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ABSTRACT 1 
Self-driving cars have the potential to drastically improve the efficiency and safety of personal cars. However, 2 
despite recent significant improvements in the field, fully autonomous car technology will not likely be ready in the 3 
near future. A derivative architecture, instead of full autonomy, is one where automated technology provides driver 4 
assistance, and thus incorporates a human who is expected to intervene in the case of a problem or an emergency. 5 
Humans, however, have difficulty sustaining vigilance for long periods of time, which is of concern if a human 6 
driver is expected to monitor automation for extended periods of time during long distance drives. We investigated a 7 
method to detect this lapse in sustained attention, otherwise known as the vigilance decrement, in long-distance 8 
driving by analyzing oxygenated hemoglobin concentrations (HbO) collected by functional near infrared 9 
spectroscopy (fNIRS). A total of 27 subjects in a four hour simulated driving scenario reached an HbO plateau, and 10 
thus potentially the vigilance decrement point, in 20.55 minutes on average. Driver performance, on average, was 11 
poorer in the phase after the vigilance decrement compared to the performance before the decrement point, as 12 
measured by maximum lane deviation. Such an approach could eventually enable self-driving cars to detect the 13 
attentional state of human drivers, which is critical if the car needs to determine whether the human can intervene in 14 
a timely fashion.   15 

 16 

 17 

 18 
Keywords: self-driving cars, fNIRS, vigilance decrement, highway driving 19 

  20 



Tucker, Aubert, Sampaio, Clamann, Cummings  3 

 

INTRODUCTION 1 
Self-driving cars have the potential to drastically improve personal transportation in terms of both safety and 2 
efficiency (1). However, there are no self-driving cars that have achieved the National Highway Traffic Safety 3 
Administration’s “Level 4” certification (2). Level 4 automation is defined as full self-driving automation, where the 4 
driver is not expected to be available to control the car at any point during the trip (3). There are still a number of 5 
technical obstacles that have to be addressed before these cars can obtain this classification, including inclement 6 
weather, construction zone traversing, large-scale mapping of U.S. roadways, and vulnerabilities associated with the 7 
GPS and other technology in the car (4, 5).  8 

Due to the number of technological and policy related hindrances associated with self-driving cars, it is 9 
within reason to postulate that a human will have to be involved in the self-driving paradigm for the immediate 10 
future (6, 7). The human would provide supervisory oversight and intervene when the self-driving car experienced 11 
an error or encountered a problem (7). Humans, however, are not perfect operators of motor vehicles, and would 12 
experience new challenges as supervisors of a highly automated system (7). The inability for humans to maintain 13 
sustained attention for prolonged periods of time, known as the vigilance decrement, has been shown in multiple 14 
supervisory domains to wane during the first 20-30 minutes (but up to 45 minutes) of a monitoring task (8, 9). A 15 
decrease in human attention could render the driver ineffective in the event of an emergency, which will be 16 
particularly problematic in long distance driving settings. Thus, for humans to be sufficient monitors of a self-17 
driving car, there needs to be a reliable way to monitor a human’s vigilance in real time.  18 

One potential avenue to monitor vigilance in real-time is through the utilization of frequency domain 19 
functional Near-Infrared Spectroscopy (fNIRS). This technology measures the quantity of oxygenated-hemoglobin 20 
(HbO) and deoxygenated- hemoglobin (HbR) utilizing light in the 650- 900 nanometer range (10, 11). These two 21 
states of hemoglobin can be measured because HbO and HbR absorb near-infrared light uniquely at different 22 
wavelengths. Absorption of the light is then converted into a micromolar concentration value for HbO and HbR by 23 
utilizing the modified Beer-Lambert law. This type of functional neuroimaging could be advantageous for two 24 
reasons. First, this method compared to other functional neuroimaging techniques is more robust against motion 25 
artifacts (11). Secondly, fNIRS is capable of collecting data very quickly and providing information about the 26 
subject with high temporal resolution (11).  27 

There have been a few experiments that attempt to explain vigilance utilizing fNIRS (12, 13). Warm et al. 28 
were able to detect a decline in vigilance based on task performance results, but they were unable to detect blood 29 
oxygenation changes utilizing fNIRS that matched the decline in task performance (12). Bogler et al. demonstrated 30 
that variations in reaction times for task performance were correlated with HbO changes in the frontal and parietal 31 
regions of the brain (13). However, the method has not been demonstrated in a continuous vigilance setting, where 32 
there are no intermittent tasks to assess cognitive performance (13). Below, we present a method that attempts to 33 
estimate the time at which the vigilance decrement occurs, through the use of functional near- infrared spectroscopy, 34 
based on the concentration of HbO or HbR in the pre-frontal cortex. Moreover, we attempt to link these physiologic 35 
attention measures to performance. 36 
 37 
Materials and Methods  38 
Twenty-seven human subjects participated in this experiment, 13 male and 14 female. The average age is 25.3 years 39 
old, with a standard deviation of 5.8 years. The average boredom proneness scale (bps) score for all subjects is 85.3, 40 
with a standard deviation of 16.4. The range of typical bps scores is 81-117 for the general population, with an 41 
average bps score of 99 (14). The subjects volunteered for the study and were compensated one hundred dollars for 42 
four hours of testing. Solicitation of the experiment consisted of flyers and online announcements. 43 

The experiment involved each subject completing a long distance driving simulation in a STISIM™ four-44 
lane highway environment that lasted approximately four hours. The physical environment of the simulation 45 
included an automobile bucket chair, acceleration and brake pedals, a steering wheel, an LCD monitor projecting the 46 
simulation, and an fNIRS device secured to the subject’s forehead. The subjects operated the car via a 48-inch 47 
display with the steering wheel and pedals. Each side of the four-lane highway was 18 feet wide, with occasional 48 
traffic passing by in the opposite lane (Figure 1). 49 

Subjects were instructed to behave exactly as they would if driving on the road. Therefore, mobile phone 50 
usage, reading, eating, etc. were permitted. Time spent using a mobile phone was observed and recorded during the 51 
experiment. Drivers and their simulation environments were recorded during the experiment to allow more precise 52 
analysis of behavior while driving the car. Metrics collected included car velocity, car acceleration, lateral lane 53 
position, number of times the white line at the edge of the road (right or left) was crossed, number of times the 54 
double yellow line was crossed, and number of times the car crashed.  55 
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The functional near-infrared spectroscopy instrument utilized was an ISS Imagent with a modulation 1 
frequency of 110 MHz. The fiber-coupled laser diodes operated at 690 nm and 830 nm. The two probes were placed 2 
on the subject’s forehead (pre-frontal cortex), secured with a black neoprene bandage, and then each  3 

 4 

 5 
 6 
FIGURE 1  Photograph of the Experiment in Progress 7 
 8 
subject was fitted with a black polyester swimming cap to ensure the sensors were securely fixed and insulated 9 
against incoming light. Each probe contained 4 linearly spaced light sources and a single detector.   10 

The ISS Imagent instrument collected and stored data utilizing a software package called “BOXY.” 11 
Before each experiment, BOXY and calibration blocks were utilized to ensure the instrument was calibrated before 12 
placed on the subject’s forehead. BOXY was utilized for both a low-pass filter and the modified Beer-Lambert law 13 
data calculation. The low-pass filter eliminated high-frequency instrument noise, fast cardiac oscillations, and 14 
artifacts caused by respiration (15).  15 

All subject data was analyzed offline. A low-pass filter of .15 Hz was applied to the raw data after 16 
collection (16). After the low-pass filter, a discrete wavelet transform was applied to the data in order to reduce the 17 
number of motion artifacts in the data (16). The discrete wavelet transform was executed in MATLAB. The 18 
Modified Beer-Lambert law was applied to the data after filtering to produce HbO and HbR values.   19 

HbO concentration plateau points in the data were determined utilizing a method relying on the 20 
calculation of the percent change of two slopes, with each slope calculated from a finite window size. The slope of 21 
the line connecting the first and last points in the first 5-second window was calculated. A 5-second window was 22 
selected since fNIRS measures have an approximate 5-second delay (17). The percent change of the two slopes was 23 
calculated and when the change was less than 5%, the time point in the center of the 5-second windows was 24 
determined to be the plateau point. If the percent change of the two slopes was greater than a 5% change, the latter 25 
5-second window slope was compared to a newly calculated slope for the window immediately following the latter 26 
5-second window. The calculation continued until a change in slopes of less than five percent for this rolling 5-27 
second average was discovered in each subject’s data, which was labeled as a plateau.  28 

Various metrics were computed across two different time ranges, defined as pre-plateau and post-plateau 29 
for each subject (Tables 1 and 2). Each time range lasted the same amount of time, and was dependent on when the 30 
subject’s HbO reached a plateau point. Therefore, if the subject’s HbO plateau point was calculated at 10 minutes, 31 
pre-plateau period was from 2-10 minutes, and the post-plateau period was from 10-18 minutes. The first two 32 
minutes were excluded to account for the subject acclimating to the simulation environment. Percent change 33 
calculations found in Table 2 were calculated based on the percent change from an average baseline period in the 34 
beginning of the data from 2:00-2:05 to an average of five seconds of HbO data around the maximum lane 35 
deviations in a given phase.    36 

 37 
Results 38 
Various metrics were collected from both the STISIM driving simulation and fNIRS.  Table 2 shows the descriptive 39 
statistics for the dependent variables of average and maximum lane deviation before and after the HbO plateau time 40 
point, the road excursions pre and post plateau, and the percent changes in HbO and HbR pre and post plateau. HbR 41 
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concentration values did not offer the same magnitude of signal fluctuation that HbO produced, which is typical of 1 
fNIRS systems. Data for mobile phone usage was calculated for each subject via the recording of each subject 2 
during the experiment. 3 
 Dependent t-tests were not significant for any of the before and after paired variables in Table 2, except 4 
for maximum lane deviation (p = 0.025, α = 0.05). These data indicate that the HbO plateau point, on average, is 5 
capable of highlighting degeneration in driving ability during this experiment with respect to maximum lane 6 
deviation.  7 

The data in Table 3 include the number of driver errors and mobile phone usage before and after the HbO 8 
plateau point. No before and after pairing dependent t test for individual behaviors was statistically significant. 9 
However, while drivers did not cross the centerline more while on the phone pre or post the HbO plateau point, even 10 
though not statistically significant, they were willing, on average, to tolerate more road edge excursions post HbO 11 
plateau. Time to HbO plateau from Table 1 was significantly correlated with road edge line crossings pre-plateau (ρ 12 
=.389, p = .045) and also marginally with the amount of time spent on the phone pre-plateau (ρ = .374 p = .054). 13 
 14 
TABLE 1  Individual Subject’s Observed HbO Time to Plateau and Summary Statistics  15 

Subject 

Number 

HbO Plateau Times 

(minutes)  

Subject 

Number 

HbO Plateau Times 

(minutes) 

1 15.25 17 6.42 
2 28.25 18 38.08 
3 11.42 19 32.42 
4 11.25 20 31.08 
5 20.08 21 5.92 
6 21.25 22 10.42 
7 7.25 23 10.75 
8 46.08 24 6.75 
9 24.58 25 29.75 
10 24.75 26 27.08 
11 40.58 27 28.25 
12 25.08  Mean: 20.55 
13 14.58  Median: 20.08 
14 19.42  Stan. Dev: 11.21 
15 9.92  Minimum: 5.20 
16 8.25  Maximum: 46.08  

 16 
 17 
 18 
 19 
 20 
 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 
 30 
 31 
 32 
 33 
 34 
 35 
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 1 
 2 
TABLE 2  Dependent Variables and Descriptive Statistics   3 

 4 

 5 
 6 
TABLE  3  Aggregate Driver Behavioral Data Before and After The HbO Plateau Point 7 

Incident Pre-Plateau Post-Plateau 

Difference 

Between Post- and 

Pre-Plateau 

Number of times center line was crossed 21 18 -3 

Number of times center line was crossed 

while using mobile phone 
9 10 1 

Number of times the road edge line was 

crossed 
64 86 22 

Number of times road edge line was 

crossed while using a mobile phone 
23 31 9 

Average percentage of time spent on 

mobile phone while driving 
4.5% 9.8% 5.3% 

 8 
 9 
 10 
   11 

Metric  Minimum 

Value  

Maximum 

Value  

Mean 

Value 

Median 

Value 

Standard 

Deviation 

t- Statistic 

 

Average Lane 

Deviation: Pre-

Plateau (Feet) 

0.54 1.95 1.09 1.07 0.35  

 

 

0.125 Average Lane 

Deviation: 

Post-Plateau 

(Feet) 

0.69 1.94 1.18 1.18 0.31 

Maximum 

Lane 

Deviation: Pre-

Plateau (Feet) 

2.04 13.13 6.23 5.10 3.24  

 

 

 

0.025 Maximum 

Lane 

Deviation: 

Post-Plateau 

(Feet) 

3.31 19.01 7.53 5.06 4.29 

Percent 

Change HbO: 

Pre-Plateau 

-1.65 1.25 0.046 0.00 0.65  

 

0.156 

Percent 

Change HbO: 

Post-Plateau 

-3.07 1.43 

 

 

-0.236 

 

 

-0.130 

 

1.032 

Percent 

Change [HbR]: 

Pre-Plateau 

-1.58 1.84 

 

0.09 0.00 0.81  

 

 

0.807 Percent 

Change [HbR]: 

Post-Plateau 

-2.00 2.36 0.05 0.14 0.89 
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Discussion  The average HbO plateau time of 20.55 minutes falls within the range of time values (20-35 minutes) 1 
accepted as the window where the vigilance decrement traditionally occurs (8). However, the standard deviation of 2 
the data set, equal to 11.21 minutes, indicates that not every subject had a plateau point falling within the 20-30 3 
minute vigilance decrement window. The vigilance decrement has been reported to occur in the first fifteen minutes 4 
of cognitive activity, all of the way up to 45 minutes (9). In this data set, there is only one HbO plateau point, 46.08 5 
minutes, which is greater than 45 minutes. The large standard deviation of the saturation points suggests that the 6 
saturation points, and therefore possible vigilance decrements, vary from person to person by a noticeable margin. 7 
This could be due to the fact that vigilance decrement is not fixed for all people given the same task (12).  8 
 Simply discovering a plateau point or event in HbO data does not necessarily guarantee a difference in a 9 
human cognitive state. Theoretically, if a person experiences a vigilance decrement, then presumably there should 10 
be a performance metric indicating a change in task performance that would correlate with some measurable 11 
physiologic change. Past studies have attempted to correlate HbO events with the performance in a particular task 12 
(13, 14). Bogler et al. were able to correlate decreased reaction times with changes in HbO concentration and they 13 
correlate these observed neural events to decreases in vigilance (14). Similarly, our data indicates a decreased 14 
performance in long-distance driving after the calculated HbO plateau point, but only for the maximum lane 15 
deviation distance. Therefore, HbO plateau points during the first 45 minutes of long-distance driving may provide a 16 
threshold for marking when a driver’s performance could begin to decrease due to a loss of sustained attention. 17 
 Regardless of whether the HbO plateau is truly indicative of the vigilance decrement, there was a 18 
detectable difference in performance before and after our calculated HbO plateau for the maximum lane deviation 19 
variable with an average deviation of 6.231 feet before but 7.531 feet after the HbO plateau. While there were not 20 
statistically significant differences for the other performance variables, the trends generally indicated decreases in 21 
performance post the HbO plateau.  22 

The significant increase in maximum lane deviation distances and the number of road excursions after the 23 
HbO plateau, while not statistically significant, may indicate that after the HbO plateau point, drivers may be more 24 
susceptible to distractions that consume attention, and therefore result in poorer driving performance. Also, while 25 
not statistically significant, there is an almost two-fold increase in the percentage of time spent using a mobile phone 26 
in the post-plateau phase versus the pre-plateau phase, demonstrating an increased propensity for distraction after 27 
the HbO plateau point. In addition, those people that spent more time on the phone look longer to reach an HbO 28 
plateau, possibly because their mental activity was higher than those not on the phone. However, the penalty was 29 
that these drivers were more likely to have a road excursion.  30 
 Current analysis is underway to look not just at the performance immediately before and after the HbO 31 
plateau, but also the remaining three hours of driving which included a response to a surprise event (a moose 32 
crossing the roadway). It is not clear if and how the time to vigilance, or possibly the percent changes in either 33 
oxygenated or deoxygenated blood, has an impact on performance and whether there is any kind of predictive 34 
relationship that could assist a driverless car in assessing the attention state of the driver.  35 
 More study is needed to both replicate these findings in driving settings as well as other domains that 36 
require sustained attention. In the only other known study that has looked at relating the vigilance decrement to a 37 
blood oxygenation/deoxygenation plateau, Boyer et al. saw similar trends. In this study that looked at operators 38 
monitoring a military display for signs of incoming missiles, the HbO plateau for 26 subjects occurred at 32.6 39 
minutes, with a standard deviation of 17.1 (19).  40 
 The monitoring task in the missile study was uniquely different from the driving task in that there were no 41 
continuous physical interactions and subjects were not allowed to use cell phones, yet as a group, they took much 42 
longer to reach their HbO plateau. Thus, interesting future questions are whether the automaticity of the driving task 43 
(and conversely, the complexity of the missile task) led to shorter HbO plateau times, and whether there are clear 44 
performance benefits in delaying the onset of an HbO plateau. 45 
 In addition, more work is needed to examine the impact of individual differences, including how and why 46 
time to the HbO plateau differs. One confounding issue in this study was that the average BPS value for this 47 
experiment was 85.3, and the average BPS range for the general population is 81-117, with higher scores indicating 48 
a propensity towards boredom (15). So the subjects in this study were in general low on the boredom scale, which 49 
may have influenced the results. Future studies should potentially select those people who are on the higher end of 50 
the scale to see how results compare. 51 
 There are also difficulties in conducting fNIRS studies that cause both experimental issues as well as 52 
issues for future potential operational use which include compression headaches as well as difficulties fitting the 53 
system to smaller foreheads. In addition, when percent change between adjacent slopes was calculated, the 5% 54 
change threshold was chosen to represent a relative plateau. Each five-second sub-window, which together creates 55 
the ten-second window analyzed, was chosen due to the hemodynamic signal latency following stimulus onset. 56 
There is a similarity between measurement capabilities for fNIRS and fMRI. However, fNIRS is not capable of 57 
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obtaining the same type of spatial resolution found with fMRI. Therefore, this restricts the ability for one to utilize 1 
fNIRS and report that signals are related to very specific areas of the brain. Thus, the fNIRS results are more 2 
generalized to define the origin of the signal as the pre-frontal cortex.  3 
 4 
Conclusion  The purpose of this study was to determine if it is possible to detect the physiological phenomenon known 5 
as the vigilance decrement in a long-distance driving simulator, utilizing HbO concentrations obtained from a 6 
functional near infrared spectrometer placed on the driver’s forehead. Utilizing a novel algorithm that detects if 7 
adjacent slopes are less than 5% different in a 10 second window, we were able to calculate a single plateau point 8 
corresponding to an HbO plateau time for 27 subjects. Using the calculated plateau point, maximum lane deviation 9 
after the plateau point is significantly greater than the maximum lane deviation before the plateau point, indicating a 10 
clear performance difference. This plateau point also showed an increase in the driver’s average lane deviation, mobile 11 
phone usage, and road edge line crossings, although not statistically significant. Therefore, it is possible that the 12 
calculated physiologic plateau point aligns with the psychological construct of a vigilance decrement point. Regardless 13 
of whether this is a tangible expression of such a phenomenon, this physiologic measure could be an important metric 14 
for self-driving cars because it would potentially allow computers to determine if a human is cognitively capable of 15 
intervening in a scenario where the self-driving car requires human intervention. 16 

 17 
Acknowledgments  This research was graciously funded by Google X. 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

 34 

 35 

 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

 44 

 45 

 46 

 47 

 48 

 49 

 50 



Tucker, Aubert, Sampaio, Clamann, Cummings  9 

 

REFERENCES 1 
1.  Pyper, J., and ClimateWire. Self-Driving Cars Could Cut Greenhouse Gas Pollution. Scientific American, 2 
 September 15, 2014. http://www.scientificamerican.com/article/self-driving-cars-could-cut-greenhouse-3 
 gas-pollution/. Accessed July 20, 2015.  4 
2.  National Highway Traffic Safety Administration. Preliminary Statement of Policy Concerning Automated 5 
 Vehicles. Accessed July 21, 2015.  6 
3.  National Highway Traffic Safety Administration. U.S. Department of Transportation Releases Policy on 7 
 Automated Vehicle Development. Accessed July 21, 2015. 8 
4.  Ensor, J. The 7 kinks that need to be worked out before driverless cars go global. The Telegraph, February 9 
 2, 2015.  10 
5.  Urmson, C. The self-driving car logs more miles on new wheels. Google Official Blog, August 07, 2012. 11 
 Accessed July 22, 2015.  12 
6.  Wall, M. What’s putting the brakes on driverless cars? BBC News, July 28, 2015. 13 
 http://www.bbc.com/new/business-33676388. Accessed July 28, 2015.  14 
7.  Cummings, M.L., and J.C. Ryan. Who is in Charge? Promises and Pitfalls of Driverless Cars. TR News, 15 
 (May-June 2014) 292, p. 25-30.  16 
8.  See, J., Howe, S., Warm, J., and W. Dember. Meta-analysis of the sensitivity decrement in vigilance. 17 
 Psychological Bulletin, Vol. 117, No. 2, 1995, pp. 230-249.  18 
9.  Parasuraman, R. Memory Load and Event Rate Control Sensitivity Decrements in Sustained Attention. 19 
 Science, Vol. 205, No. 4409, 1979, pp. 924-927.  20 
10.  Villringer, A., Planck, J., Hock, C., Schleinkofer, L., and U. Dirnagl. Near infrared spectroscopy (NIRS): 21 
 A new tool to study hemodynamic changes during activation of brain function in human adults. 22 
 Neuroscience Letters, Vol. 154, No. 1-2, 1993, pp. 101-104.  23 
11.  Irani, F., Platek, S.M., Bunce, S., Ruocco, A.C., and D. Chute. Functional near infrared spectroscopy 24 
 (fNIRS): an emerging neuroimaging technology with important applications for the study of brain 25 
 disorders.  Clinical Neuropsychology, Vol. 21, No. 1, 2007, pp. 9-37.  26 
12.  Noyes, J., and M. Bransby. People in Control: Huan Factors in Control Room Design. The Institution of 27 
 Electrical Engineers, United Kingdom, 2001.  28 
13.  Warm, J.S., Matthews, G., and R. Parasuraman. Cerebral Hemodynamics and Vigilance Performance29 
 Military Psychology, Vol. 21, 2009, pp. S75-100.  30 
14.  Bogler, C., Mehnert, J., Steinbrink, J., and J. Haynes. Decoding Vigilance with NIRS. PLOS ONE, Vol. 9, 31 
 No. 7, 2014. 32 
15.  Toohey, P. Boredom: A Lively History. Yale University Press, New Haven, C.T., 2012. 33 
16. Liang, H., Bronzino, J.D., and D.R. Peterson. Biosignal Processing: Principles and Practices. CRC Press, 34 
 Boca Raton, F.L., 2013.  35 
17.  Dumont, G.A., and M. Behnam. Wavelet based motion artifact removal for Functional Near Infrared 36 
  Spectroscopy. Physiological measurement, Vol. 33, No. 2, 2012, pp. 259-270.  37 
18.  Fairclough, S.H., and K. Gilleade. Advances in Physiological Computing. Springer-Verlag, London, 2014.  38 
19.  Boyer M., Cummings, M.L., Spence, L.B., and E. Solovey. Investigating Mental Workload Changes in a 39 
 Long Duration Supervisory Control Task. Interacting with Computers, Vol. 27, No. 5, pp. 512-520.  40 
 41 
 42 


