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Abstract

Pilots of vertical landing vehicles face numerous control challenges which often involve
the loss of outside visual perceptual cues or the control of flight parameters within
tight constraints. These challenges are often associated with a high mental workload,
therefore, a precision landing aid that addresses and helps to mitigate these challenges,
and reduce mental workload is needed. To address this need, a cognitive task analysis
identified specific situation awareness requirements for the design of a vertical landing
aid in order to reduce the mental steps required during a vertical landing. From these
requirements, a new vertical landing decision aid, known as the Vertical Altitude and
Velocity Indicator (VAVI) was designed, which displays altitude and vertical speed
information in an integrated form including the display of flight parameter safety
constraints. The display instrument takes advantage of direct-perception interaction
by leveraging ecological perception and emergent features to provide quick perception
and comprehension of critical flight parameters in an integrated fashion.

To test the effectiveness of the VAVI for vertical landing and hover performance,
an experiment was conducted in which participants flew a simulated Harrier vertical
landing flight profile using Microsoft Flight Simulator (MSFS) 2004. Participants
were recruited for their helicopter pilot experience or PC flight simulator experience.
Two heads-up displays were implemented: one which included the VAVI, and another
which displayed altitude and vertical speed information consistent with operational
V/STOL aircraft head-up displays. A 2x2 ANOVA design was utilized in which
the heads-up display was a between-subjects factor and flight task, which included
hovering and landing, was a within-subjects factor. Participants participated in two
test scenarios which involved hovering at a specified altitudes and descending using
either a static or dynamic vertical speed heuristic.

The VAVI showed statistically significantly better vertical speed control perfor-
mance over the conventional display of altitude and vertical speed. Similarly, though
not statistically significant, other dependent variables used to measure landing per-
formance as well as precision hovering consistently resulted in better performance
with the VAVI. A subjective workload survey indicated that the VAVI caused less
workload across all experimental tasks, indicating that the VAVI does help to remove
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some of the demanding cognitive processes currently associated with vertical landing
and hover operations. Future design and implementation issues are discussed.
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Chapter 1

Introduction

The need for vertical precision landing capability has long been recognized for mili-

tary, space, and commercial applications. While the first vertical takeoff and landing

aircraft, such as balloons and airships were difficult to maneuver, current technology

has revolutionized air and spacecraft vertical flight and the future of this capability is

promising. The advantages of vertical flight do not come without unique challenges

however. Specifically, vertical operations such as hovering and precision landing are

difficult tasks that can be confounded by various aerodynamic effects or a loss of

visual cues. This is a challenge because for vertical precision landings in particular,

pilots rely almost completely on perceptual cues external to the cockpit. Precision

landing flight displays, however, have not caught up to the promising advances in

vertical flight technology.

Aircraft with vertical takeoff and landing capability fall into one of two categories:

V/STOL (vertical/short-takeoff and landing) and helicopters. V/STOL aircraft in-

clude convertiplanes such as harriers (a vectored-thrust aircraft) and Ospreys (a tilt

rotor aircraft) which can fly horizontally with the same effectiveness as conventional

aircraft, but have the capability to takeoff and land vertically. Helicopters are rotor-

crafts that derive their lift from rotating blades regardless of the phase of flight. The

Harrier and V-22 Osprey are the only operational V/STOL aircraft used today, with

the Joint Strike Fighter (JSF) soon to become the next generation V/STOL aircraft.

In the space domain, the Apollo Lunar Module (LM) was designed for vertical
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bility that requires precision control to avoid or recover from these unsafe conditions.

The loss of visual inputs and the need for precision control can both be addressed

through the use of displays and individual display design. Each of these vertical flight

challenges can be mitigated through display design in the following manner.

• Ground Effect: While the presence of or lack of ground effect presents different

challenges for different V/STOL aircraft, the challenges all relate to the control

of vertical speed at very specific altitudes. Therefore, the integration of these

two sources of information on the display in such a way that both can be directly

perceived and appropriately manipulated would help mitigate this challenge.

• Vortex Ring State: As vortex rings state or “settling with power” is caused by

an excessive descent rate at low airspeeds while applying power, the display of

this vertical speed limit that visually indicates the current position in relation

to that limit may help mitigate this challenge.

• Meteorological Flying Conditions: Poor meteorological flying conditions that re-

quire instrument flight rules necessitate that critical information that is usually

provided by outside visual cues, be displayed in an intuitive manner inside the

cockpit.

• Visual Disruptions: Visual disruptions, which also temporarily eliminate many

of the commonly used outside visual cues, require an intuitive display of critical

flight information in a way that can be quickly referenced. This way, the display

can be used in conjunction with the reduced visual cues to provide a clear

understanding of the situation.

1.1.4 Problem Statement

The challenging conditions that accompany vertical flight, in particular the hovering

and landing aspects of vertical flight, place high cognitive demands on pilots. Flight

instrument displays are becoming increasingly important for mitigating these chal-

lenges as the demand for vertical aircraft increases, particularly in difficult operating
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• Chapter 6, Results, presents the statistical results of the experiment described

in the Human Participant Experimentation chapter.

• Chapter 7, Discussion, compares the results of the human participant experi-

ment with the hypotheses and discusses the applicability of the results to future

integrated flight instrument display design.

• Chapter 8, Conclusion, summarizes the motivation and objectives of this re-

search, how well the objectives were met, and the key contributions. Suggestions

for future work are also provided.
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