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Human operators in unmanned vehicle systems must divide their attention between
multiple tasks. This is particularly true of systems that contain multiple unmanned vehi-
cles. In such systems, long-term research goals include determining (a) what dictates how
humans allocate their attention, (b) where humans should focus their attention, (c¢) what
can system designers do, via decision support systems, etc., to direct their attention to the
“right” places, and (d) how do we measure the efficiency of human attention allocation.
As a step toward finding answers to these questions, we conducted a user study in which a
single human controlled multiple simulated unmanned vehicles. In this paper, we discuss
some of the lessons we learned from this user study with respect to human attention allo-
cation. These conclusions are made by using metrics derived from users’ selection strategies
and switching times.

I. Introduction

When a human interacts with multiple unmanned vehicles (UVs), (s)he must divide his/her attention
between various tasks, including the various UVs in the team. In large part, the efficiency of human attention
allocation determines the effectiveness of these systems. Thus, it becomes essential that we can answer
questions such as:

e What dictates how humans allocate their attention among the various tasks to be performed?
e Where should human operators focus their attention at any given time?

e What can be done, in the form of decision support systems, system autonomy, etc., to direct operator
attention to the “right” places?

e How should the efficiency of human attention allocation be measured?

To this end, we conducted a user study in which a single human controlled multiple simulated UVs
performing independent tasks. From this study, we investigated three separate topics related to the previously
mentioned questions. First, do users group tasks of like type, and then service them in succession? Second,
how does a visually presented list of UVs affect human attention allocation? Third, with respect to attention
allocation, what distinguishes successful operators from less successful operators? We used measures derived
from switching times and attention allocation policies (or selection strategies) to answer these questions.

The remainder of the paper proceeds as follows. In Section I, we review related work. In Section III, we
formalize the use of various terms and concepts related to attention allocation. In Section IV, we describe
the user study, including the UV test-bed and experimental procedure. In Sections V, we explore the
operator attention allocation characteristics related to the three topics discussed in the previous paragraph.
In Section VI, we summarize the results.

II. Related Work

Due to the large body of research that has been conducted in the area of human attention allocation in
human-machine systems, we review briefly only a small subset of this research in this paper. We refer the
reader to Wickens and Hollands book! for a more extensive review.
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Attention allocation efficiency (AAE) has been identified as one of three critical aspects of an unmanned
vehicle system (UVS).? In general, AAE is the degree to which the human operator allocates her/his attention
to the “right” places at the “right” time. In the context of an unmanned vehicles system (UVS), this is
akin to allocating attention to the correct UV. Furthermore, human attention toward a UV can be allocated
among different aspects of the UV’s mission, including control, navigation, and mission management.?

Assigning task priorities is a critical part of any discussion of attention allocation. Task prioritization
involves (a) determining how humans prioritize tasks,*® (b) determining the best (or good enough) prior-
itizations, and (c) determining how to help operators focus their attention on the tasks with the highest
priority. In the case of the latter point, specific efforts to focus human attention on the right tasks include
developing reliable alarming systems® 7 and changing the level of automation®* to help operators retain ade-
quate levels of situation awareness.'? Additionally, human performance is known to be highest for moderate
levels of workload.!! Previous research has identified that, in many supervisory control contexts such as air
traffic control, human utilization should not exceed 70%.12:13

The ability to measure AAE is a critical component of designing an efficient UVS. These metrics include
the frequency of task switching,!* costs of task switching,'® % and wait times caused be lack of situation
awareness.> Whether these metrics are adequate measures of attention allocation efficiency or whether other
generalizable metrics are needed remains an open research question.

III. Attention Allocation in Human-UV Systems

We now formalize the process of human attention allocation as we use it throughout this paper for a single
operator, multi-UV UVS. For simplicity, we assume that attention allocation occurs at certain choice points.
We consider that these choice points occur when the human operator ceases to interact with a particular UV
and must determine which UV to service next.* We are interested in two aspects of this decision: (1) the
UV that the operator chooses to service and (2) the amount of time it takes for the human to make this
decision. The former aspect depends on the operator’s selection strategy (S.S). We refer to the latter aspect
as switching time (ST).

Formally, let H; be the history of the human operator’s past interactions at time ¢. Let si be the state
of UV i at time ¢, and let S; = (s},---, sl¥) be the systems joint state at time ¢, where N is the number of
UVs in the team. Then, the human operator’s selection strategy at time ¢, denoted SS(t, Hy, So, - - ,.S%), is
a random variable specifying a probability distribution over UVs. In some cases, it is sufficient to make a
Markov assumption in which the random variables is defined simply by the time ¢, the current joint state
S, and the previous interaction (i.e., only the most recent component of Hy).

The amount of time it takes for the human to make a selection (or switching time) depends on two kinds
of events. First, it depends on the amount of time it takes for the operator to orient to the status of the UVs
in the team, determine which UV to service, and carry out the necessary steps to select that UV. Second, in
many cases, the human may determine that no UV needs servicing for a period of time. Thus, the operator
monitors the UVs until (s)he believes that one of the UVs should be serviced. We consider monitoring time
to also be part of switching time in this paper. We note that the random variable describing switching time
(ST) can be defined similarly to S, except that the distribution is over times rather than UVs.

Ideally, estimates of SS and ST can be constructed by observing the UVS. These estimates can then be
used to construct various metrics to tell the story of human attention allocation in the UVS. To demonstrate
how these processes can be used, we present a user study in which a single user controls multiple simulated
UVs. We describe this user study in the next section. We then use the resulting estimates of SS and ST to
evaluate human attention allocation in this UVS in Section V.

IV. User Study

In this section, we describe the experimental UV test bed used including the mission to be performed, the
user interface, and the behaviors of the UVs. We also describe the experimental procedure and designations
of UV states used to construct models of 5SS and ST.

2This assumption means that we do not consider preemptive scheduling which occurs when a human terminates an interaction
prematurely in order to service another task.
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Figure 1. The two displays used in the experiment. Each was displayed on a separate monitor.

IV.A. Mission

Participants used multiple simulated UVs to extract objects from a maze. The goal was (a) to remove as
many objects from the maze as possible during an 8-minute session while (b) ensuring that all UVs were out
of the maze when time expired. An object was removed from the maze using a three-step process. First,
a UV moved to the location of the object in the maze. Second, the UV “picked up” the object. As this
action would likely require the operator to perform a visual task, we simulated this task by asking the user
to identify a city on a map of the United States using Google™ Earth-style software; see Figure 1b. This
locate-a-city task was a primary task and not a secondary task. Third, the UV carried the object out of the
maze via one of two exits.

The objects were randomly spread throughout the maze. Initially, the positions of just six of the objects
were shown. Every minute of the session, an additional two objects were displayed on the screen. Thus,
there was a total of 22 possible objects for the UVS to collect.

IV.B. Interface

The human-UV interface used in the study was the two-screen display shown in Figure 1. On the left screen
(see Figure 1a), the known portion of the maze was displayed along with the positions of the UVs and objects
in the maze. The right screen (see Figure 1b) was used to locate the cities.

In this study, the user could control just one UV at a time. The user designated this UV by clicking
a button on the interface corresponding to the desired UV (labeled UV1, UV2, etc.), as seen on the right
side of Figure la. The user could then control the UV by specifying goal destinations and making path
modifications. Goal designation was achieved by dragging the goal icon corresponding to the UV in question
to the desired location. Once the UV received a goal command, it generated and displayed the path it
intended to follow. The user was allowed to modify this path.

To “pick up” an object, the user was required to locate a specific city on a map of the mainland United
States once the UV reached an object. This was done using the interface displayed in Figure 1b (the right
screen). Once the user located the state where the city was located, the user could zoom into the map of
this state using the mouse. The user then searched the map to locate the correct city.

IV.C. UV Behavior

The maze was not known at the start of the session by the user or the UVs, but the UVs created and
shared a map of the maze as they moved about it. The incompleteness of the map meant that each UV
needed to balance two objectives while moving in the maze: (1) taking the shortest path to its goal along
the known maze and (2) exploring the unknown maze in search of a shorter path. As a heuristic, a UV
explored unknown paths if it thought those paths could possibly be shorter than the shortest known path
to its user-specified goal. Users often felt that the resulting UV behavior was undesirable. The user was
allowed to modify the UV’s path if desired.
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IV.D. Experimental Procedure

After being trained on all aspects of the system and completing a comprehensive practice session, each user
participated in six 8-minute sessions. UV teams with two, four, six, and eight UVs were tested. In each of
the first four sessions, a different number of UVs were allocated to the team. In the last two sessions, the
team sizes from the first two sessions were repeated. Thus, 18 samples were taken for each UV team size.
The conditions of the study were randomized and counter-balanced. The participants were paid $10 per
hour; the highest scorer also received a $100 gift certificate. Twelve people between the ages of 19 and 44
years old participated in the study. The mean age was 27.5 years old.

IV.E. UV States

We assume throughout this paper that the UVs were always in one of three states, which we call states O,
V, and M. A UV was considered to be in state O if it was outside the maze. Likewise, a UV was in state
V if it was on on object waiting for human assistance in performing the locate-a-city (or visual) task. UVs
were also considered to be in states O and V if they were within 5 seconds of exiting the maze or arriving at
the location of their user-designated objects, respectively. Otherwise, a UV was considered to be in state M
(i.e., moving about in the maze).

V. Results

We now discuss the attention allocation characteristics exhibited by the users in the study. We explore
three different questions. First, did users service UVs that were in like states in succession? Second, how
did users respond to a visually displayed list of UVs? Third, what distinguished more successful operators
from less successful operators? We explore each of these questions separately.

V.A. Did users service UVs in like states in succession?

In complex situations such as control of multiple UVs, humans often form complexity mitigation strategies.
One possible strategy is for the operator to perform tasks that are easiest or most important first. This
would result in users performing tasks of like type in succession.

We first give some formal definitions. Let Pr(X|X) denote the probability that the users chose to service
a UV in state X, given that (a) there was at least one UV in each of the three states and (b) the previous
interaction was with a UV that began in state X. Likewise, let Pr(X) be the probability that the users
chose to service a UV in state Y (where Y # X) given that there was a UV in each of the three states.

Thus, if there is a tendency for users to perform tasks of like type in succession, we would expect P(X|X)
to be higher than P(X). Figure 2 shows these probabilities for 4-, 6-, and 8-UV teams.” All team sizes
show the trend that, on average, a UV is more likely to be serviced if the user just completed interacting
with a UV that was in the same state. The differences between the probabilities for V and M dependencies
are both statistically significant (as given by Mann-Whitney U-tests; p = 0.038 and p < 0.001, respectively;
a = 0.05), but the difference between the probabilities for the O dependency is only marginally significant
(p = 0.038).

V.B. How did users respond to a visually displayed list of UVs?

On the right side of the main interface screen (see Figure 1a), a static list of UVs in the team was displayed
to the user, as shown in Figure 3a. It was from this list, or visual stack, that users selected the UV they
desired to service (by clicking on that UV’s labeled button). The selected UV was highlighted in powder
blue. Status warnings (if any) associated with each UV were displayed to the right of the UV label. Star
icons to the left of the UV label indicated that the UV was outside of the maze.

Our question is, how did this visual stack affect selection strategies? The average number of times UV 1
(the top UV) was serviced as opposed to UV N (the bottom UV) is shown in Figure 4a. For each team size,
UV 1 was serviced more often than UV N. Except for the 4-UV case, these differences are all statistically
significant; see Table 1. The figure also shows the trend that the discrepancy between the number of times
the top and bottom UV were serviced increased as the number of UVs in the team increased.

bPWe omit the 2-UV case as we were not able to gather sufficient data for this condition.
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Figure 2. Influence of the previous service selection for 4-, 6-, and 8-UV teams.
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Figure 3. A snapshot of the visual stack of UVs displayed on the main screen of the user interface for 2 different
situations. (a) Situation in which a UV in state V is higher in the list than a UV in state O. (b) Situation in which a
UV in state O is higher in the list than a UV in state V.

Likewise, when a user selected between multiple UVs in the same state, the UV in that state that was
highest in the list was serviced more often than the others. For example, in the case multiple UVs in state V,
the probability that the top UV in state V was serviced as opposed to random chance is shown in Figure 4b.
For 4-UV teams and greater, the difference is statistically significant as determined by Mann-Whitney U-
tests;© see Table 1. These results clearly show that users typically worked from the top of the stack, especially
with larger team sizes.

While users typically worked from the top of the stack, we are still left with the question of whether the
UVs states or the list order was more salient to the users. To answer this question, we consider situations
like the ones depicted in Figure 3. In Figure 3a, UV 1 is in state V and UV 3 is in state O. Figure 3b shows
the opposite situation in which UV 1 is in state O and UV 3 is in state V. If the UVs states were more
salient for determining attention allocation than list order, then we would expect little difference between
the probabilities that UV 1 would be selected in the cases depicted in Figure 3a and Figure 3b, respectively.
However, we would expect a significant difference between these probabilities if list order was more salient
than the UVs states.

To perform this test, we consider only the highest UV (in the list) in state V and the highest UV in state
O given that (a) at least one UV is in state V and at least one UV is in state O and (b) one of the two
UVs considered was selected. The average probabilities are shown in Figure 4c. In the figure, V above O
indicates situations in which the UV in state V was higher in the list than the UV in state O, and O above V

“We used the Mann-Whitney U-test instead of a t-test when the data did not fit a normal distribution.
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Figure 4. Changes in selection strategies based on order in the stack. (a) Contrasts the number of interactions with
the top UV on the stack with the last UV. (b) Contrasts the probability that the top UV in the list in state V was
serviced as opposed to random chance. (c) Shows the effects of list order on service probability for UVs in different
states.

T-test Mann-Whitney U-test
Team Size | Top vs. Bottom UV Top V vs. Random
2 t(17) = 2.43, p = 0.027 p=0.710
4 t(17) = 1.52, p = 0.146 p = 0.022
6 t(16) = 3.27, p = 0.005 p = 0.003
8 t(17) = 4.09, p < 0.001 p < 0.001

Table 1. Statistical reports for various tests referenced in the text.

indicates situations in which the UV in state O was higher in the list than the UV in state V. There are
no statistical differences between the two probabilities of selecting the V state for any team size. Thus, the
UVs states had a stronger effect on human attention allocation than did the order of the UVs in the list.

It is possible that the star icons to the left of the UV labels (indicating UVs in state O) had an impact
on this result, meaning that visually salient star could have caused subjects to select the O state more often
than the V states. However, we cannot determine this with our current data. Thus, we leave this analysis
to future work.

Together, these results show that, while the order of the list impacted human attention allocation, the
states of the UVs had a greater effect on human attention allocation than list order.

V.C. What distinguished more successful operators from less successful ones?

In our study, the success of the UVS was measured by the number of objects collected and the number of
UVs lost (i.e., left in the maze when time expired). These variables varied widely from user to user. As
different factors affect these two performance variables, we focus only on objects collected.

While the previous questions related only to selection strategies, this question relates to both selection
strategies and switching times. We analyze both aspects in the form of two questions. First, did operators
with a propensity to focus attention on UV progress and behaviors collect more or less objects than those
that did not? Second, did operators with shorter switching times collect more objects than those with longer
switching times? We address each question separately.

V.C.1. Should operators focus on UV behaviors?

As we mentioned previously, each UV used a simple heuristic to balance exploring the maze and moving
toward its goal destination. The resulting behavior was sometimes opposite to users’ intuitions and desires.
This often led users to monitor and correct UV behaviors. Additionally, since the locations of more objects
become known at random times throughout the mission, users often chose to reassign the UVs’ goal desti-
nations once they were already moving in the maze. We refer to users with tendencies to correct or reassign
UV goals as micromanagers. In so doing, we do not mean to associate so-called micromanagement with a
negative meaning, however, as some goal and path corrections were beneficial.
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Correlations Correlations
Team Size | Objects vs. Micromanagement Team Size | Objects vs. Switching Times
2 UVs r(16) = 0.34, p = 0.17 2 UVs r(16) = —0.30, p = 0.230
4 UVs r(16) = —0.73, p < 0.001 4 UVs r(16) = —0.85, p < 0.001
6 UVs r(15) = —0.19, p = 0.46 6 UVs r(15) = —0.67, p = 0.003
8 UVs r(16) = —0.49, p = 0.038 8 UVs r(16) = —0.69, p = 0.002

(a) (b)

Table 2. (a) Correlations between the number of objects collected and degree of micromanagement. (b) Correlations
between the number of objects collected and average switching time.
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Figure 5. Comparisons of UVS effectiveness based on high and low degrees of micromanagement. (a) A comparison of
number of objects collected. (b) A comparison of the mean probability of servicing a UV in state M.

We defined a user’s degree of micromanagement as the average probability that (s)he chose a UV in state
M at a choice point. Correlations between degree of micromanagement and objects collected are given in
Table 2a. The table shows a (significant) strong negative correlation between degree of micromanagement
and objects collected for the 4-UV case, and a moderately negative (significant) correlation for the 8-UV
case. However, the data show no real correlation in the 2-UV and 6-UV cases, although the sign change in
the 2-UV case may indicate that some micromanagement in a low workload environment could be beneficial.

To better see the effects of micromanagement on UVS effectiveness, we divided users into two equally
distributed groups based on their degree of micromanagement and plotted the mean performance of each
group. The results are shown in Figure 5. The average number of objects collected by each group is shown
in Figure 5a. For the 2-UV case, higher degrees of micromanagement produced higher scores. With larger
team sizes, higher degrees of micromanagement produced lower scores.

A comparison of the mean degree of micromanagement of the two groups is shown in Figure 5b. This
figure shows that the degree of micromanagement decreased on average (for both groups) as the size of the
team increased. This trend is expected since the additional UVs represented increasing workload.

V.C.2. Do shorter switching times mean higher performance?

We now analyze how switching times correlate with the number of objects collected. Recall that switching
times were the times between when an interaction with one UV ended and an interaction with another UV
began. Thus, they included (a) the time spent reorienting to the status of the UVs in the team and selecting
a UV, and (b) the time in which the user monitored the system (when (s)he believed that none of the UVs
required servicing). To limit outside factors that could influence switching times, we consider only switching
times in which at least one UV in the team was in state O or V.

Correlation results between the number of objects collected and length of switching times are given in
Table 2b for all team sizes tested. The correlations are stronger than those for degrees of micromanagement;
see Table 2a. The data show strong negative correlations between switching time and objects collected for
the 4-, 6-, and 8-UV teams. There is no significant correlation for the 2-UV case.

The difference in objects collected between the group of users with lower switching times and the group
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Switching Times vs. Objects Collected Differences Between Groupings
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Figure 6. Comparisons of UVS effectiveness based on high and low switching times. (a) A comparison of number of
objects collected. (b) A comparison of mean switching times between the two groups.

of users with higher switching times (evenly divided) for the base system is shown in Figure 6a. The plot
looks similar to the one obtained for groupings of micromanagers, though interesting differences can be seen
in the 2- and 8-UV cases; see Figure 5a. The difference in mean switching times between the two groups is
shown in Figure 6b.

It appears from Figure 5b that switching times are constant across UV team sizes. An ANOVA across
UV team size verifies that this is, indeed, the case (F(3,67) = 0.01, p = 0.961).

VI. Summary

In this paper, we discussed various aspects of human attention allocation in single operator, multi-
unmanned vehicles systems. We presented a user study and used data from this study to answer questions
about human attention allocation. Using metrics derived from operator selection strategies and switching
times, we found that human operators had tendencies to attend to similar tasks in succession. We also found
that attention allocation was influenced by the ordering of UVs in a visual list, but not to the extent that
it interfered with attention allocation efficiency to a significant degree. Furthermore, we showed that high
performance correlates with low switching times and, to a lesser extent, low degrees of micromanagement.
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