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Abstract 

Unmanned vehicle systems (UVSs), whether in the air, on the ground, on or under water, are 

inherently complex systems that rely on remote operator supervision to accomplish often 

dangerous and time-critical missions. Measuring the performance of a UVS is not a trivial task 

since the performance of the actual vehicle does not necessarily imply a performance level of the 

operator and vice-versa. With the increasing presence of UVSs in both military and commercial 

settings, it is critical that key performance metrics be identified to indicate not only operator and 

vehicle performance, but integrated human-system performance as well. To this end, this paper 

will describe a supervisory control metric taxonomy that classifies the different types of metrics 

across a supervisory control UVS, how they relate, and how this taxonomy can be used to 

identify a robust set of metrics. 

 
I. Introduction 
 

The DoD’s strategic roadmap for the future envisions a battlefield where “various classes 

of unmanned systems operate together in a cooperative and collaborative manner to meet the 

joint warfighters’ needs [1].” This vision means that there will continue to be rapid growth in all 

aspects of unmanned vehicle research, development, and operational fielding. One problem with 

such rapid growth is the ability to judge, either in a test or operational environment, whether the 

unmanned vehicle system (UVS) is adding value above and beyond a baseline, manned system. 
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In addition, in terms of system acquisition, it is often difficult to compare competing systems 

because of a lack of standardization in metrics, either for the system or for operator performance. 

 Indeed, for many UVS evaluation programs, large sets of metrics are gathered, which 

often include traditional human factors measures such as reaction time, error rates, and the 

overly-taxing NASA TLX (a subjective workload rating scale). In addition, often vague and 

context-dependent mission performance measures are gathered to prove or disprove system 

effectiveness, e.g., situation awareness and time to mission completion. While these measures 

are no doubt of importance, it is not clear how they could equitably be compared across systems 

with different human-computer interfaces. More importantly, the “measure everything and hunt 

for significant relationships in the post-hoc data analyses” approach provides little diagnostic 

information that indicates how and where interventions are needed to improve a UVS. In 

addition, this shotgun approach is also very expensive both in terms of time and money. 

 Because little guidance exists in the literature on how to select a set of meaningful 

supervisory control metrics for UVSs, we have developed a supervisory control metric taxonomy 

that classifies the metrics that could be gathered in a UVS, which is the focus of this paper. A 

second phase of this project, to develop a methodology to select the most parsimonious set of 

metrics from these metric classes needed for effective UVS evaluation, is currently underway. 

In the context of this research, a metric class is defined as the set of metrics that quantify 

a certain aspect or component of a system. The idea of defining metric classes is based on the 

assumption that metrics are mission-specific, but that metric classes are generalizable across 

different missions. The idea of metric classes per se is not new, and previous work has been done 

to determine robot effectiveness metrics (e.g., [2]), human-robot interaction metrics [3], as well 

as the development of single human-multiple robot metric classes [4]. The research reported here 
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builds on this previous work by extending and adding to these models to build a comprehensive 

UVS supervisory control metric taxonomy that illustrates and ties together the many different 

aspects of the human operator, one or more unmanned vehicles, and system performance. 

 
II. The Single Operator – Single Unmanned Vehicle Model 
 

While there are many possible configurations of humans and unmanned vehicles (UVs), 

we first will describe our taxonomy for the single operator-single UV, and then build from this 

model. We propose that there are four conceptual groupings that form four metric classes for the 

single operator-single unmanned vehicle configuration which include 1) UV behavior, 2) human 

behavior, 3) human behavior precursors, and 4) collaboration (Figure 1). The respective 

Figure 1: Supervisory Control of a Single Unmanned Vehicle. 
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behaviors of the UV and the human operator are represented by the two control loops shown in 

Figure 1. Characteristic of supervisory control systems, the operator receives feedback about the 

UV and mission performance, and adjusts the UV behavior through controls if required. The UV 

then interacts with the real world through actuators and collects feedback relating to mission 

performance through sensors. The evaluation of the performance of the operator-UV team 

requires an understanding of both human and UV control loops, so these two loops represent the 

two fundamental metric classes of a UVS, and are the focus of the next section. 

UV and Human Behavior Metric Classes 

In terms of actual metrics that populate these two fundamental classes, we propose that 

for the UV behavior metric class, subclass metrics include usability, adequacy, autonomy, and 

self-awareness. Usability refers to several related attributes typically associated with learnability, 

efficiency, memorability, errors, and user satisfaction [5]. Adequacy is the ability to satisfactorily 

and sufficiently support the mission, and this metric subclass contains measures of automation 

accuracy and reliability. Autonomy is the ability of the UV to function independently, and self-

awareness corresponds to the UV’s awareness of itself [6]. 

The human behavior metric class in Fig. 1 refers to the decisions made and actions taken 

by the human to complete the mission. We propose that the two primary metric subclasses for 

human behavior efficiency are attention allocation efficiency and information processing 

efficiency. Divided attention is inherently a human supervisory control attribute, thus the 

attentional resource allocation subclass assesses the operator strategies and priorities in 

managing multiple tasks and sharing attention among them. For the single operator-single UV 

case, even though only one UV is controlled, the operator still performs multiple tasks such as 

monitoring UV health and status as well as the environment, identifying emergent events, and 



5 
 

commanding the vehicle. How humans sequence and prioritize these multiple tasks provides 

valuable insights into the system design.  

Information processing metrics measure how well the individual tasks and activities that 

compose the overall mission are conducted. Attention allocation efficiency metrics examine an 

operator’s ability to manage across tasks but information processing metrics provide insight 

within a task. These subclasses are related in that attention allocation will drive information 

processing for a specific task; however, information processing efficiency provides additional 

information about the system. Instead of focusing on task management in attention allocation, 

this subclass focuses on an operator’s problem recognition, decision making, and action 

implementation [7]. We recognize that differentiating between information processing states is 

often difficult, so in some cases, the use of generic task efficiency metrics such as the time 

required to prosecute a target can capture overall information processing efficiency. 

Table 1 summarizes the metric subclasses for the human behavior efficiency metric class 

and provides examples for illustrative purposes. The next section will discuss in more depth the 

two remaining metric classes. 

Table 1: Overview of Metrics Subclasses for the Human Behavior Metric Class. 
 

Metric Subclasses Measure Examples 

Attention Allocation Efficiency % of time operator is focused on 
the highest priority task 

Information 
Processing 
Efficiency 

Task 
Efficiency 

Recognition Efficiency Error detection rate 
Error detection time 

Decision Making Efficiency Correct decision rate 
Quality of decisions 

Action Implementation 
Efficiency 

Control input activity 
Frequency of functionality usage 
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Human Behavior Precursors and Collaborative Metric Classes 

While the two fundamental classes of human and UV behavior are necessary to 

understand system behavior, they are also insufficient because they do not address the underlying 

cognitive processes leading to specific operator behavior. These factors are represented by the 

metric class of human behavior precursors, which includes both cognitive and physiological 

precursors. Human behavior precursors are cognitive constructs or processes that exist or occur 

before a certain behavioral action is observed. Human behavior is driven by high-level cognitive 

constructs and processes such as situation awareness (SA), mental workload, self-confidence, 

and emotional state (Fig. 1). In addition to cognitive precursors, physiological precursors such as 

fatigue or physical discomfort can also affect human performance.  

Finally, the operator and the UV constitute a team that works together to conduct a 

mission. Therefore, evaluating how well the UV and the human collaborate motivates the fourth 

metric class of collaboration. The metric subclasses which examine human-UV collaboration for 

the single operator-single vehicle model are UV-human awareness, human mental models, and 

human trust. 

UV-human awareness is the degree to which automation is aware of the human role, 

including humans’ commands and constraints that may require a modified course of action or 

command noncompliance. Depending on the application, onboard automation may need to have 

knowledge of humans’ expectations, constraints, and intents, thus it is critical to quantify a UV’s 

model of the human. While not typically found on operational UVs today, with increasing use of 

artificial intelligence onboard UVs, the vehicles could modify their behavior based on human 

actions and predicted states. It will be critical that such models are accurate, so how well these 

models match actual human intentions and actions should be evaluated. 
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In terms of the mental model subclass, a human mental model is an organized set of 

knowledge with depth and stability over time that reflects the individual’s perception of reality. 

Mental models allow people to describe and understand phenomena, draw inferences, make 

predictions, and decide which actions to take, thus automation design should be consistent with 

people’s natural mental models [8]. Evaluation of mental models can inform display design 

requirements and also training material development. 

Lastly, human trust in automation is another important collaborative metric. In the 

context of complex human-automation systems, Madsen and Gregor have defined trust as “the 

extent to which a user is confident in, and willing to act on the basis of the recommendations, 

actions, and the decisions of a computer-based tool or decision aid [9]. Operators’ lack of trust in 

automation and the resulting automation disuse thwarts the potential that a new technology 

offers. However operators’ inappropriate excessive trust and the resulting automation misuse 

could lead to complacency and the failure to intervene when the technology either fails or 

degrades [10]. Thus, objectively measuring trust, arguably a difficult task, is important when 

system reliability and the domain culture could create trust barriers. 

The Fifth Metric Class: Mission Effectiveness 

While not represented explicitly in Figure 1, there is a fifth metric class that measures 

aggregate system performance, that of mission effectiveness. Key performance parameters and 

effects-based outcomes represent meaningful system performance measures, but they are often 

system and mission dependent. However, while not always generalizable, having an overall 

mission effectiveness metric is critical in determining the severity of the impact of the other 

metric classes. For example, given a particular system, if mental workload is reported high, 

attention allocation seems inefficient, and SA measures low, but the overall mission 
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effectiveness metric is high, either the system is very robust or more likely, there is a problem 

with one or more of the subclass measures or some aspect of the system was not adequately 

measured. Thus mission effectiveness metrics are critical for determining whether a system 

actually meets its stated objectives, but it can also provide insight into the validity of other 

system metrics. 

III. The Single Operator - Multiple Unmanned Vehicles Model  

In a supervisory capacity, operators intermittently interact with UVs, so it is possible that 

an operator could control multiple vehicles, particularly as onboard automation increases. The 

DoD recognizes this possibility and is moving towards this future operational architecture [1]. 

Thus, we have adapted our single operator-single UV model above to demonstrate how these 

same metric classes would be characterized in a multiple UV scenario. However, single operator 

Figure 2: Supervisory Control of Independent UVs. 
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control of multiple UVs can be manifested in two ways: multiple UVs performing independent 

tasks (Figure 2), and multiple UVs performing collaborative tasks (Figure 3).   

In the simpler case of an operator controlling two independent UVs, the operator 

monitors the environment and the UVs’ status, decides on which one to focus attention, interacts 

with that UV and when finished, returns to group monitoring or decides to service another UV. 

In the independent multiple vehicle control case, no additional metric classes are needed, but 

there are other considerations for various subclasses. In terms of the human behavior metric 

class, additional attention allocation metrics should be considered such as measuring task/vehicle 

switching frequency, UV prioritization strategies, and length and quality of vehicle interaction. 

In contrast with the independent multiple UV scenario, one operator can supervise 

multiple UVs that coordinate with one another, as well as with the operator (Figure 3). Because 

Figure 3: Supervisory Control of Collaborative UVs. 
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the control loops for the UVs are no longer independent, servicing the vehicles is inherently 

dependent. For example, making a decision for UV1 in Fig. 3 can involve acquiring and 

analyzing information related to UV2, and implementing an action for UV2 can require 

synchronizing it with UV1. Moreover, good human factors display design principles dictate that 

to the largest extent possible, information should be integrated [11], so the dependencies exist 

not just as the vehicle level, but also at the ground control station level.   

Just as in the independent case, the five metric classes are still sufficient, but several 

subclasses are impacted by these collaborative dependencies. In addition to those subclasses 

discussed above, the information processing efficiency subclass in the human behavior metric 

class is distinctly affected in the multiple vehicle control model. While in the case of independent 

UVs, problem recognition, decision making, and action implementation can be evaluated 

separately, for the collaborative UV case, these will likely have to be analyzed in the aggregate, 

due to the inability to decouple the effects of the different UVs on these states.  

To account for the inter-vehicle collaboration, a new subclass is needed in the 

collaboration metric class, which is UV-UV collaboration. In the single operator-single vehicle 

and single operator-multiple independent vehicles models, all collaboration took place just 

between the operator and a vehicle. With collaborative UVs, both the quality and efficiency of 

the collaboration between vehicles can be measured (e.g., information sharing such as path 

obstacles and the presence of unexpected threats), but also how the human collaborates with the 

UVs either individually or in a group. This multiple collaborative UV model reflects the 

swarming concept of operations, so it is critical to understand how and what hierarchical level an 

operator should interact with the vehicles to promote both efficient system performance and 

sufficient situation awareness. 
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IV. The Multiple Operator-Multiple Unmanned Vehicle Model 

Given the inherent team nature of command and control operations, the single operator-

multiple UV architecture is somewhat artificial and in most cases, will probably be a multiple 

operator-multiple UV scenario. Thus, we extend our model to address this configuration (Figure 

4). For the collaborative metrics class, the previously discussed subclasses (human-UV and UV-

UV collaboration) also apply for the multiple operator, multiple UV system. However, because 

of the introduction of additional operators, we add the human-human collaboration subclass.  

Figure 4: Human/Human and UV/UV Collaborative Metrics  

In command and control settings, a human team works together as a single entity to 

perform collaborative tasks, so performance should be measured at the holistic level rather than 

aggregating team members’ individual performance [12]. Since team members must consistently 

exchange information, reconcile inconsistencies, and coordinate their actions, one way to 

measure holistic team performance is through team coordination, which includes written, oral, 

and gestural interactions. Team coordination is generally assessed through communication 

analysis, which can include quantitative physical measures such as how long team members 

spend communicating, as well as more qualitative measures that focus on the communication 
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content. In addition, the focus of the measures can be static (at a single point in time), or more 

dynamic such as measuring patterns of communication. Measures of behavioral patterns such as 

communications, social networks, etc. are traditional metrics in team research. 

In addition to measuring team coordination for the human-human metric subclass, 

measuring team cognition, which refers to the thoughts and knowledge of the team, can be 

valuable in diagnosing team performance and identifying effective training and design 

interventions [13]. Just as for the individual operator, the team has an aggregate mental model as 

well as shared SA. Since efficient team performance has been shown to be related to the degree 

that team members agree on, or are aware of task, role, and problem characteristics [13], team 

mental models and team SA should be considered when evaluating the multiple operator, 

multiple UV architecture.  

V. Metric Class Summary 

Based on the operator-UV models presented in this report, five generalizable metric 

classes were identified through a principled approach for human-automation team evaluation 

(Table 2). Examples of subclasses are included, and for a more exhaustive discussion of the 

specific metrics that populate these classes and subclasses, the reader is referred to Pina et al. 

[14]. We have shown that these metric classes apply to any system of humans and unmanned 

vehicle, regardless of the vehicle type, and the combination and degree of collaboration between 

humans and/or UVs. It is important to note that these classes are not independent, thus in many 

cases metrics will likely be correlated, which is discussed further in the next section. 

Which specific metrics should be used to evaluate a system will depend on many factors, 

but as a rule-of-thumb, we propose that at a minimum, one metric from each class should be used 

to provide a multi-dimensional assessment of a UVS. Some metrics may be more valuable than 
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others, and as is discussed in the next section, determining the optimal set of metrics a priori is 

an area of ongoing research. However, failing to follow either this or any other principled system 

evaluation metric approach means that some aspect of the system will not be measured, and thus 

some latent condition could later be manifested because of the failure to comprehensively 

evaluate the system. 

To determine what the impact on our research has been by not following such a 

principled approach, we evaluated several recent large-scale supervisory control experiments 

conducted in the MIT Humans and Automation Laboratory. The results show that prior to 

adapting this metric classification approach, we were fairly consistent in measuring mission 

effectiveness and human behavior through such metrics as reaction times and decision 

accuracies. However, despite our supervisory control focus, we were remiss in gathering 

attention allocation metrics and collaboration metrics, and we often gathered too many correlated 

metrics that were redundant and wasteful [14]. This meta-analysis of our experimental 

1) Mission Effectiveness (e.g., key mission performance parameters) 

2) UV Behavior Efficiency (e.g., usability, adequacy, autonomy, reliability) 

3) Human Behavior Efficiency 

• Attention allocation efficiency (e.g., task switching times, prioritization) 

• Information processing efficiency (e.g., decision making accuracy, reaction times) 

4) Human Behavior Precursors 

• Cognitive Precursors (e.g., SA, mental workload ,self-confidence, emotional state) 

• Physiological Precursors (e.g., physical comfort, fatigue) 

5) Collaborative Metrics 

• Human/UV Collaboration (e.g., trust, mental models) 

• Human/Human Collaboration (e.g., coordination metrics, team mental model, team SA) 

• UV/UV Collaboration (e.g., vehicle reaction times to situational events that require
autonomous collaboration) 

Table 2: Unmanned Vehicle Human Supervisory Control Metric Classes and Subclasses 
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shortcomings reflect those in the general research population in that we tended to gravitate to 

popular metrics that are relatively easy to gather, without a clear understanding of exactly what 

aspect of the systems we were measuring and how the various metrics informed an overall 

research question. We are now using the metric classification framework proposed here to 

inform our design of experiments across a number of different projects.  

 
VI. Towards a model for metric selection 
 

Given that we have comprehensively defined the UV supervisory control metric classes, 

as well as the different subclasses for different human operator-UV configurations, the next 

question is, “Which specific metric(s) should I use to evaluate my system?” This is the focus of 

ongoing research, and we are examining criteria such as experimental constraints (e.g., time to 

run an experiment, access to real operators), construct validity, (e.g., is my EEG monitor really 

measuring workload or measuring stress?), metric value-added (e.g., does each metric contribute 

to my research question in distinct manner or is there significant overlap?), statistical validity (is 

this metric highly correlated with another, possibly inflating experimental error and wasting 

resources?), and the measuring technique (e.g., does interrupting users to ask situation awareness 

questions interfere with either performance or the gathering of other, more critical system data 

such as interaction times?) 

From this initial taxonomy work, we hope to develop a cost-benefit methodology that can 

provide clear and tangible guidelines to researchers and practitioners to aid them in metric 

selection. While no such approach will ever be able to provide a metric checklist for every 

system and every research question of interest, we hope to provide theoretical grounding for why 

some measures could be better than others in some contexts, and how some areas of focus, such 
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as resource allocation problems in a UV system, can lead to a set of generalizable metrics that 

can be used across different systems. 
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