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ABSTRACT 

Planning and Resource Allocation (P/RA) Human Supervisory Control (HSC) sys-
tems utilize the capabilities of both human operators and automated planning algorithms 
to schedule tasks for complex systems. In these systems, the human operator and the al-
gorithm work collaboratively to generate new scheduling plans, each providing a unique 
set of strengths and weaknesses. A systems engineering approach to the design and as-
sessment of these P/RA HSC systems requires examining each of these aspects individu-
ally, as well as examining the performance of the system as a whole in accomplishing its 
tasks. An obstacle in this analysis is the lack of a standardized testing protocol and a 
standardized set of metric classes that define HSC system performance. An additional 
issue is the lack of a comparison point for these revolutionary systems, which must be 
validated with respect to current operations before implementation. 

This research proposes a method for the development of test metrics and a testing 
protocol for P/RA HSC systems. A representative P/RA HSC system designed to perform 
high-level task planning for deck operations on United States Naval aircraft carriers is 
utilized in this testing program. Human users collaborate with the planning algorithm to 
generate new schedules for aircraft and crewmembers engaged in carrier deck operations. 
A metric class hierarchy is developed and used to create a detailed set of metrics for this 
system, allowing analysts to detect variations in performance between different planning 
configurations and to depict variations in performance for a single planner across levels 
of environment complexity. In order to validate this system, these metrics are applied in a 
testing program that utilizes three different planning conditions, with a focus on validat-
ing the performance of the combined Human-Algorithm planning configuration. 

Experimental result analysis revealed that the experimental protocol was successful in 
providing points of comparison for planners within a given scenario while also being able 
to explain the root causes of variations in performance between planning conditions. The 
testing protocol was also able to provide a description of relative performance across 
complexity levels.  

The results demonstrate that the combined Human-Algorithm planning condition per-
formed poorly for simple and complex planning conditions, due to errors in the recogni-



 4 

tion of a transient state condition and in modeling the effects of certain actions, respec-
tively. The results also demonstrate that Human planning performance was relatively 
consistent as complexity increased, while combined Human-Algorithm planning was ef-
fective only in moderate complexity levels. Although the testing protocol used for these 
scenarios and this planning algorithm was effective, several limiting factors should be 
considered. Further research must address how the effectiveness of the defined metrics 
and the test methodology changes as different types of planning algorithms are utilized 
and as a larger number of human test subjects are incorporated. 

 
  
 

Thesis Supervisor: Mary L. Cummings 
Title: Associate Professor of Aeronautics and Astronautics
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1. INTRODUCTION 

Sheridan defined Human Supervisory Control (HSC) systems to be those in which 

“one or more human operators are intermittently programming and continually receiving 

information from a computer that itself closes an autonomous control loop through artifi-

cial effectors to the controlled process or task environment" [1]. While Sheridan’s origi-

nal work considered the teleoperation of robots, HSC systems can also include systems 

that utilize automated algorithms to schedule task assignments or perform path planning 

for various agents [2-6]. These will be referred to as Planning and Resource Allocation, 

or P/RA, HSC systems, a model of which is provided in Figure 1 (adapted from 

Sheridan’s original HSC model in [1]). 

 
Figure 1. Human supervisory control diagram for P/RA HSC systems,  

modified from Sheridan [1]. 

Within a P/RA HSC system, the human operator engages a planning algorithm 

through a set of control interfaces in order to create a feasible plan of action. Once the 

plan has been deemed acceptable, it is transmitted to and implemented by the agents in 

the environment. The planning algorithm then monitors the execution of this plan via 

sensors in the environment, relaying information back to the operator through a set of 

display interfaces. A simple, but common form of this is the automobile GPS system, in 
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which drivers input a destination and a set of preferences to an automated planning algo-

rithm, which returns a suggested driving path to the driver. After route acceptance, the 

system then continually updates the driver on the status of the route, sensed through a 

GPS receiver, and relayed through a visual display and auditory alerts. 

In more complex planning domains, such as military command and control environ-

ments [7, 8], the value of P/RA HSC systems lies in the complementary capabilities of 

human and automated planners. Automated planning algorithms are capable of process-

ing and incorporating vast amounts of incoming information into their solutions. How-

ever, these algorithms are brittle and unable to account for conditions that are outside the 

programmed parameters, especially in uncertain environments. [9]. Also, despite the 

speed at which algorithms can process information, human operators retain superiority in 

pattern recognition and the ability to adapt to changing conditions [10, 11]. The human 

ability to satisfice, or to provide feasible solutions that only address a subset of the over-

all problem, has also been shown to be highly effective [12, 13]. Recent research has 

shown that by properly allocating functions between human operators and automated sys-

tems, performance superior to either entity alone can be achieved [4, 14, 15]. In the con-

text of P/RA HSC systems, human planners can rely on their experience to determine the 

factors most important to system performance (as they would otherwise do when satis-

ficing). Communicating these factors aids the algorithm in the development of a local so-

lution that often outperforms the solutions generated by the human or algorithm individu-

ally.  

The design of P/RA HSC systems requires a systems engineering approach, which 

addresses the performance of both the human operator and the algorithm, the interactions 
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between them, and their ability to function together in executing system tasks [16]. This 

approach stems from the belief that successful system performance is a product of both 

effective component design and effective component integration. The Mars Climate Or-

biter (MCO), for example, was destroyed on entry into the Martian atmosphere due to a 

difference in measurement units between two subcomponents [17]. Although the individ-

ual units tested properly, the error in unit consistency went undetected, resulting in a total 

mission loss. While the MCO case is an extreme result, it highlights the necessity of 

evaluating interactions between components within the system. Regardless of the per-

formance of the human operator and the algorithm within a P/RA system, if the two can-

not effectively communicate in order to execute tasks, the overall effectiveness of the 

system will likely be diminished. 

Viewing this from a systems engineering perspective, several models provide guid-

ance for the development of P/RA HSC systems. Two of these models, the Waterfall [18] 

and “V” models [19], only address the highest level of process task definition (e.g., 

Analysis and Design in the waterfall model). This thesis will focus on a third model, the 

spiral model [20, 21], which divides these high level tasks into multiple phases of plan-

ning, requirements definition, risk analysis, and testing. This set of four steps is continu-

ally repeated throughout the process.  Figure 2 shows a spiral model for the development 

of a generic software system. As the spiral moves outward, the design process moves 

from lower to higher levels of abstraction, beginning with a basic definition of the con-

cept of operations in the center and concluding with final acceptance testing and imple-

mentation. The construction of the spiral model also provides guidance to the designer as 

to where to move if a test shows deficient system performance. For example, the Integra-



 22 

tion and Test stage includes the final assembly of system components and tests of their 

ability to interact effectively. Should this test fail, the engineering process should likely 

return to the Design Validation and Verification stage to adjust component design pa-

rameters, or to the Integration and Test Plan stage if the method of component interfac-

ing requires alteration.   

 
Figure 2. Systems engineering spiral model as adapted to software  

engineering [20, 21]. 

The spiral model in Figure 2 is used as a basis for discussion throughout the remain-

der of this thesis. Specifically, this thesis will address the two final test steps, highlighted 

in grey in Figure 2 – the Integration and Test and Acceptance Test stages. The former 

addresses the effectiveness with which the human operator and the algorithm interact 

within the system, while the latter addresses the ability of the combined system to effec-

tively perform tasks in the environment. This thesis will address the development of 
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measurement metrics and a testing protocol for evaluating the performance of P/RA HSC 

systems in these two test steps, addressing both the human and algorithmic components 

of the system. The testing protocol and measurement metrics should also be generalizable 

to a wide range of P/RA HSC system domains and algorithm formats. The metrics devel-

oped for this protocol are both descriptive and diagnostic, providing empirical compari-

son points between systems while also identifying the properties of a single system that 

led to its efficiency (or inefficiency).  

1.1. PROBLEM STATEMENT 

A systems engineering approach to the evaluation of P/RA HSC systems requires a 

holistic, comprehensive testing protocol. An obstacle to the creation of this protocol is a 

lack of both standardized metrics and a standardized methodology of metric definition. 

While standardized metrics and frameworks exist for defining the performance of both 

human operators [22, 23] and automated planning algorithms [24, 25], no standardized 

frameworks are currently in place for the interaction between humans and automated 

P/RA systems, or for system (mission) performance overall.  

 
Figure 3. Existence of standardized metrics for HSC systems. 
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The goal of this thesis is to understand how a set of metrics should be defined for and 

applied to a P/RA HSC system, and how an analysis of the resulting data can provide in-

sight into the strengths and weaknesses of a human-automation collaborative system. A 

metric class hierarchy from prior literature [26, 27] is used to guide the creation of met-

rics for a representative P/RA HSC system, the Deck operations Course of Action Plan-

ner (DCAP). The DCAP system utilizes an automated scheduling algorithm to aid opera-

tors in replanning tasks in the aircraft carrier deck environment, which is generalizable to 

a large number of planning and resource allocation HSC systems. Metrics are defined for 

this system and utilized in an experimental simulation testbed that examines performance 

over varying complexity levels. The discussion of these testing results addresses both the 

comparison of system performance within each testing scenario, as well as the perform-

ance of the systems across complexity levels. The next section of this chapter details the 

specific research questions that will be addressed in this thesis. 

1.2. RESEARCH QUESTIONS 

This thesis addresses three specific questions: 

1. What metrics are required for the evaluation of a Planning and Resource Allocation 

Human Supervisory Control system as compared to manual planning? 

2. How can these metrics assess the variations in performance of human and combined 

human-algorithm planning agents? 

3. How can these metrics predict system feasibility and highlight possible design inter-

ventions? 
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1.3. THESIS OVERVIEW 

This thesis is organized into six chapters. Chapter 1, Introduction, describes the moti-

vation and research objectives for this thesis. Chapter 2, Prior Work, details prior re-

search concerning planning and resource allocation algorithms and the creation of metrics 

for human performance, automated algorithm performance, and the interaction between 

these elements. Chapter 3, the Deck Operations Course of Action Planner (DCAP), ex-

plains the features of the DCAP system and its embedded automated algorithm. Chapter 

4, Performance Validation Testing, describes the creation of the metrics used in the 

analysis of the DCAP system, the testing scenarios, the creation of a set of operator plan-

ning heuristics, and subsequent testing of the system. Chapter 5, Results and Discussion, 

details the results of the application of the defined metrics to the resultant simulation data 

and the information gained from this process. Chapter 6, Conclusions and Future Work, 

reviews the contributions of this research in regards to the defined research questions and 

also addresses future research questions.  

 



 26 



 27 

2. PRIOR WORK 

This chapter provides a review of metrics previously used in validating the perform-

ance of planning algorithms and HSC systems (including both P/RA and more generic 

HSC systems). The first section in this chapter presents a framework for HSC metric 

classification taken from prior literature. This framework is used as an organizational tool 

for the remaining sections of the chapter, which provide details on the specific types of 

metrics utilized in prior literature. 

2.1. THE HSC METRIC HIERARCHY 

Several non-standardized metric class hierarchies have been developed for HSC sys-

tems [28-31]. Metrics can be differentiated into classes according to their attributes, pri-

marily in terms of the object of the application. P/RA HSC metrics can be separated into 

classes for Human, Automation, and Mission performance as well as Human-Automation 

Interaction. Mission Performance metrics describe the ability of the system, as a whole, 

to accomplish its goals in the environment. Automation Performance describes the ability 

of the automated components – such as automated algorithms or sensors – to perform 

their specific tasks. Measures of Human-Automation Interaction typically describe the 

active processes the operator uses to input commands to or acquire information from the 

system (e.g. mouse clicks), while Human Performance measures typically describe fea-

tures native to the human operator (such as fatigue or stress). Table 1 provides a brief 

representation of four prior metric hierarchies according to this metric class structure.  
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Table 1. Metric classes from prior work. 

 Human 
Performance 

Automation 
Performance 

Human- 
Automation 
Interaction 

Mission  
Performance 

Olsen and Goodrich [28]   X X X 
Steinfeld et al. [29] X X X X 

Crandall and  
Cummings [30] X X X   

Scholtz [31] X   X   
 

Olsen and Goodrich’s hierarchy [28] focused almost exclusively on quantifying robot 

performance, with most metric classes excluding measures for the human operator; those 

that considered human operators examined only their interaction with the autonomous 

platform. Steinfeld et al. [29] included classes addressing both the human and automated 

aspects of the system, as well as the effectiveness of the overall system. However, the 

class of human performance metrics did not differentiate between human-automation in-

teraction and individual human performance measures. Steinfeld’s hierarchy also lacked 

depth in the definitions for human and system performance (only three metrics appear in 

each category), but did provide numerous metrics for automation performance.  

Crandall and Cummings [30] created metrics for single-robot and multi-robot systems 

and created additional measures addressing human interaction. This hierarchy did not in-

clude direct measures of system performance, although it did provide a differentiation 

between human performance and human-automation interaction. Scholtz’s [31] hierarchy 

addressed measures dealing primarily with the human operator and their interaction with 

the system, but lacked metrics for system performance and automation performance.  

While each of these four hierarchies is lacking in some manner, they combine to ad-

dress each of the aspects of P/RA HSC systems as depicted in Figure 3. However, as a 
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whole, only the automation performance class contains a large number and variety of ex-

ample metrics; the remaining categories only include few, if any, examples. These defi-

ciencies were also noted by Pina et al. [26, 27], who incorporated the work of these (and 

other) authors in creating an expanded and detailed categorical structure for HSC metrics. 

The five main categories developed from this work, with additional subcategories, are 

shown in Table 2. 

Table 2. Pina et al.'s [26, 27] metric classes and subclasses. 

 

Pina et al.’s [26, 27] five metric classes consider each of the various aspects of a gen-

eral HSC system and encompass much of the previous metric hierarchies, while also pro-

viding additional detail in the definition of subclasses for each category. Pina et al. also 

include an additional class of Collaborative measures, which is an additional perspective 

on human-automation interaction. Collaborative measures address the sociological as-

pects of the system, considering the automation to be a member of the “team” of opera-

tors performing system tasks. These measures may address the effectiveness of collabora-

tion between multiple human operators, multiple automated agents, or between human 

and automation.  
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Mission Efficiency metrics measure the performance of the system as a whole as it 

performs tasks within its domain – a critical issue in the Acceptance Test stage in the spi-

ral model. The remaining categories address the performance of individual subcompo-

nents and their efficiency of interaction, supporting the Integration and Test stage in the 

spiral model. Autonomous Platform Behavior Efficiency contains measures for the effec-

tiveness of an algorithm in its computations and its capability to support the human op-

erator in his/her tasks. Human Behavior Efficiency measures address the performance of 

the human operator as he or she engages the system through both cognitive (information 

extraction) and physical (command input) means. Human Behavior Precursor metrics ex-

amine the endogenous factors that affect human interactions (such as physical and mental 

fatigue or operator situational awareness). The final category, Collaborative Metrics, ad-

dresses the degree to which human users and automated agents are able to work together 

to accomplish tasks. Figure 4 highlights how Pina et al.’s classes of metrics apply to the 

P/RA HSC metric hierarchy originally shown in Figure 1.  

 
Figure 4. HSC diagram highlighting Pina's metric classes 



 31 

The metrics included in these categories can fulfill both descriptive and diagnostic 

roles. All metrics are descriptive with respect to some aspect of the system. For Plan-

ning/Resource Allocation systems, descriptive metrics document the objective perform-

ance of the system and its subcomponents (the human operator and algorithm). For a path 

planning system, a descriptive Mission Performance measure may address the total travel 

time on the path or the cost of the path (e.g. total work). Descriptive measures for the al-

gorithm may address the total time required to replan or make take the form of a scoring 

function applied to the solution. A descriptive measure for the human operator may in-

clude a rating of their situational awareness or trust in the system.  

These same measures can also be used in a diagnostic manner, explaining the per-

formance of other metrics. While total mission completion time is a widely used descrip-

tive measure, it has no ability to explain the conditions within the environment that lead 

to its final value. This can only be revealed by additional diagnostic metrics that illumi-

nate specific details of the performance of the system. For instance, a metric noting that 

the human operator required more time to execute replanning tasks may provide one ex-

planation for high values of mission completion time. Metrics demonstrating that the sys-

tem performed poorly on a single mission subtask may provide an alternate explanation 

for this same factor. Additionally, a second round of diagnostic measures can be applied 

to each of these cases in order to determine why the human operator required more time 

to replan (longer time to perform a replanning subtask) or why the mission subtask re-

quired more time (deadlock in path planning or unnoticed failure). This can continue it-

eratively until a definite root cause explanation is obtained. 
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The ultimate goal of the system is to provide maximum effectiveness in performing 

tasks in the environment, which is revealed primarily by measures of Mission Efficiency. 

However, in cases where poor mission performance is seen, descriptive measures may 

not effectively identify the mechanisms leading to problems. Thus, a combination of met-

rics addressing each of these factors – the mission, human operator, algorithm, and hu-

man-automation interaction classes– is needed to provide a full analysis of the system 

[26, 27]. The remaining sections of this chapter will address measures for each of these 

aspects individually as they relate to P/RA HSC systems. 

2.2. METRICS FOR MISSION EFFICIENCY 

Measures of Mission Efficiency address the ability for the complete HSC system to 

perform tasks in the world, and exact definitions for these measures depend on the envi-

ronment in which the HSC system acts. Pina et al. [26, 27] differentiated measures of 

Mission Efficiency measures into Error-based, Time-based, and Coverage-based meas-

ures. This section will address these measures and provide examples used in prior studies, 

focusing on those used in P/RA systems. 

Error measures identify the number of errors that occur in the execution of the P/RA 

system solution. Errors can be attributed to either the human or the automation perform-

ing inappropriate actions (errors of commission) or not fulfilling desired objectives (er-

rors of omission). For a path planning P/RA system, the returned solution may be a path 

that avoids specific areas (such as threat zones) while minimizing costs or collisions [4, 

32, 33]. Error measures for such a path planning system may track how many collisions 

occur or how much threat is accrued by flying into unacceptable areas (both are errors of 
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commission). In other cases, the inability to address tasks within a given time window 

[34, 35] can be considered as errors of omission (failing to perform certain tasks). These 

measures are descriptive and diagnostic only with respect to the performance of the re-

turned solution. The identification of the specific actions on the part of the human opera-

tor or the algorithm that lead to this performance can appear in other metric classes. 

Time-based measures include all temporal measures, primarily addressing the total 

time of solution execution (the mission time or mission duration) [36-40]. By definition, 

however, these are limited to systems with a temporal component. For P/RA HSC sys-

tems that perform time-independent task allocations, these measures may not be impor-

tant. 

Coverage-based metrics can also be included in some cases [3, 41, 42]. A common 

application of military P/RA planning systems is in target destruction tasks, where an al-

gorithm supports a human operator in identifying, tracking, and destroying hostile targets. 

In some cases, the number of targets may outnumber the available resources, making the 

destruction of every target impossible. The percentage of total targets destroyed can be 

used as a measure of overall performance for the system [41]. Additionally, a measure of 

missiles fired per enemy target destroyed is descriptive in terms of the actions of the al-

gorithm but may also be diagnostic in revealing the efficiency of system actions. In this 

case, high values of missiles fired per target destroyed can explain poor overall perform-

ance (e.g., the system did not effectively utilize its resources or the missiles had difficulty 

in reaching and destroying targets) [42]. 
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These Mission Efficiency measures examine the effectiveness of the generated solu-

tion in light of the system objectives, but they are not the sole indicator of a well-

performing system [16]. These measures are, however, the primary descriptive metrics of 

the system and are often the primary criterion on which system implementation is based. 

These measures are also affected by the individual performance of the human operator 

and the algorithm and the quality of interaction between the two, each of which must be 

considered in the course of system evaluation. The next section will address one of these 

aspects – the ability of the algorithm to support the mission, described by measures of 

Autonomous Platform Behavior Efficiency.  

2.3. METRICS FOR AUTONOMOUS PLATFORM BEHAVIOR EFFI-

CIENCY 

In P/RA HSC systems, an algorithm does not necessarily exist as an independent 

agent and may interact with a human operator in order to perform system tasks. In this 

regard, the algorithm must perform adequately within the system and provide sufficient 

support for mission operations. The ability of the algorithm and the associated interface 

to accomplish these objectives was included as part of Autonomous Platform Behavior 

Efficiency in Pina et al.’s metric hierarchy [26, 27]. However, in selecting metrics that 

define the performance of the automated algorithm, the type of algorithm and the domain 

of application will determine the number of applicable metrics. Before providing exam-

ples of Autonomous Platform Behavior Efficiency, this section will review common 

types of algorithms used in P/RA HSC systems and the domains to which they are ap-

plied. 
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2.3.1. Common Algorithms for Planning and Resource Allocation  

Several different forms of planning algorithms have been proposed for, or imple-

mented in P/RA HSC systems [8, 15, 32, 33, 36, 40, 43-45]. However, these various al-

gorithms can be grouped into three categories based upon the assumptions made and ac-

tions taken by the algorithms. These three classes are Deterministic, Probabilistic, and 

Heuristic algorithms [46, 47]. Table 3 provides a brief comparison of these algorithm 

classes. 

Table 3. Comparison of Algorithm Classes. 

 

Deterministic algorithms utilize explicit cost functions and constraint models to per-

form an exhaustive search of the domain. For correct solutions, these algorithms require 

access to all information relating to these cost and constraint models. If this information 

is accessible, these algorithms will return an optimal solution (if one exists). This class 

includes Mixed-Integer Linear Programs [32, 44, 45], graph exploration algorithms such 

as Breadth- and Depth-first search, potential fields [36, 40], and many other forms [8, 15, 

33, 43].  
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In contrast with deterministic algorithms, probabilistic algorithms [48-51], such as 

Markov Decision Processes (MDPs), assume incomplete knowledge about the world and 

calculate responses based on probability models. Kalman and particle filters also fall 

within this class, but instead use mathematical filtering techniques to reduce the level of 

incompleteness of information. For instance, systems performing target tracking may not 

know the exact location of the target to be tracked, but may be able to build a probability 

density function describing the likelihood of the target’s location on the map [49].  

Heuristic algorithms [37, 41, 52-59] also assume incomplete information about the 

world, but do not rely on probabilities in order to make choices. Instead, heuristic algo-

rithms rely on a set of heuristics – “rules of thumb” [60] – to calculate responses. For 

these cases, the exact equation describing optimality may not be known, due to either 

problem complexity or to the inability to model certain constraints accurately. In this 

case, a heuristic function, such as a scoring metric [61, 62], can be used to judge the rela-

tive performance of the system. This class of algorithms includes Tabu search [41, 52-54] 

and hill-climbing algorithms [61, 62], as well as several other forms [37, 55-59]. 

The amount and types of data available from the environment can influence the 

choice of algorithm for the system. Deterministic algorithms typically require complete 

data on the state of the world. For a tracking task, the algorithm requires precise informa-

tion on the terrain, the current position of the target, and information about the current 

state of tracking vehicle and its capabilities. Probabilistic algorithms can compensate for 

cases where the system does not have precise information on the location of the target, as 

noted above. The system’s solution could be optimal on average but may not be optimal 

for any one case. Heuristic algorithms can be used when the characteristics of an optimal 
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solution or the world are not known, or if the problem space is complex enough that 

complete, feasible solutions are not expected. In this case, the system iterates through 

possible solutions, selecting candidates for the next iteration based on a set of basic rules. 

These algorithms do not guarantee optimality, and instead seek solutions that reach a cer-

tain threshold of performance – a concept known as “satisficing” [63].  

By definition, HSC systems require the presence and interaction of human operators 

in order to accomplish tasks. The required level of interaction may vary as described by 

Sheridan’s ten levels of automation, listed in Figure 5.  

 
Figure 5. Sheridan and Verplank's Ten Levels of Automation (adapted from [64]). 

In one extreme (Level 1), the human operator performs all tasks without any aid from 

the automated system. At the other extreme (Level 10), the automated system performs 

all tasks, requiring no assistance from (and offering no notifications to) the human opera-

tor. The remaining eight levels comprise the majority of Human Supervisory Control sys-

tems, with operator workload and input gradually decreasing as level increases. For the 

case of P/RA systems, many exist in the range between Level 3 (the automated system 
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provides several options) and Level 6 (the system executes a suggested solution unless 

vetoed by human operator). In each of these cases, the human operator and automated 

system work collaboratively in order to perform a shared task, with the operator possibly 

providing suggestions to the system or selecting (or vetoing) one of several suggested 

solutions. In this context, the performance of the P/RA algorithm requires measuring the 

ability of the algorithm to support these collaborative mission-replanning tasks. These 

measures of Automation Platform Behavior Efficiency are discussed in the next subsec-

tion. 

2.3.2. Measures of Autonomous Platform Behavior Efficiency 

Pina et al. divided measures for Autonomous Platform Behavior Efficiency into four 

categories (Table 2). Measures of Adequacy address the ability of the algorithm to sup-

port the mission computationally, focusing on the accuracy and reliability of the algo-

rithm. Originally, this category only considered qualitative measures for the entire HSC 

system and did not differentiate between the interface and the algorithm. For P/RA sys-

tems, this can be expanded to include traditional algorithm performance measures such as 

runtime and error (infeasibility/incompleteness) rates (see [24, 25, 65-70] for examples). 

Within P/RA systems, ideal algorithms would be both highly reliable and highly accurate, 

accepting user inputs and creating valid plans with no errors.  

In the context of P/RA systems, measures of Usability address the human operator’s 

subjective opinions of the algorithm’s ability to support the mission, as well as the ability 

of the user to understand how to interact with the algorithm through the display and con-

trol interface. This may involve a subjective evaluation of the system by the user [37, 71] 
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or asking the user to explain their thought processes during interaction [72, 73]. In other 

cases, these qualitative measures have been operationalized into quantitative measures 

[74-77], such as tracking the order and duration of user’s interactions with the system and 

comparing these to the actions of an expert user [74-76]. With regards to P/RA systems, 

these measures may also ask the user to evaluate the performance of and their ability to 

understand the algorithm through surveys [3] or other means. The goal of these measures 

is to determine the ease of use of the algorithm – that the user is able to understand its 

actions, able to predict its performance, and understand how to appropriately interact with 

the algorithm. 

Autonomy refers to how well the system is able to function without operator interac-

tion. This measure has its roots in Human Robot Interaction (HRI) research [6, 28, 30, 35, 

78-80], where the performance of one or more robots can degrade over time. This re-

sulted in measures of “neglect” [28, 78] that judged how long the system could maintain 

performance above a certain threshold without operator input. This may not be an appli-

cable measure for every P/RA algorithm. If the current plan or schedule does not degrade 

in performance until an exogenous event occurs, and the algorithm requires human inter-

action in order to replan, neglect tolerance is dependent on the occurrence of the exoge-

nous event and not on the algorithm. For all systems that do not exhibit these two condi-

tions, typical measures of neglect tolerance apply.   

Self-awareness is primarily intended for autonomous systems that can independently 

self-monitor and self-diagnose their performance. In the context of P/RA systems, this 

would involve the ability of the algorithm to relate the actual performance of its solutions 

to the predicted performance. This could potentially lead to the algorithm adjusting its 
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parameters as time continues (known as “on-line” learning; see [81]). For a P/RA system, 

the inclusion of this ability would be beneficial to the embedded algorithms. However, 

this is still an area of emerging research [82-84] and is beyond the scope of this present 

work.  

Metrics within the class of Autonomous Platform Behavior Efficiency address the 

performance of the automated algorithm and its ability to support the P/RA HSC system 

in its tasks. While these measures address the planning algorithm and its responses to 

human input, they do not address the performance of the human operator as he or she in-

teracts with the system. These measures for human performance are divided into catego-

ries of Human Behavior Efficiency and Human Behavior Precursors and are addressed in 

the next section of this chapter. 

2.4. METRICS FOR HUMAN PERFORMANCE 

Human performance can be characterized along two dimensions. Measures for Hu-

man Behavior Efficiency address the effectiveness with which the human operator ac-

tively engages the system through the interface elements, acquiring information and exe-

cuting tasks. Human Behavior Precursors address how the efficiency of this interaction is 

affected by certain endogenous factors inherent to the human operator. These precursors 

simultaneously both influence and are influenced by Human Behavior Efficiency. Each 

of these factors will be discussed individually in the following subsections, beginning 

with Human Behavior Efficiency. 
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2.4.1. Metrics for Human Behavior Efficiency 

For P/RA HSC systems, physical interaction with the algorithm is mediated by a dis-

play interface. Thus, measures of interaction efficiency address the ease with which the 

user assimilates information from and executes control inputs through the system inter-

face. Pina et al. divided these measures into two separate categories – measures for At-

tention Allocation and Information Processing. 

The ability of the user to successfully distribute their attention across multiple com-

peting tasks in order to assimilate incoming information is referred to as Attention Allo-

cation Efficiency (AAE). For P/RA systems, this involves the operator’s ability to moni-

tor the overall state of the world, to monitor the state of individual priority tasks, to be 

aware of failure and status messages, and to execute replanning actions. Measuring the 

operator’s efficiency in doing these tasks requires understanding what aspects of the in-

terface the user is interacting with at a given time and with what purpose. These measures 

can be taken by tracking mouse cursor location [77], eye-tracking [85, 86] or through 

verbal reporting on the part of the user [73, 87, 88]. The end goal of these measures is to 

determine the effectiveness of the user’s information acquisition process and to highlight 

any necessary design changes that can aid the operator in attending to the correct infor-

mation at the correct times.  

The efficiency of attention allocation with the system can be viewed as how well op-

erators process their internal queue of tasks. In this view, the operator is a processing 

server in which incoming tasks received, are processed, and then removed from the queue 

[89]. As such, the efficiency of this interaction assesses how long tasks wait to be added 
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to the queue and, once there, how long they must wait to be addressed. These measures 

are defined as Wait time due to operator Attention Inefficiencies (WTAI) [90] and Wait 

Time due to Operator (WTO), respectively [79]. Ideally, these measures would be mini-

mized, indicating that the user has sufficient attentional resources to identify necessary 

tasks and work through them quickly. 

Information Processing Efficiency (IPE) metrics are aimed at determining how effec-

tively the user interacts with the system while performing a single control action. These 

measures are highly influenced by research in the field of Human-Robot Interaction (a 

subset of HSC), and include tracking explicit interactions with the interface, the time of 

interaction with interface segments, and the rate of decisions made or actions performed 

[26, 27]. Highly efficient operators will require a minimum number and duration of inter-

actions in order to perform system tasks.  

Similarly to AAE measures, IPE measures may also involve tracking user interaction 

with the interface. For a P/RA system, IPE measures denote the overall time and number 

of interactions required to complete the replanning task (and individual subtasks). Here, 

the outright number of mouse clicks and total time of activity in each interface is of con-

cern (as opposed to AAE measures, which address the order in which these tasks and 

subtasks are performed).  

Combined, these measures of Human Behavior Efficiency address the operator’s abil-

ity to perform one or more tasks, and how well they manage switching between compet-

ing tasks. These may be both descriptive, allowing comparisons of user interaction times 

across different interface types, and diagnostic, providing guidance to designers on what 
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aspects of the interface require a redesign. These measures are jointly influenced by the 

design of the system interface and endogenous human factors, such as fatigue and situ-

ational awareness, which affect the user. The latter, termed Human Behavioral Precur-

sors, is discussed in the next section. 

2.4.2. Metrics for Human Behavior Precursors 

Human Behavioral Precursors are underlying factors that affect the performance of 

users in an HSC system. These can either be physical factors, such as physical fatigue 

and sleeplessness, or cognitive factors, such as mental workload and situational aware-

ness (SA). Several references provide discussions on this topic (see [22, 23] for exam-

ples), but for P/RA HSC systems, the predominant factors are the cognitive precursors 

and their affect on human decision making. For P/RA systems, SA measures will address 

the ability of the operator to maintain awareness about the current operational state of the 

overall schedule, of individual schedules for vehicles (or other entities), of the presence 

of errors in the system, and the ability of the operator to forecast future system states. 

Mental workload has been quantified by surveys [3, 34, 37, 42], user interaction 

measures [3, 39, 91-94], or measures of utilization [89, 95], which returns user interaction 

time as a percentage of the total mission duration. These are primarily descriptive meas-

ures, where excessively high values may lead to poor decision-making and an inability of 

the human operator to perform at optimal efficiency. For P/RA systems, the mental effort 

required to understand the actions of the algorithm might be addressed through a survey, 

while the effort required to implement actions in the system could be tracked by measures 

of utilization.  
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The measures discussed in the previous two sections address the specific interaction 

between the human operator and the P/RA HSC system. Measures of Human Behavior 

Efficiency focused on the specific interactions between the user and the automation, 

while measures of Behavior Precursors addressed endogenous factors that affect this in-

teraction. A third aspect of interaction addresses the effectiveness of the human operator 

and the algorithm in working as a team. These measures of Human-Automation 

Collaboration are discussed in the next section.  

2.5. METRICS FOR HUMAN-AUTOMATION COLLABORATION 

Measures of Human-Automation Collaboration consider the automation to be an ac-

tive participant in system performance; the automation is treated as a teammate working 

with the human operator. This class of metrics includes the user’s trust in the automated 

system [96-104] and the adequacy of the user’s mental model of the automation [105-

108].  For P/RA systems, this addresses the ability of the user to understand the planning 

and/or resource allocation strategies of the algorithm and the effects of user input on 

these strategies. Trust denotes how much confidence the user has in the ability of the al-

gorithm to aid in creating a viable solution. In cases where a human has the choice be-

tween a manual and automated planning system, a lack of trust in the system or the in-

ability to form accurate mental models may lead the user to return to manual planning 

and reject the automation, regardless of its performance. For a P/RA HSC system, meas-

ures of trust typically correlate to the willingness of the operator to accept the plans gen-

erated by the automation, or if automation is optional, may explain the operator’s utiliza-

tion of the automated system [109, 110].  
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Mental models are “the mechanisms whereby humans are able to generate descrip-

tions of system purpose and form, explanations of system functioning and observed sys-

tem states, and predictions (or expectation) of future system states” [105] and may take 

many forms [107]. When a human operator has a highly accurate mental model, they are 

better able to understand and predict the performance of the automation. This engenders 

trust in the user, which continues to build until the system exhibits unexpected behavior. 

Inaccurate mental models can be a product of the operator’s inability to understand the 

system or of unreliable system performance and may result in major accidents or aban-

donment of the system [105, 106, 108]. For P/RA HSC systems, this class of measures 

concerns how well the user is able to understand the processes of the automated algo-

rithm. For instance, Rapidly-exploring Random Tree (RRT) algorithms randomly select 

points in space when creating paths in an environment. This randomness may make it dif-

ficult for a human operator to understand the planner’s actions, build a mental model, and 

predict system behavior. A less random algorithm, such as an ILP that has a set cost func-

tion, may be more predictable for the operator.  

2.6. CHAPTER SUMMARY 

This chapter has reviewed a metric class hierarchy put forth in previous literature [26, 

27] and discussed its application to P/RA systems. The first section of the chapter re-

viewed the contents of this hierarchy, followed by four sections describing its five metric 

categories. The second section addressed measures of Mission Efficiency, which describe 

the functionality of the system as a whole. This was followed by a section discussing 

common algorithm types for P/RA systems, which classified algorithms in terms of three 

basic categories of functionality. Limitations on applicability and appropriate metrics for 
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each were also discussed in this section, as were measures of Autonomous Platform Be-

havior Efficiency. These measures serve to describe the ability of the algorithm to sup-

port operations within the HSC system. The third section of this chapter discussed two 

categories of human performance measures. Human Behavior Efficiency addresses the 

operator’s active engagement of the interface, while Human Behavior Precursors measure 

the passive influences that affect this engagement. The final section of the chapter dis-

cussed overall measures of the collaboration between the human and the automated sys-

tem. Together, this set of five metric classes allows for an analysis of the performance of 

the system as a whole (Mission Efficiency), as well as the performance of individual sub-

components (the remaining four classes). As noted in this chapter, the specific definition 

of metrics within these classes is dependent on the characteristics of the automated plan-

ner and the domain in which the system functions. The next chapter will provide a de-

scription of the representative system used in this thesis, the Deck operations Course of 

Action Planner. DCAP is a representative P/RA HSC system requiring the interaction of 

a human operator and an embedded planning algorithm to reschedule operations on the 

aircraft carrier deck. 
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3. THE DECK OPERATIONS COURSE OF ACTION PLANNER 

(DCAP) 

The DCAP system was developed for the purposes of exploring planning under un-

certainty for heterogeneous manned-unmanned environments. DCAP is a representative 

P/RA HSC system, as DCAP requires input from both a human operator and an algorithm 

in order to perform scheduling tasks. The system focuses on a simulated aircraft carrier 

deck environment, where numerous crewmembers and aircraft act simultaneously in con-

ducting flight operations (actual en route mission and strike planning are outside the 

scope of this simulation). In this regard, the problem is one of resource allocation – the 

set of aircraft on the deck must accomplish specific tasks that are enabled through the use 

of limited resources, such as launch catapults, elevators, fuel stations, and a landing strip. 

While the DCAP simulation is specific to carrier operations, there is little conceptual dif-

ference between the task allocation performed in this system and that done in airport traf-

fic routing, supply chain management, or other logistics and supply chain management 

problems. 

In DCAP, the operator has the choice of when to engage the system to replan the 

schedule. The operator may choose to do so due to the occurrence of a failure in the sys-

tem (e.g., a catapult fails during launch operations) or due to the operator’s dissatisfaction 

with the current schedule. During the replanning process, the human operator provides 

guidance to the planning and scheduling algorithm through a set of displays. The algo-

rithm returns a proposal for a new, theoretically near optimal operating schedule that in-

corporates the operator’s instructions while also accounting for additional system con-
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straints (e.g., compensating for any failures that are present and ensuring that no aircraft 

runs out of fuel). This proposed schedule is presented to the operator through modifica-

tions to the display in which the inputs were created. This simulation environment also 

includes an embedded vehicle routing system, implementing some collision avoidance 

capabilities. This chapter describes the simulation environment and the DCAP system 

components. 

3.1. THE SIMULATION ENVIRONMENT 

The DCAP simulation environment is intended to replicate operations on United 

States aircraft carriers. The deck environment is identical in layout to the current fleet of 

Nimitz-class carriers and is shown in Figure 6.  

 
Figure 6. Basic Areas of the Aircraft Carrier Deck. 
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There are four forward facing catapults, oriented in forward and aft pairs. Within each 

pair, aircraft launch from the catapults in an alternating fashion; between the pairs, air-

craft may launch simultaneously. After launching, aircraft proceed to a mission area. Af-

ter mission completion, aircraft return to a holding pattern, known as the Marshal Stack 

(MS), several miles away from the ship. Aircraft remain in the holding pattern until they 

are given clearance to land. When clearance is given, aircraft exit the Marshal Stack indi-

vidually with consistent spacing. On landing, aircraft must catch one of the restraining 

cables with a “tailhook,” which extends backwards from the bottom of the aircraft. If the 

tailhook does not catch a wire, the aircraft must cycle back to the holding pattern before 

attempting a second landing. It can also be seen in Figure 6 that the aft catapults (Cata-

pults 3 and 4) are collocated with the landing strip, applying an additional constraint to 

operations. This area can be used for either landing or launching aircraft, but not both. A 

time penalty is also incurred when changing the deck configuration between launch and 

landing, as the landing cables must be replaced or removed by personnel on the deck. The 

simulation includes four different generic aircraft forms, modeled from realistic plat-

forms. These four vehicles are variations on fast/slow and manned/unmanned aircraft and 

are listed in Table 4.  

Table 4. Types of aircraft modeled in the DCAP simulation. 
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Fast aircraft have higher flight speeds and require weapons to be loaded before taking 

off. They also have lower endurance (total possible flight time) than the slow aircraft. 

Slow aircraft have lower maximum flight speeds, so they have a far lower fuel consump-

tion rate. Both UAV types have longer endurances than their manned counterparts, with 

the SUAV having the highest endurance overall. The FMAC has the lowest endurance 

but represents the largest proportion of the fleet.  

Despite these differing characteristics, all aircraft taxi across the deck at the same 

speeds, roughly equivalent to human walking speed. This is a safety constraint on opera-

tions; taxi speed is limited due to the high number of crew on deck (typically over 100 

individuals on the 18,210 m2 deck).  Aircraft are the driving elements within the system 

schedule; every other entity on the deck, including crew, can be seen as resources utilized 

by the aircraft to perform tasks. In the simulation, aircraft tasks describe the high-level 

actions of the aircraft, such as “Taxi to parking spot” or “Takeoff from Catapult 2.” Tasks 

are not given defined start and stop deadlines as system complexity and constraints may 

not permit actions to occur at precisely defined times. For example, as the schedule exe-

cutes, variations in process times and traffic congestion on deck lead to delays in the 

schedule. A task that was originally given a start time of t might only be able to begin at t 

+ n due to limitations on the rate of fueling, transit, and other actions1. Instead, advance-

ment to the next task is based on satisfying state conditions (e.g., the taxi task ends when 

the aircraft reaches the desired final location). This accounts for the variety of interac-

tions that constrain operations on deck, such as the replanning of taxi routes, delays due 

                                                
1 Planners (human or algorithm) are not allowed to command changes in task execution rates. The rate 

at which a task occurs is either a set property of the resource or an inviolable safety constraint (e.g. taxi 
speed for aircraft). 
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to lack of crew escorts, or constraints on launching aircraft simultaneously at adjacent 

catapults. Additionally, in the simulation, several tasks are given variable processing 

times sampled from Gaussian distributions2 in order to model the variations seen in real-

life operations.   

As noted earlier, crewmembers are resources for aircraft to utilize, and their presence 

is required for a number of operations. Seven different subsets of crew are modeled in the 

simulation, each represented by the color of their uniform in the real world (Table 5). 

Table 5. List of crew groups (by color) and roles. 

 

In the DCAP simulation, each aircraft requires 1 yellow-, 1 brown-, and 2 blue-

shirted crewmembers to be present in order to taxi, a set of 5 green-shirted crewmembers 

present to operate a given catapult, and ten (the same ten assigned to Catapults 3 and 4) 

present to operate the landing cables3. Additionally, some wheeled vehicles – Deck Sup-

                                                
2 Mean times of operation and distributions for fueling, landing, and takeoff procedures were taken 

from interviews with subject matter experts including nearly two dozen instructors at a U. S. Naval training 
base, each with several years of experience in deck operations. See Appendix A for further information on 
these distributions. 

3 In actual operations, only three crewmembers are required for the landing cables. This constraint was 
modified within the simulation to serve a secondary function of moving these crew out of the landing zone 
to prevent landing conflicts.  
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port Vehicles – also exist in the simulation, just as in the actual deck environment. In re-

ality, these vehicles would be tow trucks used for relocating aircraft. In this simulation, 

these are modeled as futuristic unmanned weapons loaders, which assist red-shirted crew 

in performing their tasks on deck.4 The movement of these entities (aircraft, crew, and 

Deck Support Vehicles) is animated for the user within a main display window, termed 

the Carrier Display window; Figure 7 shows a close-up view of the deck from this win-

dow. The Carrier Display serves as the foundation around which the remainder of the 

DCAP system is built. The next section will detail the specific display elements in the 

system. 

 
Figure 7. View of the Carrier Deck, showing crew, Aircraft, and Unmanned Weapons 

Loaders. 

3.2. DISPLAY ELEMENTS 

The DCAP system utilizes a set of display elements to display information about the 

current operating schedule, aircraft states, and system failures to the operator. The opera-

tor then interacts with the automated system in order to create at a feasible plan of opera-

tions that he or she finds acceptable. Bruni et al. provide a model for this collaborative 
                                                
4 This difference was influenced by the goals of the overall research program and testing the inclusion 

of unmanned systems being included in the Naval environment. 
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human-automation decision making, defining both the process (Figure 8) and roles for 

entities in the system [111, 112]. 

The process begins with the acquisition of data from the world (Data Acquisition 

block), which is then used by the Generator in a Data Analysis process. The result of this 

data is used in an Evaluation step. This is guided by a Moderator who describes elements 

of the solution to the Generator, makes sub-decisions that require refinement of the solu-

tions, and may request further data analysis. When the Moderator has created an accept-

able solution option (or set of options) it is sent to the Decider for approval. The solution 

is then either accepted or rejected.  

 
Figure 8. Model of Human-Automation Collaborative Decision Making [111]. 

Applying this model to DCAP, the algorithm plays the role of solution Generator, 

while the human operator plays the roles of Moderator and Decider. This model of inter-

action influenced the creation of three separate interface configurations for the DCAP 

system – an Information Display configuration (Data Acquisition), a Plan Creation con-

figuration (Data Analysis and Request and sub-decisions for the Moderator), and a Pro-

posal Review configuration (Evaluation and Veto for the Decider). A Hybrid Cognitive 

Task Analysis (hCTA) was used to generate specific function and information require-

ments for each of these three interfaces. The hCTA process involves the creation of theo-
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rized process flow diagrams of high-level operator actions within the system (e.g., 

“Monitoring” or “Replanning.”). These process flow diagrams include segments for op-

erator processes, decisions, assumptions, and iterative loops. From the decision blocks, 

decision trees can be created that further detail the decision making process, illuminating 

the specific information required through the decision making process [113].  

The result of the DCAP hCTA process was a set of functional and information re-

quirements that guided the development of three different display configurations5. In the 

Information Display configuration, the display serves as an information acquisition and 

display tool to support operator monitoring of the system and the decision on when to 

create a new schedule (“replan”). This configuration directly supports the operator in the 

Data Analysis +Request step. The second configuration, the Plan Creation configuration, 

allows the operator to specify inputs and constraints for the new schedule to the algo-

rithm, supporting the operator in the role of Moderator. The third and final configuration, 

the Proposal Review configuration, supports the operator in their role as the Decider, 

while also allowing the user to return to the Moderator stage to alter or to provide addi-

tional inputs to the algorithm. The following subsections will address each of these dis-

play configurations individually.  

3.2.1. Information Display Configuration 

The Information Display configuration is the main configuration of the interface 

(Figure 9). The Carrier Display shows the current location of all vehicles and crew on 

deck.  This frame can show either a close-up view of the deck (Figure 10), or a zoomed 

                                                
5 Details concerning the DCAP hCTA can be found in Appendix B. A tutorial on using the interface 

can be found in Appendix C. 
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out view for monitoring flight operations (Figure 11). The Marshal Stack Display (Figure 

9) shows the current list of aircraft waiting to land and the landing order. Individual air-

craft schedules appear in the Aircraft Schedule Panel (ASP), a vertical list on the right 

side of the screen (Figure 9). The Deck Resource Timeline (DRT) at the bottom of the 

screen shows the allocation of tasks for the four catapults and the landing strip (Figure 9). 

These two sections of the interface also convey information on aircraft and deck resource 

failures to the user. The remaining features of the interface are supporting features, such 

as sort options and legends. The user initiates replanning by pressing the “Request Sched-

ule” button at the upper right corner of the screen. This shifts the display interface to the 

Plan Creation Configuration.  

 
Figure 9.  Information Display Configuration of the DCAP Interface 
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Figure 10. Full image of Carrier Display, "Deck View.” 

 
Figure 11. Full image of Carrier Display, "General Overview." 
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3.2.2. Plan Creation Configuration 

The Plan Creation configuration allows the user to define weights for the planner’s 

objective function as well as a set of additional constraints on the solution. The creation 

of objective function weights is done by ranking the relative priority of a set of personnel 

groups within the environment (e.g. deck aircraft or crewmembers). For example, in the 

aircraft carrier environment, the mission focus alternates between launching and landing 

aircraft. Planning priorities can be continually adjusted to reflect these changes. At other 

times, concerns for the workload of the crew and support vehicles on deck may arise and 

further modify mission priorities. Having a single, consistent definition of priority levels 

does not effectively capture the complexity of the environment.  

Constraints are created by assigning priority ratings to specific aircraft, then defining 

a desired schedule for each aircraft. These two actions (ranking personnel groups  and 

assigning aircraft priority designations) can be done in any order, but both must be done 

before the automated planner can begin its computations. This section will describe the 

ranking of the personnel groups first, and then will describe the definition of individual 

aircraft priority.   

3.2.2.1. Relative Priorities in the Variable Ranking Tool 

Entering the Plan Creation Configuration first allows the operator the option to bring 

up an additional frame – the Variable Ranking Tool (Figure 12) – to define a set of priori-

ties for four personnel groups on deck. These four groups are defined to be Airborne Air-

craft (AA), Deck Aircraft (DA), Crew Working on deck (CW), and Deck Support vehi-

cles (DS).  
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The goal of this ranking process is to allow the operator to 

specify the relative importance of each of these groups to the 

planning algorithm and is done via a drag-and-drop interface us-

ing five levels of priority. Including this as a step in the plan 

creation process allows the operator flexibility in modifying the 

algorithm’s objective function in light of changing conditions on 

the aircraft carrier deck. This ranking can occur in any manner 

the operator desires – placing variables on separate levels, all 

on a single level, and any variation in between. The level of 

ranking corresponds to a numerical weight for the objective 

function – the highest ranked variables receive a weight of 5, 

the lowest ranked receive a weight of 1. The operator clicks “Submit” to save the person-

nel group rankings and transmit them to the algorithm.  

3.2.2.2. Individual Priorities in the Aircraft Schedule Panel 

This configuration also allows the user to specify aircraft-specific constraints in the 

Aircraft Schedule Panel (ASP, Figure 12). Pressing “Request Schedule” causes check-

boxes to appear next to each aircraft box in the ASP. Clicking a checkbox designates the 

corresponding aircraft as a priority consideration for the automated planner, as seen in 

Figure 13. Additionally, this action causes the aircraft timeline to split horizontally into 

halves. The upper half displays the aircraft’s current operating timeline, while the bottom 

half can be manipulated by the operator and shows a projected schedule based on the op-

erator’s preferences. Figure 13 provides an example of an aircraft that has been desig-

nated as having priority status (the checked box on the left) with a suggestion to signifi-

Figure 12. Ranking 
interface for the four 

system variables. 
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cantly delay operations (the bottom timeline has been moved to the right). In this figure, 

the Predator UAV is about to begin taxi operations on deck in preparation for mission 

(the upper timeline). In the bottom timeline, the operator has requested that this aircraft 

delay these operations for an additional 15 minutes. 

 
Figure 13. Example of priority definition and suggestion of an operating schedule for an 

aircraft in the ASP. 
 
The operator has the flexibility to specify as many or as few priority aircraft as de-

sired, and may adjust the schedules of all or none of these aircraft. Once all desired 

changes are made, the operator presses “accept” to submit this information to the auto-

mated planning algorithm. The inputs from the VRT and ASP are then utilized simulta-

neously. The overall schedule is optimized according to the weights from the VRT while 

also satisfying the constraints on aircraft schedules. After the automated planning algo-

rithm has finished its computations, the proposed schedule is returned to the display ele-

ments and shown in the Proposal Review Configuration, discussed in the next section. 

3.2.3. Proposal Review Configuration 

After finishing its computations, the automated algorithm returns a proposed schedule 

to the system to be displayed for operator approval (Figure 14).  
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Figure 14. Proposal Review configuration. 

The proposed schedule is shown using modifications of the basic display ele-

ments. The convention used is similar to that of the Plan Creation Configuration, in 

which the human operator is allowed to make suggestions in the lower half of each air-

craft’s timeline while the upper continues to show the current operating schedule. In the 

Proposal Review Configuration, aircraft timelines in the ASP remain split into upper and 

lower halves. The upper still continues to show the current operating schedule, but the 

lower now shows the algorithm’s proposed schedule for this aircraft. Additionally, a sec-

ond Deck Resource Timeline appears below the first, utilizing the same convention – the 

upper timeline shows current operations while the lower shows the proposed schedule. 

This allows the human operator to easily identify the differences between current and 

proposed schedules for each of these timelines. 
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An additional display window in this configu-

ration is the Disruption Visualization Tool (DVT, 

Figure 15). This configural display [114-116] dis-

plays comparisons of active operating time for the 

four variable groups (Airborne Aircraft, Deck 

Aircraft, Crew Working, and Deck Support vehi-

cles). Each quadrant of the diamond maps to the 

ratio of active time for the proposed schedule to 

the active time required for the current schedule 

for an individual variable group. The dashed line denotes a ratio value of one – no change 

occurred between the proposed and current schedules. Lower ratios (smaller green trian-

gles, whose edge is inside the dashed line) imply that the algorithm was able to schedule 

tasks for that group more efficiently. Higher ratios (larger red triangles, whose edge is 

outside the dashed line) imply that the algorithm was unable to do so, due either to opera-

tor specifications or a degraded system state (such as an accumulation of delays in the 

schedule). For the image in Figure 15, the proposed schedules for both the Airborne (up-

per left) and Deck Aircraft (upper right) are more efficient than the current schedules. 

The proposed schedule for the Crew (bottom left) is much less efficient, while the pro-

posed schedule for the Deck Support vehicles is only marginally less efficient. This dis-

play does not include error and warning messages, such as exceeding the total acceptable 

working time, and is only meant to provide a simple, easy-to-understand depiction of 

relative cost of the new plan. Such warning and alerting displays are left for future work. 

Figure 15. Disruption  
Visualization Tool (DVT). 
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The goal of the Proposal Review Configuration is to display sufficient information to 

the operator to determine whether the proposed schedule should be accepted, modified, or 

rejected. When the user decides that the plan is worthy of acceptance, the proposed 

schedule and the system reset to the Information Display configuration. The preceding 

sections have discussed the actions taken by the operator, but have not discussed the 

automated algorithm and how it handles these inputs. A brief discussion of this is pro-

vided in the next section. 

3.3. THE AUTOMATED PLANNER 

The current automated algorithm in use in the DCAP system6 is an Integer Linear 

Program (ILP) [45]. Generally, Linear Programming (LP) algorithms function by mini-

mizing a given cost function while simultaneously satisfying a set of constraints defined 

for the problem space. The cost function is generally a summation of a set of variables, 

each assigned a different scoring weight. Constraint satisfaction is typically modeled by 

defining an upper bound for several summations (e.g., sum of all x should be less than 1). 

An example ILP formulation appears below: 

   

€ 

minimize cT x  
   

€ 

subject to Ax = b (1) 
     

€ 

x ≥ 0 
  
 

where cT is a matrix of weighting values and x is a matrix of system variables. The vari-

ables A and b are matrices used to define constraints in the system. In the case of DCAP, 

cTx is a function that minimizes total operational time. This was selected since minimiz-

                                                
6 The DCAP system is modular with respect to the automated algorithm. Any algorithm can be utilized 

in the system, as long as it is adapted to accept the appropriate inputs and outputs. Future testing and vali-
dation will utilize MDPs and Queuing Network-based policy generators.  
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ing active time also minimizes fuel consumption (fuel is a limited resource) and a maxi-

mization of safety (less time in operations implies fewer chances for accidents to occur)7. 

The matrix cT is populated by the rankings in the Variable Ranking Tool (Airborne Air-

craft, Deck Aircraft, etc.). The corresponding entries in x contain the total active time of 

each variable group (i.e., the total man-hours of labor for Deck Aircraft). The matrices A 

and b consist of additional weights on x and bounds on values, respectively. A constraint 

applied to a single aircraft’s fuel level at landing may take the form of 

     

€ 

x ≥ 0.20 (2) 

where A is equal to 1 and b is equal to 0.20 (20%). This constraint dictates that the air-

craft’s fuel level at landing (a member of x) should be at least 20% of the maximum fuel 

level.  This would be an example of a “hard” constraint utilized by the planning algo-

rithm8. 

Inputs from the Aircraft Scheduling Panel are used as “soft” constraints on the sys-

tem. The heavily constrained nature of the system implies that an operator’s desired 

schedule for an aircraft may not be possible, as changes to a single aircraft’s schedule 

could affect the entire system. To account for this, the planning algorithm treats the sug-

gested schedule as a soft constraint – the algorithm attempts to minimize the total differ-

ence between the desired task times (as input by the user) and those returned in the new 

schedule solution. Treating this as a hard constraint would force the system to incorporate 

                                                
7 This concern is also reflected in interviews with Naval personnel. When schedules degrade and re-

quire replanning, the personnel stated that their main concern is executing aircraft tasks as fast as possible 
while maintaining safe operations. 

8 Hard constraints should never be violated by the planning algorithm. For instance, if the specification 
is to remain less than or equal to 0.20, the value should never reach 0.21. Soft constraints are more flexible, 
guiding the algorithm to a certain objective but not requiring the objective to be satisfied. As noted in the 
test, one form of this is to minimize a value without placing bounds on the value. 
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these suggestions exactly as specified, which may not be possible due to the complexity 

of the system and the dynamics of the environment. The user, unable to accurately predict 

the evolution of the system, would then be suggesting a series of infeasible schedules to 

the algorithm. Minimizing the overall difference in start times between the suggested and 

the returned schedule allows the algorithm to provide a feasible schedule that adheres as 

closely to the original schedule as possible. Although the system does not currently high-

light instances of infeasibility to the user, this will be a topic of future work.  

A formal testing of the algorithm on several sample problems, as well as comparisons 

to additional well-known LP solvers, can be found in [45]. While the measures included 

in Banerjee et al. [45] suffice for analyzing the performance of the algorithm on its own, 

this testing must be repeated once the algorithm is integrated with the P/RA system. This 

is due both to a change in the specific problem domain, which has characteristics differ-

ent from the test problem, and to the inclusion of the human operator in the system, 

whose inputs of priorities and constraints will affect algorithm performance. An analysis 

of algorithm performance under these circumstances appears in Chapter 5.3. 

3.4. CHAPTER SUMMARY 

This chapter has provided a description of the simulation environment, described the 

layout of the interface and how an operator interacts with the system to create a new plan, 

and provided a brief description of the current automated planning algorithm. The goal of 

this chapter was to describe the characteristics of the environment and the methods of 

human interaction in order to motivate the metrics and testing program developed for the 

DCAP system. The following chapter describes the definition of these metrics.  
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4. PERFORMANCE VALIDATION TESTING 

In focusing on validating the performance of the system, and specifically the ade-

quacy of the algorithm in supporting the system, a comparison between the DCAP Hu-

man-Algorithm (HA) planning system and its real-world counterpart is required. This 

comparison is difficult to perform due to limitations in access to detailed operational logs 

in the aircraft carrier environment, as well as differences between the simulation envi-

ronment and real-world operations. This latter confound is difficult to avoid, as DCAP is 

a revolutionary system – it has no real-world predecessor and thus must be modeled in a 

simulated environment. However, a comparison to real-world operations can still be per-

formed by comparing the performance of DCAP’s HA-generated plans to plans generated 

by real-world Subject Matter Experts (SMEs) that work in the aircraft carrier environ-

ment. These SME-based plans are generated without the assistance of the planning algo-

rithm and are referred to as Human-Only (HO) plans. By executing these HO plans 

within the DCAP simulation environment, the decision-making strategies of the users are 

preserved while also ensuring that these plans operate under the same environmental con-

straints and limitations (due to the simulation environment) as the HA-generated plans.  

This chapter will first provide an overview of the testing protocol, which utilizes a 

single Expert User who applies a set of SME heuristics to guide his or her interactions 

with both the HO and HA planning conditions. This section will also provide definitions 

for the scenarios used in the testing program, as well as a statistical power analysis to de-

termine the number of required trials. The final sections detail the measurement metrics 

defined for the system and the testing apparatus utilized in this experimental program. 
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4.1. TESTING PROTOCOL  

In order to compare the performance of the DCAP system to the human-generated, 

SME-based plans, a series of realistic test scenarios was created. As one major purpose of 

the DCAP system is to replan schedules in the case of a disruptive failure of aircraft or 

deck resources, each scenario included at least one form of failure. Additionally, as test-

ing across varying complexity levels is an important aspect of algorithm validation [24, 

25], three scenarios addressing different levels of complexity were designed and are dis-

cussed in Chapter 4.1.2. Applying the human-generated, SME-based (the Human-Only, 

or HO, planning condition) planner and the DCAP planner (the Human-Algorithm, or 

HA, planning condition) to these scenarios allows for a relative comparison performance 

of the two, but provides no objective comparison point to ground the analysis. A third 

planning condition – the no-replan Baseline condition, B – provides this perspective. In 

this planning condition, each scenario happens as scheduled without replanning. This 

provides an objective, independent measuring point for establishing planner performance 

and internal validity9 within the testing scenarios. In the case of the latter, there is no 

guarantee that the Baseline schedules, as designed, are near optimal. If the Baseline 

schedules are not near optimal, the possibility exists that the HO and HA planners may 

submit schedules that outperform the Baseline in critical metrics. Measuring all three 

cases allows analysts to determine the level of validity of the Baseline cases as designed, 

and poor results may lead to changes in the testing scenarios. 

                                                
9 An experiment exhibits internal validity if the tests performed truly measure the variables of interest 

and the results cannot be produced from other spurious, uncontrolled factors.   
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In conducting these tests, the inclusion of multiple users – even if all are guided by 

the same SME planning strategies – causes a confound in the examination of the per-

formance of the planning algorithm. In this case, it becomes difficult to analyze the per-

formance of the algorithm on its own, as variations in user input and strategies may di-

rectly cause variations in algorithm performance. The utilization of a single individual 

minimizes the variability in interaction that would be seen with a large group of human 

test subjects and allows for a more precise inspection of algorithm performance in the 

DCAP system. Even so, a single individual’s actions may vary among different trials. In 

order to remove these variations, the Expert User’s actions were scripted and based upon 

a defined set of SME Heuristics, developed from interviews with Naval personnel. These 

are detailed in the following section. 

4.1.1. Subject Matter Expert Heuristics 

Throughout the design process of the DCAP system, a variety of Naval personnel 

were consulted. This included over two dozen individuals, encompassing former Naval 

aviators, a former member of an Air Wing Commander’s planning staff, and two com-

manders of a training base for deck crewmen. In meetings that occurred in person, par-

ticipants were presented with example scenarios that could occur in real-life operations 

and were asked what their responses to the situations would be. Through these guided 

interviews, the DCAP research team was able to identify relative consistency in solution 

generation despite a lack of standardized training for replanning carrier operations [117]. 

These rules, or heuristics, are shaped by human experience and are used to simplify the 

problem at hand, allowing users to come to solutions quickly [13, 118, 119]. The list of 
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heuristics appears in Table 6, grouped according to three general categories (Generic, 

Deck, and Airborne) but not in order of importance.  

Table 6. Aircraft Carrier expert operator heuristics. 

 

General heuristics are applied to any and all replanning scenarios. These General 

heuristics include – minimize changes in the schedule (Heuristic 1), work quickly and 

safely (Heuristic 2), and halt operations if any human being is placed in immediate physi-

cal danger (Heuristic 3).  

For Deck heuristics, the concerns are to balance workload on deck (Heuristic 4) due 

to concerns of crew workload and the maintainability of the deck equipment, to ensure 

maximum flexibility in operations by keeping all resources available, if possible (Heuris-

tic 5), and to keep orderly motion on the deck by focusing movement in the interior of the 

deck (Heuristic 6).  

Airborne heuristics deal with the ordering of aircraft in the landing order (Heuristic 

7), where they should be parked after landing (Heuristic 8), and how to handle failures 

for airborne aircraft (Heuristic 9). Applying Heuristic 9 to an airborne aircraft requires 

understanding the nature of the failure and its criticality. True emergencies must be dealt 

with immediately, as they endanger the pilot and the aircraft. Urgent emergencies are of 
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concern, but if compensating for these failures causes further schedule degradation or re-

quires numerous changes on deck, operators may delay action until a more satisfactory 

time.  

These expert heuristics were reviewed by the previously-interviewed Naval personnel 

in the form of a teach-back interview [120]. That is, the interviewees were presented with 

a problem scenario, to which the interviewer applied the heuristic in question. The inter-

viewer would describe the heuristics and what their resulting plan would be. The inter-

viewee would then validate proposed action, possibly suggesting further details or a 

slight differentiation in the heuristic. The final set of heuristics thus allows a non-expert 

user to generate approximately the same solutions as a more experienced subject matter 

expert.  

4.1.2. Scenario Definition 

Complexity is known to cause variations in algorithm performance, due in part to 

the brittleness inherent to automated algorithms [9]. As such, testing across a range of 

complexity is considered a necessity for the full validation of an algorithm [24, 25], even 

if this only establishes bounds on algorithm operation. The complexity of a system can be 

described either objectively (through some standardized, logical method) [121-123] or 

subjectively (through the views of separate individuals) [124-126]. Scalability [127], par-

ticularly load scalability, can also be used as a form of complexity for the system. This 

involves testing over a range of load sizes (for DCAP, the load size is the number of air-

craft). However, due to physical space constraints, the aircraft carrier environment has a 

hard upper bound on the number of aircraft (as well as crew and deck support vehicles) 

that can exist at any given time. Subjective evaluations also may vary widely; therefore 



 70 

an objective description based on the number of applied SME heuristics was used in or-

der to provide a stable, common definition of complexity. The following subsections de-

scribe the three scenarios defined for the testing process (Simple, Moderate, Complex) 

and list the applicable heuristics required for each (a total of 4, 5, and 7, respectively). A 

description of the actions taken by the user in replanning for these scenarios appears in 

Appendix D. 

4.1.2.1. Simple Scenario 

The Simple scenario models the occurrence of a catapult failure on deck during 

launch operations and has four applicable expert user heuristics, detailed below. Twenty 

aircraft (2 SMAC, 2 SUAV, 12 FMAC, 4 FUAV) are fueled and have weapons loaded 

while parked on the deck. Aircraft then proceed to launch catapults, queuing in lines of 

no more than three (similar to real operations) at each launch catapult. After launching 

from the catapult, aircraft proceed to a mission area.  

Aircraft launch assignments are initially distributed across catapults. Catapult 1 re-

mains inaccessible for the entirety of the scenario due to several aircraft parked in the 

immediate vicinity. Exact times are not predictable due to the stochasticity in processing 

times of fueling and launching aircraft, as noted earlier in Chapter 3. While estimates of 

mean time and standard deviation for each these Gaussian processing times can be ob-

tained and summed to form a new Gaussian model, additional variability and stochastic-

ity exists due to the route planning system. The route planner’s actions are guided by the 

location of aircraft at each point and cannot be adequately modeled as a Gaussian distri-

bution. As such, the processing times can be highly variable and do not exhibit a standard 

distribution form. 
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A failure occurs in the system 555 seconds after simulation start (total scenario length 

approximately 1800 seconds), occurring in the window of time after the launch of the 

SUAV aircraft from Catapult 4, but before the launch of the SMAC aircraft from Cata-

pult 3. This failure incapacitates Catapult 3 for the remainder of the simulation. Replan-

ning after this failure should address the reassignment of aircraft to the remaining acces-

sible and operational catapults. The scenario terminates when all aircraft have departed 

the carrier deck and reached their mission location. 

This scenario is identified as Simple as replanning for the system requires the applica-

tion of only four expert user heuristics. Heuristics 1 (Minimize changes to the schedule) 

and 2 (Cycle aircraft quickly, but maintain safety at all times) apply to most situations. 

Additionally, Deck heuristics 4 (Maintain an even distribution of workload on the deck) 

and 6 (When moving aircraft on deck, maintain orderly flow through the center of the 

deck) also apply. This results in SMEs moving all aircraft from the failed Catapult 3 for-

ward to Catapult 2 while also attempting to balance the number of aircraft at the two re-

maining functional catapults (Catapults 2 and 4). The naïve user action might simply 

move aircraft to the closest catapult; in this case, aircraft at the failed Catapult 3 would be 

sent to Catapult 4. This not only overloads Catapult 4, but it is also more difficult for the 

crew to manage the turning and movement of the aircraft aft than to taxi forward. In the 

minds of the SMEs, moving the aircraft forward minimizes the complexity of and risk 

associated with reassigning aircraft catapult assignments on the deck. 
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4.1.2.2. Moderate Scenario 

The Moderate scenario involves the application of five expert heuristics and models a 

recovery task. In this scenario, all aircraft begin at their mission location and immediately 

begin returning to the Marshal Stack to land. This scenario also utilizes twenty aircraft (2 

SMAC, 2 SUAV, 12 FMAC, 4 FUAV), which are timed to enter the Marshal Stack with 

a very tight spacing based on Rule 7 in the expert heuristics (populate the Marshal Stack 

according to fuel burn rate, fuel level, and maintenance requirements). FMAC aircraft 

entered first, followed by SMAC aircraft, then FUAV aircraft, then SUAVs. Two failures 

are introduced just before aircraft enter the Marshal Stack – an FMAC has a hydraulic 

failure, while an SMAC has a fuel leak.  Replanning should lead to a reordering of air-

craft in the Marshal Stack that ensures both aircraft land before encountering a limit vio-

lation on their hydraulic fluid and fuel, respectively. Replanning for this scenario should 

also address Rules 1, 2, 3 (The safety of pilots and crew overrides all, even if it requires 

stopping operations momentarily) and 9 (Differentiate between “True” emergencies, 

which must be handled immediately, and “Urgent” emergencies, which could be delayed 

if needed). In this case, the SMEs move the SMAC (fuel leak) forward in the Marshal 

Stack to minimize the risk of this aircraft running out of fuel. However, the nature of the 

hydraulic failure increases the possibility of the FMAC crashing on landing. This would 

disable the landing strip for an extended period of time while crew cleared the wreckage 

and prepared the landing strip for operation. Moving the FMAC backwards in the Mar-

shal Stack allows for additional aircraft to land and thus minimizes the potential reper-

cussions of a crash, if one occurs. The naïve user may not understand this constraint and 
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may instead send both failed aircraft forward in the Marshal Stack, increasing the chance 

of causing major disruptions in task execution for the remaining aircraft. 

4.1.2.3. Complex Scenario 

The Complex scenario models aspects of a mixed launch/landing event that requires 

the application of seven expert user heuristics. The two previous test scenarios focused on 

only one aspect of the launch and landing (recovery) of aircraft in the aircraft carrier en-

vironment. The Complex scenario focuses on both aspects, addressing a case where 

emergency launches are requested in the midst of landing operations. This scenario be-

gins similarly to the Moderate scenario, with twenty aircraft (2 SMAC, 10 FMAC, 6 

FUAV) returning from mission. The order of entry is slightly different from that of the 

Moderate scenario; here, FUAVs enter the Marshal Stack first, followed by FMACs and 

SMACs. In the midst of return operations, a supervisor requests the launch of additional 

reconnaissance aircraft. Also, aircraft begin the scenario with lower fuel levels as com-

pared to the Moderate scenario, which greatly increases the chances of encountering low 

fuel emergency conditions in this Complex scenario.  

In this case, two additional SUAVs launch from the flight deck. In launching these 

aircraft, only Catapults 2, 3, and 4 are available (just as in the Simple Scenario, aircraft 

are parked over Catapult 1, making it inaccessible). Just as this request is fielded, a fuel 

leak arises in a SMAC just arriving in the Marshal Stack. This creates conflicting priori-

ties for scheduling – the Carrier Air Wing Commander (CAG) has requested that these 

aircraft be launched immediately, but the fuel leak must also be addressed relatively 

quickly. However, the use of Catapults 3 and 4 may lead to conflicts with aircraft incom-
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ing to land. Addressing this scenario will require the application of heuristics 1, 2, 3, 4, 6, 

7, and 9 (Table 11). The naïve user solution in this case may be sending one aircraft to 

separate forward and aft catapults (e.g., to Catapults 2 and 4). While this may guarantee a 

faster launch time, any potential delays in the launch at the aft catapult increase the like-

lihood of an aircraft on approach being forced to abandon landing. This incurs greater 

fuel cost and increases the risk associated with this aircraft. The SME solution requires 

two actions – moving the failed SMAC forward in the landing order (to minimize the 

chance of running out of fuel) and sending the launching aircraft to the forward catapult 

(Catapult 2) only. Utilizing only this catapult ensures that, regardless if the time required 

to launch, aircraft on approach do not experience any interference in the landing strip 

area. In this case, efficiency in launching is sacrificed to minimize the risk for the air-

borne aircraft. 

4.1.3. Statistical Power Analysis 

Power tests performed for the DCAP system resulted in a sample size of 30 trials per 

planning condition and scenario combination. This resulted in a total of 270 required tri-

als (30 trials x 3 scenarios x 3 planning conditions), with two-thirds of these requiring 

direct intervention by a human operator. The HO planning condition requires an individ-

ual to apply the SME planning heuristics to the scenario, while the HA planning condi-

tions requires an individual to interact with the DCAP planning algorithm to affect a re-

plan in the system. The final third (the Baseline plan) represents a nominal schedule with 

no failures or need to replan. 
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4.2. DEFINITION OF THE METRICS 

The five metric classes developed by Pina et al. [26, 27] provide the framework for 

defining metrics to measure the performance of the DCAP system. These originally ad-

dressed measures of Mission Efficiency, Algorithm Behavior Efficiency, Human Behav-

ior Efficiency, Human Behavior Precursors, and Collaborative Metrics. As the examina-

tion of the multiple user case is outside of the scope of this research, several metric sub-

classes were removed. Metrics still exist for four of the five classes defined by Pina et al. 

(only Collaborative metrics are removed entirely, due to the use of only a single Expert 

User who is intimately familiar with the system). Detailed definitions of these metrics 

will be discussed in the following subsections. 

4.2.1. Mission Efficiency Metrics 

Pina et al. divided mission performance metrics into three categories of time-based, 

error-based, and coverage-based metrics. For the aircraft carrier environment, these re-

spectively address the Expediency with which operations occur, the level of Safety under 

which they occur, and the Efficiency of task performance. The full list of Mission Effi-

ciency measures appears in Table 7 and is discussed in the subsequent subsections.  

Table 7. DCAP Mission Performance Metrics. 
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4.2.1.1. Safety (Error-based) Metrics 

The Safety category includes measures tracking various possible failure and error 

conditions within the system. There are two sources of explicit failures in the system – 

aircraft-specific failures and deck resource failures. Failures for the deck concern the 

failure of specific items, such as Catapult 1. Aircraft failures occur for one or more air-

craft in the system, currently modeled as some form of fluid leak. Table 8 includes a list 

of possible failures currently modeled in the system.  

Table 8. Possible Failures in the DCAP Simulation 

 

Because fuel and hydraulic fluid are finite resources, the occurrence of a leak requires 

that action be taken to land the affected airborne aircraft before these fluid levels reach a 

critical state. Such aircraft are labeled emergency aircraft. These critical states are defined 

as a 20% of the maximum fluid level. Breaching either of these thresholds (fuel or hy-

draulic fluid) is termed a limit violation. While the planner cannot control the occurrence 

of these failures, the subsequent schedule correction should minimize the occurrence of 

limit violations (a hard constraint on the planner). 
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In establishing the performance of planning corrections for aircraft experiencing fail-

ures, three values can be calculated. The first is the difference between the time of land-

ing and the time of the failure – the Emergency Aircraft Recovery Time (EART), which 

should be minimized. Additionally, the remaining fuel/hydraulic fluid levels and the total 

flight time remaining may also be calculated. The latter values serve as diagnostics of the 

relative robustness of the new plan, depicting how much buffer time was afforded by the 

solution. These metrics should be statistically correlated, in that minimizing EART 

should maximize the level of fuel/hydraulic fluid remaining at landing. The remaining 

fluid level can also be used to determine the remaining excess flight time, describing the 

amount of time the aircraft could have spent in flight before a new schedule was required. 

This third value is likely also statistically correlated to the first two. While a single value 

could suffice for statistical analysis, the inclusion of all three provides additional diagnos-

tic value for the system. 

An additional, non-explicit error condition also exists in the D-CAP simulation. At 

certain times, crew or aircraft may move into the landing zone (LZ) during operations, 

which results in a fouled deck condition for the landing strip. In this state, no aircraft may 

land. Higher values of LZ Foul Time result in increased likelihood of an aircraft being 

“waved off” and forced to return to a holding pattern. If this occurs while an aircraft ex-

periencing a fuel or hydraulic leak is attempting to land, the potential for losing the air-

craft and pilot increases significantly. Thus, while this Foul Time is not a direct failure, 

higher values induce greater probabilities of failures into the system. This value should be 

minimized for recovery scenarios. 
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The focus of this section has been on error-related metrics addressing safety, noted as 

a priority by stakeholders interviewed during this research. This overriding priority led to 

the classification of several metrics as error-based metrics, even though they are time-

based, because of their overriding safety value. There are several additional time metrics 

used in this study, used primarily as diagnostic measures of efficiency. These are dis-

cussed in the following section. 

4.2.1.2. Expediency (Time-based) Metrics 

Time-based measures for the DCAP system address the expediency with which op-

erations are performed. Within the aircraft carrier operations environment, minimizing 

the time required to perform actions minimizes total aircraft fuel consumption while also 

minimizing risks to the crew, aircraft, and ground vehicles active in the system10.  

As a whole, measures for expediency have been previously used as measures of over-

all mission performance and as diagnostic measures for subcomponents and subtasks in 

the system. For the DCAP system, both forms are utilized. The overall Mission Duration 

is calculated as a measure of overall performance. It is defined as the elapsed time from 

the start of the simulation to the point that a terminal end condition (based on the scenario 

definition) is reached. Ideally, the system should execute the schedule in a minimum 

amount of time, launching aircraft as quickly as possible from the deck, or maximizing 

the rate at which airborne aircraft are allowed to land.  

                                                
10 It is the belief of the Naval personnel interviewed in this research that decreasing the active time of 

aircraft, crew, and support vehicles decreases the cumulative probability of that entity experiencing an ac-
cident.  
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For the expediency measures, “Active time” is defined as the total amount of time 

any person or vehicle is actively engaged in a task on the carrier deck. For example, an 

aircraft accumulates active time while it is fueling or is taking off, but not while it is 

parked or otherwise idle. These values can be calculated for individual aircraft, crew, or 

deck support vehicles, as well as summed for the entirety of each group. For crew, lower 

active time values equate to a lower likelihood of injury and a lower level of fatigue. The 

same is also true for ground vehicles, although injuries and fatigue are replaced by main-

tenance issues and fuel constraints, respectively. For aircraft, lower active times imply 

lower fatigue for the pilots and less fuel consumption, as well as a lowered risk of possi-

ble collisions. Aircraft are also given measures of Taxi Time, denoting the amount of 

time aircraft are engaged in taxi tasks, including time spent waiting for crew or clearance 

to move. This is a subset of the Active Time for aircraft and is included as a diagnostic 

measure to determine how well the system has allocated movement tasks on the deck. For 

all of these measures (individual or collective), lower values are desirable.  

Additionally, three metrics measuring system delays are included, influenced by 

Cummings and Mitchell’s wait times for human interaction [35]– Wait Time in Queue at 

Catapult (WTQC), Wait Time in Queue for Crew (WTQCrew), and Wait Time in Queue 

for Marshal Stack (WTQMS). These track the total wait time aircraft incur while waiting 

in the processing queue at a catapult, waiting for a crewmember to arrive and perform a 

task, or waiting in the marshal queue for landing clearance. Higher values of WTQC and 

WTQCrew imply that aircraft are actively burning fuel while waiting for another aircraft 

or crewmember to complete a task. Ideally, aircraft would have only minimum wait 

times, saving fuel. Lower values of WTQMS are also desirable, as this value depicts the 
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total time aircraft are in holding patterns waiting to land, consuming limited fuel re-

sources. If these times are too high, pilots and aircraft are in danger of having insufficient 

fuel to land on the carrier deck.  

The time measurements covered in this section function primarily as diagnostic 

measures of the efficiency of the holistic system. Additional diagnostic measures can also 

be incorporated for the deck resources, specifically for the deck catapults. These meas-

ures of coverage establish how well tasks were allocated between the four catapults dur-

ing the course of a simulation and are covered in the following section. 

4.2.1.3. Efficiency (Coverage-based) Metrics 

Efficiency measures defined for this category address the distribution of tasks in the 

system, measuring the number of launches at each catapult as well as the launch rate 

(launches per mission duration). Due to the nature of the deck environment, it is desirable 

to have a balanced distribution of launch tasks between catapults. Launches cannot occur 

simultaneously for catapults within each of the forward and aft pairs (within Catapults 1 

and 2 or within Catapults 3 and 4, respectively). However, launches can occur simultane-

ously across pairs (i.e., Catapult 3 may launch while either of Catapult 1 or 2 is launch-

ing). This implies that distributing tasks across the catapult pairs may increase launch ef-

ficiency. Additionally, an even distribution of launch tasks within a pair of catapults also 

creates a slight performance gain. If two aircraft are assigned to launch at neighboring 

catapults, the first aircraft to arrive will immediately begin launch operations. The second 

aircraft is allowed to taxi onto the neighboring catapult, saving some time in the takeoff 

process, even though it must wait to begin launch preparations. Due to these characteris-

tics, it is desirable to balance launch tasks between the fore and aft catapult pairs as well 



 81 

as among catapults within a single pair. This assignment strategy should also maximize 

the overall launch rate of the system. Additionally, these measures of launch rate could 

also be applied according to queuing theory and establish a theoretical maximum for 

launch capabilities.  

Combined, these measures of Error-, Time-, and Coverage-based efficiency serve to 

provide descriptive evidence to quantify the differences in performance between planning 

conditions and diagnostic support necessary for determining the mechanisms that created 

these differences. However, these measures only apply to mission tasks, and examine the 

performance of the solution as it is executed. Additional measures are needed to establish 

the effectiveness of the human operator and the algorithm in the schedule creation proc-

ess. Measure for the algorithm fall into the class of Autonomous Platform Behavior Effi-

ciency metrics, which are discussed in the next section. 

4.2.2. Autonomous Platform Behavior Efficiency Metrics 

Measures of Automation Behavior Efficiency address how well the algorithm sup-

ports system operations and includes subcategories of Usability, Adequacy, Autonomy, 

and Self-Awareness [26, 27]. Usability concerns the interaction of the algorithm and the 

human operator through the system interfaces. Adequacy addresses the computational 

efficiency of the algorithm, including speed of computation and error rates. Autonomy 

concerns how well the system works while not experiencing direct human interaction. 

Self-awareness addresses the capability of the algorithm to examine (and possibly cor-

rect) its own performance. The metrics defined for these classes are listed in Table 9 and 

explained in the remainder of this section. For the purposes of this system evaluation, 

only Autonomy and Adequacy are addressed, as the remaining two classes (Self-
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Awareness and Usability) are not applicable. The algorithms currently in use in the 

DCAP system are not self-aware, thus this class of measures cannot be used in testing. 

Usability measures are best applied when using a varied user population; the use of the 

single Expert User would not give adequate information for judging usability, thus negat-

ing the use of this class. However, future evaluations of system usability are planned. 

Table 9. DCAP Automation Behavior Efficiency Metrics [26, 27]. 

 
 

Many potential measures of algorithm Adequacy are interdependent with other meas-

ures since the quality of the returned solution is not solely dependent on the algorithm. 

The priority and constraint inputs by the operator affect the final solutions generated by 

the algorithm, such that neither the operator nor the algorithm is solely responsible for the 

resulting schedule. However, several measures of algorithm adequacy can be developed. 

The number of failures in the algorithm should be tracked in order to establish the reli-

ability and stability of the algorithm. Processing time of the algorithm (Wait Time due to 
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algorithm Processing, WTP) is included, as it is often used in analyses of algorithm per-

formance [24, 25]. 

Measures of Autonomy include metrics that address the efficiency of the embedded 

vehicle router and track the occurrence and duration of proximity violations that may oc-

cur. Figure 16 provides a depiction of the collision avoidance “halo” that surrounds each 

aircraft. The system tracks the number of times the halo is violated and the duration of 

time this violation exists. The actual diameter of the halo is forty-four feet, equal to the 

wingspan of an F-18, the most common aircraft in the Naval fleet. Because the system 

treats aircraft as individual point masses (physical constraints are not currently modeled), 

this measurement was adapted to the other aircraft as well. In Figure 16, the crewmem-

ber’s (blue dot) act of crossing the halo violation line would increase the violation count 

by one. As long as this crewman is within the halo area, time is added to the Halo Viola-

tion Duration (HV-D) measure. Time is no longer added to the duration measure once the 

crewmember exits the halo area. However, if the crewmember reenters the halo area, the 

count is again increased by one and times resumes being added to the duration measure. 

The addition of time to the duration measure is agnostic of the number of crewmembers 

within the halo and is sensitive only to the presence of a violation. 

 
Figure 16. Collision avoidance "halo" for aircraft. Blue dot represents crew, gold dot with 

black ring signifies environment model of aircraft (point mass). 
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4.2.3. Human Behavior Efficiency Metrics 

Human Behavior Efficiency metrics consider the physical and cognitive aspects of 

user interaction with the system displays and controls. Pina et al. [26, 27] divided these 

into two subcategories for Attention Allocation Efficiency (AAE, addressing cognitive 

aspects) and Information Processing Efficiency (IPE, addressing physical aspects). The 

list of Human Behavior Efficiency metrics applied to DCAP appears in Table 10. 

AAE measurements seek to define how the user’s attentional resources are allocated 

during system use. However, because the testing program is utilizing a single Expert 

User, these measures are not applicable. Future testing programs utilizing a variety of 

human users should incorporate these measures. IPE metrics, however, may still be ap-

plied to the system and measure the efficiency with which the operator inputs commands 

into the system. In this case, the actions of the Expert User, who is intimately familiar 

with the system, can be treated as an upper bound for future users. Pina et al. [26, 27] dif-

ferentiated the IPE subclass into measures of Recognition, Decision, Action Implementa-

tion, and Task Efficiencies. The low number of decisions that are made in the DCAP sys-

tem, as well as the use of a single Expert User, negate the first two subcategories of this 

class. The remaining two classes – Action Implementation and Task Efficiency – address 

the physical interaction of the user with the system, establishing how effectively the user 

translates decisions into actions. For DCAP, these metrics were defined to include the 

number of user interactions (mouse clicks or button presses) during replanning, the dis-

tance of mouse cursor travel, and the total time of interaction with the system. For in-

stance, a user that is panicked due to increased time pressure may begin navigating incor-

rect measures in a rush to complete their tasks. Doing so will result not only in an in-
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creased time of activity, but backtracking through incorrect menus will also result in 

more mouse clicks in the interface and more cursor movement around the screen. Con-

versely, a user who is carefully deliberating their actions may also exhibit increased ac-

tivity time, but will likely not exhibit increases in mouse clicks and cursor movement. 

Ideally, the user would make a decision in minimal time and with minimal actions 

(mouse clicks) and cursor movements. 

Table 10. DCAP Human Behavior Efficiency Metrics [26, 27] 

 

The measures in this section have described the active performance of the human op-

erator, but have not characterized how the physical environment and the operator’s men-

tal state affect this behavior. These measures of Human Behavior Precursors are found in 

the following section. 

4.2.4. Human Behavior Precursors 

Human Behavior Precursors include the psychological and physical states that affect 

operator performance. Pina et al. [26, 27] divided cognitive measures into those that ad-

dress operator workload, situational awareness, and self-confidence. While a variety of 

measures of workload can be used [3, 39, 91-94], utilization [89, 95, 128, 129] is a direct, 

quantitative measurement of the time the user interacts with the system. Measures of 

utilization require the knowledge of total user interaction time with the system and total 
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time of system execution. Utilization is then a measure of the percentage of total operat-

ing time in which the user is actively engaging the system. Higher utilization rates often 

result in increased mental fatigue on the part of the human operator, increasing the likeli-

hood of errors in decision-making or task execution. This measure primarily involves 

user physical interaction with the system (e.g., the IPE measures), as detecting cognitive 

interaction is notoriously difficult.  

Table 11. Human Behavior Precursor Metrics 
(* requires naïve users). 

 

As with metrics for Human Behavior Efficiency, the use of an Expert User negates 

certain measurement subclasses, namely Situational Awareness and Self-confidence. 

However, measures from these two classes should be included in future research pro-

grams that include a varied group of human users. 

4.2.5. Section Summary 

This section has discussed the creation of metrics for the analysis of the DCAP sys-

tem across four major categories of Mission Efficiency, Algorithm Behavior Efficiency, 

Human Behavior Efficiency, and Human Behavior Precursors. Measures for Mission Ef-

ficiency address the overall performance of the system as it develops and implements 

schedules for the aircraft carrier environment. The remaining measures address the effec-

tiveness of the human operator and the algorithm in supporting this process, as well as 

addressing the effectiveness of their interactions with each other. These measures are the 
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primary mechanisms with which the performance of the DCAP system will be compared 

to the human-generated SME plans over a series of testing scenarios. These scenarios are 

based on realistic deck conditions, representing three different levels of complexity 

within the environment. The following section will detail the creation of the schedules 

and the determination of relative complexity for each. 

4.3. TESTING APPARATUS 

Testing was performed on a Lenovo Thinkpad W500 laptop (2.80 GHz Intel Core 2 

Duo T9600 CPU, 8 GB RAM, Windows 7 64-bit operating system) using a Logitech 

M510 wireless RF mouse. The DCAP simulation was run in an Ubuntu 9.10 virtual ma-

chine run through VMWare Workstation. Within Ubuntu, the DCAP software (a JavaTM 

application) was executed through the Eclipse Galileo JavaTM IDE. Data were extracted 

by automated features embedded in the Java code. Events were logged at the time of each 

failure, at the time of replan completion, and upon scenario termination. Scenario termi-

nation was also automated to ensure no variation in end conditions. Data files were re-

formatted into ExcelTM spreadsheets, then analyzed in the SPSSTM analytical software 

package. The results of this data analysis will be covered in the following chapter. 

4.4. CHAPTER SUMMARY 

This chapter has discussed the performance validation testing of the DCAP system, 

which focuses on examining the performance of the system in replanning tasks in the air-

craft carrier environment. This chapter began with a discussion of the testing protocol 

defined for this program, including a description of the Expert User used to minimize 

variations in human input into the system. A first subsection explained the set of Subject 
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Matter Expert heuristics that would be used by this Expert User in replanning, followed 

by a subsection defining the three testing scenarios used in system testing, whose com-

plexities were based on the number of SME heuristics required in replanning. A third 

subsection discussed the statistical power analysis that determined the number of requir-

ing trials for the testing program. The second main section of this chapter defined the 

metrics used in establishing the performance of the three planning conditions, with indi-

vidual subsections addressing the main categories of the metric hierarchy. This chapter’s 

final section discussed the testing apparatus used in this experimental program. 
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5. RESULTS AND DISCUSSION 

This chapter provides both quantitative and qualitative analysis of the testing results 

for the no-replan Baseline (B), Human-Only (HO), and Human-Algorithm (HA) planning 

conditions. For these three planning conditions and the three test scenarios (Simple, 

Moderate, and Complex), a total of nine different data sets were generated (gray blocks in 

Figure 17). This chapter compares the performance of the planners within each scenario 

(rows in Figure 17) as well as how planner performance varies across scenario levels 

(columns in Figure 17). 

 
Figure 17. Visual depiction of the analyses performed in this testing program. 

 
 
In total, thirty-nine different measurement metrics were defined for the DCAP testing 

program in Chapter 4.2. In using three planning conditions (B, HO, and HA) across three 

scenarios, a total of 324 possible pairwise comparisons exist. Performing all of these tests 



 90 

would significantly increase the experiment-wise error rate – the chance that the experi-

ment as a whole accepts one alternative hypothesis that should be rejected. This risk can 

be mitigated by reducing the number of individual tests along with lowering the value of 

the significance level α  used in each. An overview of these adjustments is discussed in 

the first section in this chapter, with the remaining sections presenting and discussing the 

results of data collection.  

5.1. REDUCING FAMILY-WISE ERROR 

In performing statistical testing on groups of data, tests can be divided into “families” 

of tests applied to subsets of independent data. For instance, within the DCAP test pro-

gram, the data from each of the three test scenarios forms its own subset – tests applied to 

the Moderate scenario have no relation to the tests performed on data from the Simple 

scenario. In doing so, the family-wise error rate, α fw, is formally defined as the “probabil-

ity of making at least one Type I error in the family of tests when all the null hypotheses 

are true” [130]. As the number of statistical tests applied to the experimental data in-

creases, the likelihood that at least one test in the family experiences Type I Error (ac-

cepting the alternative hypothesis when it should be rejected) also increases. For exam-

ple, utilizing a significance level α  of 0.05 on a single family of statistical tests (each test 

has only a 5% chance of Type I error) does not imply that the chance of any test in this 

family experiencing Type I error is 0.05. For a study with five statistical tests at an α  of 

0.05, the likelihood of at least one test experiencing Type I Error (αew) is 0.23; for 10 

tests, 0.40; for 50 tests, 0.92 [131]. Decreasing the number of statistical tests performed 

or lowering the significance level α  for the remaining tests, or a combination of both, 

will lower this experiment-wise error rate.     
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In order to decrease the chance of family-wise error in each of the three test scenarios, 

two filters were passed over the data in order to reduce the number of statistical tests be-

ing performed. In the first filter, metrics that were considered to have low external valid-

ity11 were removed from consideration. For instance, Wait Time in Queue due to Crew 

(WTQCrew) is useful for determining the efficiency of crew allocation, but the HA plan-

ner does not plan tasks for the crew at this time. Crewmembers are assigned automati-

cally in the simulation, based on their availability. Additionally, stakeholders in the air-

craft carrier environment are less concerned with these measures than they are for other 

metrics, such as Total Aircraft Taxi Time (TATT). A list of the metrics removed and the 

reasons for doing so appears in Appendix E.  

In the second filter, a Principal Components Analysis (PCA) was performed for each 

planner-scenario combination, yielding nine correlation matrices which identify statisti-

cally related data within a given planner-scenario combination. These matrices were ana-

lyzed within scenarios (across rows in Figure 17) in order to identify groups of cross-

correlated metrics (sets of metrics that returned Pearson correlations of 0.7 or greater at a 

p-value of less than 0.001). For each group of metrics that correlated across planning 

conditions, a single metric was chosen for further analysis based on high external valid-

ity. For instance, PCA data for the Moderate scenario revealed that for all three planning 

conditions, Total Aircraft Active Time (TAAT), Total Active Time (TAT), and Wait 

Time in Queue in the Marshal Stack (WTQMS) were highly correlated. TAAT was re-

tained, as it has the highest external validity; operators are highly concerned with the 

                                                
11 External validity here relates to the how the measure correlates with operators’ views of system per-

formance. Interviews revealed that operators do not consider Wait Time in Queue at Catapult, but have a 
high concern for Total Aircraft Active Time (TAAT). There are also levels of external validity; some 
measures are highly significant to operators, while others are useful, but not greatly valued.  
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value of this metric and do not currently calculate WTQMS or TAT. However, this does 

not imply that the two remaining metrics should be discarded. WTQMS is not calculated 

by operators currently, but was retained for its insight into the system’s efficiency in 

landing aircraft. Tables denoting PCA results for each planner-scenario combination and 

the resulting cross-correlations appear in Appendix F. At the conclusion of this process, 

nineteen metrics remained, a list of which is found in Table 12, along with their applica-

ble testing scenarios. 

Table 12. Final list of DCAP Test metrics, with applicable scenarios (check marks, √, 
signify the test is applicable for the scenario). 

 
 

As noted in the table, some scenarios did not require certain metrics. Fuel Violations 

(FV) did not occur in the Simple and Moderate scenarios, but did occur in the Complex 
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scenario; thus, only the Complex case contains a check for FV. The Moderate case did 

not require any aircraft launches, thus no Catapult Launch Rate measures are required. 

For the metrics that remain, there typically exists three statistical comparisons to be per-

formed – B vs. HO, B vs. HA, and HO vs. HA. The only metric that does not require 

three tests is the User Interaction Time metric, because no user interaction was performed 

in the B cases. This results in totals of 34, 40, and 49 metrics for the three scenarios 

(Simple, Moderate, and Complex, respectively). Given this number of tests, the compari-

son-wise significance level for each statistical test, α , can be calculated to preserve an 

overall family-wise significance level, α fw. These values are found in Table 13.  

Table 13. Test significance levels desired for family-wise significance level of 0.05. 

 
 

ANalysis Of Variance (ANOVA) tests were desired for the statistical comparisons 

and require that the data exhibit both normality and homoskedasticity. Data were first 

tested for normality. For data that showed normality, Levene tests for heteroskedasticity 

were performed, with additional transformations attempted if tests showed heteroskedas-

ticity. For data that tested both normal and homoskedastic, parametric ANOVA tests 

were acceptable and were utilized in the analysis. For all other cases, non-parametric 

Mann-Whitney U tests were used to compare distributions. Full outputs of the Kol-

mogorov-Smirnov tests for normality and Levene tests for heteroskedasticity appear in 
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Appendix G and Appendix H, respectively.  The remaining sections in this chapter pre-

sent the results of this statistical testing in tabular form; for brevity, boxplots for this data 

have been placed in Appendix I (Simple scenario), Appendix J (Moderate Scenario), and 

Appendix K (Complex Scenario). 

5.2. WITHIN-SCENARIO RESULTS 

This section presents the results of statistical testing within each scenario. Compari-

sons of performance are drawn between metrics from all three planning conditions (Base-

line, Human-Only, and Human-Algorithm), with a focus on the performance of the HA 

planner. Tables are presented providing the results of statistical testing, with the type of 

test performed and the resulting significance values reported for each test. Additional ta-

bles provide qualitative analyses of the relationships within the data. These two forms of 

analysis aid in the identification of differences in performance between the HA and HO 

planners, which are discussed at the end of each section. In these discussions, the metrics 

are also used to explain differences in the data, revealing not only errors on the part of the 

planner, but also shortcomings in the operator heuristics. 

While there is a large amount of data that can be analyzed, each section focuses pri-

marily on the metrics that support the identification of differences in performance be-

tween the HO and HA planners and their subsequent explanation. The remaining meas-

ures are noted in the Appendices for completeness, but may not be specifically discussed. 

5.2.1. Simple Scenario 

The Simple scenario (a launch scenario) included twenty aircraft launched from the 

carrier deck. During launch procedures, one of the aft catapults failed, requiring the reas-
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signment of launch tasks among the remaining operational catapults. Examination of the 

performance of the planners in this scenario revealed that the Human-Only plans outper-

formed the Human-Algorithm plans, but, as expected, neither was able to reach the same 

level of performance as the Baseline condition. 

The primary descriptive metric for performance in this scenario is Mission Duration 

(MD). Measures for the launch rates of Catapult 2 and Catapult 4 and the total launch rate 

(C2LR, C4LR, and TCLR, respectively) were used in a diagnostic role, aiding in identi-

fying the causes of the HA planner’s poor performance as compared to the HO planner. 

The following sections cover the statistical testing performed on these metrics, a qualita-

tive analysis of the differences in these metrics, and a discussion of the implications of 

the results and how they revealed superior performance on the part of the HO planner. 

5.2.1.1. Results of Statistical Testing 

Table 14 presents a compilation of the statistical testing data for the Simple scenario. 

Within this table, the metric name and its desired magnitude (High or Low) are presented, 

followed by columns detailing the results of statistical testing between pairs of planning 

conditions. These columns list the statistical test applied, the results of the test, and the 

relative difference between the two conditions. Significant values (p < 0.0015) imply that 

the null hypothesis (h0: distributions of the two planning conditions are identical) was re-

jected. The relative difference between two data sets takes one of three forms:  

1. The distributions of Planners 1 and 2 were equivalent (h0 could not be rejected 

in statistical testing). 

2. The median value for Planner 1 was greater than that of Planner 2. 

3. The median value for Planner 1 was less than that of Planner 2.  
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Given these relationships, the superiority of a planner for a given parameter is based on 

the desired magnitude of the metric. For instance, LZFT is desired to be lower; thus, be-

cause B < HO in the Simple scenario, the Baseline has better performance in this respect. 

Reviewing the data in Table 14, it can be seen that all but three comparisons (all for HV-

D) were shown to be significantly different12. Within the remaining statistically signifi-

cant results, the Baseline condition was shown to have superior performance for all 

measures except for certain catapult launch rates. The HO planner was shown to outper-

form the Baseline in measures of C2LR, C4LR, and TCLR, while the HA planner also 

outperformed the Baseline in C4LR (this seemingly counterintuitive result of superior 

launch rates after the occurrence of failures is discussed in the next section). Comparing 

the HO and HA plans, the HA planner was shown to be superior in terms of C4LR and 

UIT, with the HO planner maintaining superiority in all other metrics.  

Table 14. Results of statistical testing for the Simple scenario (* signifies significance at 
α  = 0.0015; NP = Non-Parametric Mann-Whitney U Test). 

B vs. HO B vs. HA HO vs. HA Metric Desired 
Magnitude Test p-value Relation Test p-value Relation Test Relation p-value 

LZFT LOW NP * B<HO NP * B<HA NP * HO<HA 
TATT LOW NP * B<HO NP * B<HA NP * HO<HA 
TAAT LOW NP * B<HO NP * B<HA NP * HO<HA 
TCAT LOW NP * B<HO NP * B<HA NP * HO<HA 

MD LOW NP * B<HO P * B<HA NP * HO<HA 
C2LR HIGH NP * B<HO NP * B>HA NP * HO>HA 
C3LR HIGH - - - - - - - - - 
C4LR HIGH NP * B<HO NP * B<HA NP * HO<HA 
TCLR HIGH NP * B>HO NP * B>HA NP * HO>HA 

HV LOW NP * B<HO NP * B<HA NP * HO<HA 
HV-D LOW NP P=0.005 B=HO NP p=0.906 B=HA NP p=0.535 HO=HA 
UIT LOW NP - - NP - - NP * HO>HA 

 

 

                                                
12 Note that, due to the failure of Catapult 3, comparisons of C3LR were not performed.  
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5.2.1.2. Discussion 

One interesting note from Table 14 is that the HO planner outperformed the Baseline 

in all launch rate values for Catapults 2 and 4 while the HA planner outperformed the 

Baseline only in C4LR, even with the HO and HA planners having an overall longer mis-

sion duration value. While this seems counterintuitive, recall that the Launch Rate 

(launches per minute) is determined by the following equation: 

  
  

€ 

LaunchRate = nlaunches

MissionDuration
 (3) 

where nlaunches is the number of launches assigned to that catapult and MissionDuration is 

the final calculated Mission Duration value. In this equation, increasing the number of 

launches at a single catapult over a given mission duration X will increase the Launch 

Rate of that catapult. An increase in Launch Rate will also occur for Mission Duration 

values slightly greater than X, but this does not continue unabated. If increases in mission 

duration continue unchecked, the value for the launch rate will begin to decrease. For in-

stance, with an initial nlaunches of 5 and Mission Duration of 15 minutes, increasing the 

number of launches by three increases launch rate for all Mission Duration values less 

than 24 minutes. As a result of this, the reallocation of launch tasks by the HO and HA 

planners to Catapults 2 and 4 and to Catapult 4, respectively, provided sufficiently large 

increases in nlaunches to outweigh increases in Mission Duration (Figure 18 and Figure 19). 

However, because the number of launches is the system is fixed at twenty, these increases 

in Mission Duration cause detrimental affects in the Total Catapult Launch Rate (Figure 

20).  
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Figure 18. Simple scenario, Catapult 2 launch rate (launches per minute). 

 
Figure 19. Simple scenario, Catapult 4 launch rate (launches per minute). 
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Figure 20. Simple scenario, Total Catapult Launch Rate (launches per minute). 

In terms of a general performance comparison between the HO and HA planners, the 

most important point is that the HO planner performed better in Mission Duration. This 

measure directly addresses the total time required to launch all aircraft from the carrier 

deck and reach mission, a measure of primary importance in the wake of a launch cata-

pult failure. In this case, catapult launch rates from this scenario also explain the changes 

in Mission Duration – the distribution of launch tasks between all remaining catapults by 

the HO planner resulted in a better total launch rate than the HA planner. In this case, a 

detailed discussion of the relative magnitudes of the individual catapult launch rates is 

not as of much concern as the fact that the HA planner did not assign aircraft to Catapult 

2 in the majority of cases (Figure 18). The HO planner, based on SME heuristics, lever-

aged all available resources in order to achieve a faster processing time than the auto-

mated planner (signified by increases in TCLR in Figure 20).  
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While this review of quantitative data helps to identify the actions of the planner that 

created poor performance ratings, but they are still not sufficiently detailed to determine 

the specific failures in logic of the HA planner. However, this data supports the creation 

of two rival explanations as to why the HA planner made no assignments to Catapult 2.  

In the first explanation, the algorithm optimization may have shown that assigning all air-

craft to Catapult 4 was the theoretical optimum for these cases. In the second, the algo-

rithm state data could have returned a faulty value or made an incorrect assumption con-

cerning the availability of Catapult 2 during the replanning stage, forcing the planner to 

make allocations to only a single catapult.  

After investigation, the latter explanation was shown to be correct – the algorithm in-

correctly considered a certain transient deck condition to be permanent, leading to the 

assumption that Catapult 2 was also unavailable. This then led to an inappropriate distri-

bution of tasks on the deck, utilizing only a single resource. This unnecessary constraint 

on operations, leading to increased active time, taxi time, and mission duration values, is 

an example of the brittleness that often accompanies automated algorithms. Without prior 

coded knowledge concerning the transient nature of this condition, the algorithm was un-

able to properly compensate for its occurrence. Instead, the planner considered this event 

to be a permanent failure of the catapult, which is the only failure the algorithm could 

recognize. The planner then constructed a plan that was near optimal given this faulty sys-

tem information. Correcting this error in state translation may allow the planning algo-

rithm to generate plans as good or better than those developed by the HO planner in this 

round of testing.  



 101 

This explanation would not have been reached without the inclusion of the additional 

launch rate metrics within the Mission Efficiency – Coverage subclass. Although these 

measures are not primary measures of mission performance, in this case, they were help-

ful in identifying certain inappropriate actions on behalf of the HA planner. 

5.2.2. Moderate Scenario 

The Moderate scenario (a recovery scenario) required the safe landing of twenty air-

craft currently in flight. During landing procedures, two aircraft (SMAC #2 and FMAC 

#6) encountered failures (high priority fuel leak and low priority hydraulic leak, respec-

tively). This required reassigning the landing order of aircraft to ensure that both of these 

aircraft landed before encountering a Fuel or Hydraulic Fluid Violation (FV or HFV), 

respectively. In examining the performance of the planners in this scenario, mixed results 

between the planning conditions were seen. The HA planner outperformed the HO plan-

ner in measures that addressed global performance (such as Mission Duration and Total 

Aircraft Active Time), while the HO planner maintained superior performance in meas-

ures addressing the high priority aircraft (measures for the failed SMAC). The following 

section contains the results of the statistical testing, which will be followed by a subse-

quent section discussing these results. 

5.2.2.1. Results of Statistical Testing 

Table 15 presents a compilation of the statistical testing data for the Moderate sce-

nario. This table also lists the metric name, its desired magnitude (High or Low), and de-

tails the statistical testing between pairs of planning conditions. Significant values (p < 

0.0013) imply that the null hypothesis (h0: distributions of the two planning conditions 
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are not different) was rejected. Testing revealed several instances of statistically equiva-

lent performance, most notably for LZFT, HV, and HV-D, where no differences were 

seen between planning conditions. Additionally, the Baseline and HO planners were 

found to be equivalent for TAAT and TCAT, while the Baseline and HA planners were 

equivalent for TAAT and TCAT. The remaining measures all resulted in statistical dif-

ferences between planning conditions, most importantly among Mission Duration and 

measures for SMAC #2 and FMAC #6.   

Table 15. Results of statistical testing for the Moderate Scenario (* signifies significance 
at α  = 0.0013; NP = Non-Parametric Mann-Whitney U Test; P = Parametric ANOVA). 

B vs. HO B vs. HA HO vs. HA 
Metric Desired 

Magnitude Test p-value Relationship Test p-value Relationship Test p-value Relationship 

LZFT LOW P p=0.733 B=HO P p=0.052 B=HA P p-=0.023 HO=HA 
FMAC_6 

_HFR HIGH NP * B>HO NP * B>HA NP * HO<HA 

FMAC_6_ 
EART LOW NP * B<HO NP * B<HA NP * HO>HA 

SMAC_2 
_AAT LOW P * B>HO P * B>HA P * HO<HA 

SMAC_2 
_EFR HIGH P * B<HO NP * B<HA NP * HO>HA 

SMAC_2 
_EART HIGH NP * B>HO NP * B>HA NP * HO<HA 

TATT LOW NP * B>HO P p=0.032 B=HA P * HO<HA 
TAAT LOW P p=0.132 B=HO NP * B<HA NP * HO>HA 

TCAT LOW NP p=0.018 B=HO P p=0.021 B=HA P * HO<HA 
WTQMS LOW NP * B<HO NP * B<HA NP * HO>HA 

MD LOW NP * B<HO NP * B<HA NP * HO>HA 

HV LOW NP p=0.909 B=HO NP p=0.001 B>HA NP p=0.002 HO=HA 
HV-D LOW P p=0.005 B=HO NP p=0.046 B=HA P p=0.402 HO=HA 
UIT LOW - - - - - - NP * HO<HA 

 
Reviewing the relationships in this data, two major themes arise. First, the HO and 

HA planners developed schedules that addressed the two aircraft failures in similar, but 

different, manners. Both the HO and HA planners moved the SMAC aircraft (fuel leak) 

forward in the landing order, as demonstrated by lower values of SMAC_2_EART as 
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compared to the Baseline13. Also, both the HO and HA planner moved the FMAC (hy-

draulic leak) backwards in the landing order, signified by larger values of 

FMAC_6_EART as compared to the Baseline. Comparing the HO and HA planners, it 

can be seen that the HO planner moved each aircraft to a greater degree than the HA 

planner (the HA moved the SMAC forward 1 slot in the landing order as opposed to 11 

slots in the HO plan, while moving the FMAC backwards 6 slots as opposed to 7 in the 

HO plan). Secondly, the HA planner completed the mission in less time than the HO 

planner, as signified by superior performance in Mission Duration. The diagnostic meas-

ure WTQMS supports this view, showing that the HA planner required aircraft to be in 

the Marshal Stack holding pattern for less time overall.  

5.2.2.2. Discussion 

The results of testing for the Moderate scenario show mixed results for the perform-

ance of the HA planner as compared to the HO planner. Firstly, the HA planner differed 

in its approach to rescheduling the two failed aircraft. While the HA planner followed the 

instructions of the Expert User, moving the SMAC (fuel leak) forward in the landing or-

der and the FMAC (hydraulic leak) backwards, this was done to a lesser extent than the 

HO planner. This resulted in better performance for the HA planner with respect to the 

FMAC but lower performance with respect to the SMAC. However, this launch order 

lead to a decrease in overall WTQMS and MD values and no increase in the number of 

Fuel or Hydraulic Fluid Violations (which did not occur for any case).  

                                                
13 Recall the EART is the duration of time from when the aircraft failure first occurs to the point that 

the aircraft lands. Thus, a lower EART for a given planner signifies that the aircraft landed earlier. 
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In this case, the determination as to which planning condition performed better in 

general depends on the perspective of the analyst. If viewed in terms of overall perform-

ance, the HA planner was better at optimizing the full system schedule, as revealed by its 

ability to decrease the overall Mission Duration and WTQMS. If viewed in terms of the 

number of FV and HFV, the planners performed equally well. However, if viewed in 

terms of adherence to operator heuristics, the HA planner may be viewed by operators as 

having inferior performance. Although the HA plan moved aircraft in the same manner as 

the HO plan, the magnitude of aircraft movements was of different magnitudes, espe-

cially in terms of the movement of the high priority SMAC aircraft. While the HA sched-

ule was able to maximize its objectives of decreasing TAAT, WTQMS, and MD, the 

mismatch between the desired state of SMAC 2 (as judged by the HO planning action) 

and the actions of the planning algorithm may be undesirable. 

Considering these three perspectives holistically provides additional insight with re-

gards to the SME heuristics. The SME heuristic considering airborne aircraft failures 

maintains that severe failures (fuel leaks) be moved to the front of the landing order to 

minimize the chance the aircraft running out of fuel. Aircraft with less critical failures 

(hydraulic leaks) are moved to the end of the landing order to minimize the possibility of 

the aircraft crashing on landing, thus placing the other airborne aircraft in harm’s way. In 

this testing scenario, the HA planner followed these suggestions, but not to the extent de-

scribed in the heuristics. This less conservative planning strategy resulted in an overall 

decrease in total mission time while not incurring any more severe penalties in the form 

of FV or HFV. This suggests that the actions ordered by the heuristics may be overly 

conservative. This is also an instance of P/RA HSC systems working as desired – the 
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human operator specified a set of high-level guidelines, within which the planning algo-

rithm was able to develop a locally optimum plan. 

These results could not have been seen if only a small set of metrics is reviewed in 

the course of examining performance. If the analysis had been limited only to the meas-

ures of primary concern for the stakeholders – FV, HFV, and measures for the SMAC 

and FMAC – the performance of the HA planner in optimizing the overall mission dura-

tion would have gone unnoticed. It would instead have been judged as moderately effec-

tive but still inferior to the HO planner. Only by the inclusion of additional metrics was 

the effectiveness of the HA planner in optimizing the entire system seen. 

5.2.3. Complex Scenario 

The Complex scenario (a mixed recovery and launch scenario) required the safe land-

ing of twenty aircraft currently in flight while simultaneously launching two additional 

aircraft. During landing procedures, a single aircraft encountered a high priority emer-

gency (SMAC #2 encountered a fuel leak). Solving this problem required balancing the 

need to land the aircraft immediately with the need to launch two others. The results of 

this scenario showed that the HO planner was able to address both the failures and the 

additional launches effectively, while the HA planner’s solution further exacerbated 

problems in the system. This is primarily revealed through an analysis of the number of 

Fuel Violations (FV), total Mission Duration (MD), Total Aircraft Active Time (TAAT), 

the error measures for the emergency aircraft (SMAC #2), Landing Zone Foul Time 

(LZFT), and Wait Time in Queue in the Marshal Stack (WTQMS). Additional analysis of 

the launch rates for Catapults 2 through 4, as well as the Total Catapult Launch Rate 
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(TCLR), aided in understanding the planner actions that led to these differences in per-

formance.  The following two sections present the results of statistical testing, followed 

by a discussion of these results. 

5.2.3.1. Results of Statistical Testing 

Table 16 presents a compilation of the statistical testing data for the Complex sce-

nario. This table also lists the metric name, its desired magnitude (High or Low), and de-

tails the statistical testing between pairs of planning conditions. Significant values (p < 

0.0010) imply that the null hypothesis (h0: distributions of the two planning conditions 

are identical) was rejected. In these results, it can be seen every statistical comparison 

involving the HA planning condition (compared to either the B or HO conditions) re-

turned significance. The only cases where measures were seen to be statistically equiva-

lent were found in the B vs. HO comparison (LZFT, TATT, MD, C2LR). Reviewing the 

relationships with statistically different data shows that there were differences in per-

formance concerning the emergency aircraft SMAC #2 (which encountered a fuel leak). 

From the data it can be seen that the HO planner moved the SMAC forward (signified by 

a lower value of SMAC_2_EART as compared to the Baseline). The HA solution, how-

ever, either moved the SMAC backwards in the landing order, or its assignment of launch 

tasks delayed the landing of the aircraft. Additionally, the HA planner exhibited more 

Fuel Violations (FV) than either of the other conditions, with the HO planner demonstrat-

ing the lowest FV value overall. Also, the HA planner required more time to complete the 

mission than either of the other two cases (signified by poorer performance on MD). In 

handling the launches of the requested aircraft, differences in planning strategy also oc-
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curred, with the HO planner assigning aircraft only to Catapult 2 and the HA planner as-

signing aircraft to Catapults 3 and 4 (signified by higher launch rates for each case). 

Table 16. Results of statistical testing for the Complex Scenario (* signifies significance 
at α  = 0.001; NP = Non-Parametric Mann-Whitney U Test; P = Parametric ANOVA). 

B-HO B-HA HO-HA Metric Desired 
Magnitude Test p-value Relationship Test p-value Relationship Test p-value Relationship 

FV LOW P n/a14 B>HO NP * B<HA NP * HO<HA 
LZFT LOW P p=0.478 B=HO NP * B<HA P * HO<HA 

SMAC_2_AAT LOW NP * B>HO NP * B<HA NP * HO<HA 
SMAC_2_EFR HIGH P * B<HO P * B>HA P * HO>HA 

SMAC_2_EART LOW P * B>HO P * B<HA P * HO<HA 
TATT LOW P p=0.734 B=HO P * B<HA P * HO<HA 
TAAT LOW P * B<HO NP * B<HA NP * HO<HA 
TCAT LOW P * B>HO P * B<HA P * HO<HA 

WTQMS LOW NP * B<HO NP * B<HA NP * HO<HA 

MD LOW P p=0.927 B=HO NP * B<HA NP * HO<HA 
C2LR HIGH P p=0.921 B=HO P * B>HA P * HO>HA 
C3LR HIGH P n/a11 B=HO=0 NP * B<HA NP * HO<HA 
C4LR HIGH P n/a11 B=HO=0 NP * B<HA NP * HO<HA 
TCLR HIGH P p=0.921 B=HO NP * B>HA NP * HO>HA 

HV LOW NP p=0.395 B=HO NP * B>HA NP * HO>HA 
HV-D LOW NP * B>HO NP * B>HA NP * HO>HA 
UIT LOW - - - - - - NP * HO<HA 

 

 
5.2.3.2. Discussion 

In the Complex scenario, the HA planner was outperformed by the HO planner in all 

of the Mission Efficiency metrics, most importantly in measures of Fuel Violations and 

Mission Duration. In fact, the only metrics in which the HA planner had better perform-

ance were launch rate values for Catapults 3 and 4, and this only signifies a difference in 

the assignment of launch tasks. These launch rate measures point to the root causes of 

poor HA planner performance.  

                                                
14 For these tests, values were either identical for all cases or zero for all cases, making statistical test-

ing infeasible. 
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Reviewing the boxplots for the launch rates for Catapults 2-4 and the total launch rate 

(found in Figure K. 11 through Figure K. 14 in Appendix K), it can be seen that the HO 

planner made assignments only to Catapult 2, while the HA planner made assignments to 

only Catapults 3 and 4. For the majority of times, assigning aircraft to these aft catapults 

has no affect on airborne aircraft. However, for this scenario – where a set of airborne 

aircraft, low on fuel, will imminently land – this assignment can create significant reper-

cussions. Recall that the aft catapults (Catapults 3 and 4) share deck space with the Land-

ing Zone and that these resources cannot be operated simultaneously. Use of the aft cata-

pults during landing operations may result in the waveoff of an aircraft on approach. This 

occurs if the landing strip is unavailable when an approaching aircraft reaches a certain 

threshold in its approach trajectory. If a waveoff is required, the incoming aircraft returns 

to the Marshal Stack before attempting a second landing15. This would then incur addi-

tional WTQMS, increase the total Mission Duration, and increase the likelihood of a fuel 

violation. In the case of the HA replanning, each of these conditions was seen, suggesting 

that the HA plan was incurring waveoffs due to its catapult assignments.  

While several explanations can be developed concerning the reason for assigning 

launches to the aft catapults, the true cause is that the planning algorithm did not account 

for the interaction of the catapults and the landing strip and predicted that its assigned 

launch tasks were the fastest available option. In this case, however, the fastest launch 

configuration did not necessarily imply optimality. Because of the interactions of re-

sources on the deck, the best option (as shown in the HO plan) would have been to vacate 

                                                
15 In reality, this would not occur in precisely this manner. Judgments on how to handle a waved off 

aircraft require knowledge of the fuel state of the aircraft and the availability of any airborne tankers for 
refueling. As the latter is not handled by the planning algorithm at this time, the method of handling wave-
offs was altered for the time being.  
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the aft catapults to deconflict aircraft landings. The realization of this fault in the planner 

modeling could not have been reached if metrics had been limited only to Time-based 

(ME-T) measures or to metrics specifically related to SME heuristics (such as the han-

dling of the SMAC). Limiting the analysis to only Coverage-based metrics would have 

revealed differences in planning strategy but would have failed to demonstrate how these 

differences affected the mission as a whole. The combination of the two led to a viable 

explanation for how the planner’s actions were determined. In addition to comparing the 

performance of planners within an individual scenario, the performance of planners 

across scenarios can also be compared. This comparison addresses the performance of 

planners over the columns in Figure 17 and is discussed in the following section. 

5.3. PERFORMANCE ACROSS SCENARIOS 

The performance of systems across complexity levels allows analysts to detect poten-

tial issues with the brittleness of algorithms (their inability to account for possible inputs 

and environmental conditions), while also determining the limits of the human operator 

or algorithm in regards to increasing complexity levels. Typically, algorithms are ex-

pected to perform better in cases requiring rapid, complex mathematical optimizations 

[10], but brittleness may negate this likelihood. By testing across a variety of inputs and 

complexity levels, potential instances of brittleness – due to either improper environ-

mental models or the inability to sense certain conditions – can be uncovered. For the 

case of the DCAP testing program, complexity was determined according to the number 

of required Subject Matter Expert heuristics required to replan, providing a consistency 

of complexity definition for three dissimilar test cases (one launch-only, one landing-

only, one combined launch/landing). 
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With this definition of complexity in place, performance across scenario conditions 

can be judged in several manners. For the purposes of this discussion, performance is 

based on a scoring function relating how well two planners compared to each other in a 

given scenario (for instance, the HO versus the Baseline). This scoring function is given 

by the following equation:  

 
  

€ 

PerformanceScore =
N superior − N inferior

N total
 (4) 

where Nsuperior is the number of metrics where the HO planner outperformed the Baseline, 

Ninferior is the number of metrics where the HO planner underperformed with regards to 

the Baseline, and Ntotal is the total number of metrics used in statistical testing for that 

scenario (12, 14, and 17 metrics for the Simple, Moderate, and Complex scenarios, re-

spectively). This returns a percentage score centered at 0, with +/- 100% denoting com-

pletely superior/inferior performance for a planner, respectively. This scoring metric was 

applied for all planner comparisons across all three scenarios, limited to the applicable 

metrics discussed in the previous sections. A visual representation of these resulting 

scores is presented in Figure 21, with the above equation lying on the vertical axis. 

In this figure, the HO planner is seen to have superior performance with respect to the 

Baseline plan for the Complex scenario. Although this seems counterintuitive, it is due to 

the nature of the Baseline case and the actions of the HO planner. Recall that for the 

Baseline tests, no replanning occurred. For SMAC #2, which incurred a fuel leak, the HO 

planner will replan and move this aircraft forward in the landing order; by default, the 

HO plan will see superior performance for these metrics. In fact, these three metrics 
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(SMAC_2_ EART, SMAC_2_AAT, and SMAC_2_EFR) are specifically the cause of the 

net performance increase for the HO planner in the Complex scenario.  

  
Figure 21. Relative performance comparison across scenarios. 

Additionally, the contents of Figure 21 as a whole suggest that, for this P/RA system, 

the typical assumption of superior algorithm performance under increasing complexity is 

inappropriate. Observing the HO vs. B comparison, it can be seen that the performance of 

the HO planner improved as complexity increased. The HA planner formed an inverted 

“U” shape with respect to the Baseline, performing better in the Moderate scenario than 

in the Complex and Simple scenarios (the reasons for this will be discussed later in this 

section). This HA planner also exhibited similar performance with respect to the HO 

planner. Additionally, at no time did the performance of the HA planner become equal or 

superior to the Baseline or HO planning conditions. In this case, the HA planner was ob-

served to perform poorly at both the higher and lower complexity levels. This data also 

suggests that the human heuristics, as applied in this context and in these scenarios, are 



 112 

adequate for addressing system complexity, as relative performance increased as com-

plexity increased.  

These results, however, are dependent on both the metrics used in the analysis and the 

definition of complexity, the latter of which will be discussed in a later paragraph. Con-

cerning the metrics used in analysis, the previous paragraph describes performance in re-

lation to all metrics used in testing (Figure 21). Figure 22 shows this graph again with 

only metrics common to all three scenarios. For instance, catapult launch rates – which do 

not exist for the Moderate scenario – have been removed, as have metrics for aircraft that 

experienced failures. 

 
Figure 22. Relative performance comparison across Common metrics. 

 
Between Figure 21 (all metrics) and Figure 22 (common metrics), the relative per-

formance of each planner across scenarios is generally the same, with the HA planner 

still demonstrating the inverted “U” of performance. However, the removal of the error 

metrics for failed aircraft in the Moderate case have resulted in the HA planner having 
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net even performance to the HO planner in this scenario; this was previously a case 

where the HA planner received a net negative rating on performance. The reasons for the 

inverted U of HA planner performance are the same as those discussed in the previous 

sections on individual scenarios and are recapitulated here – in the Simple scenario, im-

proper state modeling led the HA planner to solve a more complex problem than actually 

existed, while in the Complex scenario, certain constraints modeling the complexity of 

interactions on deck were not included. However, for the Moderate case, the HA planner 

was able to achieve equivalent performance as the HO and Baseline planners, with the 

HA planner actually achieve superior performance in the important metrics of Mission 

Duration. In this case, with the system accurately modeling the complexity of the world, 

the planner’s ability to forecast task durations and the interactions between vehicles al-

lowed the planner to create a more efficient plan. These conclusions on complexity, how-

ever, are based on the definition and application of the SME heuristics; alternative defini-

tions of complexity may not yield the same conclusions. Basing complexity on the 

maximum number of entities active in the system at any given time leads to a reordering 

of relative complexity (Table 17) with results of this shown in Figure 23. 

Table 17. Alternative complexity definitions for the DCAP test scenarios. 

 

As noted in Table 17, replanning for the Simple scenario involved altering the activity 

of a much larger number of personnel (crew, aircraft, or ground vehicles) than the other 
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two scenarios. This is due to the fact that replanning the Simple scenario occurs when 18 

aircraft are still on deck. Thus, with four crewmembers required per aircraft, five per 

catapult, and additional ground deck, approximately 100 personnel are affected by a sin-

gle replan. Replanning for the Moderate scenarios involves no replanning for the crew or 

for UGVs, as all aircraft are still airborne. The Complex scenario differs from the Moder-

ate only in that two aircraft will launch from the carrier deck, thus affecting only a small 

set of crew and support vehicles on deck. Using this perspective, the Simple scenario is 

actually the most complex scenario, while the Moderate scenario is the least complex. 

The relative performance ratings under this format (Figure 23) demonstrate that the HA 

planner performed best at the minimal complexity level (now the Moderate case) with 

performance decreasing as complexity increases, in direct opposition to the standard as-

sumptions of increased performance.  

 
Figure 23. Relative performance comparison across Scenarios in the alternate complexity 

ordering (number of entities). 
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Additionally, the performance of the HA planner in adapting to complexity is also 

dependent on the specific deficiencies noted in the previous sections on individual test 

scenarios.  For the case of the Simple scenario, the most likely cause of deficient per-

formance is errors in data logging between the algorithm and the simulation environment 

for the acquisition of state data. This is not a direct error on the part of the human opera-

tor interacting with the planning algorithm, the latter of which calculated a theoretically 

near-optimal solution based on faulty state information and modeling. In this case, a tran-

sient delay condition was treated as a long-term failure, negating the assignment of tasks 

to a catapult. If this modeling assumption was corrected, or if the HO planner had treated 

this transient condition in the same manner, the comparative performance across com-

plexity levels may have been much different. The same can be said for the Complex con-

dition, where the system’s modeling of the interaction between landings and takeoffs was 

shown to be deficient. For this scenario, the planner did not include a model for the inter-

action between the aft catapults and the landing strip, leading to an inappropriate assign-

ment of resources that led to delays in landing airborne aircraft. The inclusion of a model 

for landing strip-catapult interaction should correct the failings of the planner in handling 

joint launch and recovery cases. However, simply instituting the design changes is insuf-

ficient; a second testing cycle should be utilized, as described by the Spiral Model in 

Figure 2. This round of testing should begin with the current scenarios in order to validate 

that the design changes properly address the conditions discussed in this chapter. Addi-

tionally, a set of new scenarios with new and different content should be created. This 

may allow for the identification of additional system constraints currently unknown to 

algorithm designers. Iteratively expanding the testing and introducing scenarios with new 
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content will allow analysts and designers to continue to pinpoint possible refinements in 

the planning algorithm logic. 

5.4. CHAPTER SUMMARY 

This chapter has reviewed the testing data from DCAP simulation testing, covering 

statistical analyses of the data and relative differences between planning conditions. The 

first three sections reviewed the results of planner performance within each scenario, with 

the fourth comparing the performance of the planners across complexity levels. Results 

from the scenarios originally designated as Simple and Complex demonstrated poor per-

formance on the part of the HA system and provides system designers with points of in-

vestigation for further design changes. The Moderate scenario demonstrated that the HA 

planner has performance superior to the HO planner, taking similar actions in replanning 

but in a less conservative fashion. In this case, the actions of the HA planner, although 

they did not completely adhere to the SME heuristics, resulted in overall improvements in 

global measures of mission performance. 

Examining performance across scenarios showed that the HO planner was capable of 

adapting to increased complexity within the scenarios, while the HA planner struggled 

with both the Simple and Complex scenarios. This runs contrary to Fitts’ list [10] and the 

common belief that planning algorithms are better able to handle complex conditions. 

However, this may be due to the previously noted errors in the interfacing between the 

algorithm and the simulation. These errors resulted in the HO and HA planners viewing 

the state of the world in different manners. If the state information used by the automated 

planning algorithm had been more accurately modeled, these variations in performance 
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may not have been seen. Furthermore, as shown in Chapter 5.3, these views on variation 

in performance are influenced by both the selection of metrics in analyzing performance 

and the definition of complexity under which this analysis occurs. By using only common 

metrics across all scenarios, the relative performance characteristics of the HO and HA 

planners changed slightly. These changes showed a mix of increases and decreases re-

garding the relative performance of planning conditions. Additionally, an alternate defini-

tion of complexity provided a very different view of system performance. The original 

definition (based on SME heuristics) showed the HA planner as having an inverted “U” 

of performance with respect to both the HO and B planning conditions. An alternate defi-

nition of complexity, based on the number of entities affected by replanning actions, 

showed that the HA planner had linearly decreasing performance as the level of complex-

ity increased. 
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6. CONCLUSIONS AND FUTURE WORK 

The goal of this thesis was to establish what metrics and methods were required for 

the validation and verification of a P/RA HSC system and how these metrics can be used 

in the iterative systems engineering design process. This requires not only validating the 

performance of the individual subcomponents of the system (the human operator and the 

automation), but also validating the quality of interaction between these subcomponents 

and the effectiveness of their collaboration in forming solutions. These measurements 

concern two steps in the systems engineering spiral model depicted in Figure 2 – the In-

tegration and Test and Acceptance Test stages. In addressing the Integration and Test 

step, the metrics and methodology seek to measure the quality of integration of the sub-

components (in this case, the human, the automated algorithm, and the display/control 

interface) and their effects on one another. For the Acceptance Test step, the metrics and 

testing protocol aid in the characterization of overall system performance, providing 

comparison points for different system design alternatives or in regards to a current sys-

tem.  

These objectives formed the basis of three specific research objectives for this thesis, 

which are reviewed and answered in the next subsection. The second section within this 

chapter highlights the limitations and future work related to this thesis. 

6.1. RESEARCH OBJECTIVES AND FINDINGS 

This thesis sought to address three specific research questions concerning the design 

and implementation of metrics and a testing protocol for the validation of P/RA HSC sys-
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tems. This section reviews the three research questions posed in Chapter 2 and details the 

answers formulated in the course of this research. 

 

What metrics are required for evaluating the performance of a Planning and Re-

source Allocation Human Supervisory Control system as compared to manual planning? 

The analysis of the three DCAP scenarios revealed a necessity for providing both de-

scriptive and diagnostic metrics in evaluating the performance of the HA planner as com-

pared to the HO, manual plan. Descriptive metrics provide comparison points between 

planning conditions, allowing analysts to define explicit differences in performance be-

tween the systems (in this case, different planning conditions). In the case of DCAP, 

these measures were defined based on the context of operations within the system. For 

supervisors on the aircraft carrier deck, safety is of paramount importance and included 

measures such as the number of Fuel Violations and the ability to recover emergency air-

craft quickly. The second primary measure is the speed of operations, specifically total 

Mission Duration, but additional measures addressing the time spent executing certain 

subtasks (e.g. taxiing on deck or waiting in the Marshal Stack) were also included. The 

emphasis on these two classes of measure may not be appropriate for other P/RA systems 

(e.g. airport traffic routing, hospital operating room allocation, etc.) and may result not 

only in entirely different sets of metrics, but a redefinition of priorities of individual met-

rics and metric classes. 

Regardless of the specific nature of the system, the inclusion of primary metrics as 

comparison points allows analysts to quantify the variations in performance between 
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planning conditions. However, these metrics may not allow a qualitative understanding of 

why these variations occurred. The inclusion of diagnostic measures, such as subcompo-

nent task times (WTQMS, TATT, TAAT) and resource allocation metrics (catapult 

launch rates) allows analysts to understand how the resulting actions of the planner led to 

undesirable performance. In the DCAP analysis, the launch rate metrics for the Simple 

scenario were diagnostic in that they enabled analysts to determine that an unbalanced 

distribution of launch assignments led to a decrease in overall launch rate and an increase 

in final Mission Duration. A further review of the launch assignments then revealed an 

error on behalf of the planning algorithm in modeling a transient failure condition on the 

deck. In the case of the Complex scenario, catapult launch rates were again used as diag-

nostics in determining the root causes of poor planner performance. In this case, however, 

the launch rates revealed a significant deficiency in the algorithm’s lack of modeling of 

interactions between the aft catapults and the landing strip. Although the algorithm took 

actions that were predicted to take the minimum time to launch, launches did not occur 

quickly enough. This resulted in conflicts in the landing strip and led to a series of air-

craft waveoffs on landing. 

 

How can these metrics assess the variations in performance of human and combined 

human-algorithm planning agents? 

For the DCAP system, an analysis of variations in performance took two forms. The 

first addressed variations in performance for all planners within a specific scenario. These 

comparisons were primarily facilitated by the usage of descriptive measures of perform-

ance, applied consistently to each planner within each trial. Both qualitative and statisti-
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cal analyses were utilized, each contributing to the determination of performance. Statis-

tical analyses aid in identifying differences within data, but do not provide guidance in 

determining the form of the difference. In this regard, the inclusion of qualitative analy-

ses to classify the type of difference significantly aided in distinguishing cases of superior 

and inferior performance. Only by including the additional qualitative review of differ-

ences in measures could variations in performance truly be depicted. 

However, this testing protocol was purposefully limited in its ability to test variations 

in performance with respect to human input through the usage of a single Expert User. 

The scripting of this user’s actions allowed the testing program to highlight specific defi-

ciencies on the part of the planning algorithm and its responses to varying complexity 

levels at the cost of investigating system performance with respect to variations in human 

input. This limits the generalizability of the test results to the larger class of potential us-

ers. However, if this testing protocol were repeated with a single scenario (fixing the test 

protocol on this axis) and using a larger pool of human test users, a similar examination 

of performance could be performed. In this manner, the testing protocol can be viewed as 

existing in three axes – operator, algorithm, and scenario. Comparing the performance of 

any condition requires a fixing of at least two of these axes. In the current testing, the 

human axis was fixed, and comparisons occurred by either fixing on the scenario axis 

(comparing performance between planners) or the planner axis (comparing planner per-

formance across scenarios). 

The utilization of realistic scenarios that addressed not only differing complexity lev-

els, but also different planning environments (launch-only, recovery-only, and mixed), 

allowed the identification of several variations in planner performance. For the Simple 
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scenario, a deficiency in planning operations was seen; the planning algorithm did not 

properly model a transient failure on deck. This resulted in an underutilization of re-

sources on deck, lowering the launch rate of the system and leading to an increase in 

overall mission duration. In the Moderate scenario, similar, yet different, performance 

was seen between the HO and HA planners. The HA planner made similar adjustments to 

the two emergency aircraft in the scenario, but did not move aircraft at the same magni-

tude as the HO planner. However, the HA planner’s actions resulted in lower overall Mis-

sion Duration while not incurring any more Fuel or Hydraulic Fluid Violations. Lastly, in 

the Complex scenario, a deficiency different from that of the Simple case was seen. Here, 

the planning algorithm did not model the interactions between resources on the deck, 

instead selecting to launch aircraft from the aft catapult and creating conflicts with 

incoming aircraft attempting to land. While these actions were the result of attempting to 

launch aircraft in the minimum amount of time, which may be optimal for many cases, 

this choice of action was suboptimal in this scenario. Without the inclusion of all three 

cases, some significant information regarding the performance of the planners (both good 

and bad) would not have been discovered. 

This testing program also revealed variations in the performance of the deck envi-

ronment itself, despite the standardization of user replanning actions and initial scenario 

states. For instance, HV-D showed a large distribution for the Moderate, Baseline case 

while having a relatively small distribution for the Simple, HO case. This occurred even 

though the scenario utilized the same initial conditions and the user took the same replan-

ning actions in every trial. This variation in metric values was also seen for the Baseline 

case, where the user took no replanning actions whatsoever. The dynamics of the carrier 
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deck environment introduce further stochasticity into system performance, and the testing 

protocol must be such that the number of trials performed effectively captures this 

variability. Failing to do so may lead the data to exist at the tails of the distribution, 

leading to under- or over-predictions of performance. This may then lead to errors in the 

statistical comparisons and incorrect conclusions on planner performance.  

 

How can these metrics predict system feasibility and highlight design flaws? 

The prediction of system feasibility and the determination of design flaws is a qualita-

tive determination on the part of the analyst, requiring knowledge of both the dynamics 

of the environment and the capabilities of the planning systems, supplemented by data 

generated in the testing phase. System feasibility is best served by descriptive measures 

of performance, while design flaws are best pinpointed by diagnostic measures. 

Concerning system feasibility, the results of the descriptive performance measures, 

tempered by the analyst’s understanding of system dynamics, provide evidence for or 

against system acceptance. The inclusion of multiple comparison points (in this case, the 

HO and B planning conditions) effectively grounds the analyst with regards to expected 

system performance. The results from the Moderate scenario suggested that the HA plan-

ner is indeed capable of performing as well as the HO planner in addressing failures, al-

beit through a different planning strategy. In this case, the HA planner took actions simi-

lar to the HO planner (making a similar reorganization of the landing order) but ordered 

less overall movement of the two emergency aircraft. This difference in strategy was re-

vealed through the use a variety of metrics and by comparing the performance of the sys-



 125 

tem to the HO planner. The results from the Simple scenario, taken at face value, suggest 

that the HA planner was completely infeasible for use in this manner. However, the defi-

nition of the Simple scenario and its method of execution implied that no planner would 

be able to achieve performance equal to or better than the Baseline. Without this under-

standing (either foreknowledge on the part of the designer, or through observing the per-

formance of the state-of-the-art HO planner), this scenario would have demonstrated that 

neither the HA nor the HO planner is adequate for use in the real world. In this case, the 

inclusion of the HO planner as a comparison point grounded expectations for current sys-

tem performance. 

Design flaws are highlighted by a combination of the analyst’s understanding of the 

system dynamics and the application of diagnostic measures seen in the system. In utiliz-

ing measures as diagnostics of performance, explanations for the variation in perform-

ance can be constructed and can guide analysts through the next design iteration. Again 

reviewing the results from the Simple scenario, the diagnostic measures of catapult 

launch rate revealed a possible error in how the planner viewed the availability of the 

catapults (the improper modeling of a transient failure), providing a specific point of in-

vestigation for the designers. This inadequacy is likely due to a failure in properly ad-

dressing the state information being acquired from the simulation data and is likely not 

due to actions of the human or algorithm specifically.  

However, in the Complex scenario, the use of diagnostic measures for catapult launch 

rates revealed a possible logical flaw in the algorithm’s model of system dynamics. The 

model used by the algorithm suggested that the actions in the proposed schedule would 

be optimal, providing maximum launch rate and minimum operational time. However, 
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the execution of the schedule demonstrated that this was not the case, providing a point of 

investigation for the design team. In both of these cases, the results of the metrics applied 

to the system and the subsequent statistical and qualitative analyses provided evidence to 

support a hypothesis. The analysts’ understanding of the system dynamics and the func-

tions of the planning algorithm and the human operator then frame these explanations. 

The poor performance of the HA planner in both the Simple and Complex scenarios 

highlights instances of brittleness within the algorithm and its data collection modules. 

Each of these discoveries was highly specific to the case presented – the errors in state 

information in the Simple scenario would not have been seen if crew had not been mov-

ing through Catapult 2’s area one minute earlier or later. Similarly, the Complex scenario 

tested a unique boundary case that, while a realistic and important test case, may not be 

typical. The majority of operations are similar to the Simple and Moderate cases, neither 

of which would have revealed the failure of the algorithm to compensate for conflicts be-

tween the aft catapults and landing strip. For the DCAP system, the utilization of a vari-

ety of testing scenarios incorporating a broad range of possible circumstances aided in 

revealing specific brittle features of the algorithm. 

6.2. LIMITATIONS AND FUTURE WORK 

Although the presented methodology was successful in defining a set of metrics that 

allowed analysts to define the performance of the planners and to detect a series of design 

changes for the HA planning algorithm, it is not without limitations. The definition and 

use of large numbers of metrics (as was done here) can be time-consuming and expen-

sive. The utilization of all metrics in a statistical analysis would contribute to a rapid deg-
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radation of family-wise significance, which can be ameliorated through the use of statis-

tical reduction techniques such as Principal Components Analysis. However, performing 

a PCA for a large number of tests, scenarios, and planning conditions requires even fur-

ther time and resources. Additionally, removing metrics based on strict adherence to the 

PCA may lead to heterogeneous data sets; that is, metrics that show high correlation in 

one test scenario may not show correlated in another. A possible extension of this work is 

improving the ability to identify key metrics early on in the process, preventing excess 

data collection and reducing the number of man-hours spent in the analytical process.  

Additionally, this methodology has only been applied to a single P/RA system exam-

ple, using a single deterministic resource allocation algorithm (an Integer Linear Pro-

gram), operating in a unique environment and using a single Expert User in its testing 

program. These are all very specific conditions that occurred in the testing of this system, 

and the generalizability of the methodology may have suffered because of this.  

The inclusion of only one single, deterministic algorithm for resource allocation lim-

its generalizability to pure path planning systems or to systems utilizing Heuristic or 

Probabilistic algorithms. Currently, ongoing research involves the creation of two addi-

tional planning algorithms within these categories. These algorithms are of different for-

mats than the ILP used here (both are non-deterministic) and have different strengths and 

weaknesses concerning failure handling and guarantees of optimality. Future research 

should apply this methodology to this pair of algorithms to determine if any changes in 

approach are needed for these non-deterministic algorithms.  
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Additionally, this testing program used a single Expert User, a member of the design 

team intimately familiar with the interface. For the purposes of algorithm validation, this 

is an acceptable practice, as the inclusion of this user minimizes user error and standard-

izes the input to the system. The lack of relative “noise” in the input of the human opera-

tor allows for a direct assessment of the performance of the algorithm. While this limits 

the confounds that would have arisen from utilizing multiple users, much future work 

remains to be done to address the use of the DCAP system by the user population at large 

and in realistic circumstances.  

Despite the fidelity of the simulation environment, it is difficult to precisely recreate 

the exact conditions under which these decisions are made. The physical environment, 

time pressure, and stress associated with operators performing these actions were not ad-

dressed in this testing program. Additionally, the final implementation of this P/RA HSC 

system will most likely include several different operators with various skill levels, expe-

riences, and different planning heuristics. Before accepting the system for final imple-

mentation, a larger testing program including wide spectrum of potential users should be 

performed and should utilize many of the measures negated in Chapter 4.2 by the inclu-

sion of the Expert User. This testing would specifically address measures of Collabora-

tion, Human Behavior Precursors, and Human Behavior Efficiency. This testing would 

also address the performance of the planner and the system as a while across multiple us-

ers.  

This testing protocol cannot truly be finalized until its application has been tested 

across a broad range and depth of applicable P/RA HSC systems. While this testing pro-

tocol has proved effective in allowing analysts to determine the differences between 
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manual (HO) and combined human-automation (HA) planning for the DCAP system, the 

DCAP system was a unique and highly specific test case. A great deal of further work 

remains in validating and verifying this methodology across a larger sample size of P/RA 

HSC systems, algorithm formats, and user pools. 

6.3. THESIS SUMMARY 

This thesis has addressed the definition of metrics and a testing protocol for P/RA 

HSC systems, with a focus on validating the performance of the combined human-

algorithm planning system. This thesis began with a review of an example HSC metric 

framework and three main classes of automated algorithms used in P/RA HSC systems. 

This thesis then reviewed various measures associated with the classes defined in the 

metric framework, providing examples of their application in various HSC systems or in 

algorithm validation and verification. After providing background on an example P/RA 

HSC system, the definition of specific metrics and the protocol for testing the DCAP sys-

tem were provided. This included descriptions of three testing scenarios across varying 

levels of complexity and explanations of how an Expert User interacted with the system 

during the testing scenario. The results of system testing were presented and discussions 

of the performance of the various planning conditions were provided. Discussions of 

planner performance across levels of complexity were also offered. Lastly, the ability of 

this work to address three main research objectives was discussed, as were the limitations 

of and future work related to this research. While the metrics and protocol has proved 

successful in this application to this specific system, there is no guarantee that these met-

rics and the testing protocol are optimal for other systems. Repeated application of this 

methodology to a variety of other P/RA HSC system formats and algorithm forms will 
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provide additional insight into the successes and limitations of the metrics and protocol 

used here. 
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APPENDIX A – GAUSSIAN PROCESSING TIMES FOR DCAP 

SIMULATION 

Table A.1. List of Gaussian processing times for the DCAP simulation. 
Task Description Mean Standard Deviation 

Fueling Fuel flow rate 600 lb/min 136 lb/min 
Attach Aircraft to Catapult 1 minute 15 second 

Takeoff 
Accelerate to speed 3.5 seconds 0.5 seconds 

Landing Time to hit wire and decelerate 4 seconds 1 second 
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APPENDIX B – HYBRID COGNITIVE TASK ANALYSIS FOR 

DCAP 

The goal of a Hybrid Cognitive Task Analysis (hCTA) is the creation of a set of in-

formation, display, and functional requirements for the interface of a complex system, 

beginning with a high-level scenario task description [113]. The process consists of five 

steps: 1) a Scenario Task Overview (STO), 2) a set of Event Flow Diagrams (EFDs), 3) 

generation of Situational Awareness Requirements (SARs), 4) generation of Decision 

Ladders (DLs) with corresponding display requirements, and lastly 5) generation of In-

formation and Functional Requirements (IRs and FRs). The hCTA process is often used 

in cases where the system being designed is revolutionary (in that it has no prior prede-

cessors) and has previously been used in the design of control interfaces for unmanned 

underwater vehicles (UUVs) [132], submarine surface collision avoidance [133], and in-

teractive scheduling for commuter trains [134]. The following sections will describe the 

steps used in creating the DCAP hCTA, beginning with the Scenario Task Overview. 

B.1 PRELIMINARY ANALYSIS 

B.1.1 Scenario Task Overview (STO) 

The Scenario Task Overview decomposes the full mission definition into a series of 

phases to be completed by the human operator. In most cases, this results in a relatively 

linear flow of phases from one task to the next. For instance, in the case the rail schedul-

ing system in [134], which dealt with the management of the schedule of a single train 

traveling between two points, the phases were broken into Pre-departure, Departure, En 
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Route, and Arrival (termination) phases. For the aircraft carrier operating environment, 

the operator primarily engages in two roles – Monitoring the environment and Replan-

ning when required. In this case, replanning consists of reassigning aircraft to either dif-

ferent resources or altering the order of assignment to a single resource (or a combination 

of both). At this time, en route mission and strike planning are not included, but may be 

included in future work. The system instead focuses on the replanning of tasks only for 

aircraft in the immediate vicinity of the aircraft carrier, focusing on tasks that require us-

age of resources on deck. Within these two phases of operation, a total of 19 subtasks 

were defined for management of aircraft carrier deck operations. These are presented in 

Table B. 1 (Monitoring phase) and Table B. 2 (Replanning phase).  

Table B. 1. Scenario Task Overview - Mission phase and subtasks 

Phase Task 
Number Task 

Related 
EFD 

Symbol 
1 Observe crew motion on deck L1 
2 Issue halt to operations if unsafe P1 
3 Observe operations of airborne aircraft L2 
4 Issue alert if failure occurs P2 
5 Observe state of deck resources L3 
6 Issue alert if failure occurs P2 
7 Monitor total shift time of the crew L3 

8 If over working time, document and account for in future 
personnel scheduling P3 

9 Monitor total shift time of all pilots L5 

10 If over working time, document and account in future 
mission scheduling P4 

11 Monitor status of the schedule L6 

12 If schedule degrades due to delay accumulation, judge 
need for replan. P5 

M
on

ito
r 

13 If replan need arises, initiate replan D1 
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Table B. 2. Scenario Task Overview - Replanning phase and subtasks. 

Phase Task  
Number Task Related EFD  

Symbol 
1 Determine what item has failed P6 
2 Determine the type/extent of failure P7 
3 Determine affected aircraft D2 
4 Reassign tasks for affected deck aircraft D3 

5 Reassign landing positions for affected  
airborne aircraft D4 

R
ep

la
n 

6 Communicate schedule changes to all personnel P9 
 

B.1.2 Event Flow Diagrams (EFDs) 

An Event Flow Diagram places the subtasks that comprise the STO phases into a 

process flow diagram, highlighting the temporal constraints and relationships between 

subtask elements. The subtasks are broken into Processes, Decisions, Loops, Phases, and 

Assumptions with arrows denoting the transition between elements (Figure B. 1). These 

elements are then assigned alphanumeric labels for traceability. Thus, a future Informa-

tion Requirement (IR1) can be linked to a specific Loop (L3), Decision (D5), or Process 

(P12). Three different EFDs were created, totaling six Loops, thirteen Processes, and 

seven Decision elements. 

 
Figure B. 1. Elements used in Event Flow Diagrams. 
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The first EFD (Figure B. 2) describes the operator in the Monitoring phase, consisting 

of a set of concurrent monitoring Loops (L1-L6) and a single Decision element regarding 

the need to replan (D1). If this decision returns a “yes” answer, the operator moves to the 

replanning phase. The second EFD (Figure B. 3) describes the basic replanning process 

of operators in the current operating paradigm. Although there are few items within this 

diagram, the important note is the existence of three decision-making loops (Decision 

blocks contained within the loop symbol). First, for all i aircraft in the system, the opera-

tor must decide the extent to which a failure conditions affects each aircraft. This pro-

vides the operator with a list of potential aircraft to reschedule. The next two decision 

loops separate this list into groups of j deck and k airborne aircraft, which experience dif-

ferent failures, have different concerns, and different methods of redress given the failure 

in the system. For each aircraft, the operator must determine if a new plan must be gener-

ated for the aircraft. Once all plans are generated, these are transmitted to the personnel 

on deck for implementation (P9).  

For each of the two EFDs presented here, Decision Ladders (DLs) were created in or-

der to determine specific informational and functional requirements for the decision-

making process. These DLs also guided the inclusion of the automated planning system 

within DCAP, which required the creation of an additional STO Phase, a third EFD, and 

further DLs, all of which are detailed in the following sections. 
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Figure B. 2. Event Flow Diagram 1 - Monitoring. 
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Figure B. 3. Event Flow Diagram 2 - Replanning. 
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B.1.3 Decision Ladders 

For each Decision element that appears in a given EFD, a corresponding Decision 

Ladder (DL) is used to further detail the knowledge and information processing tasks re-

quired for a human user to reach the decision [135]. Decision Ladders begin with some 

form of alert to the operator (be it endogenous or exogenous) and delineate the specific 

tasks and information requirements required to work through the decision-making proc-

ess. In doing so, DLs move from skill-based to knowledge-based behavior [136]. By 

tracking the steps in the decision-making process, a set of informational requirements can 

be generated. Information requirements describe individual bits of information that must 

be presented within the system interface. For instance, the operator may need to replan a 

schedule due to the emergence of a failure. The operator then must know the type of fail-

ure and the afflicted aircraft or resource. These two items – failure type and affected re-

source – are two separate Information Requirements for the display. Later in the process, 

the operator may need to submit a new schedule to the system. A Functional Requirement 

would then be a control item that allows this interaction. A total of four DLs were created 

for the EFDs in Figure B. 2 and Figure B. 3. These DLs appear in Figure B. 4 through 

Figure B. 7. 
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Figure B. 4. Decision Ladder 1 - Necessity of Replanning (from EFD 1). 
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Figure B. 5. Decision Ladder 2 - Is aircraft affected by failure (from EFD 2). 
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Figure B. 6. Decision Ladder 3 - New task assignment for aircraft j (from EFD 2). 
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Figure B. 7. Decision Ladder 4 - Define landing position for aircraft k (from EFD 2). 
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In examining the construction of the STO and the resulting DLs, it was identified that 

a automated planning algorithm could support the efforts of the human operator in accu-

mulating task data for all aircraft in the system, determining the effects of resource fail-

ures on these aircraft, and in judging the future performance and relative effectiveness of 

a replanned schedule. The inclusion of such a system would offload much of the decision 

loop processes in the Replanning EFD (Figure B. 3), but would fundamentally change 

how the operator interacts with the system. As such, a third STO Phase – DCAP Replan-

ning – was created, with a subsequent EFD and set of DLs. These are detailed in the sub-

sequent sections.  

B.2 SECONDARY ANALYSIS 

 The inclusion of an automated planning algorithm to offload operator replanning 

tasks changes the tasks and subtasks that an operator performs during the replanning 

process. Rather than creating specific schedules for aircraft, the operator instead manages 

inputs to and guides the performance of an automated algorithm. The DCAP system was 

designed to allow the operator with two levels of interaction, on both global and local 

levels. Prior research has shown that, while working on a local level provides better per-

formance for an operator, many operators attempt to manage the global priorities of the 

system [137, 138]. The DCAP system utilizes both aspects, allowing users to rank a set of 

personnel group variables through a drag-and-drop interface [139] to apply global rank-

ings, while allowing users to specify priority levels and suggest schedules for individual 

aircraft. This lead to the creation of additional STO phases, EFDs, and DLs.  
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B.2.1 Scenario Task Overview 

An additional STO Phase – DCAP Replanning – was created and addresses how the 

operator would interact with the system in order to input these global and local planning 

constraints. Table B. 3 contains a list of the subtask elements and related EFD elements 

for this new phase. 

Table B. 3. Scenario Task Overview – DCAP Replanning phase and subtasks 

Phase Task  
Number Task Related 

EFD Symbol 
1 Determine what item has failed P6 
2 Determine the type/extent of failure P7 
3 Define personnel group priorities P10 
4 Prioritize and suggest schedules for specific aircraft L7 
5 Select aircraft P11 
6 Determine priority status of aircraft i D5 
7 Define aircraft as priority P12 
8 Determine existence of desired schedule D6 
9 Define suggested schedule P13 

D
C

A
P 

R
ep

la
n 

10 Determine acceptability of proposed schedule D7 
 

B.2.2 Event Flow Diagrams 

An additional EFD was created to incorporate the subtasks contained with the new 

DCAP Replanning STO phase. This appears in Figure B. 8. In this case, only one major 

decision loop occurs, in which operators must examine all i aircraft in the system to de-

termine if any aircraft specifically requires a new schedule suggestion. 
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Figure B. 8. Event Flow Diagram 3 – DCAP Replanning. 
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B.2.3 Secondary Decision Ladders 

The DCAP Replanning EFD contains three new Decision elements, addressing how 

users determine the priority status of an aircraft, if the operator has a suggested schedule 

for the aircraft, and if the returned schedule proposed is acceptable. The DL for this ele-

ment appears in Figure B. 9. 

 

Figure B. 9. Decision Ladder 5 - Is aircraft i a priority case (from EFD 3). 
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Figure B. 10. Decision Ladder 6 - Suggested schedule for aircraft i (from EFD 3). 
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Figure B. 11. Decision Ladder 7 - Is proposed schedule acceptable (from EFD 3). 
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B.2.4 Situational Awareness Requirements 

From these EFDs, a set of Situational Awareness Requirements (SARs) can be gener-

ated, describing specific bits of information that must be displayed to the operator to en-

sure their awareness of the current operating state of the system. A total of 29 SARs were 

created for these two EFDs. Because the third EFD (DCAP Replanning) supersedes the 

second (Replanning), its SARs do not appear in this table. 

Table B. 4. List of Situational Awareness Requirements (SARs). 
 Level 1 (Perception) Level 2 (Comprehension) Level 3 (Projection) 

SAR1 Visual depiction of crew 
on deck (L1) 

Location, current action, and 
safety of crew members (L1) 

Destination and future 
safety of crew members 

(L1) 

SAR2 Visual depiction of aircraft 
on deck (L1) 

Location, current action, and 
safety of deck aircraft (L1) 

Destination and future 
safety of deck aircraft (L1) 

SAR3 Visual depiction of deck 
vehicles (L1) 

Location, current action, and 
safety of deck vehicles (L1) 

Destination and future 
safety of deck vehicles 

(L1) 

SAR4 Visual depiction of air-
borne aircraft (L2) 

Location, current action, and 
safety of airborne aircraft (L1) 

Destination and future 
safety of airborne aircraft 

(L1) 

SAR5 Visual depiction of current 
landing order (L2) Current landing order (L2) - 

SAR6 Visual depictions of cur-
rent fuel states (L2) Fuel levels of each aircraft (L2) Likelihood of aircraft hav-

ing insufficient fuel (L2) 

SAR7 Visual depiction of cata-
pults and status (L3) 

Availability and operability of 
catapults (L2) 

Flexibility of launch as-
signments (L2) 

SAR8 Visual depiction of status 
of fuel stations (L3) 

Availability and operability of 
fuel stations (L2) - 

SAR9 Visual depiction of status 
of elevators (L3) 

Availability and operability of 
elevators (L2) - 

SAR10 Visual depiction of status 
of landing strip (L3) 

Availability and operability of 
landing strip (L2) 

Repercussions on airborne 
aircraft (L2) 

SAR11 Visual depiction of current 
time of deck crew (L4) Fatigue level of the crew (L4) Time remaining before 

shift end (L4) 

SAR12 Visual depiction of current 
shift time of pilots (L5) Fatigue level of the pilot (L4) - 
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Table B. 5. List of Situational Awareness Requirements (SARs), continued. 

 Level 1 (Perception) Level 2 (Comprehension) Level 3 (Projection) 

SAR13 Visual/auditory alert to 
new aircraft failures (L2) 

Newly developed aircraft 
failure (L2) 

Effects of failure on air-
craft schedule, safety (L2) 

SAR14 Visual/auditory alert to 
new resource failures (L3) 

Newly developed resource 
failure (L3) 

Effects of failure on air-
craft schedule, safety (L2) 

SAR15 Visual depiction of current 
resource allocations (L6) 

Current allocation of aircraft to 
catapults/LZ (L6) 

Bottlenecks in resource 
usage (L6) 

SAR16 Visual depiction of current 
aircraft schedules (L6) 

 Current schedule of operations 
and level of delay (L6) 

Effects of delays on over-
all operational time (L6) 

SAR17 Visual depiction of current 
aircraft failures (P6) 

Currently known aircraft 
failures (P6) 

Aggregate effects of fail-
ures on schedule (P6) 

SAR18 Visual depiction of current 
resource failures (P6) 

Currently known resource 
failures (P6) 

Aggregate effects of fail-
ures on schedule (P6) 

SAR19 List of personnel group 
rankings (P10) 

Previous rankings of personnel 
groups (P10) - 

SAR20 Currently selected aircraft 
(P11) 

Aircraft currently being ranked 
(P11) - 

SAR21 Current priority status of 
all aircraft (P12) 

Previous priority status of 
aircraft (P12) - 

 

B.3 FINAL INFORMATION AND FUNCTIONAL REQUIREMENTS 

The final step in the hCTA process is the definition of a set of Information Require-

ments (IRs) for the resulting system display. These come jointly from the SARs and De-

cision Ladders developed from the Event Flow Diagrams. Table B. 6 lists the IRs for the 

DCAP interface; requirements are linked back to their corresponding Decision Ladder or 

EFD element. These information requirements support four main functions of the DCAP 

System – Monitoring the state of the world, Alerting the user to failures in the system, 

Predicting the future performance of the schedule, and Supporting the operator in replan-

ning. 
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Table B. 6. Information Requirements for the DCAP Interface. 
Information Requirements 

IR1 Location of all crew on deck SAR1 
IR2 Location of all deck aircraft SAR2 
IR3 Location of all airborne aircraft SAR3 
IR4 Location of all deck vehicles SAR4 
IR5 Current landing order SAR5, DL4 
IR6 Current fuel states SAR6 
IR7 Current catapult status (available and operational) SAR7 
IR8 Current fuel station status (available and operational) SAR8 
IR9 Current elevator status (available and operational) SAR9 

IR10 Current landing strip status (available and operational) SAR10 
IR11 Current work time of crew SAR11 
IR12 Current work time of pilots SAR12 
IR13 Alert for new aircraft failures SAR13, DL1 
IR14 Alert for new resource failures SAR14, DL1 
IR15 Current resource allocation SAR15, DL5, DL6 
IR16 Current schedules for all aircraft SAR16, DL5, DL6 
IR17 Currently existing aircraft failures SAR17 
IR18 Currently existing resource failures SAR18 
IR19 Current personnel group rankings SAR19 
IR20 Currently selected aircraft SAR20 
IR21 Current priority status of all aircraft SAR21 
IR22 Visual depiction of failure ID DL1, DL5 
IR23 Visual depiction of failure type DL1, DL5 
IR24 Visual depiction of failure details DL1, DL5 
IR25 Description of future schedule DL1 
IR26 Description of future resource allocations DL1 
IR27 Visual display of current aircraft task DL5, DL6 
IR28 Visual display of aircraft's upcoming tasks DL5, DL6 
IR29 Visual display of available resources DL6 
IR30 Visual display of future resource allocations DL6 

IR31 Visual depiction of performance under proposed assign-
ment DL6 

IR32 Project aircraft position in Marshal Stack DL5, DL6 
IR33 Temporal constraints on aircraft failure DL5, DL6 
IR34 Visual/auditory alert to return of proposal DL7 
IR35 Visual depiction of solution for failed aircraft DL7 
IR36 Visual depiction of changes in resource allocation DL7 
IR37 Visual depiction of changes in aircraft schedules DL7 

IR38 Visual notation of points of infeasibility (non-adherence) 
for priority aircraft DL7 

IR39 Visual depiction of predicted aircraft schedules DL7 
IR40 Visual depiction of predicted resource allocation DL7 
IR41 Visual depiction relative schedule performance. DL7 
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APPENDIX C – TUTORIAL FOR THE DCAP SIMULATION 

 
Figure C. 1. Tutorial Step 1 – requesting a schedule. 

Step 1: Click the Request Schedule button in the upper right portion of the screen.
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Figure C. 2. Tutorial Step 2 – select whether to change variable rankings. 

Step 2. The user is given the option of changing the rankings in the Variable Ranking 
Tool (VRT). Clicking “Yes” brings this window to the interior of the screen and makes it 
actionable. Clicking “No” skips the re-ranking step and leaves the variables with their 
current value. The user also has to option to permanently skip this step through a 
checkbox at the bottom of the frame. 
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Figure C. 3. Tutorial Step 3 – changing variable rankings. 

Step 3. If users decide to re-rank the four major personnel groups, they simply click and 
drag icons within the five levels in the VRT frame. Variables can be ranked in any man-
ner within the five levels provided – all on one level, each on a separate level, and any 
combination in between. When users are satisfied with the rankings, they click the “Sub-
mit” button at the bottom of the screen to submit the rankings to the algorithm. 
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Figure C. 4. Tutorial Step 4– defining aircraft priorities. 

Step 4. Clicking “Request Schedule” causes a set of checkboxes to appear next to aircraft 
in the Aircraft Schedule Panel (ASP). Checking one of these boxes designates the associ-
ated aircraft as “priority” to the algorithm. This is a binary condition – aircraft are either 
priority cases, or they are not. Users may assign priority to all aircraft or to none. 
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Figure C. 5. Tutorial Step 5 – suggesting aircraft schedules. 

Step 5. Defining an aircraft as priority leads to an additional change in the ASP – the 
timeline for the associated aircraft splits horizontally into two segments. The upper seg-
ment depicts the current operating schedule of the aircraft. The bottom half of the bar will 
be used to submit the operator’s desired schedule for this aircraft to the algorithm. When 
the timeline is split, the bottom bar becomes actionable and can be dragged left or right to 
accelerate or postpone the aircraft’s schedule of tasks. In certain cases, individual tasks 
can be lengthened or shortened by changing the size of the associated color block. When 
users have completed their specification, they press the “Submit” button above the first 
aircraft in the list. 
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Figure C. 6. Tutorial Step 6 – review the proposed schedule. 

Step 6. After pressing both “Submit” buttons (one each in the ASP and DVT), the algo-
rithm processes the user inputs in light of the current state of operations on deck, creating 
a schedule proposal. This proposal is displayed to the operator through modifications of 
the ASP, the Deck Resource Timeline (DRT), and the appearance of the Disruption Visu-
alization Tool (DVT). The ASP and DRT modifications display the current schedule on 
top and the proposed schedule on bottom (akin to the method of suggesting aircraft 
schedules in the previous step), allowing users to make a one-to-one comparison of 
changes in the schedules. The DVT shows the relative effectiveness of the schedule over-
all. Green triangles signify that all tasks for a variable group are completed in less operat-
ing time, while red triangles signify that the new schedule demands more operating time 
of this group. These states are reinforced by the size of the triangle as determined by its 
edge distance from the dashed black line. This line depicts no change between the sched-
ules, such that green triangles appear within the dashed line, and red triangles appear out-
side it. 
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Figure C. 7. Tutorial Step 7 – adjust proposed schedule. 

Step 7. The user retains the ability to make further suggestions to the scheduler at this 
juncture. The ASP timeline bars remain actionable, giving users the option to attempt to 
fine-tune the proposed schedule before implementation. Doing so, however, invalidates 
the current schedule and forces the algorithm to perform a new round of scheduling cal-
culations. If changes are made, the user would again press “Submit” to initiate schedule 
generation. 
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Figure C. 8. Tutorial Step 8 – accepting the proposed schedule. 

Step 8. When users have a desirable schedule, they press “Accept” in the upper right cor-
ner of the interface to implement the schedule into the environment.  

 



 161 

 
Figure C. 9. Tutorial Step 1 – returning to a monitoring state. 

Step 9. Pressing the “Accept” button then returns the operator to the monitoring state un-
til a need to request a new schedule arises. 
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APPENDIX D – EXPERT USER REPLANNING ACTIONS 

D.1 REPLANNING ACTIONS FOR THE EXPERT USER 

As noted previously, in a further effort to reduce variability in the system so as to ac-

curately depict the performance of the algorithm, the replanning actions of the Expert 

User were standardized according to the details in each scenario. The actions taken by the 

Expert User were dictated by the application of the expert user heuristics discussed in 

Chapter 4.1.1. The following sections describe the standard actions that were taken dur-

ing replanning for each scenario. 

D.1.1 PLANNING FOR THE SIMPLE SCENARIO 

In performing manual planning for the Simple scenario, SME heuristics 1, 2, 4, and 6 

were applied. This does not imply, however, that changes to other aircraft schedules did 

not occur. Table D.1 lists the aircraft whose new schedules resulted in catapult reassign-

ments and the order in which replanning occurred. Table D.2 lists the new assignments 

list with the desired ordering of launches; asterisks (*) denote aircraft whose assignment 

was changed. 

Table D.1. List of aircraft with catapult reassignments. 

  
Original 

Assignment 
New 

Assignment 
SMAC #2 3 2 
FMAC #2 3 2 
FMAC #5 3 2 
FMAC #8 3 2 

FMAC #11 3 4 
FUAV #2 3 4 
FUAV #4 2 4 
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Table D.2. Schedule assignment after manual replanning 
asterisks (*) denote aircraft whose assignment was changed. 

Catapult 1 Catapult 2 Catapult 3 Catapult 4 
- SUAV #2 SUAV #1 
- SMAC #1 

SMAC #2* FMAC #1 
FMAC #2* FMAC #4 
FMAC #3 FMAC #7 

FMAC #5* FMAC #10 
FMAC #6 FMAC #11* 

FMAC #8* FUAV #1 
FMAC #9 FUAV #2* 

FMAC #12 FUAV #4* 

Disabled 

FUAV #3 

Disabled 

- 
 

In performing the manual, human-only replanning, the user clicked on the aircraft, 

pressed a trigger key (the F1 key) on the computer keyboard, and then clicked on the des-

tination catapult. After making the assignment to the new catapult, the aircraft immedi-

ately implemented the new schedule and began moving to its new destination. After 

completing all reassignments, the user pressed a second, different trigger key (F10) on 

the computer keyboard signaled the end of replanning. After this, no further user action 

was required and the scenario could run to completion. 

In performing the automated planning for this Simple scenario, the user first clicked 

the “Request Schedule” button in the upper right hand corner of the screen. Given that 

this scenario is a launch configuration, the variable rankings were set to assign Deck Air-

craft as the highest priority, Crew Working and Deck Support vehicles as medium prior-

ity, and Airborne Aircraft (none in the system) as the lowest priority. In the Aircraft 

Schedule Panel, the same aircraft that were given schedule changes in the manual replan-

ning case (Table D.2) were given priority designations. However, no schedule changes 
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were suggested; the schedules were left in their current state, signaling to the scheduler a 

desire to adhere to the current launch time schedule. In the returned schedule, shifts for-

ward were acceptable, but movements backward in time would not be accepted. After 

receiving the new plan, the user reviewed the schedules for each of these aircraft, looking 

to see if the new schedule satisfied these criteria. 

D.1.2 PLANNING FOR THE MODERATE SCENARIO 

In the Moderate Scenario, only two aircraft required replanning. The first aircraft was 

a Fast Manned Aircraft that encountered a hydraulic leak, the second a Slow Manned 

Aircraft that encountered a fuel leak. In replanning for this scenario, five SME heuristics 

were applied (1, 2, 3, 7, and 9). The main emphasis is on Heuristic 9 and the differentia-

tion between True and Urgent emergencies. Fuel leaks are considered a major, True 

emergency that must be handled immediately. The hydraulic leaks, as modeled in the sys-

tem, develop more slowly and are considered to be less problematic. Furthermore, hy-

draulic failures increase the likelihood of accidents and debris at landing, which may fur-

ther limit the ability of the deck to recover aircraft and create more failures in the system.  

For the manual, human-only planning condition, this resulted in moving the fuel leak 

aircraft forward in the Marshal Stack, assigning it the most immediate landing slot, and 

moving the hydraulic failure backwards to the last manned position in the Marshal Stack. 

This preserves Heuristic 3 (Safety of Pilots and Crew). In executing these actions, the 

user again clicked the aircraft, pressed F1, and then clicked either the deck (to issue an 

immediate landing order) or an alternate area signifying a move to the back of the Mar-
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shal Stack. The user again pressed F10 to signify the conclusion of the planning activi-

ties. 

For the human-algorithm combined planning, group variables were set opposite to 

that of the Simple scenario. Crew Working and Deck Support vehicles still received a 

moderate rating, but the Airborne Aircraft were now of primary concern. Deck Aircraft 

were moved to the lowest setting, as there are none in the system. In the Aircraft Sched-

ule Panel, the two failed aircraft were assigned priority ratings, but in this case, the Ex-

pert User provided suggestions for the schedules for these aircraft. The SMAC with the 

fuel failure is given a suggestion to move forward in time, while the FMAC with the hy-

draulic failure is suggested to delay operations. After receiving the proposed schedule, 

the user reviewed the aircraft schedules in order to ensure that the SMAC is moved for-

ward in time, as this is the primary concern. The backward movement of the FMAC is a 

secondary concern, as the suggested schedule may actually induce a limit violation and 

be unacceptable for the planning algorithm. 

D.1.3 PLANNING FOR THE COMPLEX SCENARIO 

The Complex scenario includes aspects of both the Simple and Complex cases, and 

thus replanning included all of the above Heuristics (1, 2, 3, 4, 6, 7, and 9). For the man-

ual case, application of these heuristics resulted in moving the SMAC with fuel leak for-

ward in the Marshal Stack, inserting it into the first available landing configuration. 

However, planning for the aircraft on deck required ensuring that these aircraft were not 

sent to Catapults 3 and 4. If one of these aircraft were to become incapacitated in the 

Landing Strip, the SMAC would be placed in serious danger. As such, both of there air-
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craft were sent to Catapult 2, ensuring that no conflicts were created with the landing 

strip. The physical actions to do this are identical to those used for the deck and airborne 

aircraft in the previous two scenarios. 

For the human-algorithm case, the strategy was similar to the Moderate case. Variable 

rankings were slightly adjusted due to the lower fuel levels of aircraft in this scenario; 

while Airborne Aircraft retained the highest priority, all other variables were placed in 

the lowest priority bin. This placed even greater emphasis on the critical nature of the fuel 

states of these aircraft. The failed aircraft was given a priority designation in the ASP 

with suggestion to accelerate the schedule. When reviewing the proposed plan, the user 

examined individual aircraft schedules to ensure that the failed SMAC was given a 

schedule that moved it forward in time. 
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APPENDIX E – METRICS WITH LOW EXTERNAL VALIDITY 
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APPENDIX F – PRINCIPAL COMPONENTS ANALYSIS RESULTS 

Table F. 1. PCA Results for the Simple scenario, Baseline planning condition. 
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Table F. 2. PCA Results for the Simple scenario, Human-Only planning condition. 
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Table F. 3. PCA Results for the Simple scenario, Human-Algorithm planning condition. 
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Table F. 4. Cross-Correlations for the Simple Scenario. 

 

In this table, X’s denote that these metrics were highly correlated for all the planning 

conditions (Table F. 1 – Table F. 3). For example, TATT and MD were found to be 

highly correlated with the B, HO, and HA planning conditions within the Simple sce-

nario. TATT and TAAT, however, were not highly correlated in at least one of these 

three planning conditions. 
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Table F. 5. PCA Results for the Moderate scenario, Baseline planning condition. 
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Table F. 6. PCA Results for the Moderate scenario, Human-Only planning condition. 
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Table F. 7. PCA Results for the Moderate scenario, Human-Algorithm planning condi-
tion. 
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Table F. 8. Cross-Correlations for the Moderate Scenario. 

 

In this table, X’s denote that these metrics were highly correlated for all the planning 

conditions (Table F. 5 – Table F. 7). For example, TATT and LZFT were shown to be 

highly correlated for the B, HO, and HA planning conditions within the Simple scenario. 

TATT and TAAT, however, were not highly correlated in at least one of these three plan-

ning conditions. 



 179 

Table F. 9. PCA Results for the Complex scenario, Baseline planning condition. 

 



 180 

Table F. 10. PCA Results for the Complex scenario, Human-Only planning condition. 



 181 

Table F. 11. PCA Results for the Complex scenario, Human-Algorithm planning condi-
tion. 
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Table F. 12. Cross-correlations for the Complex scenario. 

 

In this table, X’s denote that these metrics were highly correlated for all the planning 

conditions (Table F. 9 – Table F. 11). For example, TATT and LZFT were shown to be 

highly correlated for the B, HO, and HA planning conditions within the Simple scenario. 

TATT and TAAT, however, were not highly correlated in at least one of these three 

planning conditions. 
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APPENDIX G – NORMALITY TESTS 

Table G. 1. Results of Kolmogorov-Smirnov normality tests for the Simple scenario (as-
terisks * denote that data was non-normal). 

Metric Treatment Statistic df Sig.  Metric Treatment Statistic df Sig. 
B  0.115 30 0.200  B 0.127 30 0.200 

HO 0.152 30 0.073  HO* 0.182 30 0.013 LZFT 

HA* 0.385 28 0.000  
C3LR 

HA* 0.278 28 0.000 
B  0.112 30 0.200  B 0.127 30 0.200 

HO* 0.200 30 0.004  HO* 0.182 30 0.013 TATT 

HA* 0.312 28 0.000  
C4LR 

HA* 0.358 28 0.000 

B  0.137 30 0.159  B 0.127 30 0.200 
HO 0.104 30 0.200  HO* 0.182 30 0.013 TAAT 

HA* 0.176 28 0.026  
TCLR 

HA* 0.278 28 0.000 

B  0.151 30 0.080  B  0.123 30 0.200 

HO 0.145 30 0.107  HO 0.099 30 0.200 TCAT 

HA 0.092 28 0.200  
HV 

HA* 0.180 28 0.020 

B  0.121 30 0.200  B* 0.269 30 0.000 
HO* 0.193 30 0.006  HO 0.109 30 0.200 MD 

HA 0.153 28 0.091  
HV-D 

HA* 0.292 28 0.000 
B 0.127 30 0.200  B  - - - 

HO* 0.182 30 0.013  HO* 0.167 30 0.032 C2LR 

HA* 0.528 28 0.000  
UIT 

HA* 0.196 28 0.007 
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Table G. 2. Results of Kolmogorov-Smirnov normality tests for the Moderate scenario 
(asterisks * denote that data was non-normal). 

Metric Treatment Statistic df Sig.  Metric Treatment Statistic df Sig. 

B 0.113 30 0.200  B 0.085 30 0.200 

HO 0.156 29 0.070  HO* 0.275 29 0.000 LZFT 

HA 0.137 28 0.192  
TAAT 

HA 0.089 28 0.200 

B* 0.457 30 0.000  B 0.090 30 0.200 

HO* 0.369 29 0.000  HO 0.089 29 0.200 FMAC_6_HFR 

HA* 0.536 28 0.000  
TCAT 

HA 0.103 28 0.200 

B* 0.342 30 0.000  B* 0.167 30 0.032 

HO* 0.304 29 0.000  HO* 0.367 29 0.000 FMAC_6_EART 

HA* 0.223 28 0.001  
WTQMS 

HA 0.088 28 0.200 

B* 0.256 30 0.000  B 0.063 30 0.200 

HO - - -  HO* 0.183 29 0.014 SMAC_2_EART 

HA 0.134 28 0.200  
MD 

HA 0.105 28 0.200 

B 0.137 30 0.155  B* 0.195 30 0.005 

HO 0.130 29 0.200  HO 0.106 29 0.200 SMAC_2_EFR 

HA 0.120 28 0.200  
HV 

HA 0.096 28 0.200 

B 0.102 30 0.200  B* 0.163 30 0.040 

HO 0.121 29 0.200  HO 0.144 29 0.131 SMAC_2_AAT 

HA 0.092 28 0.200  
HV-D 

HA 0.127 28 0.200 

B 0.098 30 0.200  B - - - 

HO 0.133 29 0.200  HO* 0.222 29 0.001 TATT 

HA 0.107 28 0.2.  
UIT 

HA 0.153 28 0.090 
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Table G. 3. Results of Kolmogorov-Smirnov normality tests for the Complex scenario 
(asterisks * denote that data was non-normal). 

Metric Treatment Statistic df Sig.  Metric Treatment Statistic df Sig. 

B 0.130 27 0.200  B 0.134 27 0.200 

HO 0.084 25 0.200  HO 0.111 25 0.200 LZFT 

HA 0.147 27 0.142  
MD 

HA* 0.175 27 0.032 

B 0.164 27 0.059  B 0.134 27 0.200 

HO 0.154 25 0.127  HO 0.111 25 0.200 SMAC_2_AAT 

HA 0.161 27 0.070  
C2LR 

HA - - - 

B 0.145 27 0.152  B - - - 
HO 0.134 25 0.200  HO - - - SMAC_2_EFR 

HA 0.158 27 0.084  
C3LR 

HA* 0.172 27 0.040 

B* 0.303 27 0.000  B - - - 

HO* 0.347 25 0.000  HO - - - SMAC_2_EART 

HA* 0.170 27 0.044  
C4LR 

HA* 0.172 27 0.040 

B 0.099 27 0.200  B 0.134 27 0.200 
HO 0.120 25 0.200  HO 0.111 25 0.200 TATT 

HA 0.119 27 0.200  
TCLR 

HA* 0.172 27 0.040 

B 0.120 27 0.200  B 0.141 27 0.177 

HO 0.079 25 0.200  HO* 0.255 25 0.000 TAAT 

HA* 0.343 27 0.000  
HV 

HA 0.145 27 0.153 

B 0.110 27 0.200  B* 0.313 27 0.000 
HO 0.161 25 0.095  HO* 0.401 25 0.000 TCAT 

HA 0.103 27 0.200  
HV-D 

HA* 0.210 27 0.004 

B* 0.187 27 0.016  B - - - 

HO 0.156 25 0.117  HO* 0.286 25 0.000 WTQMS 

HA* 0.324 27 0.000  
UIT 

HA* 0.197 27 0.009 
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APPENDIX H – TESTS FOR HETEROSKEDASTICITY 

Table H. 1. Results of Heteroskedasticity tests for pairwise comparisons in the Simple 
scenario. 

   Levene Statistic df1 df2 Sig. 
LZFT Based on Mean 10.410 1 58 .002 
TATT Based on Mean 15.481 1 58 .000 
TAAT Based on Mean 15.975 1 58 .000 
TCAT Based on Mean 27.719 1 58 .000 

MD Based on Mean 6.501 1 58 .013 
C2LR Based on Mean 10.124 1 58 .002 
C3LR Based on Mean 17.286 1 58 .000 
C4LR Based on Mean 9.361 1 58 .003 
TCLR Based on Mean 4.021 1 58 .050 

HV Based on Mean 12.746 1 58 .001 

B vs. HO 

HV-D Based on Mean .777 1 58 .382 
LZFT Based on Mean 2.426 1 56 .125 

TATT Based on Mean 2.660 1 56 .109 

TAAT Based on Mean 11.738 1 56 .001 
TCAT Based on Mean 52.938 1 56 .000 

MD Based on Mean 10.275 1 56 .002 
C2LR Based on Mean 15.030 1 58 .000 
C3LR Based on Mean 6.470 1 58 .014 
C4LR Based on Mean 13.328 1 58 .001 
TCLR Based on Mean 7.140 1 58 .010 

HV Based on Mean 5.884 1 56 .019 

B vs. HA 

HV-D Based on Mean 65.170 1 56 .000 

LZFT Based on Mean .211 1 56 .647 
TATT Based on Mean .238 1 56 .627 
TAAT Based on Mean 3.786 1 56 .057 

TCAT Based on Mean 4.948 1 56 .030 

MD Based on Mean 3.091 1 56 .084 
C2LR Based on Mean 13.100 1 58 .001 
C3LR Based on Mean 3.064 1 58 .085 
C4LR Based on Mean 10.508 1 58 .002 
TCLR Based on Mean 3.064 1 58 .085 

HV Based on Mean .270 1 56 .605 
HV-D Based on Mean 81.640 1 56 .000 

HO vs. 
HA 

UIT Based on Mean 6.148 1 56 .016 
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Table H. 2. Results of Heteroskedasticity tests for pairwise comparisons in the Moderate 
scenario. 

  Levene Statistic df1 df2 Sig. 
LZFT Based on Mean .139 1 57 .711 

FMAC_6_HFR Based on Mean 6.228 1 57 .015 
FMAC_6_EART Based on Mean 21.729 1 57 .000 
SMAC_2_EART Based on Mean - - - - 
SMAC_2_EFR Based on Mean .029 1 57 .864 
SMAC_2_AAT Based on Mean .007 1 57 .933 

TATT Based on Mean 2.198 1 57 .144 
TAAT Based on Mean 13.907 1 57 .000 
TCAT Based on Mean 5.446 1 57 .023 

WTQMS Based on Mean 21.585 1 57 .000 
MD Based on Mean 17.336 1 57 .000 
HV Based on Mean .861 1 57 .357 

B vs. HO 

HV-D Based on Mean 27.354 1 57 .000 

LZFT Based on Mean 1.193 1 56 .279 

FMAC_6_HFR Based on Mean 20.506 1 56 .000 
FMAC_6_EART Based on Mean 40.396 1 56 .000 
SMAC_2_EART Based on Mean 63.484 1 56 .000 
SMAC_2_EFR Based on Mean 4.496 1 56 .038 
SMAC_2_AAT Based on Mean 1.569 1 56 .216 

TATT Based on Mean .232 1 56 .632 
TAAT Based on Mean 6.177 1 56 .016 
TCAT Based on Mean 1.346 1 56 .251 

WTQMS Based on Mean 37.234 1 56 .000 
MD Based on Mean 16.566 1 56 .000 
HV Based on Mean 15.082 1 56 .000 

B vs. HA 

HV-D Based on Mean 34.533 1 56 .000 
LZFT Based on Mean 1.967 1 55 .166 

FMAC_6_HFR Based on Mean 47.875 1 55 .000 
FMAC_6_EART Based on Mean 10.785 1 55 .002 

SMAC_2_EART Based on Mean - - - - 
SMAC_2_EFR Based on Mean 4.909 1 55 .031 
SMAC_2_AAT Based on Mean 1.350 1 55 .250 

TATT Based on Mean 3.121 1 55 .083 
TAAT Based on Mean 5.395 1 55 .024 
TCAT Based on Mean .913 1 55 .343 

WTQMS Based on Mean 9.653 1 55 .003 
MD Based on Mean .921 1 55 .341 
HV Based on Mean 18.416 1 55 .000 

HV-D Based on Mean .973 1 55 .328 

HO vs. HA 

UIT Based on Mean 27.408 1 55 .000 
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Table H. 3. Results of Heteroskedasticity tests for pairwise comparisons in the Complex 
scenario. 

     Levene Statistic df1 df2 Sig. 
LZFT Based on Mean 2.292 1 50 .136 

SMAC_2_AAT Based on Mean .287 1 50 .595 
SMAC_2_EFR Based on Mean .607 1 50 .439 

SMAC_2_EART Based on Mean 3.382 1 50 .072 
TATT Based on Mean 2.096 1 50 .154 
TAAT Based on Mean 1.238 1 50 .271 
TCAT Based on Mean .032 1 50 .860 

WTQMS Based on Mean .436 1 50 .512 
MD Based on Mean 1.722 1 50 .195 

C2LR Based on Mean 1.681 1 50 .201 
TCLR Based on Mean 1.681 1 50 .201 

HV Based on Mean .832 1 50 .366 

B vs. HO 

HV-D Based on Mean 30.286 1 50 .000 
LZFT Based on Mean 12.088 1 52 .001 

SMAC_2_AAT Based on Mean .982 1 52 .326 

SMAC_2_EFR Based on Mean 1.029 1 52 .315 
SMAC_2_EART Based on Mean 15.733 1 52 .000 

TATT Based on Mean .002 1 52 .961 
TAAT Based on Mean 23.367 1 52 .000 
TCAT Based on Mean .369 1 52 .546 

WTQMS Based on Mean 31.547 1 52 .000 
MD Based on Mean 12.346 1 52 .001 

C2LR Based on Mean - - - - 
C3LR Based on Mean - - - - 
C4LR Based on Mean - - - - 
TCLR Based on Mean 8.217 1 52 .006 

HV Based on Mean 27.620 1 52 .000 

B vs. HA 

HV-D Based on Mean 101.324 1 52 .000 

LZFT Based on Mean 2.789 1 50 .101 
SMAC_2_AAT Based on Mean 1.581 1 50 .214 
SMAC_2_EFR Based on Mean 1.870 1 50 .178 

SMAC_2_EART Based on Mean 15.679 1 50 .000 

TATT Based on Mean 1.726 1 50 .195 
TAAT Based on Mean 20.810 1 50 .000 
TCAT Based on Mean .711 1 50 .403 

WTQMS Based on Mean 29.464 1 50 .000 
MD Based on Mean 14.526 1 50 .000 

C2LR Based on Mean - - - - 
C3LR Based on Mean - - - - 
C4LR Based on Mean - - - - 
TCLR Based on Mean 10.908 1 50 .002 

HV Based on Mean 11.456 1 50 .001 
HV-D Based on Mean 286.921 1 50 .000 

HO vs. HA 

UIT Based on Mean 39.199 1 50 .000 
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APPENDIX I – BOXPLOTS FOR THE SIMPLE SCENARIO 
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Figure I. 1. Landing Zone Foul Time (LZFT). 
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Figure I. 2. Total Aircraft Taxi Time (TATT). 
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Figure I. 3. Total Aircraft Active Time (TAAT). 
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Figure I. 4. Total Crew Active Time (TCAT). 
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Figure I. 5. Mission Duration (MD). 

 

 
Figure I. 6. Catapult 2 Launch Rate (C2LR). 
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Figure I. 7. Catapult 4 Launch Rate (C4LR). 

 

 
Figure I. 8. Total Catapult Launch Rate (TCLR). 
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Figure I. 9. Halo Violations (HV). 
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Figure I. 10. Halo Violation Durations (HV-D). Spikes in plot imply 95% confidence in-

terval notches extend past included data. 
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Figure I. 11. User Interaction Count (UIC). Spikes in plot imply 95% confidence interval 

notches extend past included data. 
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Figure I. 12. User Interaction Time (UIT). 
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APPENDIX J – BOXPLOTS FOR THE MODERATE SCENARIO 
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Figure J. 1. Landing Zone Foul Time (LZFT). Spikes in plot imply 95% confidence in-

terval notches extend past included data. 
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Figure J. 2. FMAC #6 Hydraulic Fluid Remaining (FMAC 6 HFR). Spikes in plot imply 

95% confidence interval notches extend past included data. 
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Figure J. 3. FMAC #6 Emergency Aircraft Recovery Time (FMAC 6 EART). 
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Figure J. 4. SMAC #2 Aircraft Active Time (SMAC 2 AAT). 
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Figure J. 5. SMAC #2 Emergency Fuel Remaining (SMAC 2 EFR). 
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Figure J. 6. SMAC #2 Emergency Aircraft Recovery Time (SMAC 2 EART). 
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Figure J. 7. Total Aircraft Taxi Time (TATT). 
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Figure J. 8. Total Aircraft Active Time (TAAT). 
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Figure J. 9. Total Crew Active Time (TCAT). 
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Figure J. 10. Wait Time in Queue in Marshal Stack (WTQMS). 
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Figure J. 11. Mission Duration (MD). 
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Figure J. 12. Halo Violations (HV). 
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Figure J. 13. Halo Violation Durations (HV-D). 
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Figure J. 14. User Interaction Count (UIC). 
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Figure J. 15. User Interaction Time (UIT). 
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APPENDIX K – BOXPLOTS FOR THE COMPLEX SCENARIO 
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Figure K. 1. Fuel Violation (FV) 
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Figure K. 2. Landing Zone Foul Time (LZFT). 
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Figure K. 3. SMAC #2 Aircraft Active Time (SMAC 2 AAT). 
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Figure K. 4. SMAC #2 Emergency Fuel Remaining (SMAC 2 EFR). 
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Figure K. 5. SMAC #2 EART (SMAC 2 EART). 
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Figure K. 6. Total Aircraft Taxi Time (TATT). 
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Figure K. 7. Total Aircraft Active Time (TAAT). 

 

B HO HA
60

62

64

66

68

70

72

74

76

78

80

Planning Condition

TCAT

M
in

ut
es

 
Figure K. 8. Total Crew Active Time (TCAT). 
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Figure K. 9. Wait Time in Queue in Marshal Stack (WTQMS). 
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Figure K. 10. Mission Duration (MD). 
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Figure K. 11. Catapult 2 Launch Rate (C2LR). 
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Figure K. 12. Catapult 3 Launch Rate (C3LR). 
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Figure K. 13. Catapult 4 Launch Rate (C4LR). 
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Figure K. 14. Total Catapult Launch Rate (TCLR). 
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Figure K. 15. Halo Violations (HV). 
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Figure K. 16. Halo Violation Durations (HV-D). Spikes in plot imply 95% confidence 

interval notches extend past included data. 
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Figure K. 17. User Interaction Count (UIC). Spikes in plot imply 95% confidence interval 

notches extend past included data. 
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Figure K. 18. User Interaction Time (UIT). 
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