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Abstract. The ability to recognize patterns of operator behavior that could lead 

to poor outcomes is critical to monitoring the overall performance of the 

human-unmanned system team. We propose a method that relies on Bayesian 

machine learning in order to automatically derive a set of states that describe 

the behavior of an operator. More specifically, we use the Hidden Markov 

Model (HMM) formalism to infer higher cognitive states from observable 

operator interaction with a computer interface. This allows the categorization of 

a pattern of action over a probability distribution of possible operator states 

which can then be correlated with a range of mission outcomes. Moreover, the 

HMM provides the means to project in the future and therefore aid in 

prediction, in probabilistic terms, of the future actions of an operator. In this 

paper, we present the methodology used to derive the operator model and show 

initial results based on experimental data.  

Keywords: Human Supervisory Control, Hidden Markov Models, Real-Time 

Behavioral Profiling 

1 Introduction 

While Unmanned Vehicle (UV) operations currently require multiple operators to 

control a single platform, future operational paradigms call for a inversion of this ratio 

by having a single operator controlling multiple unmanned systems, which need not 

all be of the same type [1, 2]. This, however, increases the number of information 

sources, the volume of information to be processed and operational tempo, thereby 

leading to an increased cognitive load on the supervisory human controller [3]. This 

increased mental workload, in turn, influences the behavioral response of the 

controller to external events. 

The behavior of UV operators is generally guided by Standard Operating 

Procedures (SOPs). Controllers are trained to perform a specific set of actions in a 

given situation. During nominal situations, supervisory behavior typically consists of 

monitoring and/or minimal interaction with the supervised system, such as 

information request or parameter adjustments. In abnormal situations, however, the 

controller usually needs to take active measures so as to ensure the safe behavior of 

the system and/or respond to contingency events that threaten mission success.  

While external pressure affects individuals differently, previous research highlights 

that excessive levels of stress impact the human behavior negatively, and sometimes 



results in tragic incidents and loss of lives [4]. Recognizing the onset of abnormal 

behaviors, defined by deviation from the expected behavior, allows for detection and 

prediction of the occurrence of potential critical events.  

This paper describes an effort to model the behavior of an individual controller of 

multiple heterogeneous unmanned vehicles. The model is based on the Hidden 

Markov Models formalism and is able to recognize the current behavior of the 

controller and to forecast the next actions of the controller. More specifically, the 

model relies on user interface event as an input stream to predict future behaviors. 

2 Models of Individual Behavior 

Models of human behavior have been of great interest to applied psychologists, 

artificial intelligence researchers and human factors engineers, all sharing the similar 

goal of abstracting human behavior into a parsimonious formalism. The vast majority 

of the work so far has focused on verifying formal theoretical architectures through 

experimentation (top down).  

Applied psychologists traditionally focus on the theoretical aspects of human 

decision making, notably in terms of preference and bounded rationality [5], multi-

attribute theory [6], decision making under uncertainty [7]. Such theoretical notions 

are usually verified through synthetic experimentation where subjects have to make a 

choice between multiple options.  

Other researchers have attempted to derive computational models of human 

cognitive processes in order to emulate such processes in computer programs. The 

commonly used benchmark for such progress is the Turing test, which consists of 

creating a machine that would exhibit a behavior indistinguishable from that of a 

human. While the success on the Turing test remains elusive, some researchers 

restricted their endeavor to expert behavior. Expert systems thus were designed to 

encapsulate a set of rule abstracted from the knowledge of a human expert [8]. The 

formalism of agent based modeling has also been used in order to model personality 

and culture through the use of Goal, Standard and Preference (GSP) trees [9]. Other 

researchers recognize the limitations of strict rule-based processes and now try to 

mimic the human common sense in machines [10]. In most of the previous work, the 

main goal of all these work is to simplify human behavior so that it could be 

replicated by a machine.  

In a more applied setting, some researchers attempt to model human behavior in 

order to improve performance.  For example,  theoretical frameworks predicting the 

consequence of high workload and time pressure are of great interest [11, 12] as they 

permit an increase of human productivity. GOMS [13] and ACT-R [14] are two 

cognitive frameworks that try to model the human behavior and that are also used to 

analyze and improve worker productivity. However, GOMS is limited because it 

assumes that all users are deterministic and follow the same human processor model. 

The use of ACT-R is also limited because of sophisticated cognitive task modeling 

required to fit the framework. 

The approach proposed used in this paper differs from all of the above in that it is 

inherently context and data driven, and does not rely on an a priori theoretical 



framework of human behavior. The premises of this presented work are akin those of 

predictive analytics, a data-mining subfield that relies on extremely large corpuses of 

data to extract patterns in human behavior. While predictive analytics has been used 

mostly by financial institutions for credit scoring and in other industries such as 

insurance, telecommunication, retail or travel, we make use of similar data-mining 

techniques to extract regularities in the interactions of UV supervisory controllers 

with computer interfaces.  

We assume that UV controllers are, because of their training, experts at supervising 

their systems. Previous work suggests that experts tend to rely on recognition-primed 

decision-making [15] and therefore tend to exhibit stronger behavioral patterns than 

novices [16]. We therefore assume that UV controllers similarly exhibit behavioral 

patterns. The obvious limitation of the data-driven approach is a lack of 

generalizability beyond supervisory control domains with significant human-

computer interaction. However, there are a significant number of applications that 

would benefit beyond human-unmanned vehicles operations such as air traffic control 

and first responder settings. Another limitation is that the models are data-driven and 

thus inherently descriptive: they do not prescribe what the optimal behavior should be 

without additional a priori performance knowledge. However, the models we propose 

can prescribe what the “typical” response of a person should be, given prior data 

about such typical behaviors. 

3 Hidden Markov Models 

Hidden Markov Models (HMM) were formally defined by the seminal paper by 

Rabiner et al. [17], and essentially consist of doubly stochastic Markov chains. A 

HMM has a set of hidden states. Each hidden can generate observable symbols given 

a specific emission function. Transition arcs allow the transition between two hidden 

states. There are thus two types of probability parameters: the state transition 

probabilities and observable symbol output probabilities. Given a finite sequence of 

hidden states, all the possible transition probabilities and symbol output probabilities 

can be multiplied at each transition to calculate the overall likelihood of all the output 

symbols produced in the transition path up to that point. Summing all such transition 

paths, one can then compute the likelihood that the sequence was generated by the 

HMM.  

 

Figure 1 shows a graphical representation of a 3-state HMM, where a set of hidden 

states S has transition probabilities matrix A defined as a set of ija ’s. The model is 

said to respect the first order Markov assumption if the transition from the current 

state to the next state only depends on the current location. Formally, a first order 

Markov model satisfies: )|()|( 1:11 ttitjtij qqPSqSqPa . Each 

hidden state has a specific symbol emission probability density function over the set 

of observable states O, as denoted by B=P(o|Si) for all i. Finally, completing the full 

definition of the HMM are the initial states probabilities . A full HMM model is 

thus defined as ),,,,( BOAQ .  



Three main computational issues need to be addressed with HMMs. The first issue 

is state estimation, answering the equation: , which describes 

the most likely hidden state at time t is given by a sequence of observables from time 

1 to t. The state estimation problem is solved with the forward/backward dynamic 

programming algorithm. The second issue consists of determining the most probable 

path of hidden state given a sequence of observable: this is solved by the Viterbi 

algorithm. Finally the last problem is the learning of the model, which is, given a 

sequence of observable, what is the maximum likelihood HMM that could produce 

this string? The learning problem is commonly solved by using an Expectation-

Maximization (EM) method called the Baum-Welch algorithm (mathematical details 

of the different algorithms can be found in [17]). 

 

  

 

Fig. 1. A three-state Hidden Markov Model. 

HMMs have been extremely successful in fields such as speech recognition [18], 

financial data [19], signal processing [20], and generic temporal data clustering  [21].  

There are, however, issues with HMMs in their nominal form. One problem is that 

HMMs rely on the assumption that the next state only depends on the current state 

(memory-less property) means that capturing higher level behaviors in the presence of 

noisy data can be difficult. Another issue inherent to the HMM structure lies in 

defining the basic structure of the model. Defining the model is a non-trivial issue, 

both in terms of number and meaning of states. While a simple model with too few 

states will not be able to model the complexity of the behavior properly, an excessive 

number of hidden states will results in an excess of parameters and possible over-

fitting of the HMM, particularly if it is trained on scarce data set containing complex 

patterns. While there are no closed-loop solutions to determine the optimal number of 

states in a model, one possible solution is to use information theoretic metrics such as 

the Bayesian Information Criterion (BIC) or the Akaike Information Criterion (AIC), 

both of which measure )|(oP , the likelihood of the data given a model, while 

including a penalty for model with a large number of states [22].  



In addition, while the parameter adjustments during the training of HMMs is a well 

researched problem, the states’ emission functions and transition matrix of the trained 

model may or may not reflect the expected data distribution due to noise in the 

training data or inappropriate initial values for the model. HMM parameters, 

therefore, provide indirect semantic information about the training data [23] and the 

resulting model must be interpreted in order to highlight explanatory mechanisms. 

Despite the issues highlighted above, we posit that the doubly stochastic nature of 

the HMMs is well suited to modeling human behavior: the cognitive states of an 

operator are not directly visible, but can be inferred from his or her actions. This is 

similar to the HMM notion of hidden states that must be inferred from observable 

symbols. Thus, we liken the hidden states of the HMM to the unobservable cognitive 

states of an operator that must be inferred from directly observable behaviors such as 

user interface interactions. Based on similar premises, some researchers have used 

HMMs to model human attention allocation based on eye-tracking data [24]. In 

contrast, we use HMMs in order to detect patterns in user behavior based on user 

interface events as the observable symbols. The hidden states then can be seen as 

higher cognitive states or intent that gave rise to the observable actions. For example, 

a UV controller selecting a UV would be an observable symbol, whereas his intention 

to replan the UV would be a cognitive, hidden state. 

 

4 Experimental Data and Methodology 

 
4.1 Experimental Data  

 
Fig. 2. The RESCHU interface 



 

The data used in this work was obtained from the experiment described in [25]. While 

the goal of the original experiment was to validate a discrete event simulation of an 

operator controlling multiple heterogeneous unmanned vehicles, the recorded user 

interface interactions represents a rich corpus of supervisory control behavior. In the 

experiment, the Research Environment for Supervisory Control of Heterogeneous 

Unmanned Vehicles (RESCHU) Simulator was used to allow single human operators 

to control a team of UVs composed of unmanned air and underwater vehicles (UAVs 

and UUVs) (Figure 2). 

  In RESCHU, the UVs perform surveillance tasks with the ultimate goal of 

locating specific objects of interest in urban coastal and inland settings. UAVs can be 

of two types: one that provides high level sensor coverage (High Altitude Long 

Endurance or HALEs, akin to a Global Hawk UAVs), while the other provides more 

low-level target surveillance and video gathering (Medium Altitude Long Endurance 

or MALEs, similar to a Predator UAVs). In contrast, UUVs are all of the same type. 

Thus, the single operator controls a heterogeneous team of UVs which may consist of 

up to three different types of platforms, each with different characteristics.  

Both UUVs and MALEs allow the user to perform a visual target acquisition. The 

visual task consists of looking for a particular item in an image by panning and 

zooming the camera view. The HALEs process emergent non-identified targets. The 

operator does not do a visual identification with HALEs. Once a HALE identifies a 

target, it is visually processed by either MALEs or UUVs. Once a UV has processed a 

target, an automated planner chooses at random the next target assignment, thus 

creating possibly sub-optimal target assignments that the subject can correct. 

Furthermore, threat areas appear dynamically on the map, and entering such an area 

could damage the UV, so the subject can optimize the path of the UVs by assigning a 

different goal to a UV or by adding waypoints to a UV path in order to avoid threat 

areas.  

Participants maximized their score by 1) avoiding threat areas that dynamically 

changed, 2) completing as many of the visual tasks correctly, 3) taking advantage of 

re-planning when possible to minimize vehicle travel times between targets, and 4) 

ensuring a vehicle was always assigned to a target whenever possible. 

Training was done through an interactive tutorial and an open-ended practice 

session. After participants felt comfortable with the task and the interface, they started 

the ten minute experimental session. After completing the experiment, the participants 

could see their score which corresponded to the total number of targets correctly 

identified. All data were recorded to an online database. The logged data of interest 

for this project consisted of user interactions with the interface in the manner of 

clicks, such as UV selections on the map or on the left sidebar, waypoint operations 

(add, move, delete), goal changes and visual tasks start and end. 

 

4.2 Hidden Markov Models of Human Behavior 

The creation of Hidden Markov Models of user behavior requires training the 

model on behavioral data. The raw behavioral data, which consists of the logged user 



interface events, cannot be used directly by the HMM learning algorithms, and must 

be pre-processed. Figure 3 shows the information flow of this process, which consists 

of a grammatical and a statistical phase.  

 

 
 

Fig. 3. A combined grammatical and statistical approach is used to infer future behavior from a 

stream of current behavior. 

 

First, in the grammatical phase, low level input is translated into abstract events by 

the use of a syntactic parser. The grammatical rules used are shown in Table 1. User 

interactions are first separated based on the type of UV being controlled. Then, the 

interactions with each of the UV types are separated into different modes: selection 

either on the sidebar or on the map, waypoint manipulation (addition, deletion and 

modification), goal changes, and finally, the visual task engagement. Each entry of 

the table is then denoted by an integer index. The sequences of low-level user 

interactions are thus translated into a sequence of integers suitable for the statistical 

phase. 

Table 1.  The RESCHU grammar. 

All      

Underwater UV      

Aerial UV      

High Altitude UV      

UV Type / Mode Select 

Sidebar 

Select 

Map 

Waypoint Goal Visual 

Task/Engage 

 

The second step of the process is the statistical learning phase during which the 

HMM is exposed to the training sequences of discrete data. More specifically, the 

training consists of maximizing the likelihood that the sequence observed data was 

generated by the HMM. This is done by adjusting the parameters of the HMM, such 

as the state transition matrices and the emission probability functions. The Baum-

Welch expectation maximization algorithm can be used for this task. Because we do 

not know a priori what the expected patterns, i.e. the hidden states, should be, we do 

not have access to sequences of labeled observable data. Therefore, we use the EM 

algorithm in an unsupervised mode which will use Bayesian inferences in order to 

automatically infer the optimal parameters of the model. The EM algorithm, however, 

essentially performs a gradient search in parameters space to optimize the likelihood 

of the data given a specific model. It is, therefore, very sensitive to initial values. 

Furthermore, the structure, the number of hidden states, of the model must be 

provided for the algorithm to perform. A solution to both problems is to train multiple 

models of different length and with varying initial parameters. 



5 Results 

5.1 Selecting a Model Size 

The experimental data consists of 25 test subjects, whose data sets were separated 

between 20 training sequences and 5 test sequences. The model training and testing 

was replicated with a different set of 5 test sequences to alleviate possible test set 

biases. The results reported here correspond to the averages of both training sessions. 

The test sets were used to validate the model and verify that the HMM does not 

overfit the relatively small training data corpus. Each model was trained until the 

probability of the training data converged. 

After training multiple models of different sizes and with different starting points, 

we realized that, unless the initial probability density functions of the model were set 

to be equiprobable, most models of the same length tended to converge towards the 

same values regardless of the initial conditions. We then explored different possible 

model sizes and validated their performance on a testing set.  

 

 
Fig. 4. Average log likelihood of the training and test sequences 
  

Figure 4 shows the average log likelihood of the training and the test sequences. 

Note that the log likelihood scale is used in order to avoid very small numerical 

probabilistic values due to the length of the sequences. Figure 4 shows that the log 

likelihood of the training data increases as the number of states increases, which is 

consistent with the notion that the higher number of states allow for a closer fit of the 

training data. However, the log likelihood of the testing set starts to decline after 4 

states and after 7 drops quickly. We therefore conclude that a 4 state model is a good 

fit for the observed data (for both the testing and training set).  

5.2 HMM of an Operator Controlling Multiple Heterogeneous UVs 

The parameters of the HMM allow for the interpretation of the structure of the 

underlying process. Figure 5 shows the transitions between the 4 hidden states of the 
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HMM obtained in the process described above. The label of each state is extracted 

from the state’s probability density function over the space of observables. State 0, in 

this case, corresponds to behaviors consistent with planning and engaging UUVs and 

UAVs (including waypoint manipulation, goal selections and visual tasks), while 

State 3 corresponds to a monitoring behavior for UUVs and UAVs (selecting UVs on 

the map or on the sidebar). State 1 and 2 correspond essentially to the same states but 

for the HALEs. This symmetry is interesting for two reasons. The first is that it 

reveals the two main modes of behavior of the human operator during this task: 

monitoring and planning/engaging. This result is consistent with the human 

supervisory control literature [26]. Looking at the transition probability between the 

planning/engaging states and the monitoring states, we see that there is a clear 

tendency to successively alternate between the two behaviors (about 70% of the time, 

on average). The second conclusion we can draw from this symmetry is that the 

HMM was able to group UVs that possess the same functional characteristics: UUVs 

and MALEs were grouped by the algorithm together whereas the interactions with 

HALEs were seen as a distinct behavior. This result is explained by the fact that 

HALEs interactions do not involve a visual task, whereas both UUVs and MALEs do.  

 

Fig. 5. The 4-state model of an operator of multiple heterogeneous UV. 

Examining the transition between the two functionally different types of UVs (that 

is UUVs and MALEs versus the HALEs), we notice that the interaction switches 

between different types of UV happen only after a planning/engaging phase (about 



16% of the time). This means that 1) the people tend to keep their interactions focused 

on functionally identical groups of UVs, and 2) that a common behavior would be to 

engage a type of UV and then switch to monitoring other functionally similar UVs. 

Emergent events, however, sometime force the monitoring the alternative type of UV. 

The structure of the HMM is inherently generative in the sense that, given a 

specific state, one can generate the most likely set of state transitions along with the 

associated most likely sequence of observables. This means that we could predict 

what the next type of behaviors of the controller will be. The notion of “type of 

behavior” is important because the predictions are made at the level of the hidden 

states, which then drive the emission of observables. In practical terms, this means 

that the HMM would not be able to replace human controllers, but would be able to 

monitor their behaviors and detect deviations from the expected norm. These 

deviations, in turn, could be of significance as they could indicate that the operators 

are exhibiting abnormal behaviors which could eventually lead to human error. The 

HMMs, then, could be used as a valuable monitoring tool for team supervisors.  

6 Conclusion 

This paper showed a method to generate Hidden Markov Models of human 

operators controlling multiple heterogeneous unmanned vehicles. The process 

consists of a grammatical phase needed to translate user interface events into data 

suitable for the HMM formalism. Then, training the model involves finding out the 

optimal model structure. In this work, we found that a 4-state HMM provided a good 

fit for the behavior of a human supervisory controller of heterogeneous unmanned 

systems. We showed that the obtained HMM was able to recognize behavioral 

patterns consistent with the observed behaviors. Furthermore, unexpected patterns 

such as the rare switches between UV types were also highlighted. Finally, we also 

discussed how the transition matrix of the HMM model could be used to predict the 

future behaviors of an operator. 
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