large groups of robots coordinat-145

ing on a specific task) [14]. Agent-based models have also been146

built to test unmanned vehicle survivability [15] and single UAV 147

search [16]. However, none of these examples has considered 148

the role of the human in interacting with the vehicle system, al- 149

though other nonagent-based models of human-UAV interaction 150

have been constructed [17], [18]. These latter models focused 151

on the human as a processing server working within a queuing 152

system, considering the behavior of the vehicle only in that it 153

requires the operator to provide it a task. These latter models 154

only, however, examined a single system of interest and did not 155

construct models over a range of different vehicle control ar- 156

chitectures. These models typically included only a few (4–8) 157

aircraft in their models, as well. 158

No prior work could be located regarding the models of air- 159

craft carrier flight deck operations, nor of agent-based models of 160

similar collaborative human–vehicle domains (such as airport 161

ground operations or mining environments) that included mod- 162

els of unmanned vehicle behaviors. The agent-based models 163

cited in the earlier paragraph provided only general guidance on 164

model development: the reliance on states, parameters, and sim- 165

ple rules of decision-making and motion. This formed the core 166

approach to modeling the different unmanned vehicle architec- 167

tures, with a focus on the features of UAV behavior that would 168

have the most impact on the flight deck: physical motion, task ex- 169

ecution, and interactions with operators and other human collab- 170

orators in the world. These techniques were used to develop the 171

models of three different UAV control architectures—gestural 172

control (GC), vehicle-based supervisory control (VBSC), and 173

system-based supervisory control (SBSC), which are discussed 174

in the following sections—to determine their effects on flight 175

deck launch performance. 176

B. Gesture Control Systems 177

GC systems replace a human operator with a set of stereo- 178

vision cameras and a sophisticated computer algorithm that 179

replicates a subset of visual tasks performed by the human oper- 180

ator. In practice, this means that the system must be able to detect 181

human collaborators in the world, track their movement, then 182

track the motion of their hands, arms, and sometimes fingers. 183

These motions are then translated into specific gesture defini- 184

tions, which are correlated with specific tasks for the vehicles 185

(e.g., “stop” or “turn left”). The vehicle’s onboard autonomy 186

then decomposes these actions into specific low-level control 187

commands for sensors and effectors (throttle, steering, etc.). 188

While gesture recognition technology is available commer- 189

cially in systems, such as the XBOX Kinect, the utilization of 190

this technology for vehicle control remains in the research and 191

development phase. One example of this is research currently 192

being conducted by Song et al. that aims to construct a GC sys- 193

tem specifically for aircraft carrier flight deck operations [19], 194

[20]. This carrier environment is a unique case in that commands 195

to human pilots are already provided solely through hand ges- 196

tures, providing a natural mapping to gesture control systems. 197

C. Supervisory Control Systems 198

Sheridan’s original definition of supervisory control systems 199

defined them as systems in which one or more human operators 200

are commanding and receiving feedback from an autonomous 201
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or robotic system that is performing tasks in the world [21]. This202

paper uses the term in a stricter sense: systems in which the hu-203

man operator issues commands and receives feedback through a204

graphical user interface that translates symbolic inputs into ac-205

tions for the robotic systems, which then decompose the actions206

into specific low-level control inputs. This typically requires207

substantial computational intelligence onboard the vehicle, as208

well as a variety of high-fidelity sensors to observe the world209

(GPS, LIDAR, and other range and sensing systems), cameras,210

high-accuracy inertial measurement devices, along with intelli-211

gent planning algorithms to handle vehicle routing and translate212

operator commands into low-level control inputs.213

This paper classifies these systems into two forms. The first214

form is referred to as VBSCin which supervisors supply com-215

mands to a single vehicle at a time, working iteratively through216

the queue of vehicles waiting for instruction (e.g., [22]). The217

operator functions as a processing server within the system,218

maintaining a queue of vehicles awaiting task assignments and219

interacting with them individually. These systems have been a220

subject of significant prior work, a common theme of which has221

been the examination of the “fan-out” problem: how many ve-222

hicles the operator can manage without significant performance223

degradation. Past research has shown that operators can control224

up to eight ground vehicles or 12 aircraft at a time [23], an225

acceptable number for aircraft flight deck operations in which226

there are no more than 8–12 vehicles taxiing at one time.227

Controlling more than 8 to 12 vehicles requires the introduc-228

tion of additional autonomy in the form of intelligent planning229

and scheduling systems. These are integrated with additional230

decision support displays to form the class of SBSC systems,231

in which the operator works with the planning algorithms to232

replan all tasks for all vehicles simultaneously (e.g., [24]). Typi-233

cally, the operator will provide goals for the planning algorithm234

(e.g., weights for the objective function) and may also insert235

additional constraints (e.g., time windows for the execution of236

certain tasks). The planning algorithm generates a candidate set237

of assignments that is then reviewed by the operator, who has a238

chance to reject the plan or make modifications. Once the plan239

is accepted, tasks are transmitted to vehicles, which then fol-240

low the prescribed motion paths and execute the assigned tasks.241

The human supervisor’s responsibility is to monitor the execu-242

tion of the plan and create new plans in the event of failures or243

performance degradation.244

III. MULTIAGENT SAFETY AND CONTROL245

SIMULATION MODEL246

As the unmanned vehicle systems described in Section II247

do not yet exist for flight deck operations, simulations of their248

behavior cannot be validated directly. Instead, MASCS was cre-249

ated first as a model of manual control (MC) flight deck op-250

erations, with the unmanned vehicle architectures defined as251

modifications from this model. MASCS was then partially val-252

idated against empirical data in prior work [25] because of the253

limitations on accessible data on flight deck operations, pilot be-254

havior, and other factors, full validation of this simulation is not255

possible at this time. Constructing the model required defining256

agents that replicate the behavior of human crew, pilots, aircraft,257

planning supervisors, flight deck equipment, as well as models 258

of the tasks that they perform. Agent and task models consist of 259

decision-making rules that govern agent behavior, parameters 260

that describe how agents view and execute tasks in the world, 261

and states that are viewable by other agents and are used in the 262

decision-making routines. 263

The validation process compared the performance of indi- 264

vidual aircraft and missions of multiple aircraft with empirical 265

data on operations. This included the average time to complete 266

launch missions of 18 to 34 aircraft, the interdeparture times 267

of launches within those missions, and response of the sys- 268

tem to changes in vehicle behaviors (e.g., speed). Additionally, 269

a team of subject matter experts (SMEs) reviewed animations 270

of simulation execution. SMEs had a range of experience on 271

the flight deck, each over multiple years (two pilots each with 272

more than 800 flight hours in fighter aircraft; another individ- 273

ual with over 3000 h as a Naval Flight Officer and 2 years as 274

a launch and recovery officer). All were currently employed 275

by Navy research organizations. SMEs were allowed to review 276

repeated executions of the simulation in order to critique the 277

activity of agents on the flight deck. SMEs were also shown 278

quantitative results from validation testing to provide feedback 279

on the accuracy of the simulation in terms of mission comple- 280

tion times. SMEs judged that the simulation was a reasonable 281

replication of flight deck operations and did not find any ma- 282

jor errors in modeling that required correction. Modeling pro- 283

ceeded to include the unmanned vehicles reported here, which 284

were created by modifying six key parameters of the MC air- 285

craft models: aircraft routing methods, visual detection accu- 286

racy, command comprehension rates, catapult alignment failure 287

rates, camera field of view, and system latencies. This section 288

first describes the basics of flight deck operations relevant to this 289

paper and how these operations were modeled within MASCS 290

before discussing the modeling of the unmanned vehicle control 291

architectures. 292

A. Aircraft Carrier Flight Deck Operations 293

A digitized map of the flight deck appears in Fig. 1. Labels 294

in the figure highlight the important features of the flight deck 295

environment relevant to launch operations. Aircraft begin parked 296

at the edges of the flight deck in the aft and starboard areas of 297

deck; aircraft not able to fit in those areas are parked in the 298

area known as “The Street.” Aircraft will be assigned to launch 299

from one of the four launch catapults (orange lines in the figure, 300

numbered one to four). Each catapult is capable of launching 301

a single aircraft at a time, but adjacent pairs of aircraft (1,2 or 302

3,4) are not able to operate in parallel, for two reasons. The first 303

is that a single set of crew operates each pair of catapults and 304

can only manage one catapult at a time. The second, and more 305

important, is that the catapults are angled toward one another— 306

simultaneous launches would result in a collision and loss of 307

both aircraft. Catapults alternate launches within each pair, but 308

the two pairs can process in parallel (e.g., 1 and 3 or 2 and 309

4). Operations typically allow one aircraft on the catapult and 310

another waiting behind a protective barrier that rises from the 311

deck during a launch. As such, each pair of catapults (if both 312

are active) can queue up to four aircraft in the area at any time, 313

but only one aircraft will be in the process of launching. 314
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Fig. 1. Digital map of the aircraft carrier flight deck. Labels indicate important features for launch operations. Yellow dots represent Aircraft Director crew active
on the flight deck.

The process of launching an aircraft requires that several315

tasks can be done in parallel. The aircraft must taxi forward316

on to the catapult, aligning its front wheel (nose gear) with the317

catapult centerline. The nose wheel is then physically attached318

to a part of the catapult known as “the pendant.” While this is319

occurring, other crew are confirming the aircraft’s current fuel320

level and total weight to calibrate the catapult for launch. The321

pilot also completes a set of control surface checks to ensure322

that the aircraft is ready for flight. These simultaneous tasks323

are modeled within MASCS as a single time distribution (N324

(109.65, 57.802)), based on prior research and discussions with325

SMEs.326

Once these preparatory actions are complete, the catapult is327

triggered and the pendant begins pushing the nose gear and328

the aircraft forward up to flight speed. This acceleration task,329

also based on observations of flight deck operations, is modeled330

as a single time distribution (lognormal with location param-331

eter μ = 1.005 and shape parameter σ = 0.0962). Once the332

launch is complete, the aircraft at the adjacent catapult begins333

launch preparations, while the aircraft originally parked behind334

now taxis onto the catapult and waits for the adjacent catapult335

to complete its launch. Each of these tasks is independent of336

the type of vehicle being launched and is influenced primarily337

by the equipment and crew involved, rather than the control338

architecture.339

Getting aircraft from parking places to catapults requires in-340

teractions with human crew on the flight deck. A senior enlisted341

person, termed the Deck Handler, and his staff are responsible342

for creating the schedule of operations and allocating aircraft to343

launch catapults. At the start of operations, assignments will be344

made such that queues at all catapults are filled. As launches oc-345

cur and slots open at catapult queues, aircraft are dynamically346

allocated, assigning the next highest priority aircraft that has347

an open taxi route to a catapult. Aircraft assignments are then348

passed to a set of crew on the flight deck, termed Aircraft Di-349

rectors (yellow circles in Fig. 1), who provide taxi instructions350

to aircraft. These crew work in a form of “zone coverage,” each351

controlling a specific area of the deck (which may overlap with352

others). A Director will taxi the aircraft through their area, then353

hand the aircraft over to an adjacent Director before accepting354

another aircraft into their area. Directors communicate instruc-355

tions to pilots using a set of hand gestures, informing the pilot356

when to drive forward, stop, turn, and to whom they are being357

passed off. Directors also must maintain an understanding of 358

current traffic conditions on the flight deck, delaying some air- 359

craft to allow other aircraft to taxi by. This may be because the 360

other aircraft has a higher priority, or that failing to do so would 361

“lock” the deck, with aircraft unable to taxi to their required 362

destinations. 363

Models of these actors were constructed within the MASCS 364

model, each with their own sets of decision rules to replicate the 365

behaviors described in the previous paragraphs. Table I provides 366

a summary list of agents modeled in MASCS and the relevant 367

decision making rules and parameters of each. As noted previ- 368

ously, the goal in agent-based modeling is typically to make the 369

decision rules as simple as possible [5]. In MASCS, this was 370

done by building decision rules that had only a limited number 371

of options in each decision. Most decision-making models in 372

MASCS are binary (yes/no) and based on the current locations 373

and states of agents on the deck. Options are often reviewed it- 374

eratively, selecting the first feasible option. If no feasible option 375

exists, no action is taken and the system waits until conditions 376

change. 377

The Deck Handler agent’s scheduling rules are based on a 378

set of assignment heuristics elicited from SMEs as part of prior 379

work [26]. Given a list of aircraft waiting to launch, their lo- 380

cations, and their priorities, simple rules attempt to assign the 381

highest priority aircraft to the nearest available catapult. Air- 382

craft Director agents include a data structure describing to which 383

other Directors they can pass aircraft to and rules that determine 384

whether or not an aircraft can be passed off to the desired next 385

Director, whether the Director can accept new aircraft them- 386

selves, as well as how to align to the aircraft they are currently 387

instructing so that they are visible to the pilot. Aircraft and pilots 388

are modeled within MASCS as a single unit at this time. Their 389

models primarily concern physical motion on the flight deck 390

and their ability to follow instructions from the Aircraft Direc- 391

tor crew. Of greatest importance are rules that describe whether 392

they can “see” a Director. Whether a pilot can “see” a Director 393

is a simple check of whether the Director is in the visible area 394

of the aircraft, as defined by a field-of-view parameter. 395

Aircraft Directors and Aircraft/Pilot models both require 396

models of their motion on the flight deck. These models require 397

both the definition of speed of travel and rules that describe 398

the paths they should take on the flight deck. These rules were 399

placed into separate task models that are assigned to agents for 400
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TABLE I
LIST OF AGENTS REQUIRED BY THE MASCS SIMULATION OF FLIGHT DECK LAUNCH OPERATIONS, THE IMPORTANT FEATURES (PARAMETERS AND LOGIC

STRUCTURES) INVOLVED IN THEIR MODELING, AND THE VALUES OF THOSE PARAMETERS

Agent Feature Description

Aircraft/Pilot Speed Rate at which vehicles taxi forward on the flight deck; N (3.5, 1.02)
Turn Rate Rate at which vehicles rotate during taxi operations; 18° /s
Sight Angle Area in front of vehicle to view Directors; 85°

Aircraft Director Speed Rate at which crew walk on the flight deck; N (3.5, 1.02)
Alignment logic Determines when and to what location Directors should align to aircraft

Deck Handler Routing Logic When and to what Director the vehicle should next be sent
Traffic Management logic How to deconflict taxi paths on the flight deck
Routing Logic Determines whether or not a taxi route exists between an aircraft and a catapult. Defined by

heuristics that examine whether aircraft are parked in key places on flight deck.
Planning Logic Given rules of routing logic, assigns highest priority aircraft to nearest available catapult.

Prioritize sending aircraft to catapults with no aircraft in queue.
Catapults Launch Constraints How launches alternate between catapults and when obstructions in the nearby area should

stop a launch in progress
Queue Structure List of aircraft currently assigned to this catapult (maximum 2) and how aircraft are promoted

in the queue

execution. These task models determine, for a given agent with401

an assigned destination, what combination of straight line and402

turn actions is required. During execution, the models contin-403

ually check the conditions of the deck to make sure that the404

transit path is clear. For an aircraft taxiing on the flight deck,405

the “Taxi” task model continually checks 1) whether this action406

should be delayed due to traffic conditions and 2) if another407

aircraft is physically blocking the current vehicle, as well as 3)408

if the aircraft can “see” the Director. If any of these conditions409

is true, the motion is paused until conditions permit movement.410

All aircraft and crew execute such rules simultaneously during411

their operations.412

Modeling the UAV control architectures described in413

Section II within MASCS requires changes to the models de-414

scribed above. The general planning methods do not differ sub-415

stantially, nor do the models of physical motion. However, the416

rules governing task execution and taxi routing for MC opera-417

tions may not apply to unmanned vehicles due to the differences418

in control architecture capabilities. Other parameters describing419

the vehicles’ physical characteristics might also vary from the420

baseline MC model. The differences that define the unmanned421

vehicle control architectures used in this paper are discussed in422

the next section.423

B. Models of Unmanned Vehicle Behavior424

In the context of flight deck operations and the models of425

agent behavior, the important activities of a pilot that must be426

replicated by an unmanned vehicle control architecture involve427

three key aspects: visual detection of an Aircraft Director that is428

attempting to provide instructions, correctly interpreting task in-429

structions, and correctly executing the commanded tasks. Each430

of these corresponds to a related parameter: the probability of431

observing the Director if within the vehicle’s field of view, the432

probability of correctly interpreting the command, and the prob-433

ability of correctly executing a task. For the baseline MC model434

of current flight deck operations described in the previous sec-435

tion, the likelihoods of these failures are so low that SMEs con-436

sider them nonexistent (0% likelihoods). A fourth difference437

in behavior comes from the fact that the Director is providing438

instructions in this “zone coverage” routing; this may not occur 439

for some forms of UAV control, and thus how vehicles are routed 440

forms a fourth behavioral parameter of “routing method.” 441

Two other parameters relate to the physical characteristics 442

of design of the vehicle: the field of view of the pilot/aircraft, 443

which describes where the Director should be in order to provide 444

commands, and the latency in processing commands and exe- 445

cuting tasks. The field of view for manual operations is related 446

to human sight range and the constraints of being in the cockpit; 447

for unmanned vehicles, field of view is related to the cameras 448

used on the vehicle. The latency in processing commands could 449

come from a number of sources: delays in the communication 450

of signals between operator and vehicle, the time required for 451

the vehicle’s computer system to process, or time required for 452

the human operator to interact with the system. Each of these 453

can also be modeled as variables within the MASCS simulation 454

environment, and a full list of these six design parameters ap- 455

pears below. The following paragraphs describe the settings and 456

variations of these six performance parameters in the context of 457

the different vehicle control architectures. 458

1) Vehicle behavior parameters. 459

a) How aircraft are routed on the flight deck (with or 460

without the Aircraft Director crew). 461

b) Visual detection: the probability of failing to detect 462

an operator when they are within the field of view. 463

c) Task comprehension: the probability of failing to 464

comprehend an issued task. 465

d) Catapult alignment (task) execution: the probability 466

of failing to properly align to a catapult. 467

2) System Design parameters. 468

a) The field of view of the pilot/autonomous vehicle, 469

which affects how Aircraft Directors align to aircraft 470

during operations. 471

b) Latency and lag present in the system due to com- 472

munications latencies, processing times, or limita- 473

tions of the human operator. 474

1) Unmanned Aerial Vehicle Routing Methods: The first ma- 475

jor difference between UAV Control Architectures involves how 476

they are issued taxi commands and routed through the flight 477
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deck. GC systems interact with the crew on the flight deck in478

a similar fashion as MC vehicles, which requires modeling the479

three remaining vehicle behavior parameters in the list above.480

The two supervisory control systems leverage their centralized481

network to perform tasks in a different manner. VBSC systems482

would rely on commands issued from the Handler through a483

graphical user interface, which requires modeling the behavior484

of the Handler in operating such a system. In this form of system,485

the operator functions as a queuing server, which requires the486

definition of both a service time and a server policy for manag-487

ing tasks. For SBSC systems, the operator interacts periodically488

with a planning algorithm that replans all tasks for all vehicles489

at once. Once the plan is updated, the aircraft are allowed to490

execute tasks until such a time as a new plan is required.491

The planning heuristics used currently by experienced plan-492

ners aim to keep traffic moving on the flight deck in an orderly493

fashion, minimizing the occurrence of routing conflicts or other494

blockages that limit aircraft taxi motions [26]. To ensure this495

continuity in VBSC systems, experienced Handlers would likely496

operate in a “highest priority first” fashion, prioritizing aircraft497

nearest to their assigned catapults in order to keep traffic flowing498

on the deck. The time required to process tasks is taken from499

prior research by Nehme [17], whose research involved opera-500

tors controlling a team of unmanned vehicles through a VBSC-501

style interface, requiring them to define waypoints that defined502

vehicle transit paths, among other task assignments. Nehme503

characterized the “idle” task, in which operators assigned a new504

transit task to a waiting vehicle, as normally distributed with505

a mean of 3.19 s and standard deviation of 7.19 s (bounded506

[0, inf]).507

The interaction of the Handler’s interaction time with each508

vehicle and the current number of vehicles in the queue also509

generates latencies for VBSC systems: not only must a VBSC510

vehicle wait N (3.19, 7.192) seconds at the start of each of511

its own tasks, it must wait for all other vehicles ahead of it512

in the queue to be processed. If four vehicles are ahead in the513

queue, the fifth vehicle must wait (on average) 3.19 ∗ 5 = 15.95514

s before starting its next task. Thus, there is a significant penalty515

for including additional vehicles in the VBSC queueing system,516

which has been characterized in many previous studies (see [22],517

[23] for examples).518

Additionally, since this style of routing does not rely on the519

network of crew on the flight deck, the Handler can also assign520

longer taxi tasks on the flight deck—taxiing from aft to for-521

ward, barring other constraints, could be done in a single motion522

rather than requiring multiple handoffs between Directors. The523

taxi paths, however, would largely stay the same. These same524

routing changes also would occur for the SBSC architecture,525

which enable a single operator, with the help of a scheduling526

algorithm, to simultaneously define task lists for all vehicles. In527

the SBSC architecture, once assignments are made, just as with528

VBSC vehicles, tasks are carried out without the assistance of529

the Aircraft Directors in taxi operations. Prior work in this area530

[26] demonstrated that even complex planning algorithms have531

trouble decomposing the geometric constraints on the flight deck532

and provide little benefit over human planning. The appropriate533

development and testing of planning algorithms for the flight534

deck lies outside the scope of this research; for SBSC systems, 535

the same Handler planning heuristics applied to the other con- 536

trol architectures (CAs), which performed as well or better than 537

other planning algorithms in prior work [26], are applied here. 538

2) Visual Detection, Task Comprehension, and Task Execu- 539

tion: For the Gesture control systems that rely on visual in- 540

formation, the processes of visual detection of Aircraft Direc- 541

tors, comprehension of the commanded tasks, and the execu- 542

tion of those tasks must also be modeled. There is a chance 543

of failure in each individual recognition task, most impor- 544

tantly in recognizing and the Director and identifying the com- 545

mands they are providing. As these systems are still largely 546

in the research and development phase, there is no true fail- 547

ure rate known for gesture control activity in the flight deck 548

environment. A review of several papers [20], [27]–[33], most 549

of which incorporated data for multiple tests and trials and 550

references multiple prior studies, provided a picture of the 551

current general state of gesture recognition research. Out of 552

the 124 different experimental results reported, eight report 553

accuracies of 99% or better (all from a dataset using only 554

ten actions and a simple, homogeneous background), 32 re- 555

ported results better than 95%, and 77 reported better than 556

90% accuracy. Overall, the studies report an average failure rate 557

of 11.16%. It is not clear how this failure rate translates into 558

realistic future operations; while the technology will certainly 559

improve, a variety of environmental conditions (sun glare, ob- 560

structions, large numbers of moving vehicles) will limit perfor- 561

mance in the real world. While future real-world failure rates 562

are still not known, the median failure rate of 11.16% observed 563

in the research is used as the failure rate of the baseline GC 564

system. 565

A logical implementation of GC could imply that a failure to 566

recognize a Director might only happen once, after which the 567

Director would have the authority to force control of the vehicle. 568

If a vehicle fails to recognize a task, however, there may not be 569

a simple method to force the system to recognize that specific 570

task. It may take several attempts for the vehicle to register the 571

correct command, with each failure accruing a time penalty. For 572

the baseline MASCS model of GC, the penalty for failing to ac- 573

quire a new Director is set at 5 s, representing the time required 574

to realize the vehicle has not recognized the Director and for 575

the Director to issue an override. The time penalty for failing to 576

acquire task is modeled as a uniform distribution between 5 and 577

10 s, representing the time for the operator to stop, issue a cancel 578

command, and wait for the system to become ready to accept 579

new instructions. However, the original latency in processing is 580

not applied to these failures. The number of failures in com- 581

mand comprehension is determined at the start of each action 582

commanded by a Director by a Bernoulli trial generator, after 583

which the total time penalty is solved by randomly sampling the 584

uniform interval [5], [10] once for each failure incurred. 585

3) Latencies: One form of latency in the control architectures 586

occurs for the VBSC systems, due to the way in which the opera- 587

tor manages the queue of waiting vehicles (described previously 588

in Section III-B1). GC systems will also experience a form of 589

latency due to software processing, as the system attempts to 590

translate the hand gestures of the Director into understandable 591
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TABLE II
COMPARISON OF UAV CONTROL ARCHITECTURE DESIGN PARAMETERS DEFINED FOR MASCS

Manual Control Gesture Control Vehicle-Based Supervisory Control System-Based Supervisory Control

Routing Method Zone coverage Zone coverage Centralized control Centralized control
Visual detection rate P(fail) = 0 P(fail) = 0.1118 N/A (central control) N/A (central control)
Task Comprehension Rate P(fail) = 0 P(fail) = 0.1118 N/A (central control) N/A (central control)
Task Execution Rate P(fail) = 0 P(fail) = 0.05 P(fail) = 0.025 P(fail) = 0.025
Field of View 85° 65° N/A (central control) N/A (central control)
Lag/Latency None 0–3 s (computation) N (3.19, 7.192) per task None

action commands. The prior research reviewed for error rates592

[20], [27]–[33] also shows this requires anywhere from <<1 to593

3 s; this is modeled as a uniform distribution over the range [0,594

3], randomly sampled and applied to the start of every action595

commanded by a Director.596

C. Performance Comparisons597

Table II provides a comparison of the four UAV control ar-598

chitectures to the baseline MC model in terms of the six primary599

design parameters described earlier. For the MC model, SMEs600

report that failures on these tasks are so rare that they do not601

really recognize them as occurring in the system: pilots rarely602

fail to see a Director if they are within their field of view, rarely603

fail to interpret a command, and rarely fail to properly align to604

a catapult. The field of view parameter was calibrated in prior605

work to a value of 85°. These settings were utilized in the model606

and partially validated in prior work [25] and are considered to607

be representative of the highly skilled pilots that work within608

the aircraft carrier flight deck.609

Each of the unmanned vehicle control architectures defined610

in previous sections can be modeled in MASCS by changes611

to the six design parameters listed in Table II. As compared612

with a baseline MC vehicle, GC systems will still operate under613

the crew’s “zone coverage” operating paradigm, but will intro-614

duce both a small to moderate processing latency at the start615

of each action and a chance to fail to recognize either the per-616

son issuing the command or the command itself (these are akin617

to another small delay at the start of operations). As noted in618

Sections III-B2 and III-B3, this latency ranges from 0–3 s and619

the average failure rates are slightly over 10%. The processing620

latency is randomly sampled over the defined interval at the621

start of the attempted task. Task failures can occur repeatedly,622

with each failure resulting in a time penalty between 5 and 10 s623

to resubmit commands to a GC vehicle. The time penalties are624

also sampled randomly over the defined interval. The use of625

cameras by the gesture recognition system might also constrain626

the applicable field of view for these vehicles, and the lack of627

a practiced pilot in aligning the aircraft to the catapult at the628

end of taxi operations will likely increase the rate of error on629

this task. However, there is no current evidence to suggest what630

this failure rate may be in real life. A catapult alignment failure631

rate of 5%, translating to roughly one failure per mission (once632

launch of a 22 aircraft sortie), was selected for the GC vehicles633

based on SME opinions.634

As VBSC and SBSC systems are centrally controlled, they635

receive no instructions from the crew. Thus, the visual detec-636

tion and task comprehension rates are not applicable for these637

two systems, nor is the modeling of a field of view. Both are 638

expected to at least have a nonzero failure rate in aligning to 639

aircraft catapults, set at once per two missions. SBSC systems 640

have no latency, as vehicles are sufficiently autonomous to ex- 641

ecute the series of tasks provided to them quickly and without 642

human interaction and any replanning occurs in parallel to ve- 643

hicle operations. VBSC systems, however, rely on a human 644

operator to supply tasks individually to aircraft, which must 645

wait in a queue for further instructions. This introduces latency 646

in the form of a wait time for operator interaction, which for 647

large numbers of aircraft may lead to significant delays in task 648

execution. 649

The differences in performance of individual vehicles under 650

these control architectures should thus be a function of the cu- 651

mulative delays and latencies experienced in task recognition 652

and execution. The GC and VBSC systems both experience a 653

greater level of latencies and delays than MC and SBSC systems 654

and should thus perform more poorly. For GC systems, these 655

arise from the chances of repeated errors and processing delays 656

on the part of the vehicles, while for VBSC they are due to 657

the need for repeated interactions with the human supervisors. 658

However, the impact of these delays and latencies when multiple 659

aircraft are included in flight deck operations will be influenced 660

by the structure of modern aircraft carrier flight deck operations. 661

The model of operations constructed for this paper was partially 662

validated in [25] and is discussed in the next section. 663

IV. EFFECTS ON OPERATIONS ON UNMANNED AERIAL 664

VEHICLE PERFORMANCE 665

The models of unmanned vehicle control architectures de- 666

scribed in the previous section were implemented into the 667

MASCS environment and verified through a set of tests that 668

examined the behavior of an individual aircraft on the flight 669

deck. The same mission scenario was executed for each of the 670

four control architectures (MC, GC, VBSC, and SBSC) with 671

300 replications performed in each case. A diagram of this task 672

appears in Fig. 2: the aircraft begins parked in the aftarea of the 673

flight deck and is assigned to launch from catapult 3, requiring 674

a series of straight-line and turning motions before culminat- 675

ing with the launch preparation and launch acceleration tasks. 676

This same scenario was used previously in the development and 677

testing of the baseline MC model [25]. The results of these sim- 678

ulations appear in Fig. 3, which shows the average time for a 679

single aircraft to complete the launch mission (from taxi through 680

launch acceleration) for each the four control architectures, with 681

whiskers indicating ±1 standard error in the data. 682
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Fig. 2. Diagram of mission executed in the single aircraft performance com-
parisons.

Fig. 3. Values for launch event duration (LD) for single aircraft testing for
manual control (MC), gestural control (GC), vehicle-based supervisory control
(VBSC), and system-based supervisory control (SBSC). Bars indicate mean LD
for sets of 300 replications, with whiskers showing ±1 standard error.

In general, the responses of four control architectures match683

the expectations described earlier: the GC and vehicle-based684

supervisory control (VBSC) cases being the slowest and MC685

and SBSC being the fastest. An analysis of variance (ANOVA)686

test demonstrates that the differences between the MC, GC,687

SBSC, and VBSC cases are significant at the α = 0.05 level688

(F (3, 1196) = 66.07, p < 0.0001), and a Tukey test reveals that689

all pairwise comparisons are significant. In terms of practical690

differences, GC vehicles take 0.64 min longer to complete the691

task, VBSC 0.44 min, and SBSC are 0.22 min faster. While692

these are indeed small differences, percentagewise these trans-693

late into percentage differences of 18.4%, 12.5%, and −6.3%,694

respectively, from the MC baseline.695

However, the structure of flight deck operations may affect696

how these variations in individual vehicle performance are felt697

in missions using many aircraft. Flight deck operations, as well698

as airport operations, are such that aircraft depart an initial park-699

ing area and are sent to queue at a specific launch site. In terms700

of system performance, as long as another aircraft arrives at the701

site prior to the launch of the previous aircraft, the flight deck (or702

airport) is working effectively. In order for the differences in the703

individual control architectures to be observed at the mission704

level, the delays and latencies that affect GC and VBSC per-705

formance must disrupt taxi operations upstream of the catapult706

sufficiently to break the chain of queuing that occurs.707

Fig. 4. Results for Launch event Duration (LD) for each control architecture
for missions using 22 aircraft under the original launch preparation time model.
Whiskers indicate ±1 standard error.

To test whether or not this occurs, the four control architec- 708

tures were tested in missions using 22 aircraft. In these missions, 709

all 22 aircraft begin parked at the edges of the flight deck. The 710

Deck Handler agent then dynamically assigns aircraft in real 711

time based on current aircraft priority and whether nearby cat- 712

apults are open and accessible to the aircraft. Each mission 713

utilized the same initial conditions (vehicle parking locations 714

and priorities) and used a completely homogeneous vehicle set 715

(all MC, or all Gesture Control, etc.). Thirty replications of each 716

mission were performed and the total time to complete the mis- 717

sion (from initialization to completion of the last launch) was 718

logged for each. Fig. 4 provides a column chart of the average 719

time to complete missions for each control architecture, with 720

whiskers indicating ±1 standard error in each dataset. 721

The data in the figure suggests no real variations occur in 722

system performance, with an ANOVA test returning marginally 723

significant results (F (3, 116) = 2.57, p = 0.058). This suggests 724

that the effects of GC and VBSC system delays are not suffi- 725

ciently disruptive to cause differences at the mission level, nor 726

are the benefits of the SBSC system, which does not rely on 727

the crew “zone coverage” routing, sufficient to improve perfor- 728

mance at a highly significant level. 729

One interpretation of these results is that an error exists either 730

within the aircraft models, the routing of aircraft to catapults, or 731

the processing of tasks at the catapults. However, the individual 732

models of aircraft (see Fig. 3) showed that differences in perfor- 733

mance do exist on an individual vehicle level; some mechanism 734

at the mission level is preventing these differences in individ- 735

ual performance from having an aggregate effect. One possible 736

explanation regards how aircraft queue at launch catapults, as 737

described in Section III-A: each catapult can allow one aircraft 738

onto the catapult and another to queue behind. At a catapult pair, 739

only one aircraft is actively preparing for launch at any given 740

time. Once this aircraft launches, the aircraft parked behind it 741

moves forward onto the catapult and the aircraft sitting on the 742

paired catapult begins preparing for launch. A new aircraft is 743

then taxied to the empty place in the catapult queue. 744

The actions of the Deck Handler create this queueing pattern 745

immediately and keep it in existence throughout the mission. 746
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Fig. 5. Column chart of breakdown of tasks in a 22 aircraft mission using
manual control (MC) or gesture control (GC).

With this queueing pattern in place, new aircraft arrive at747

catapults only to wait a period of time in the queue. If all control748

architectures are efficient enough in taxi operations to supply749

aircraft to catapults before the queues empty, then differences in750

launch event durations across control architectures at the mis-751

sion level will not be observed. Emptying a queue means that752

a catapult pair would have to process all three prior aircraft in753

the time it takes the new (fourth) aircraft to reach the queue.754

Additional output data from the MASCS simulation suggests755

that this does not occur and the queues remain in place through-756

out the mission (see Fig. 5). In a 22 aircraft mission using only757

MC aircraft, the average time for an aircraft to taxi to a catapult758

is just under 4 min. At an average launch time of 2 min, the759

queue would be cleared in 6 min, greater than the average taxi760

time. This implies that aircraft should be encountering queues761

at catapults, and data demonstrates that they are, at an average762

wait time of 3.32 min. The figure also includes the same data763

for Gesture Control, the worst performer in the single aircraft764

testing described earlier, which provides similar results for taxi765

times, launch times, and wait times.766

These data suggest that the manner in which aircraft are767

queued at catapults, combined with the current launch prepara-768

tion process, serves to bottleneck operations. Reducing the time769

required to complete the launch preparation task should provide770

conditions in which queues are eliminated, allowing differences771

to appear between control architectures at the mission level.772

The next section examines how decreasing the mean and vari-773

ance of the launch preparation task affects the performance of774

the different UAV control architectures.775

A. Effects of Launch Preparation Time776

The launch preparation task is a highly manual process exe-777

cuted by several members of the deck crew, a key component778

of which is the physical attachment of the aircraft nosegear to779

the catapult. The pilot must first correctly align the aircraft to780

the catapult before a crew member connects a piece of the cat-781

apult mechanism to the aircraft nosegear; after this occurs, the782

catapult pulls the aircraft forward to test the connection. Other783

tasks performed by other crew involve information processing,784

Fig. 6. Results for launch event duration (LD) for each control architecture for
missions using 22 aircraft under the automated launch preparation time model.
Whiskers indicate ±1 standard error.

setting the strength of the catapult based on the current weight 785

of the aircraft. Since all vehicles connect to the same catapult 786

mechanism and perform the same checks, the time to complete 787

this task is defined independently of the types of aircraft be- 788

ing connected. Additionally, because these tasks occur largely 789

in parallel, the entire process was modeled as a single normal 790

distribution with MASCS. Decreasing the mean value of this 791

process could potentially be accomplished through better train- 792

ing of the crew, while decreasing the variance might be done by 793

automating certain aspects of the task and removing the more 794

variable human components of the task. 795

A new series of tests were conducted using a “reduced” launch 796

preparation time with significantly reduced mean and variance. 797

In this reduced model, the mean was reduced by half and the 798

variance by three-quarters (to N (54.82, 28.92)). All four con- 799

trol architectures were tested under this launch preparation time 800

model using 22 aircraft. Thirty replications were again per- 801

formed for each case, and the results of these tests appear in 802

Fig. 6 with whiskers denoting ±1 standard error. 803

At these settings (μ = 54.82 s, σ = 28.9 s), an ANOVA 804

reveals that significant differences do exist within the data 805

(F (3, 116) = 18.63, p < 0.0001). A Tukey test reveals signifi- 806

cant differences between two pairs of control architectures: GC 807

(μ = 15.55) and VBSC (μ = 15.34) are both significantly dif- 808

ferent from MC (μ = 14.17) and SBSC (μ = 13.82). However, 809

no significant differences exist within each pair (e.g., GC and 810

VBSC). In terms of practical effects, the difference between the 811

averages of the fastest (SBSC) and slowest (GC) control archi- 812

tectures is 1.73 min, equivalent to 12.2% of the MC baseline. 813

That variations in control architecture performance do arise 814

with this automated launch preparation time model suggests that 815

the characteristics of the launch preparation time do have signifi- 816

cant effects on operations. The original launch preparation time, 817

with its high mean and variance, serves to bottleneck flight deck 818

operations; regardless of what is occurring, aircraft must always 819

queue behind other aircraft at the catapults. While this makes 820

the system robust to variations in unmanned vehicle behavior 821

(the delays that occur in GC and VBSC systems), it also means 822

that beneficial effects of unmanned vehicle introduction are also 823
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obscured. Improving operations on the flight deck would first824

require improving the performance of this vehicle-independent825

processing task, rather than improving the performance of indi-826

vidual vehicles.827

These results are also important for other similar domains,828

such as future airport operations. Given the first set of results829

under the original launch preparation model, the introduction of830

unmanned vehicle systems provided no benefit whatsoever to831

system operations due to the settings of the vehicle-independent832

launch preparation task. Given this data, a stakeholder would833

likely decide that UAV integration provides no tangible benefits834

to operations. They might also decide that because there are no835

differences, all types of unmanned vehicles provide the same836

level of performance in the system; the choice might then be837

made based on other factors. If this occurs, and the system moves838

to a faster tempo of operation, this decision might have severe839

consequences. In aircraft carrier operations, tempo increases840

during wartime combat operations; in airports, increasing the841

tempo could help relieve the congestion common at many U.S.842

airports. At this increased tempo setting, if stakeholders have843

already locked in to using a GC or VBSC system based on the844

previous data, operations will not perform to the level that was845

originally expected.846

The use of simulations like MASCS, as presented here, can847

help to clarify what differences can be expected from these848

systems in the real world and how their performance might849

be influenced by other process-level tasks independent of the850

UAV system control architecture itself. They can also help to851

explore under what conditions performance of these systems852

could be improved. While the results shown above demonstrated853

that the GC architecture performed poorly under the “reduced”854

launch preparation time model, the GC system also had the855

most changes from the MC baseline, varying on five of the six856

design parameters listed in Section III-C. Improvements along857

some combination of these parameters should be sufficient to858

provide GC performance equivalent to that of the baseline MC859

architecture. The next section demonstrates how simulations like860

MASCS can be used to examine the effects of changing vehicle861

performance parameters for the control architecture models in862

an example design space exploration.863

B. Design Space Exploration864

In future systems, stakeholders may seek to understand what865

changes to unmanned system control architectures are required866

to improve the performance under certain system conditions.867

This section examines how this might occur for the case of the868

GC architecture, which previous results showed as having the869

worst performance of the modeled architectures. The most im-870

portant changes in the Gesture Control architecture involve the871

increased failure rates of these vehicles in recognizing Aircraft872

Directors and their commands and the processing lag in recog-873

nizing those commands. The failures also carry with them time874

penalties that delay vehicle activity on the flight deck and that,875

as demonstrated, can sometimes be detrimental to flight deck876

performance. Improving the accuracy of these systems and re-877

ducing their processing times should improve the performance878

Fig. 7. Results for launch event duration (LD) for variations of 22 aircraft Ges-
tural Control (GC) model using the “reduced” (mean-50%, standard deviation-
50%) launch preparation time distribution. Whiskers indicate ±1 standard error.

of the GC system, but it is not known which of these carries 879

more weight in terms of improving mission performance. 880

Three new GC models are tested in this section over a va- 881

riety of mission conditions. First, a “Low Failure” case is cre- 882

ated in which the failure rate is reduced from 11.16% to 1%, 883

modeling a “best-case scenario” of system accuracy. Second, a 884

“Low Latency” is created in which commands are processed at 885

a maximum of 0.5 s. A third model combines the two cases, 886

generating a Low Latency + Low Failure condition that should 887

show improvement in performance. A first series of tests ad- 888

dressed the effects of these models in missions involving 22 889

aircraft under the original launch preparation model (N (109.65, 890

57.802)), but no significant differences were observed (ANOVA, 891

F (4, 145) = 0.51, p = 0.73). This is to be expected, given the 892

effectiveness of the original launch preparation time distribution 893

in obscuring variations between control architectures. 894

A second round of testing then proceeded to the “reduced” 895

launch preparation model (N (54.82, 28.92)), reducing both the 896

mean and standard deviation by 50%. Thirty replications of the 897

same 22 aircraft mission used previously were conducted for 898

each of the three new GC models (Low Failure, Low Latency, 899

Low Latency + Low Failure). Given the results of the previous 900

section, the variations in performance were expected to appear 901

at this faster launch preparation time model. The results of these 902

tests appear in Fig. 7 and include results for the baseline GC and 903

MC models for comparison. 904

The figure shows that the data exhibits a noticeable trend 905

from the baseline GC model to Low Latency, then Low Failure, 906

then Low Latency + Failure, then the baseline MC model. An 907

ANOVA shows that significant differences do exist between the 908

five test cases (F (4, 145) = 8.12, p = 0.0001). A Tukey post 909

hoc test shows that, most importantly, the GC Low Latency + 910

Low Failure and MC cases are not significantly different from 911

one another (p = 0.60). The MC data is significantly different 912

from the GC Baseline (p < 0.0001), Low Failure (p = 0.017), 913

and Low Latency (p = 0.034) cases. The Low Latency + Low 914

Failure case is also significantly different from the GC baseline 915

model (p = 0.0012), but is not different from the Low Failure 916

(p = 0.17) and Low Latency (p = 0.10) cases. This is fairly 917
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interesting and highlights the significance of the earlier issues918

with the baseline GC models: the GC architecture requires sub-919

stantial improvements to both the gesture recognition accuracy920

and processing speeds to achieve performance equivalent to MC921

operations. Improvements to either of these elements individ-922

ually were not strong enough to generate significant improve-923

ments in GC performance.924

V. CONCLUSION925

This paper has described the use of an agent-based simulation926

model of aircraft carrier flight deck operations that allowed for a927

systems-level analysis of the key features of unmanned vehicle928

behavior that influence aircraft carrier flight deck performance.929

Testing demonstrated that the launch preparation process, whose930

execution times are independent of any specific unmanned ve-931

hicle control architecture, heavily influenced system behavior932

and effectively obscured differences between control architec-933

tures. Differences in control architecture performance were only934

observed under a task model with significantly reduced mean935

and variance. However, this launch preparation process is not936

slated for improvement in the near future. Ultimately, these re-937

sults suggest that failure to reexamine the structure of flight938

deck operations and the system as whole will ultimately limit939

the effectiveness of introducing autonomy into aircraft on the940

flight deck.941

Additional testing examined how, under such a reduced942

launch preparation time, the simulation could be used to inves-943

tigate the effects of modifying control architecture parameters.944

These results showed that Gesture Control systems required945

improvements to both accuracy rates and processing times in946

order to achieve performance equivalent to manual control op-947

erations in a 22 aircraft mission. Overall, these results suggest948

that the structure and definition of parameters within the broader949

system (the flight deck and tasks defined independently of the950

control architectures) has a significant impact on the behavior of951

the control architectures modeled in this paper. For stakeholders952

making decisions regarding which types of control architectures953

to implement in future operations, for environments with similar954

structure to the carrier flight deck, the definition of tasks like the955

launch preparation time (the final task performed by vehicles956

before exiting the system) greatly affects control architecture957

performance.958

The focus of MASCS at this time has been a general exami-959

nation of how different unmanned vehicle control architectures960

affect operations on the aircraft carrier flight deck, using mod-961

els of future UAV control architectures that have reached some962

level of maturity in operations. A significant limitation of this963

modeling and this research has been the exclusion of rare and964

safety-critical events from the system. These are an important965

aspect of operations in any complex system, and models of rare966

events, failures, and other issues could be included in the mod-967

eling of the physical environment (weather conditions, damage968

to the ship and flight deck), the vehicle models (mechanical969

or electrical failures, etc.) or in the modeling of the human970

actors (poor decision making, random accidents, etc.). These971

are all important areas of future work that can be addressed in972

future research, but until formally validated, MASCS cannot be 973

considered a true predictor of real-world system performance. 974

Ultimately, as unmanned systems move from operating in 975

isolated environments to more complex human-centered ones, 976

understanding the drivers of performance for both unmanned 977

vehicles and the systems in which they operate is key. This 978

research has demonstrated how this can be achieved through the 979

use of agent-based modeling of unmanned vehicle systems and 980

provided results that suggest that, for future aircraft carrier flight 981

deck and airport operations, improving aspects of the system 982

itself are as important, if not more so, than UAV improving 983

the performance of the UAV systems being introduced. Future 984

work will address how these control architectures interact with 985

changes to the operational structure, examining how changes 986

to the nature of planning and routing of aircraft tasks in the 987

flight deck environment interact with other elements to drive 988

variations not only in mission durations, but in terms of safety 989

and efficiency as well. 990
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A Systems Analysis of the Introduction of Unmanned
Aircraft Into Aircraft Carrier Operations

1

2

Jason C. Ryan and Mary L. Cummings3

Abstract—Recent advances in unmanned and autonomous vehi-4
cle technology are accelerating the push to integrate these vehicles5
into environments, such as the National Airspace System, the na-6
tional highway system, and many manufacturing environments.7
These environments will require close collaboration between hu-8
mans and vehicles, and their large scales mean that real-world field9
trials may be difficult to execute due to concerns of cost, availabil-10
ity, and technological maturity. This paper describes the use of an11
agent-based model to explore the system-level effects of unmanned12
vehicle implementation on the performance of these collaborative13
human–vehicle environments. In particular, this paper explores14
the introduction of three different unmanned vehicle control archi-15
tectures into aircraft carrier flight deck operations. The different16
control architectures are tested under an example mission scenario17
using 22 aircraft. Results show that certain control architectures18
can improve the rate of launches, but these improvements are lim-19
ited by the structure of flight deck operations and nature of the20
launch task (which is defined independently of vehicles). Until the21
launch task is improved, the effects of unmanned vehicle control22
architectures on flight deck performance will be limited.23

Index Terms—Agent-based modeling, decision support system,24
human–automation interaction, human supervisory control.25

I. INTRODUCTION26

IMPROVING the capabilities of unmanned vehicles has been27

a key area of research over the past several years, but it is28

only relatively recently that they have improved to the point that29

integrating unmanned systems into civilian environments has30

become realistic. Several current examples exist: the Rio Tinto31

mining corporation is currently fielding autonomous hauling32

trucks in several locations [1], [2]; the Kiva systems order ful-33

fillment system, which utilizes robotic pallet carriers, is used34

by online retailers Amazon and Zappos.com, among others [3];35

automobile manufacturers continue to introduce new automated36

features, such as adaptive cruise control, lane departure warn-37

ings, and other technology while continuing to pursue automated38

road train and more advanced driverless technologies. Current39

initiatives by the defense advanced research projects agency40

(DARPA) seek to advance the capabilities of humanoid robotic41
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systems in urban search and rescue scenarios (the DARPA 42

Robotics Challenge), while other research seeks to address how 43

robotic manufacturing systems cannot only work more safely 44

near humans, but how they can also have a better understanding 45

of the roles and tasks of their human collaborators [4]. 46

Each of the domains described above can be characterized 47

as a human centered, or heterogeneous manned-unmanned en- 48

vironment (HMUE): places where unmanned vehicles, human 49

collaborators, and manned vehicles interact in the same physical 50

space. A variety of heterogeneous manned environments, such 51

as airport operations and aircraft carrier flight decks, already ex- 52

ist today. As unmanned vehicles transition into these domains, 53

new paradigms of interaction will be required for human col- 54

laborators to work effectively with these unmanned vehicles. 55

Changes to operating procedures may also be required to ac- 56

commodate differences in capabilities between unmanned and 57

manned vehicles. Very little research has addressed what these 58

changes might be and how these changes, and the resulting in- 59

troduction of unmanned vehicles, might affect the performance 60

of the broader system. 61

Insight into the effects of unmanned vehicle integration on 62

the performance of these larger scale systems could be gained 63

by field testing prototype systems, but these environments are of 64

such large scale (in physical size and number of active elements) 65

that testing them in any meaningful manner would require sig- 66

nificant investments of time, money, and physical resources. 67

Even if these resources could be provided, if the unmanned 68

vehicle systems being tested are not sufficiently similar to the 69

future systems that would be deployed, the results may not be 70

useful. Such tests might also place the autonomous systems, 71

the researchers involved, and other by-standers in unforeseen 72

danger, while also being limited in the number and types of 73

conditions that could be explored. 74

Agent-based modeling [5] is one potential approach for ad- 75

dressing such limitations; these models attempt to replicate the 76

behavior of individual actors within a given environment. Con- 77

structing such models of the real-world system provides an av- 78

enue for testing unmanned vehicle performance under a variety 79

of test conditions that may not be easily achievable in live condi- 80

tions. This paper examines the use of an agent-based simulation 81

of a candidate HMUE, the aircraft carrier flight deck, for which 82

the United States Navy is currently testing an unmanned carrier 83

fighter aircraft that is expected to integrate fully into operations 84

with manned aircraft and human crew [6], [7]. Flight deck op- 85

erations are in many ways analogous to airport operations; in 86

both environments, aircraft begin parked in a designated area, 87

then coordinate with crew (or other controllers) to taxi to one of 88

a few designated launch areas. With the Federal Aviation Ad- 89

ministration’s (FAA’s) mandate to introduce unmanned aircraft 90

2168-2291 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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into the national airspace system by 2015, inserting unmanned91

vehicles into ground operations will be a paramount concern.92

While the FAA has recognized the importance of ground oper-93

ations in this integration, their major focus at this time appears94

to be on airborne operations [8]. While there are differences in95

the structure of airport and aircraft carrier operations (runways96

versus an open deck) and the role of human collaborators in97

those environments, lessons learned from the carrier flight deck98

should be applicable to airport operations.99

This paper begins with a brief description of agent-based sim-100

ulation and its applicability to modeling these environments.101

The three different unmanned vehicle control architectures of102

interest are then described, followed by a discussion of cur-103

rent aircraft carrier flight deck operations and how they are104

modeled within the Multi-Agent Safety and Control Simula-105

tion (MASCS). The modeling of the unmanned vehicle control106

architectures within MASCS is then described, followed by a107

description of the testing of these vehicles under mission con-108

ditions utilizing sets of 22 aircraft. Additional tests then ex-109

plored how improvements to the launch task (with properties110

independent of vehicle control architecture) affect flight deck111

performance, as well as how changes to key control architecture112

design parameters can improve vehicle performance under these113

new conditions.114

II. RELATED WORK115

A. Agent-Based Modeling116

As described by Bonabeau [5], agent-based modeling is as117

much a perspective as it is a methodology, whereas the use118

of discrete-event or systems dynamics models may elicit spe-119

cific ideas of structure and constituent components, agent-based120

models vary widely in content and in methods of application.121

Examples range from human decision-making (e.g., [9]) to epi-122

demiology and disease transmission (e.g., [10]) to transportation123

systems involving both ground and aerial vehicles (e.g., [11]),124

among many others. The common theme is that, in each case,125

the agent-based modeling paradigm views the world “from the126

perspective of its constituent units” [5]—that the agents retain127

the same independence and exhibit similar decision-making out-128

comes as the real-world entities they are intended to replicate.129

The agents are then placed into the simulated environment, given130

a set of goals (which may be self-generated during the simula-131

tion), and allowed to make decisions independently from that132

point forward. An additional key to agent-based simulation de-133

velopment is the use of simple rules of behavior [5], [12]: agents134

are given limited options in any given decision they make. The135

simultaneous application of these simple decisions by the sim-136

ulated agents is typically sufficient to replicate the behavior of137

the real-world system.138

While agent-based modeling has been used to validate con-139

trol and sensing algorithms for a variety of Unmanned Aerial140

Vehicle (UAV) systems (e.g., [13]), these studies have primarily141

addressed systems involving the collaboration of multiple ve-142

hicles in performing tasks, such as searching for and tracking143

targets. Another common area of interest is in the modeling and144

control of UAV “swarms” (large groups of robots coordinat-145

ing on a specific task) [14]. Agent-based models have also been146

built to test unmanned vehicle survivability [15] and single UAV 147

search [16]. However, none of these examples has considered 148

the role of the human in interacting with the vehicle system, al- 149

though other nonagent-based models of human-UAV interaction 150

have been constructed [17], [18]. These latter models focused 151

on the human as a processing server working within a queuing 152

system, considering the behavior of the vehicle only in that it 153

requires the operator to provide it a task. These latter models 154

only, however, examined a single system of interest and did not 155

construct models over a range of different vehicle control ar- 156

chitectures. These models typically included only a few (4–8) 157

aircraft in their models, as well. 158

No prior work could be located regarding the models of air- 159

craft carrier flight deck operations, nor of agent-based models of 160

similar collaborative human–vehicle domains (such as airport 161

ground operations or mining environments) that included mod- 162

els of unmanned vehicle behaviors. The agent-based models 163

cited in the earlier paragraph provided only general guidance on 164

model development: the reliance on states, parameters, and sim- 165

ple rules of decision-making and motion. This formed the core 166

approach to modeling the different unmanned vehicle architec- 167

tures, with a focus on the features of UAV behavior that would 168

have the most impact on the flight deck: physical motion, task ex- 169

ecution, and interactions with operators and other human collab- 170

orators in the world. These techniques were used to develop the 171

models of three different UAV control architectures—gestural 172

control (GC), vehicle-based supervisory control (VBSC), and 173

system-based supervisory control (SBSC), which are discussed 174

in the following sections—to determine their effects on flight 175

deck launch performance. 176

B. Gesture Control Systems 177

GC systems replace a human operator with a set of stereo- 178

vision cameras and a sophisticated computer algorithm that 179

replicates a subset of visual tasks performed by the human oper- 180

ator. In practice, this means that the system must be able to detect 181

human collaborators in the world, track their movement, then 182

track the motion of their hands, arms, and sometimes fingers. 183

These motions are then translated into specific gesture defini- 184

tions, which are correlated with specific tasks for the vehicles 185

(e.g., “stop” or “turn left”). The vehicle’s onboard autonomy 186

then decomposes these actions into specific low-level control 187

commands for sensors and effectors (throttle, steering, etc.). 188

While gesture recognition technology is available commer- 189

cially in systems, such as the XBOX Kinect, the utilization of 190

this technology for vehicle control remains in the research and 191

development phase. One example of this is research currently 192

being conducted by Song et al. that aims to construct a GC sys- 193

tem specifically for aircraft carrier flight deck operations [19], 194

[20]. This carrier environment is a unique case in that commands 195

to human pilots are already provided solely through hand ges- 196

tures, providing a natural mapping to gesture control systems. 197

C. Supervisory Control Systems 198

Sheridan’s original definition of supervisory control systems 199

defined them as systems in which one or more human operators 200

are commanding and receiving feedback from an autonomous 201
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or robotic system that is performing tasks in the world [21]. This202

paper uses the term in a stricter sense: systems in which the hu-203

man operator issues commands and receives feedback through a204

graphical user interface that translates symbolic inputs into ac-205

tions for the robotic systems, which then decompose the actions206

into specific low-level control inputs. This typically requires207

substantial computational intelligence onboard the vehicle, as208

well as a variety of high-fidelity sensors to observe the world209

(GPS, LIDAR, and other range and sensing systems), cameras,210

high-accuracy inertial measurement devices, along with intelli-211

gent planning algorithms to handle vehicle routing and translate212

operator commands into low-level control inputs.213

This paper classifies these systems into two forms. The first214

form is referred to as VBSCin which supervisors supply com-215

mands to a single vehicle at a time, working iteratively through216

the queue of vehicles waiting for instruction (e.g., [22]). The217

operator functions as a processing server within the system,218

maintaining a queue of vehicles awaiting task assignments and219

interacting with them individually. These systems have been a220

subject of significant prior work, a common theme of which has221

been the examination of the “fan-out” problem: how many ve-222

hicles the operator can manage without significant performance223

degradation. Past research has shown that operators can control224

up to eight ground vehicles or 12 aircraft at a time [23], an225

acceptable number for aircraft flight deck operations in which226

there are no more than 8–12 vehicles taxiing at one time.227

Controlling more than 8 to 12 vehicles requires the introduc-228

tion of additional autonomy in the form of intelligent planning229

and scheduling systems. These are integrated with additional230

decision support displays to form the class of SBSC systems,231

in which the operator works with the planning algorithms to232

replan all tasks for all vehicles simultaneously (e.g., [24]). Typi-233

cally, the operator will provide goals for the planning algorithm234

(e.g., weights for the objective function) and may also insert235

additional constraints (e.g., time windows for the execution of236

certain tasks). The planning algorithm generates a candidate set237

of assignments that is then reviewed by the operator, who has a238

chance to reject the plan or make modifications. Once the plan239

is accepted, tasks are transmitted to vehicles, which then fol-240

low the prescribed motion paths and execute the assigned tasks.241

The human supervisor’s responsibility is to monitor the execu-242

tion of the plan and create new plans in the event of failures or243

performance degradation.244

III. MULTIAGENT SAFETY AND CONTROL245

SIMULATION MODEL246

As the unmanned vehicle systems described in Section II247

do not yet exist for flight deck operations, simulations of their248

behavior cannot be validated directly. Instead, MASCS was cre-249

ated first as a model of manual control (MC) flight deck op-250

erations, with the unmanned vehicle architectures defined as251

modifications from this model. MASCS was then partially val-252

idated against empirical data in prior work [25] because of the253

limitations on accessible data on flight deck operations, pilot be-254

havior, and other factors, full validation of this simulation is not255

possible at this time. Constructing the model required defining256

agents that replicate the behavior of human crew, pilots, aircraft,257

planning supervisors, flight deck equipment, as well as models 258

of the tasks that they perform. Agent and task models consist of 259

decision-making rules that govern agent behavior, parameters 260

that describe how agents view and execute tasks in the world, 261

and states that are viewable by other agents and are used in the 262

decision-making routines. 263

The validation process compared the performance of indi- 264

vidual aircraft and missions of multiple aircraft with empirical 265

data on operations. This included the average time to complete 266

launch missions of 18 to 34 aircraft, the interdeparture times 267

of launches within those missions, and response of the sys- 268

tem to changes in vehicle behaviors (e.g., speed). Additionally, 269

a team of subject matter experts (SMEs) reviewed animations 270

of simulation execution. SMEs had a range of experience on 271

the flight deck, each over multiple years (two pilots each with 272

more than 800 flight hours in fighter aircraft; another individ- 273

ual with over 3000 h as a Naval Flight Officer and 2 years as 274

a launch and recovery officer). All were currently employed 275

by Navy research organizations. SMEs were allowed to review 276

repeated executions of the simulation in order to critique the 277

activity of agents on the flight deck. SMEs were also shown 278

quantitative results from validation testing to provide feedback 279

on the accuracy of the simulation in terms of mission comple- 280

tion times. SMEs judged that the simulation was a reasonable 281

replication of flight deck operations and did not find any ma- 282

jor errors in modeling that required correction. Modeling pro- 283

ceeded to include the unmanned vehicles reported here, which 284

were created by modifying six key parameters of the MC air- 285

craft models: aircraft routing methods, visual detection accu- 286

racy, command comprehension rates, catapult alignment failure 287

rates, camera field of view, and system latencies. This section 288

first describes the basics of flight deck operations relevant to this 289

paper and how these operations were modeled within MASCS 290

before discussing the modeling of the unmanned vehicle control 291

architectures. 292

A. Aircraft Carrier Flight Deck Operations 293

A digitized map of the flight deck appears in Fig. 1. Labels 294

in the figure highlight the important features of the flight deck 295

environment relevant to launch operations. Aircraft begin parked 296

at the edges of the flight deck in the aft and starboard areas of 297

deck; aircraft not able to fit in those areas are parked in the 298

area known as “The Street.” Aircraft will be assigned to launch 299

from one of the four launch catapults (orange lines in the figure, 300

numbered one to four). Each catapult is capable of launching 301

a single aircraft at a time, but adjacent pairs of aircraft (1,2 or 302

3,4) are not able to operate in parallel, for two reasons. The first 303

is that a single set of crew operates each pair of catapults and 304

can only manage one catapult at a time. The second, and more 305

important, is that the catapults are angled toward one another— 306

simultaneous launches would result in a collision and loss of 307

both aircraft. Catapults alternate launches within each pair, but 308

the two pairs can process in parallel (e.g., 1 and 3 or 2 and 309

4). Operations typically allow one aircraft on the catapult and 310

another waiting behind a protective barrier that rises from the 311

deck during a launch. As such, each pair of catapults (if both 312

are active) can queue up to four aircraft in the area at any time, 313

but only one aircraft will be in the process of launching. 314
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Fig. 1. Digital map of the aircraft carrier flight deck. Labels indicate important features for launch operations. Yellow dots represent Aircraft Director crew active
on the flight deck.

The process of launching an aircraft requires that several315

tasks can be done in parallel. The aircraft must taxi forward316

on to the catapult, aligning its front wheel (nose gear) with the317

catapult centerline. The nose wheel is then physically attached318

to a part of the catapult known as “the pendant.” While this is319

occurring, other crew are confirming the aircraft’s current fuel320

level and total weight to calibrate the catapult for launch. The321

pilot also completes a set of control surface checks to ensure322

that the aircraft is ready for flight. These simultaneous tasks323

are modeled within MASCS as a single time distribution (N324

(109.65, 57.802)), based on prior research and discussions with325

SMEs.326

Once these preparatory actions are complete, the catapult is327

triggered and the pendant begins pushing the nose gear and328

the aircraft forward up to flight speed. This acceleration task,329

also based on observations of flight deck operations, is modeled330

as a single time distribution (lognormal with location param-331

eter μ = 1.005 and shape parameter σ = 0.0962). Once the332

launch is complete, the aircraft at the adjacent catapult begins333

launch preparations, while the aircraft originally parked behind334

now taxis onto the catapult and waits for the adjacent catapult335

to complete its launch. Each of these tasks is independent of336

the type of vehicle being launched and is influenced primarily337

by the equipment and crew involved, rather than the control338

architecture.339

Getting aircraft from parking places to catapults requires in-340

teractions with human crew on the flight deck. A senior enlisted341

person, termed the Deck Handler, and his staff are responsible342

for creating the schedule of operations and allocating aircraft to343

launch catapults. At the start of operations, assignments will be344

made such that queues at all catapults are filled. As launches oc-345

cur and slots open at catapult queues, aircraft are dynamically346

allocated, assigning the next highest priority aircraft that has347

an open taxi route to a catapult. Aircraft assignments are then348

passed to a set of crew on the flight deck, termed Aircraft Di-349

rectors (yellow circles in Fig. 1), who provide taxi instructions350

to aircraft. These crew work in a form of “zone coverage,” each351

controlling a specific area of the deck (which may overlap with352

others). A Director will taxi the aircraft through their area, then353

hand the aircraft over to an adjacent Director before accepting354

another aircraft into their area. Directors communicate instruc-355

tions to pilots using a set of hand gestures, informing the pilot356

when to drive forward, stop, turn, and to whom they are being357

passed off. Directors also must maintain an understanding of 358

current traffic conditions on the flight deck, delaying some air- 359

craft to allow other aircraft to taxi by. This may be because the 360

other aircraft has a higher priority, or that failing to do so would 361

“lock” the deck, with aircraft unable to taxi to their required 362

destinations. 363

Models of these actors were constructed within the MASCS 364

model, each with their own sets of decision rules to replicate the 365

behaviors described in the previous paragraphs. Table I provides 366

a summary list of agents modeled in MASCS and the relevant 367

decision making rules and parameters of each. As noted previ- 368

ously, the goal in agent-based modeling is typically to make the 369

decision rules as simple as possible [5]. In MASCS, this was 370

done by building decision rules that had only a limited number 371

of options in each decision. Most decision-making models in 372

MASCS are binary (yes/no) and based on the current locations 373

and states of agents on the deck. Options are often reviewed it- 374

eratively, selecting the first feasible option. If no feasible option 375

exists, no action is taken and the system waits until conditions 376

change. 377

The Deck Handler agent’s scheduling rules are based on a 378

set of assignment heuristics elicited from SMEs as part of prior 379

work [26]. Given a list of aircraft waiting to launch, their lo- 380

cations, and their priorities, simple rules attempt to assign the 381

highest priority aircraft to the nearest available catapult. Air- 382

craft Director agents include a data structure describing to which 383

other Directors they can pass aircraft to and rules that determine 384

whether or not an aircraft can be passed off to the desired next 385

Director, whether the Director can accept new aircraft them- 386

selves, as well as how to align to the aircraft they are currently 387

instructing so that they are visible to the pilot. Aircraft and pilots 388

are modeled within MASCS as a single unit at this time. Their 389

models primarily concern physical motion on the flight deck 390

and their ability to follow instructions from the Aircraft Direc- 391

tor crew. Of greatest importance are rules that describe whether 392

they can “see” a Director. Whether a pilot can “see” a Director 393

is a simple check of whether the Director is in the visible area 394

of the aircraft, as defined by a field-of-view parameter. 395

Aircraft Directors and Aircraft/Pilot models both require 396

models of their motion on the flight deck. These models require 397

both the definition of speed of travel and rules that describe 398

the paths they should take on the flight deck. These rules were 399

placed into separate task models that are assigned to agents for 400
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TABLE I
LIST OF AGENTS REQUIRED BY THE MASCS SIMULATION OF FLIGHT DECK LAUNCH OPERATIONS, THE IMPORTANT FEATURES (PARAMETERS AND LOGIC

STRUCTURES) INVOLVED IN THEIR MODELING, AND THE VALUES OF THOSE PARAMETERS

Agent Feature Description

Aircraft/Pilot Speed Rate at which vehicles taxi forward on the flight deck; N (3.5, 1.02)
Turn Rate Rate at which vehicles rotate during taxi operations; 18° /s
Sight Angle Area in front of vehicle to view Directors; 85°

Aircraft Director Speed Rate at which crew walk on the flight deck; N (3.5, 1.02)
Alignment logic Determines when and to what location Directors should align to aircraft

Deck Handler Routing Logic When and to what Director the vehicle should next be sent
Traffic Management logic How to deconflict taxi paths on the flight deck
Routing Logic Determines whether or not a taxi route exists between an aircraft and a catapult. Defined by

heuristics that examine whether aircraft are parked in key places on flight deck.
Planning Logic Given rules of routing logic, assigns highest priority aircraft to nearest available catapult.

Prioritize sending aircraft to catapults with no aircraft in queue.
Catapults Launch Constraints How launches alternate between catapults and when obstructions in the nearby area should

stop a launch in progress
Queue Structure List of aircraft currently assigned to this catapult (maximum 2) and how aircraft are promoted

in the queue

execution. These task models determine, for a given agent with401

an assigned destination, what combination of straight line and402

turn actions is required. During execution, the models contin-403

ually check the conditions of the deck to make sure that the404

transit path is clear. For an aircraft taxiing on the flight deck,405

the “Taxi” task model continually checks 1) whether this action406

should be delayed due to traffic conditions and 2) if another407

aircraft is physically blocking the current vehicle, as well as 3)408

if the aircraft can “see” the Director. If any of these conditions409

is true, the motion is paused until conditions permit movement.410

All aircraft and crew execute such rules simultaneously during411

their operations.412

Modeling the UAV control architectures described in413

Section II within MASCS requires changes to the models de-414

scribed above. The general planning methods do not differ sub-415

stantially, nor do the models of physical motion. However, the416

rules governing task execution and taxi routing for MC opera-417

tions may not apply to unmanned vehicles due to the differences418

in control architecture capabilities. Other parameters describing419

the vehicles’ physical characteristics might also vary from the420

baseline MC model. The differences that define the unmanned421

vehicle control architectures used in this paper are discussed in422

the next section.423

B. Models of Unmanned Vehicle Behavior424

In the context of flight deck operations and the models of425

agent behavior, the important activities of a pilot that must be426

replicated by an unmanned vehicle control architecture involve427

three key aspects: visual detection of an Aircraft Director that is428

attempting to provide instructions, correctly interpreting task in-429

structions, and correctly executing the commanded tasks. Each430

of these corresponds to a related parameter: the probability of431

observing the Director if within the vehicle’s field of view, the432

probability of correctly interpreting the command, and the prob-433

ability of correctly executing a task. For the baseline MC model434

of current flight deck operations described in the previous sec-435

tion, the likelihoods of these failures are so low that SMEs con-436

sider them nonexistent (0% likelihoods). A fourth difference437

in behavior comes from the fact that the Director is providing438

instructions in this “zone coverage” routing; this may not occur 439

for some forms of UAV control, and thus how vehicles are routed 440

forms a fourth behavioral parameter of “routing method.” 441

Two other parameters relate to the physical characteristics 442

of design of the vehicle: the field of view of the pilot/aircraft, 443

which describes where the Director should be in order to provide 444

commands, and the latency in processing commands and exe- 445

cuting tasks. The field of view for manual operations is related 446

to human sight range and the constraints of being in the cockpit; 447

for unmanned vehicles, field of view is related to the cameras 448

used on the vehicle. The latency in processing commands could 449

come from a number of sources: delays in the communication 450

of signals between operator and vehicle, the time required for 451

the vehicle’s computer system to process, or time required for 452

the human operator to interact with the system. Each of these 453

can also be modeled as variables within the MASCS simulation 454

environment, and a full list of these six design parameters ap- 455

pears below. The following paragraphs describe the settings and 456

variations of these six performance parameters in the context of 457

the different vehicle control architectures. 458

1) Vehicle behavior parameters. 459

a) How aircraft are routed on the flight deck (with or 460

without the Aircraft Director crew). 461

b) Visual detection: the probability of failing to detect 462

an operator when they are within the field of view. 463

c) Task comprehension: the probability of failing to 464

comprehend an issued task. 465

d) Catapult alignment (task) execution: the probability 466

of failing to properly align to a catapult. 467

2) System Design parameters. 468

a) The field of view of the pilot/autonomous vehicle, 469

which affects how Aircraft Directors align to aircraft 470

during operations. 471

b) Latency and lag present in the system due to com- 472

munications latencies, processing times, or limita- 473

tions of the human operator. 474

1) Unmanned Aerial Vehicle Routing Methods: The first ma- 475

jor difference between UAV Control Architectures involves how 476

they are issued taxi commands and routed through the flight 477
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deck. GC systems interact with the crew on the flight deck in478

a similar fashion as MC vehicles, which requires modeling the479

three remaining vehicle behavior parameters in the list above.480

The two supervisory control systems leverage their centralized481

network to perform tasks in a different manner. VBSC systems482

would rely on commands issued from the Handler through a483

graphical user interface, which requires modeling the behavior484

of the Handler in operating such a system. In this form of system,485

the operator functions as a queuing server, which requires the486

definition of both a service time and a server policy for manag-487

ing tasks. For SBSC systems, the operator interacts periodically488

with a planning algorithm that replans all tasks for all vehicles489

at once. Once the plan is updated, the aircraft are allowed to490

execute tasks until such a time as a new plan is required.491

The planning heuristics used currently by experienced plan-492

ners aim to keep traffic moving on the flight deck in an orderly493

fashion, minimizing the occurrence of routing conflicts or other494

blockages that limit aircraft taxi motions [26]. To ensure this495

continuity in VBSC systems, experienced Handlers would likely496

operate in a “highest priority first” fashion, prioritizing aircraft497

nearest to their assigned catapults in order to keep traffic flowing498

on the deck. The time required to process tasks is taken from499

prior research by Nehme [17], whose research involved opera-500

tors controlling a team of unmanned vehicles through a VBSC-501

style interface, requiring them to define waypoints that defined502

vehicle transit paths, among other task assignments. Nehme503

characterized the “idle” task, in which operators assigned a new504

transit task to a waiting vehicle, as normally distributed with505

a mean of 3.19 s and standard deviation of 7.19 s (bounded506

[0, inf]).507

The interaction of the Handler’s interaction time with each508

vehicle and the current number of vehicles in the queue also509

generates latencies for VBSC systems: not only must a VBSC510

vehicle wait N (3.19, 7.192) seconds at the start of each of511

its own tasks, it must wait for all other vehicles ahead of it512

in the queue to be processed. If four vehicles are ahead in the513

queue, the fifth vehicle must wait (on average) 3.19 ∗ 5 = 15.95514

s before starting its next task. Thus, there is a significant penalty515

for including additional vehicles in the VBSC queueing system,516

which has been characterized in many previous studies (see [22],517

[23] for examples).518

Additionally, since this style of routing does not rely on the519

network of crew on the flight deck, the Handler can also assign520

longer taxi tasks on the flight deck—taxiing from aft to for-521

ward, barring other constraints, could be done in a single motion522

rather than requiring multiple handoffs between Directors. The523

taxi paths, however, would largely stay the same. These same524

routing changes also would occur for the SBSC architecture,525

which enable a single operator, with the help of a scheduling526

algorithm, to simultaneously define task lists for all vehicles. In527

the SBSC architecture, once assignments are made, just as with528

VBSC vehicles, tasks are carried out without the assistance of529

the Aircraft Directors in taxi operations. Prior work in this area530

[26] demonstrated that even complex planning algorithms have531

trouble decomposing the geometric constraints on the flight deck532

and provide little benefit over human planning. The appropriate533

development and testing of planning algorithms for the flight534

deck lies outside the scope of this research; for SBSC systems, 535

the same Handler planning heuristics applied to the other con- 536

trol architectures (CAs), which performed as well or better than 537

other planning algorithms in prior work [26], are applied here. 538

2) Visual Detection, Task Comprehension, and Task Execu- 539

tion: For the Gesture control systems that rely on visual in- 540

formation, the processes of visual detection of Aircraft Direc- 541

tors, comprehension of the commanded tasks, and the execu- 542

tion of those tasks must also be modeled. There is a chance 543

of failure in each individual recognition task, most impor- 544

tantly in recognizing and the Director and identifying the com- 545

mands they are providing. As these systems are still largely 546

in the research and development phase, there is no true fail- 547

ure rate known for gesture control activity in the flight deck 548

environment. A review of several papers [20], [27]–[33], most 549

of which incorporated data for multiple tests and trials and 550

references multiple prior studies, provided a picture of the 551

current general state of gesture recognition research. Out of 552

the 124 different experimental results reported, eight report 553

accuracies of 99% or better (all from a dataset using only 554

ten actions and a simple, homogeneous background), 32 re- 555

ported results better than 95%, and 77 reported better than 556

90% accuracy. Overall, the studies report an average failure rate 557

of 11.16%. It is not clear how this failure rate translates into 558

realistic future operations; while the technology will certainly 559

improve, a variety of environmental conditions (sun glare, ob- 560

structions, large numbers of moving vehicles) will limit perfor- 561

mance in the real world. While future real-world failure rates 562

are still not known, the median failure rate of 11.16% observed 563

in the research is used as the failure rate of the baseline GC 564

system. 565

A logical implementation of GC could imply that a failure to 566

recognize a Director might only happen once, after which the 567

Director would have the authority to force control of the vehicle. 568

If a vehicle fails to recognize a task, however, there may not be 569

a simple method to force the system to recognize that specific 570

task. It may take several attempts for the vehicle to register the 571

correct command, with each failure accruing a time penalty. For 572

the baseline MASCS model of GC, the penalty for failing to ac- 573

quire a new Director is set at 5 s, representing the time required 574

to realize the vehicle has not recognized the Director and for 575

the Director to issue an override. The time penalty for failing to 576

acquire task is modeled as a uniform distribution between 5 and 577

10 s, representing the time for the operator to stop, issue a cancel 578

command, and wait for the system to become ready to accept 579

new instructions. However, the original latency in processing is 580

not applied to these failures. The number of failures in com- 581

mand comprehension is determined at the start of each action 582

commanded by a Director by a Bernoulli trial generator, after 583

which the total time penalty is solved by randomly sampling the 584

uniform interval [5], [10] once for each failure incurred. 585

3) Latencies: One form of latency in the control architectures 586

occurs for the VBSC systems, due to the way in which the opera- 587

tor manages the queue of waiting vehicles (described previously 588

in Section III-B1). GC systems will also experience a form of 589

latency due to software processing, as the system attempts to 590

translate the hand gestures of the Director into understandable 591



IE
EE

Pr
oo

f

RYAN AND CUMMINGS: A SYSTEMS ANALYSIS OF THE INTRODUCTION OF UNMANNED AIRCRAFT INTO AIRCRAFT CARRIER OPERATIONS 7

TABLE II
COMPARISON OF UAV CONTROL ARCHITECTURE DESIGN PARAMETERS DEFINED FOR MASCS

Manual Control Gesture Control Vehicle-Based Supervisory Control System-Based Supervisory Control

Routing Method Zone coverage Zone coverage Centralized control Centralized control
Visual detection rate P(fail) = 0 P(fail) = 0.1118 N/A (central control) N/A (central control)
Task Comprehension Rate P(fail) = 0 P(fail) = 0.1118 N/A (central control) N/A (central control)
Task Execution Rate P(fail) = 0 P(fail) = 0.05 P(fail) = 0.025 P(fail) = 0.025
Field of View 85° 65° N/A (central control) N/A (central control)
Lag/Latency None 0–3 s (computation) N (3.19, 7.192) per task None

action commands. The prior research reviewed for error rates592

[20], [27]–[33] also shows this requires anywhere from <<1 to593

3 s; this is modeled as a uniform distribution over the range [0,594

3], randomly sampled and applied to the start of every action595

commanded by a Director.596

C. Performance Comparisons597

Table II provides a comparison of the four UAV control ar-598

chitectures to the baseline MC model in terms of the six primary599

design parameters described earlier. For the MC model, SMEs600

report that failures on these tasks are so rare that they do not601

really recognize them as occurring in the system: pilots rarely602

fail to see a Director if they are within their field of view, rarely603

fail to interpret a command, and rarely fail to properly align to604

a catapult. The field of view parameter was calibrated in prior605

work to a value of 85°. These settings were utilized in the model606

and partially validated in prior work [25] and are considered to607

be representative of the highly skilled pilots that work within608

the aircraft carrier flight deck.609

Each of the unmanned vehicle control architectures defined610

in previous sections can be modeled in MASCS by changes611

to the six design parameters listed in Table II. As compared612

with a baseline MC vehicle, GC systems will still operate under613

the crew’s “zone coverage” operating paradigm, but will intro-614

duce both a small to moderate processing latency at the start615

of each action and a chance to fail to recognize either the per-616

son issuing the command or the command itself (these are akin617

to another small delay at the start of operations). As noted in618

Sections III-B2 and III-B3, this latency ranges from 0–3 s and619

the average failure rates are slightly over 10%. The processing620

latency is randomly sampled over the defined interval at the621

start of the attempted task. Task failures can occur repeatedly,622

with each failure resulting in a time penalty between 5 and 10 s623

to resubmit commands to a GC vehicle. The time penalties are624

also sampled randomly over the defined interval. The use of625

cameras by the gesture recognition system might also constrain626

the applicable field of view for these vehicles, and the lack of627

a practiced pilot in aligning the aircraft to the catapult at the628

end of taxi operations will likely increase the rate of error on629

this task. However, there is no current evidence to suggest what630

this failure rate may be in real life. A catapult alignment failure631

rate of 5%, translating to roughly one failure per mission (once632

launch of a 22 aircraft sortie), was selected for the GC vehicles633

based on SME opinions.634

As VBSC and SBSC systems are centrally controlled, they635

receive no instructions from the crew. Thus, the visual detec-636

tion and task comprehension rates are not applicable for these637

two systems, nor is the modeling of a field of view. Both are 638

expected to at least have a nonzero failure rate in aligning to 639

aircraft catapults, set at once per two missions. SBSC systems 640

have no latency, as vehicles are sufficiently autonomous to ex- 641

ecute the series of tasks provided to them quickly and without 642

human interaction and any replanning occurs in parallel to ve- 643

hicle operations. VBSC systems, however, rely on a human 644

operator to supply tasks individually to aircraft, which must 645

wait in a queue for further instructions. This introduces latency 646

in the form of a wait time for operator interaction, which for 647

large numbers of aircraft may lead to significant delays in task 648

execution. 649

The differences in performance of individual vehicles under 650

these control architectures should thus be a function of the cu- 651

mulative delays and latencies experienced in task recognition 652

and execution. The GC and VBSC systems both experience a 653

greater level of latencies and delays than MC and SBSC systems 654

and should thus perform more poorly. For GC systems, these 655

arise from the chances of repeated errors and processing delays 656

on the part of the vehicles, while for VBSC they are due to 657

the need for repeated interactions with the human supervisors. 658

However, the impact of these delays and latencies when multiple 659

aircraft are included in flight deck operations will be influenced 660

by the structure of modern aircraft carrier flight deck operations. 661

The model of operations constructed for this paper was partially 662

validated in [25] and is discussed in the next section. 663

IV. EFFECTS ON OPERATIONS ON UNMANNED AERIAL 664

VEHICLE PERFORMANCE 665

The models of unmanned vehicle control architectures de- 666

scribed in the previous section were implemented into the 667

MASCS environment and verified through a set of tests that 668

examined the behavior of an individual aircraft on the flight 669

deck. The same mission scenario was executed for each of the 670

four control architectures (MC, GC, VBSC, and SBSC) with 671

300 replications performed in each case. A diagram of this task 672

appears in Fig. 2: the aircraft begins parked in the aftarea of the 673

flight deck and is assigned to launch from catapult 3, requiring 674

a series of straight-line and turning motions before culminat- 675

ing with the launch preparation and launch acceleration tasks. 676

This same scenario was used previously in the development and 677

testing of the baseline MC model [25]. The results of these sim- 678

ulations appear in Fig. 3, which shows the average time for a 679

single aircraft to complete the launch mission (from taxi through 680

launch acceleration) for each the four control architectures, with 681

whiskers indicating ±1 standard error in the data. 682
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Fig. 2. Diagram of mission executed in the single aircraft performance com-
parisons.

Fig. 3. Values for launch event duration (LD) for single aircraft testing for
manual control (MC), gestural control (GC), vehicle-based supervisory control
(VBSC), and system-based supervisory control (SBSC). Bars indicate mean LD
for sets of 300 replications, with whiskers showing ±1 standard error.

In general, the responses of four control architectures match683

the expectations described earlier: the GC and vehicle-based684

supervisory control (VBSC) cases being the slowest and MC685

and SBSC being the fastest. An analysis of variance (ANOVA)686

test demonstrates that the differences between the MC, GC,687

SBSC, and VBSC cases are significant at the α = 0.05 level688

(F (3, 1196) = 66.07, p < 0.0001), and a Tukey test reveals that689

all pairwise comparisons are significant. In terms of practical690

differences, GC vehicles take 0.64 min longer to complete the691

task, VBSC 0.44 min, and SBSC are 0.22 min faster. While692

these are indeed small differences, percentagewise these trans-693

late into percentage differences of 18.4%, 12.5%, and −6.3%,694

respectively, from the MC baseline.695

However, the structure of flight deck operations may affect696

how these variations in individual vehicle performance are felt697

in missions using many aircraft. Flight deck operations, as well698

as airport operations, are such that aircraft depart an initial park-699

ing area and are sent to queue at a specific launch site. In terms700

of system performance, as long as another aircraft arrives at the701

site prior to the launch of the previous aircraft, the flight deck (or702

airport) is working effectively. In order for the differences in the703

individual control architectures to be observed at the mission704

level, the delays and latencies that affect GC and VBSC per-705

formance must disrupt taxi operations upstream of the catapult706

sufficiently to break the chain of queuing that occurs.707

Fig. 4. Results for Launch event Duration (LD) for each control architecture
for missions using 22 aircraft under the original launch preparation time model.
Whiskers indicate ±1 standard error.

To test whether or not this occurs, the four control architec- 708

tures were tested in missions using 22 aircraft. In these missions, 709

all 22 aircraft begin parked at the edges of the flight deck. The 710

Deck Handler agent then dynamically assigns aircraft in real 711

time based on current aircraft priority and whether nearby cat- 712

apults are open and accessible to the aircraft. Each mission 713

utilized the same initial conditions (vehicle parking locations 714

and priorities) and used a completely homogeneous vehicle set 715

(all MC, or all Gesture Control, etc.). Thirty replications of each 716

mission were performed and the total time to complete the mis- 717

sion (from initialization to completion of the last launch) was 718

logged for each. Fig. 4 provides a column chart of the average 719

time to complete missions for each control architecture, with 720

whiskers indicating ±1 standard error in each dataset. 721

The data in the figure suggests no real variations occur in 722

system performance, with an ANOVA test returning marginally 723

significant results (F (3, 116) = 2.57, p = 0.058). This suggests 724

that the effects of GC and VBSC system delays are not suffi- 725

ciently disruptive to cause differences at the mission level, nor 726

are the benefits of the SBSC system, which does not rely on 727

the crew “zone coverage” routing, sufficient to improve perfor- 728

mance at a highly significant level. 729

One interpretation of these results is that an error exists either 730

within the aircraft models, the routing of aircraft to catapults, or 731

the processing of tasks at the catapults. However, the individual 732

models of aircraft (see Fig. 3) showed that differences in perfor- 733

mance do exist on an individual vehicle level; some mechanism 734

at the mission level is preventing these differences in individ- 735

ual performance from having an aggregate effect. One possible 736

explanation regards how aircraft queue at launch catapults, as 737

described in Section III-A: each catapult can allow one aircraft 738

onto the catapult and another to queue behind. At a catapult pair, 739

only one aircraft is actively preparing for launch at any given 740

time. Once this aircraft launches, the aircraft parked behind it 741

moves forward onto the catapult and the aircraft sitting on the 742

paired catapult begins preparing for launch. A new aircraft is 743

then taxied to the empty place in the catapult queue. 744

The actions of the Deck Handler create this queueing pattern 745

immediately and keep it in existence throughout the mission. 746
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Fig. 5. Column chart of breakdown of tasks in a 22 aircraft mission using
manual control (MC) or gesture control (GC).

With this queueing pattern in place, new aircraft arrive at747

catapults only to wait a period of time in the queue. If all control748

architectures are efficient enough in taxi operations to supply749

aircraft to catapults before the queues empty, then differences in750

launch event durations across control architectures at the mis-751

sion level will not be observed. Emptying a queue means that752

a catapult pair would have to process all three prior aircraft in753

the time it takes the new (fourth) aircraft to reach the queue.754

Additional output data from the MASCS simulation suggests755

that this does not occur and the queues remain in place through-756

out the mission (see Fig. 5). In a 22 aircraft mission using only757

MC aircraft, the average time for an aircraft to taxi to a catapult758

is just under 4 min. At an average launch time of 2 min, the759

queue would be cleared in 6 min, greater than the average taxi760

time. This implies that aircraft should be encountering queues761

at catapults, and data demonstrates that they are, at an average762

wait time of 3.32 min. The figure also includes the same data763

for Gesture Control, the worst performer in the single aircraft764

testing described earlier, which provides similar results for taxi765

times, launch times, and wait times.766

These data suggest that the manner in which aircraft are767

queued at catapults, combined with the current launch prepara-768

tion process, serves to bottleneck operations. Reducing the time769

required to complete the launch preparation task should provide770

conditions in which queues are eliminated, allowing differences771

to appear between control architectures at the mission level.772

The next section examines how decreasing the mean and vari-773

ance of the launch preparation task affects the performance of774

the different UAV control architectures.775

A. Effects of Launch Preparation Time776

The launch preparation task is a highly manual process exe-777

cuted by several members of the deck crew, a key component778

of which is the physical attachment of the aircraft nosegear to779

the catapult. The pilot must first correctly align the aircraft to780

the catapult before a crew member connects a piece of the cat-781

apult mechanism to the aircraft nosegear; after this occurs, the782

catapult pulls the aircraft forward to test the connection. Other783

tasks performed by other crew involve information processing,784

Fig. 6. Results for launch event duration (LD) for each control architecture for
missions using 22 aircraft under the automated launch preparation time model.
Whiskers indicate ±1 standard error.

setting the strength of the catapult based on the current weight 785

of the aircraft. Since all vehicles connect to the same catapult 786

mechanism and perform the same checks, the time to complete 787

this task is defined independently of the types of aircraft be- 788

ing connected. Additionally, because these tasks occur largely 789

in parallel, the entire process was modeled as a single normal 790

distribution with MASCS. Decreasing the mean value of this 791

process could potentially be accomplished through better train- 792

ing of the crew, while decreasing the variance might be done by 793

automating certain aspects of the task and removing the more 794

variable human components of the task. 795

A new series of tests were conducted using a “reduced” launch 796

preparation time with significantly reduced mean and variance. 797

In this reduced model, the mean was reduced by half and the 798

variance by three-quarters (to N (54.82, 28.92)). All four con- 799

trol architectures were tested under this launch preparation time 800

model using 22 aircraft. Thirty replications were again per- 801

formed for each case, and the results of these tests appear in 802

Fig. 6 with whiskers denoting ±1 standard error. 803

At these settings (μ = 54.82 s, σ = 28.9 s), an ANOVA 804

reveals that significant differences do exist within the data 805

(F (3, 116) = 18.63, p < 0.0001). A Tukey test reveals signifi- 806

cant differences between two pairs of control architectures: GC 807

(μ = 15.55) and VBSC (μ = 15.34) are both significantly dif- 808

ferent from MC (μ = 14.17) and SBSC (μ = 13.82). However, 809

no significant differences exist within each pair (e.g., GC and 810

VBSC). In terms of practical effects, the difference between the 811

averages of the fastest (SBSC) and slowest (GC) control archi- 812

tectures is 1.73 min, equivalent to 12.2% of the MC baseline. 813

That variations in control architecture performance do arise 814

with this automated launch preparation time model suggests that 815

the characteristics of the launch preparation time do have signifi- 816

cant effects on operations. The original launch preparation time, 817

with its high mean and variance, serves to bottleneck flight deck 818

operations; regardless of what is occurring, aircraft must always 819

queue behind other aircraft at the catapults. While this makes 820

the system robust to variations in unmanned vehicle behavior 821

(the delays that occur in GC and VBSC systems), it also means 822

that beneficial effects of unmanned vehicle introduction are also 823
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obscured. Improving operations on the flight deck would first824

require improving the performance of this vehicle-independent825

processing task, rather than improving the performance of indi-826

vidual vehicles.827

These results are also important for other similar domains,828

such as future airport operations. Given the first set of results829

under the original launch preparation model, the introduction of830

unmanned vehicle systems provided no benefit whatsoever to831

system operations due to the settings of the vehicle-independent832

launch preparation task. Given this data, a stakeholder would833

likely decide that UAV integration provides no tangible benefits834

to operations. They might also decide that because there are no835

differences, all types of unmanned vehicles provide the same836

level of performance in the system; the choice might then be837

made based on other factors. If this occurs, and the system moves838

to a faster tempo of operation, this decision might have severe839

consequences. In aircraft carrier operations, tempo increases840

during wartime combat operations; in airports, increasing the841

tempo could help relieve the congestion common at many U.S.842

airports. At this increased tempo setting, if stakeholders have843

already locked in to using a GC or VBSC system based on the844

previous data, operations will not perform to the level that was845

originally expected.846

The use of simulations like MASCS, as presented here, can847

help to clarify what differences can be expected from these848

systems in the real world and how their performance might849

be influenced by other process-level tasks independent of the850

UAV system control architecture itself. They can also help to851

explore under what conditions performance of these systems852

could be improved. While the results shown above demonstrated853

that the GC architecture performed poorly under the “reduced”854

launch preparation time model, the GC system also had the855

most changes from the MC baseline, varying on five of the six856

design parameters listed in Section III-C. Improvements along857

some combination of these parameters should be sufficient to858

provide GC performance equivalent to that of the baseline MC859

architecture. The next section demonstrates how simulations like860

MASCS can be used to examine the effects of changing vehicle861

performance parameters for the control architecture models in862

an example design space exploration.863

B. Design Space Exploration864

In future systems, stakeholders may seek to understand what865

changes to unmanned system control architectures are required866

to improve the performance under certain system conditions.867

This section examines how this might occur for the case of the868

GC architecture, which previous results showed as having the869

worst performance of the modeled architectures. The most im-870

portant changes in the Gesture Control architecture involve the871

increased failure rates of these vehicles in recognizing Aircraft872

Directors and their commands and the processing lag in recog-873

nizing those commands. The failures also carry with them time874

penalties that delay vehicle activity on the flight deck and that,875

as demonstrated, can sometimes be detrimental to flight deck876

performance. Improving the accuracy of these systems and re-877

ducing their processing times should improve the performance878

Fig. 7. Results for launch event duration (LD) for variations of 22 aircraft Ges-
tural Control (GC) model using the “reduced” (mean-50%, standard deviation-
50%) launch preparation time distribution. Whiskers indicate ±1 standard error.

of the GC system, but it is not known which of these carries 879

more weight in terms of improving mission performance. 880

Three new GC models are tested in this section over a va- 881

riety of mission conditions. First, a “Low Failure” case is cre- 882

ated in which the failure rate is reduced from 11.16% to 1%, 883

modeling a “best-case scenario” of system accuracy. Second, a 884

“Low Latency” is created in which commands are processed at 885

a maximum of 0.5 s. A third model combines the two cases, 886

generating a Low Latency + Low Failure condition that should 887

show improvement in performance. A first series of tests ad- 888

dressed the effects of these models in missions involving 22 889

aircraft under the original launch preparation model (N (109.65, 890

57.802)), but no significant differences were observed (ANOVA, 891

F (4, 145) = 0.51, p = 0.73). This is to be expected, given the 892

effectiveness of the original launch preparation time distribution 893

in obscuring variations between control architectures. 894

A second round of testing then proceeded to the “reduced” 895

launch preparation model (N (54.82, 28.92)), reducing both the 896

mean and standard deviation by 50%. Thirty replications of the 897

same 22 aircraft mission used previously were conducted for 898

each of the three new GC models (Low Failure, Low Latency, 899

Low Latency + Low Failure). Given the results of the previous 900

section, the variations in performance were expected to appear 901

at this faster launch preparation time model. The results of these 902

tests appear in Fig. 7 and include results for the baseline GC and 903

MC models for comparison. 904

The figure shows that the data exhibits a noticeable trend 905

from the baseline GC model to Low Latency, then Low Failure, 906

then Low Latency + Failure, then the baseline MC model. An 907

ANOVA shows that significant differences do exist between the 908

five test cases (F (4, 145) = 8.12, p = 0.0001). A Tukey post 909

hoc test shows that, most importantly, the GC Low Latency + 910

Low Failure and MC cases are not significantly different from 911

one another (p = 0.60). The MC data is significantly different 912

from the GC Baseline (p < 0.0001), Low Failure (p = 0.017), 913

and Low Latency (p = 0.034) cases. The Low Latency + Low 914

Failure case is also significantly different from the GC baseline 915

model (p = 0.0012), but is not different from the Low Failure 916

(p = 0.17) and Low Latency (p = 0.10) cases. This is fairly 917
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interesting and highlights the significance of the earlier issues918

with the baseline GC models: the GC architecture requires sub-919

stantial improvements to both the gesture recognition accuracy920

and processing speeds to achieve performance equivalent to MC921

operations. Improvements to either of these elements individ-922

ually were not strong enough to generate significant improve-923

ments in GC performance.924

V. CONCLUSION925

This paper has described the use of an agent-based simulation926

model of aircraft carrier flight deck operations that allowed for a927

systems-level analysis of the key features of unmanned vehicle928

behavior that influence aircraft carrier flight deck performance.929

Testing demonstrated that the launch preparation process, whose930

execution times are independent of any specific unmanned ve-931

hicle control architecture, heavily influenced system behavior932

and effectively obscured differences between control architec-933

tures. Differences in control architecture performance were only934

observed under a task model with significantly reduced mean935

and variance. However, this launch preparation process is not936

slated for improvement in the near future. Ultimately, these re-937

sults suggest that failure to reexamine the structure of flight938

deck operations and the system as whole will ultimately limit939

the effectiveness of introducing autonomy into aircraft on the940

flight deck.941

Additional testing examined how, under such a reduced942

launch preparation time, the simulation could be used to inves-943

tigate the effects of modifying control architecture parameters.944

These results showed that Gesture Control systems required945

improvements to both accuracy rates and processing times in946

order to achieve performance equivalent to manual control op-947

erations in a 22 aircraft mission. Overall, these results suggest948

that the structure and definition of parameters within the broader949

system (the flight deck and tasks defined independently of the950

control architectures) has a significant impact on the behavior of951

the control architectures modeled in this paper. For stakeholders952

making decisions regarding which types of control architectures953

to implement in future operations, for environments with similar954

structure to the carrier flight deck, the definition of tasks like the955

launch preparation time (the final task performed by vehicles956

before exiting the system) greatly affects control architecture957

performance.958

The focus of MASCS at this time has been a general exami-959

nation of how different unmanned vehicle control architectures960

affect operations on the aircraft carrier flight deck, using mod-961

els of future UAV control architectures that have reached some962

level of maturity in operations. A significant limitation of this963

modeling and this research has been the exclusion of rare and964

safety-critical events from the system. These are an important965

aspect of operations in any complex system, and models of rare966

events, failures, and other issues could be included in the mod-967

eling of the physical environment (weather conditions, damage968

to the ship and flight deck), the vehicle models (mechanical969

or electrical failures, etc.) or in the modeling of the human970

actors (poor decision making, random accidents, etc.). These971

are all important areas of future work that can be addressed in972

future research, but until formally validated, MASCS cannot be 973

considered a true predictor of real-world system performance. 974

Ultimately, as unmanned systems move from operating in 975

isolated environments to more complex human-centered ones, 976

understanding the drivers of performance for both unmanned 977

vehicles and the systems in which they operate is key. This 978

research has demonstrated how this can be achieved through the 979

use of agent-based modeling of unmanned vehicle systems and 980

provided results that suggest that, for future aircraft carrier flight 981

deck and airport operations, improving aspects of the system 982

itself are as important, if not more so, than UAV improving 983

the performance of the UAV systems being introduced. Future 984

work will address how these control architectures interact with 985

changes to the operational structure, examining how changes 986

to the nature of planning and routing of aircraft tasks in the 987

flight deck environment interact with other elements to drive 988

variations not only in mission durations, but in terms of safety 989

and efficiency as well. 990
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