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The proposed transition to single-pilot operations (SPO) in commercial and military aircraft has motivated 

the development of advanced autonomy systems. However, a detailed analysis of the impact of advanced 

autonomy on pilot workload through various phases of flight and contingency scenarios has not been 

conducted. To this end, this paper presents the development of the Pilot-Autonomy Workload Simulation 

(PAWS), a discrete event simulation model that allows the investigation of pilot workload under a variety 

of advanced autonomy capabilities and scenarios. Initial utilization results from PAWS of nominal and off-

nominal point-to-point missions demonstrate that the workload for a single pilot assisted by advanced 

autonomy varies considerably over different phases of flight and various contingencies. These results 

suggest that advanced autonomy to offset pilot workload is not needed for low-workload phases, but could 

be critical during periods of high workload. 

 

INTRODUCTION 
 

     The economic advantages of single-pilot operations (SPO) 

and reduced-crew operations (RCO) and the projected pilot 

shortage through 2022 are motivating both government and 

commercial organizations to investigate technologies and 

approaches for realizing SPO (Comerford, et al., 2013; Croft, 

2015). Organizations involved in this effort include U.S. 

organizations such as NASA and the Defense Advanced 

Research Projects Agency (DARPA), international 

researchers, and even commercial entities (Wolter & Gore, 

2015; DARPA, 2014; Harris, 2007; McCartney, 2010). Some 

proposed SPO architectures incorporate an operator at a 

ground control station to offload some of the functions 

currently provided by a co-pilot e.g., (Wolter & Gore, 2015). 

Another proposed architecture includes the development of 

advanced in-cockpit autonomy to assist the remaining pilot 

(Schutte, et al., 2007).  

     Under either architecture, the development of advanced 

autonomy will be a key aspect of implementation. As a result, 

an important area of research is the determination of the roles 

of the pilot and the advanced autonomy (Wolter & Gore, 

2015). Such allocations could be either static or dynamic 

(Parasuraman, Mouloua, & Hilburn, 1999). In static 

allocations, tasks are assigned to a fixed entity across the 

entire flight regardless of circumstances. In dynamic 

allocations, tasks can be shifted between entities based on 

timing or contingency scenarios. In any SPO human-

autonomy architecture design, workload will be a key 

consideration in ensuring the appropriate tasks are assigned to 

the human pilot, which could be dynamic under different 

phases of flight. Simulation is a useful methodology for 

examining different potential allocation strategies for nascent 

systems, such as proposed SPO configurations (Laughery, 

Archer, & Corker, 2001). Additionally, such simulations can 

be used to identify phases of flight or circumstances under 

which functions of advanced autonomy may be critical for 

maintaining appropriate workload for the pilot. 

     To this end, this paper presents, for the first time, the 

development and initial results of the Pilot-Autonomy 

Workload Simulation (PAWS), which takes a utilization-based 

approach to estimating pilot workload under a variety of 

conditions. Such approaches have been used as a reasonable 

approximation for workload (Rouse, 1983; Cummings & 

Guerlain, 2007). To create this model, a generalized task-flow 

model of multi-crew flight operations was combined with 

information from subject matter experts (SMEs) to generate 

estimates for task completion time distributions for both 

nominal and off-nominal procedures.  

     PAWS utilizes a discrete event simulation (DES) 

representation of the task flow and distributions to create 

stochastic estimates of pilot workload over the course of a 

flight from takeoff to landing. Such DES approaches have 

been shown to be useful in estimating operator workload 

under a variety of environments, e.g., (Schmidt, 1978; Gao & 

Cummings, 2012; Jun, Jacobson, & Swisher, 1999; Xiling, 

Qishan, & Wei, 2002). PAWS allows for workload estimates 

to be generated based on varying capabilities of advanced 

automation such as primary flight control, communications 

functions, or checklist execution. Additionally, by inserting 

off-nominal or emergency procedures at varying points in a 

flight, an array of contingency scenarios can be simulated. The 

present paper discusses the creation of PAWS and preliminary 

data generated based on an initial set of nominal and off-

nominal point-to-point missions. 
 

 MODEL DEVELOPMENT 
 

     The task model used for PAWS was created based upon a 

generic task flow of multi-crew aircraft constructed from 

standard flight procedures (including commercial and military 

aircraft flight manuals), as well as input from SMEs. This 

input was gathered through guided, open-ended, face-to-face 

interviews with eleven experienced commercial passenger 

aircraft pilots (Cummings, Stimpson, & Clamann, 2016), as 

well as six military pilots. Once the task model was created 

and verified through discussion with the SMEs, statistical 

distributions for the time required for each task completion 

were implemented and validated against minimum, average, 

and maximum task times provided by the SMEs. Lognormal 

distributions were utilized for completion times, based upon 



established literature for representing human task-completion 

times (Sheridan, 2013). The determination of the lognormal 

parameters for each task completion time was based upon 

matching the mean to the SME-indicated average task time, 

and the 95
th

 percentile of the distribution to the SME-indicated 

maximum task time. 

     PAWS implements a DES approach to modeling pilot 

utilization, coded in Java. In a DES architecture, one or more 

agents (such as a pilot or advanced automation) act as servers 

for handling a queue of tasks, each with an associated 

completion time randomly drawn from the associated 

distributions. Tasks in PAWS focus on the achievement of 

subgoals, which generally include multiple-step procedures or 

actions and are serviced by each agent serially, with only one 

task serviced at one time by each agent. Detailed models of 

individual motions, such as Fitts’ Law (Fitts, 1954) 

computations, are not required for PAWS as they are 

subsumed within the task-completion time distributions. 

Examples of tasks include setting the landing gear, providing 

an approach briefing, or providing an altitude callout.  

    The simulation environment populates all the tasks for the 

flight, and then assigns them to the agents based upon a 

predetermined role allocation for each task, assuming 

prerequisite conditions are met. Prerequisite conditions for 

each task may include: 

 Phase preconditions, which require that the task be 

performed in the correct phase (e.g., call for gear up 

during the climb phase). 

 Task preconditions, which require that a certain task be 

completed in a sequence (e.g., flipping a switch before 

verifying that the switch is in the correct position). 

 Temporal preconditions, which require that a certain time 

is reached prior to initiating a task, and signal the random 

generation of task times from the associated distribution 

(e.g., communication with air traffic control (ATC)). 

     Phase preconditions for the point-to-point flight were based 

upon the division of a single flight into seven phases 

(representing takeoff to landing): before take-off check, take 

off, climb, cruise, descent/approach check, initial approach, 

and final approach. The simulation advances to the next phase 

after all tasks for the current phase have been completed, or a 

specified minimum phase time, whichever is longer. 

     The PAWS simulation takes inputs of a list of tasks (with 

associated completion distributions, preconditions, and task 

assignments), and the number of agents to complete the tasks. 

Note that an agent for this simulation could represent either a 

pilot or advanced automation. The task time distributions 

represent the amount of time that the agent must focus on the 

completion of the task. For example, for tasks that require 

simple actions such as checking a gauge, completion times 

will typically be very short.  

     The output of PAWS is the utilization of each agent by 

phase, where utilization is calculated as shown in Equation 1 

for each agent i, where the numerator represents the time agent 

i spent completing tasks for that phase. For this modeling 

effort, time spent monitoring the flight gauges was counted as 

utilization, but any time pilots spend scanning outside of the 

cockpit for traffic was not included, since this variable can 

change dramatically under various weather and lighting 

conditions. 

              
                              

                   
        (1) 

 

     Based upon this structure, PAWS can flexibly include tasks 

of a variety of types and task allocations, under many different 

agent architectures and role allocations. In its current 

instantiation, PAWS makes several assumptions about the 

completion of tasks: 

 Allocations of tasks are known a priori and are static, 

though these allocations may vary across phases. This 

means that currently there is no dynamic reallocation of 

tasks during the flight. 

 Tasks are treated as equal priority. Agents do not service 

certain tasks in the queue before others. For example, 

tasks such as communications with ATC are treated as 

equal importance to raising or lowering the landing gear. 

 Tasks cannot be dropped from agent queues, i.e., there are 

no balking or reneging queuing behaviors. Specifically, 

this means tasks are not dropped during periods of high 

workload or when the nominal phase duration is met. 

   PAWS takes a task-based approach to modeling workload, 

and focuses on the aggregate effort required to complete 

subgoals in the cockpit rather than model a specific individual 

physical motion or action. Other researchers have modeled 

individual actions as an approach to evaluate function 

allocation in the cockpit (Pritchett, Kim, & Feigh, 2014a; 

Pritchett, Kim, & Feigh, 2014b). However, such approaches, 

while important to assess the importance of very low-level 

actions, fail to take variability into account, either from a pilot 

or environment perspective. In contrast, PAWS directly 

represents the variability in work environment factors, 

including numbers and types of tasks, task arrival times, and 

human variability in performance of tasks. 
 

DATA COLLECTION 
 

     An initial data collection was conducted on the PAWS 

simulation to demonstrate its capabilities. The simulation was 

initialized with 225 tasks that represent the full set of generic 

tasks for a point-to-point mission from takeoff to landing. 

Figure 1 shows an example portion of the task flow. In this 

figure, the sequence of tasks for both of the standard roles in 

the current multi-crew cockpit environment (the pilot flying, 

or PF, and the pilot monitoring, or PM) can be seen vertically. 

Arrows can be seen coming to and from these tasks on the 

right-hand side of the boxes, and these demonstrate the 

interdependencies in tasks between the multiple crew 

members in the current cockpit environment. 

Table 1 shows a sample of tasks from this model used for 

the PAWS simulation along with their associated distributions, 

drawn from the before take-off check. Nominal minimum 

phase times for a 90-minute mission were assumed as shown 

in Table 2, and were validated during SME interviews. 

    Three scenarios were used to demonstrate the capabilities of 

PAWS in terms of investigating the impact of different role 

allocations between a pilot and advanced autonomy. The first 

scenario represents the case where no advanced autonomy has 

been implemented under normal flight operations, and the 



single pilot must handle all tasks. This scenario is much like 

what happened when a Delta pilot was locked out of the 

cockpit in 2015, requiring the co-pilot to fly the plane alone 

(Associated Press, 2015). The second scenario represents the 

same circumstances under off-nominal conditions where an 

additional emergency task arises, such as an engine fire. The 

third scenario demonstrates the ability of PAWS to simulate 

advanced autonomy that could possible handle certain 

functions of flight operations at the discretion of the pilot. 

Figure 1. Section of Task-Flow Model for PF and PM 

Roles 
 

Table 1. Sample Tasks from Generic Task Model 

Task Name Completion Time 

Distribution (seconds) 

Request before take-off check Lognormal(0.6931, 0.1) 

Cabin check (communicate w/ 

crew) 

Lognormal(2.9957, 0.5) 

Respond to cabin check Lognormal(0.6931, 0.1) 

Request flight controls check Lognormal(0.6931, 0.1) 

Verify flight controls Lognormal(2.0794, 0.1) 

Respond for verification Lognormal(0.6931, 0.1) 

Verify flight controls check 

completed 

Lognormal(2.0794, 0.1) 

 

Table 2. Phase Times for 90-Minute Nominal Mission 

Phase 

ID 

Phase # of 

Tasks 

Estimated 

Phase Time (s) 

1 Before take-off check 25 180 

2 Take-off procedure 30 240 

3 Climb 18 900 

4 Cruise 38 2,580 

5 Descent/approach 

check 

24 600 

6 Initial approach 3 600 

7 Final approach 49 300 

 Total 225 5,400 

      

 Scenario 1 – Nominal mission with no advanced 

automation. Single agent (human pilot). 

 Scenario 2 – Off-nominal mission with no advanced 

automation. Single agent (human pilot), with an 

additional emergent task introduced during the initial 

approach (i.e., investigating a potential electrical 

problem) with completion time in seconds distributed as 

shown in Equation 2. 

                                           (2) 

 Scenario 3 – Off-nominal mission with advanced 

autonomy. Two agents (one human pilot that supervises 

and monitors the cockpit and one autonomous agent that 

handles all primary flight tasks), with an additional 

emergent task introduced during the initial approach with 

completion time distributed as shown in Equation 2.  
 

RESULTS 
 

     Thirty runs of the simulation for each scenario were 

conducted to observe the impact of random variation of task 

completion times on pilot utilization. Figure 2 shows a box 

plot of the utilization results of the simulation runs for 

Scenario 1 across all flight phases. The difference between 

phases are statistically significant by ANOVA omnibus test 

(F(6,203) = 317.01, p <0.0001). All pairwise differences 

between phases were significant by Tukey’s comparison test 

except for Phase 1-2 (p <0.05). Included in Figure 1 is the 

notional upper limit of 70 percent and lower limit of 30 

percent beyond which decrements in performance may be 

observed (Cummings & Guerlain, 2007; Schmidt, 1978; 

Donmez, Nehme, & Cummings, 2010). 

     Figure 3 shows the results across the three scenarios with 

varying degrees of autonomy for the initial approach phase 

(Phase 6), which included an additional task representing an 

emergency event for Scenarios 2 and 3. The differences 

between the three scenarios are significant by ANOVA 

omnibus test (F(2,87) = 60.32, p <0.0001). Scenario 3 was 

significantly different than Scenarios 1 and 2 by Tukey’s 

comparison test (p <0.0001). These results demonstrate the 

ability of the PAWS model to explore the impact of different 

task allocation strategies on pilot utilization, in this case for a 

single phase of flight. It also demonstrates what functionalities 

must be able to be assigned to an autonomous system in order 

to achieve the workload relief for the pilot. 
 

DISCUSSION 
 

   These results raise several important considerations for SPO. 

As can be seen in Figure 2, there is significant variation both 

within and between phases of flight in the model. This 

variation is primarily a function of the distributions for 

completion times for each phase. For example, time spent 

flying the initial approach (Phase 6) has the largest variation 

due to the differences in typical approach patterns and ATC-

dictated modifications to the approach. 

Figure 2 also demonstrates that there are several phases of 

nominal point-to-point flight (before take-off check, initial 

approach, final approach) for which utilization for human 

pilots can exceed 70 percent. It is well established within the 

human factors literature that there are significant performance 



and safety decrements at high workload levels (Oron-Gilad, 

Szalma, Stafford, & Hancock, 2008; Cummings & Guerlain, 

2007). Thus, it is these areas that need to be targeted in terms 

of reducing pilot workload. 

 

 
Figure 2. Boxplot of Pilot Utilization for Nominal Point-

To-Point Mission (Scenario 1). Dashed lines indicate 

notional desired upper and lower limits of workload 

 
Figure 3. Comparison of Pilot Utilization for Initial 

Approach for 3 Scenarios 
 

The results in Figure 2 also indicate the potential for 

unacceptably low workload during some phases. It has 

previously been reported that pilots spend only a few minutes 

of each flight actually performing flight tasks in modern 

commercial airplanes (Cummings, Stimpson, & Clamann, 

2016), and low workload has also been reported to result in 

performance decrements (Cummings & Gao, 2016). The 

Climb phase is of particular note in Figure 2, with a consistent 

utilization less than 20 percent. This result indicates that while 

advanced autonomy may be required for certain portions of a 

flight, allocating advanced autonomy should depend upon the 

phase or other circumstances so as to avoid reducing the 

workload of an already underworked pilot even further. 

     Understanding that allocating primary flight control to 

advanced autonomy will be both phase- and environment-

dependent, Figures 2 and 3 demonstrate that the initial 

approach to land constitutes the highest workload and the 

highest variability in workload. This phase of flight would 

likely benefit the most from increased autonomy. During the 

nominal initial approach (Scenario 1), utilization is above the 

70 percent threshold, significantly increasing the chances for 

reduced pilot performance. When an additional emergency is 

introduced (Scenario 2), pilot utilization further increases, 

exacerbating the potential for overloading in terms of mental 

workload. As can be seen in Figure 3, the introduction of 

advanced automation to perform the primary flight tasks 

dramatically reduces the utilization of the human pilot to a 

more acceptable level (Scenario 3). This illustrates not only 

the importance of advanced autonomy in achieving safe SPO, 

particularly under contingency situations, but also the 

potential utility of the PAWS framework. 

     PAWS was designed to allow for the exploration of 

potential role allocations under dynamic flight conditions, so 

that engineers can better understand how increasing autonomy 

could affect pilot workload. In addition, since PAWS 

inherently incorporates elements of task analysis, such an 

approach also indicates to engineers specifically what 

capabilities an autonomous system would need to have in 

order to execute those tasks. By understanding which tasks 

have high variability and high associated workload (as well as 

low), engineers would have clear specifications for system 

capabilities (i.e., an autonomous system must be able to detect 

and handle an emergency such as an electrical problem), as 

well as the temporal constraints of such interactions. In 

addition, any added interactions with such autonomous 

systems would also have to be modeled in order to ensure a 

human pilot’s workload did not actually increase, which can 

sometimes be an issue when automation is increased 

(Bainbridge, 1983). 
 

FUTURE WORK 
 

    Historically, the introduction of new equipment such as 

advanced navigation systems has reduced the number of 

actions pilots use to execute procedures. This is why aircraft 

today only need two pilots as compared to the 1940s-era 

Boeing Stratocruiser, which needed five people in the cockpit. 

Seen through this lens, advanced autonomy is not a 

revolutionary but rather evolutionary technological advance 

that simply continues a long-standing trend.  

    PAWS is a simulation designed to help engineers 

understand the likely impacts of such advances on an SPO 

system before system design and implementation, in order to 

avoid costly mistakes or inefficient designs. The principal goal 

of any transition to SPO is to maintain levels of safety 

equivalent to or better than current operations. To this end, 

these initial PAWS results underscore the need for advanced 

autonomy to assist the pilot in SPO under certain conditions, 

but also that the implementation and task assignments between 

the pilot and autonomy must be carefully examined.  

     In addition, these results demonstrate many of the useful 

capabilities of the PAWS simulation. Further investigations 

will include adding autonomous agents with varying levels of 

allocation, and the inclusion of stochastic occurrences of 
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contingencies. Specifically, the following additional scenarios 

will be examined: 

 More detailed emergency conditions of increasing 

complexity under various phases of flight 

 Pilot incapacitation that requires the autonomy system to 

identify and land at an alternate landing site 

     The findings from this work help to define a roadmap for 

the levels of safety and applicable missions to which advanced 

autonomy could be applied. Such understanding is critical for 

identifying critical design elements, as well as informing 

policy for regulatory agencies such as the Federal Aviation 

Administration (FAA). Moreover, while PAWS currently 

focuses on examining the trade space between pilots and 

onboard autonomy, it can also be used to represent an operator 

in any transportation system where advanced autonomy may 

share the operational space with humans, such as rail and 

driverless cars. 
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