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Abstract—Planning operations across a number of domains
can be considered as resource allocation problems with timing
constraints. An unexplored instance of such a problem domain
is the aircraft carrier flight deck, where, in current operations,
replanning is done without the aid of any computerized decision
support. Rather, veteran operators employ a set of experience-
based heuristics to quickly generate new operating schedules.
These expert user heuristics are neither codified nor evaluated
by the United States Navy; they have grown solely from the
convergent experiences of supervisory staff. As unmanned aerial
vehicles (UAVs) are introduced in the aircraft carrier domain,
these heuristics may require alterations due to differing capa-
bilities. The inclusion of UAVs also allows for new opportunities
for on-line planning and control, providing an alternative to the
current heuristic-based replanning methodology. To investigate
these issues formally, we have developed a decision support
system for flight deck operations that utilizes a conventional
integer linear program-based planning algorithm. In this system,
a human operator sets both the goals and constraints for the
algorithm, which then returns a proposed schedule for operator
approval. As a part of validating this system, the performance of
this collaborative human–automation planner was compared with
that of the expert user heuristics over a set of test scenarios. The
resulting analysis shows that human heuristics often outperform
the plans produced by an optimization algorithm, but are also
often more conservative.

Index Terms—Decision support system, human supervisory
control, human–automation interaction.

I. Introduction

P LANNING operations regarded as resource allocation
problems with timing and sequence constraints [1] and

[2], in which a set of limited resources must be assigned to a
group of agents in a manner that satisfies all temporal dead-
lines and required task sequences, can be found in a number
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of environments [3]–[9]. This type of problem is becoming
increasingly common in environments utilizing unmanned
vehicles, in which a centralized control server assigns tasks for
the global system, routing vehicles through the environment so
as to optimize any number of factors [10]–[15]. One example
would be that of an automated warehouse, such as those
operated by Kiva Systems [16] (now part of Amazon.com,
Inc.), where unmanned vehicles locate and retrieve stocked
merchandise for a human packer. The routing and control of
aircraft (manned, unmanned, or both) within an airport runway
and terminal system also falls within this class of problem, as
does the allocation of hospital operating rooms under high-
occupancy, time-critical cases (such as natural disasters).

An additional, though unexplored, domain is that of the
aircraft carrier flight deck [17], [18]. Replanning operations in
this domain require rapid action on the part of deck supervisors
who must balance conflicting directives of maximizing safety
and minimizing operational time. Additionally, these directives
are confounded by the frequent failures that occur in the sys-
tem, arising from vehicles, deck equipment, and crewmember
actions. These failures are highly varied in both duration and
severity, ranging from minor issues a few seconds in duration
(a crewmember walking into a restricted area) to major, long-
duration failures that severely limit the operational ability of
the carrier flight deck (such as the complete disabling of a
launch catapult). Replanning the operational schedule must not
only address the specific failures within the system but must
also create a schedule that provides maximum adherence to the
prespecified launch windows for aircraft on the deck. These
requirements, as well as the dynamic nature of the flight deck,
require that the schedule also be computed in the minimum
time possible.

The inclusion of unmanned aerial vehicles (UAVs) in the
near future [19] provides a foothold for automating a variety
of aircraft actions on the flight deck. Northrop Grumman’s
X-47B Pegasus UAV will demonstrate point-and-click control,
in which the vehicle will receive abstract commands such
as “taxi to this catapult and takeoff” [20]. The data links
used to transmit information and commands from individual
aircraft ground control stations could be modified to com-
municate directly with a central planning computer capable
of managing the tasks of multiple vehicles. With sufficient
geospatial data and understanding of the current state of the
schedules of all aircraft in the system, an automated planning
algorithm would be capable of replanning operations for all
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vehicles simultaneously, perhaps also utilizing the input of an
experienced human operator. However, before integration into
aircraft carrier operations, a thorough performance assessment
is required to ensure that the system performs adequately
in terms of safety and schedule effectiveness. Comparing
the performance of this futuristic system to current system
performance is critical in establishing the value added by
such an implementation. This performance comparison is a
difficult task for four reasons. First, human supervisors in
this domain receive no codified training in replanning deck
operations, thus, there are no objective training performance
metrics that could form the basis of comparison. Second, little
to no data on flight deck operations is available in order
to recreate daily operations; no performance assessments are
conducted in real time, nor can any be reconstructed post
hoc. Third, no simulated testing environments are available
to outside researchers to test and compare possible planning
strategies. Fourth, no standardized evaluation methods exist
for judging the quality of operations on the carrier deck. This
paper discusses both the development of an integer linear
programming algorithm for planning flight deck operations
and the definition of a testing methodology for assessing its
performance against current planning operations.

A. Related Research

To this point, aircraft carrier flight deck operations have
been relatively unexplored as a scheduling problem. However,
the related domain of airport ground operations planning has
been a prominent area of research. In principle, the two
environments are quite similar. Both involve the distribution
of limited, stationary resources to mobile vehicles (aircraft) to
execute an operating schedule involving specific time windows
for task execution. In the aircraft carrier flight deck, this means
assigning aircraft to launch catapults, fueling stations, and
other elements; for airport operations, these assignments are
to runways and departure gates. In both cases, the schedule
of tasks that vehicles must complete is known a priori; it is
only the optimal assignment of tasks to resources and their
ordering that must be decided.

There are many instances in which the airport problem has
been addressed through the implementation of some form of
integer programming [21]–[25]. In these cases, the objective
functions commonly address some variants of the total operat-
ing time. For instance, Balakrishnan and Jung [21] formulate
a cost objective related to the total time on the runway with an
aircraft’s engine active, while Roling and Visser [22] use an
objective function minimizing both the total taxi time and the
total holding time (stopped in place). Additionally, objective
functions have typically included a minimization of delays
[21], [23]–[25], which in these contexts entail completing the
schedule in minimum time.

Constraints in these problems typically revolve around
consistency issues, ensuring that capacity constraints are not
violated, that paths and assignments are feasible, and that
maximum queue lengths for runways are not violated. Only
one paper considers speed constraints explicitly in their for-
mulation [21], and none consider fuel issues. In flight deck
operations, flight times are potentially a hard constraint, as
are fuel concerns for approaching aircraft. Additionally, when
implementing a system involving a human operator, the inputs

and requests of that operator might also take the form of
constraints in the plan.

Furthermore, a common tactic in these examples has been to
define the system in terms of a networked graph, modeling run-
way segments as nodes with a certain capacity and including
constraints that model the ability of aircraft to taxi through the
runway. This is another important difference between airport
and aircraft carrier operations—the carrier flight deck is a com-
pletely open space, and an advantage of its operations is that
motion paths are unconstrained by the borders of roads or run-
ways. In summary, while there has been substantial research in
this area for airport ground operations, the explicit formulation
of constraints and objectives are similar, but not identical to,
those experienced in the aircraft carrier flight deck.

B. Scope

This paper describes the development and assessment of
an integer linear programming (ILP) algorithm for planning
aircraft carrier flight deck operations, comparing its perfor-
mance to current operations. The performance during current
operations was determined by the creation of a proxy decision
making model based on interviews with subject matter experts.
Through a cognitive task analysis (see [26] for an explanation
of the methodology as applied to a different domain), we
elicited a set of expert user heuristics employed by supervisors
in replanning aircraft carrier operations. We then developed
both a simulation of aircraft carrier operations and a set of
automated decision support algorithms to generate data for
comparison. The aforementioned simulation environment is
part of the deck operations course of action planner (DCAP),
which is designed to facilitate human-automation collaborative
planning for the aircraft carrier deck (see [27] for details on
the interface design).

The research presented in this paper compares the perfor-
mance of the combined human–automation planning using
this ILP planner to the set of expert human heuristics in
generating schedules for a set of test scenarios. The remainder
of the paper is organized as follows. Section II discusses
the DCAP simulation environment in order to formulate the
planning problem. Section III discusses the characteristics of
the ILP planner, while Section IV explains the nine human
planning heuristics elicited in the course of this research.
Section V specifies the test methodology used to compare the
performance of the two planners, while Section VI discusses
the results from the test scenarios. Section VII presents the
insights obtained from the results, and the concluding remarks
and future works are provided in Section VIII.

II. Aircraft Carrier Deck Environment

The simulation environment is intended to replicate flight
deck operations on the current fleet of United States Nimitz-
class aircraft carriers. An image of the simulation environment
is shown in Fig. 1. The DCAP simulation is agent-based, with
each entity (crew members, aircraft, and stationary deck re-
sources) acting independently based on individually prescribed
rules and models. Four different generic aircraft classes are
utilized, containing all possible combinations of fast/slow and
manned/unmanned aircraft (Table I). The four types of deck
resources are labeled in Fig. 1, each operating its own queue
while servicing aircraft on the deck. Human crew and other
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Fig. 1. Screenshot of the aircraft carrier deck. Four types of deck resources
are color-coded as follows: catapults (orange), elevators (white), arresting
wires (black), and landing zone (green).

TABLE I

Types of Aircraft Modeled in the Simulation Environment

support vehicles are also modeled, but primarily are used in
supporting the actions of aircraft and resources.

Activity on the aircraft carrier deck is driven primarily by
the tasks required for the active aircraft, such that all other
entities (including crew) can be considered as resources to
be utilized. When creating a schedule of operations on deck,
the supervisor must define an ordered assignment of aircraft
to launch catapults. When executing the schedule, aircraft
and resources work simultaneously to execute tasks in the
world. In general, aircraft begin at a parked state, where they
must be fueled and loaded with weapons, and then taxi to a
catapult and launch. Afterwards, they fly to a mission area
away from the carrier deck, remain there for a duration of
time, then return to the carrier. Once doing so, they enter
a landing pattern (the Marshal Stack) to wait for landing
clearance. In executing the schedule, aircraft, crew, support
vehicles, and resources operate simultaneously and in the same
shared space on the flight deck. This requires a variety of
constraints, including constraints on movement across the deck
(to avoid collisions) and on launches (adjacent catapults cannot
launch simultaneously), which complicate schedule execution.
Making precise a priori predictions as to when and how
vehicles will interact and when delays may occur is nearly
impossible, meaning that any estimates on the time to complete
a task may be highly inaccurate.

Additionally, failures in the system affect both resources
and aircraft, further complicating operations on the deck. An
aircraft fuel or hydraulic leak may limit the operational time
of the vehicle, requiring a new schedule of operations that
ensures the survival of the aircraft. A deck resource failure
may prevent the system from executing the current schedule
of operations (e.g., it is unable to launch all aircraft from
the deck under their current catapult assignments), requiring
a complete reassignment of aircraft amongst the remaining
operational resources. Failures like these are fatal to the current

schedule and require a new operating schedule. In creating
new schedules of operations, human planners have a primary
goal of maximizing the rate at which aircraft are launched
and recovered from the deck. In general, this is achieved by
creating a schedule that requires the minimum absolute time
to execute while also minimizing the required working time
of crew, aircraft, and support resources. Human planners also
must replan quickly, as these environments are time-critical
and require fast reaction in order to ensure system performance
and safety.

A simulation model of this environment should reflect the
variability of the real world. As such, task completion times
and failure durations (as well as a variety of other aspects
of the environment) were defined as Gaussian distributions
with a specified mean and standard deviation. When a task is
executed in the simulation, the completion time is randomly
sampled from the relevant distribution, and thus multiple repli-
cations of a task will have varying completion times. However,
there is no published data on flight deck operations that can
be used in generating these models. As such, task and failure
models for DCAP were developed from a combination of
other sources—interviews with flight deck crew, observations
of training operations at a Naval training school for flight deck
crew, reviews of videos of flight deck operations, and a visit
to an aircraft carrier to observe live operations. In some cases,
tasks were timed; in other cases, operators were asked for their
estimates of completion times for various tasks, with similar
actions taken for failure models.

Because of the absence of detailed published data, no
formal simulation validation was performed. However, the
simulation was reviewed by various Naval staff throughout its
development and deemed an accurate representation of reality.
After the development of the simulation environment, it was
integrated with the ILP planner and with additional display
elements to facilitate user replanning of the system. Two dif-
ferent replanning options were implemented: the first employs
a manual planning interface, while the latter utilizes the ILP
planner. The manual planning interface involves an expert user
applying the internal heuristics used by operators in replan-
ning; these heuristics will be discussed later in Section IV. The
human–automation collaborative interface utilizes the ILP, in
conjunction with a human operator specifying high-level goals
for the planner. The next section addresses the ILP planning al-
gorithm, which minimizes a cost function with explicit terms.

III. Characteristics of the ILP Planner

The current automated planner in use with the DCAP system
is an ILP that minimizes the overall weighted time taken
by the fleet of aircraft to complete a given sequence of
tasks. The planner satisfies a set of hard constraints imposed
by the availability of resources to complete any task at a
given time instant, as well as safety requirements and other
physical restrictions as described in the previous section. The
planner also accounts for all the soft constraints by including
violation margins. These soft constraints are specified by the
preferences of the human users to complete certain tasks for
specific aircraft or all the tasks for airborne and deck aircraft
within specified times (one example of a soft constraint would
be where the human operator specifies that a vehicle’s new
schedule should delay its original launch time by 10 min).
The planner is integrated with the simulation environment,



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CYBERNETICS

such that when a user requests a new plan, state information
for the environment is sent to the planner for computation.
The computed plan is then sent to the operator for review
before execution. While other planning methods, such as
metaheuristics, temporal logic, or constraint programming can
also be used, we choose ILP to obtain a feasible solution in real
time that satisfies all types of hard and soft constraints without
requiring appropriate selection of key algorithm parameters.
Furthermore, the obtained ILP solution is empirically validated
to be close to the global optimum.

We follow the integer programming formulation II given in
[2] to deal with temporal dependencies of tasks and irregular
task starting time costs. The binary decision variables yijk are
equal to 1 if aircraft i ∈ {1, . . . , I} begins task j ∈ V at time
step k ∈ {1, . . . , K}, and 0 otherwise. Each aircraft has a user-
specified priority pi ∈ R+, and a set of tasks Vi = {j1, . . . , jJi

}
that it needs to accomplish. A task can be of two types: one
that requires available deck resources such as landing, launch-
ing, parking, and refueling, and another that does not need any
resource such as taxiing, going to mission, or approaching the
deck. Moreover, the first type of task can be either resource
specific such as landing, launching, and refueling as it matters
which catapult or refueling station is serving an aircraft, or
resource agnostic such as parking as it is not important which
parking spot is used. Vnr, Vrs, and Vra represent the set of
nonresource requiring, resource specific, and resource agnostic
tasks respectively. Every task j also belongs to a task type set
Ej, which is identical to j if it is a nonresource requiring task,
and includes all the resource requiring tasks associated with
the same category such as launching or refueling otherwise.
Note that only one resource specific task of a particular type is
present in Vi. The initial choice is user defined, but then it may
be altered by the optimizer during the course of the operation.
Vs denotes the set of resource specific task pairs that cannot
be performed simultaneously due to safety reasons and is in-
dependent of the aircraft type. These tasks include landing and
launching from either catapult 3 or 4, and launching from both
catapults 1 and 2, or both 3 and 4. The temporal dependencies
of the tasks for each aircraft is represented by a weighted
digraph Gi = (Vi, Ai) with Ai = {(mi, ni) : dmini

> −∞},
where dmini is the time lag such that the starting time for task
ni, Sni , is correlated to the starting time for task mi, Smi , by an
inequality of the form Sni

≥ Smi
+dmini

. The objective function
is the sum of the weighted completion times of all the aircraft
tasks where each completion time is weighted by the aircraft
priority. Note here that minimizing the completion time of the
last task, i.e., the mission duration, would not have accounted
for the varying importance of the different tasks.

The ILP is then written as

min
I∑

i=1

Ji∑

j=1

K∑

k=1

pi(tij + k�t)yijk (1)

subject to the constraints

K∑

k=1

yijik = 1, ∀i and ji ∈ Vi ∩ (Vnr ∪ Vra) (2)

∑

ji∈Eji

K∑

k=1

yijik = 1, ∀i and ji ∈ Vi ∩ Vrs (3)

K∑

s=k

yimis +

k+dmini
−1∑

s=1

yinis ≤ 1, ∀i, k and (mi, ni) ∈ Ai

(4)
I∑

i=1

yijk ≤ Njk ∀k and j ∈ Vrs ∪ Vra (5)

I∑

i=1

(yijlk + yijmk) ≤ 1 ∀k and (jl, jm) ∈ Vs (6)

Sci′∑

k=1

yi′jlk = 1, ∀i′ ∈ Ic (7)

Spi′′j′′ +Tm∑

k=1

yi′′j′′k = 1, ∀i′′ ∈ Ip, j′′ ∈ Vi′′ . (8)

Here, tij is the estimated time to complete task j by aircraft
i and Njk denotes the number of available deck resources to
perform task j at time k. Njk is always binary for a resource
specific task and is less than the total number of resources for
a resource agnostic task. tij is either taken as the deterministic
value for task durations such as mission execution or the mean
of the Gaussian distribution that models the processing time
for any deck resource. The deck resource processing time
also includes the expected arrival time for the required crew
members. Thus, (2) and (3) together enforce that every task has
to be started exactly once by each aircraft with the additional
requirement of performing only one resource specific task of
a particular type being imposed by (3). Equation (4) enforces
temporal precedence conditions during task execution, (5)
ensures that only the available number of deck resources are
used to perform any resource requiring task, and (6) ensures
that no two tasks that might lead to safety issues if performed
concurrently are started together.

Ic and Ip denote the set of critical aircraft that have devel-
oped fuel or hydraulic leaks and the set of aircraft with user-
specified preferences, respectively. Sci′ is the permissible time
limit within which a critical aircraft i′ should start landing task
jl, Spi′′j′′ is the user-stipulated time limit to complete task j′′ for
the aircraft i′′ ∈ Ip, and Tm is the allowable time margin for
violating any of the aircraft task preference constraints. Note
that all the actual time values are conservatively converted to
integral values by taking the interval between two successive
time instants (�t) as a constant. Also note that if our initial
value of Tm, which is assigned at the onset of simulation before
the set Ip is populated, results in an infeasible solution, we
increase it until the problem has optimal solutions.

The ILP was implemented in C++ using g++ as the com-
piler. The aircraft priorities were assigned on an integer scale
of [1–5], each with an initial priority of 3. While replanning,
all the critical aircraft were reassigned a priority value of 5
(for more details on the replanning process, see [27]). The total
planning time horizon was selected based on the worst-case
estimate of completing all the tasks by assuming the sum of
the mean and three sigma values for stochastic task durations
and scenario that only one deck resource would be available
to perform a task at any time instant. For a particular test
scenario, all the constraints were initialized once in the planner
code, except for the ones that would change dynamically
during the course of any operation, namely, the aircraft that



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

RYAN et al.: COMPARING THE PERFORMANCE OF EXPERT USER HEURISTICS AND AN INTEGER LINEAR PROGRAM 5

TABLE II

Table of Expert User Heuristics

would be considered as critical, tasks with user-preferred time
limits, and deck resource failures. This initialization facilitated
fast replanning by modifying, adding, or deleting only a few
constraints.

We used heuristic-guided, depth-first branch and bound
search to solve the ILP. The search heuristics were comprised
of the following three rules. First, we assigned tasks to
all the critical aircraft at the earliest possible time instants
giving preference to the ones with more remaining tasks and
breaking ties for equal number of tasks randomly. Second,
if no critical aircraft were present, tasks were assigned at
the earliest possible time instants to the aircraft with the
maximum number of tasks, then to the one with the second
most number of tasks, and so on, again breaking ties randomly.
Third, deck resources were allocated such that all the available
resources for a particular task type would have as equal
of a workload as possible, where workload was defined as
the total number of aircraft that would utilize a resource
in the generated plan. All the rules were employed in the
same order as described above to fix integer values to the
decision variables during branching. While applying the first
two rules were straightforward in terms of deciding which
decision variables set to unity, implementing the third rule
was more involved. It required removing the minimum number
of tasks from every resource (i.e., setting the corresponding
decision variables to zero) until all the resources for that
task type had an equal number of assigned aircraft over
the entire planning horizon. Bounding was done by simply
comparing the obtained solution with the incumbent (current
best) solution. The search was terminated when a feasible
solution was obtained and the computation time exceeded half
a second. The second termination criterion was imposed based
on the need to generate plans in real time. While a theoretical
analysis of the approach to provide performance guarantees is
beyond the scope of this paper, empirical comparison with a
widely used optimizer in Section VI establishes its utility.

IV. Expert User Heuristics

Over two dozen experienced Naval personnel were con-
sulted throughout the design process of the DCAP system,
encompassing former Naval aviators, instructors at a Navy
training base for deck crew, a former member of an Air Wing
Commander’s planning staff, and two commanders of a Navy
training base for deck crewmen. In meetings that occurred
in person, participants were presented with example scenarios
that could occur in real-life operations and were asked what
their responses to the situations would be. Despite the lack
of standardized training for replanning carrier operations [17],
these guided interviews allowed the DCAP research team to

identify a relative consistency in solution generation. This
consistency was captured in a set of heuristics: the rules of
human decision-making shaped by experience and used to
simplify the aircraft carrier planning problem and generate
approximate solutions quickly [28]–[30]. The list of heuris-
tics appears in Table II, grouped according to three general
categories (general, deck, and airborne) but not necessarily in
order of importance.

General heuristics are applicable to all replanning scenarios.
The general heuristics include minimizing changes in the
schedule (heuristic 1), minimizing time but without jeopardiz-
ing safety (heuristic 2), and ceasing operations if any human
being is placed in immediate danger (heuristic 3). For deck
heuristics, the concerns are to balance the workload on the
deck (heuristic 4) due to concerns of crew fatigue and the
maintainability of the deck equipment, to ensure maximum
flexibility in operations by keeping as many resources available
as possible (heuristic 5), and keeping orderly motion on the
deck by funneling traffic movements to the interior of the deck
(heuristic 6). Airborne heuristics deal with the ordering of
aircraft in the landing order (heuristic 7), where they should
be parked after landing (heuristic 8), and how to handle
failures for airborne aircraft (heuristic 9). Applying heuristic 9
to an airborne aircraft requires understanding the nature of
the failure and its criticality. True emergencies endanger the
pilot and the aircraft and must be dealt with immediately.
Urgent emergencies are of concern, but if compensating for
these failures causes further schedule degradation or requires
numerous changes on deck, operators may delay action until
a more satisfactory time.

These expert heuristics were reviewed by the previously
interviewed Naval personnel in the form of a teach-back
interview [31]. In this form of interview, the interviewees were
presented with a problem scenario, to which the interviewer
applied the heuristics in question. The interviewer described
the heuristics and what their resulting plan would be. The
interviewee then validated the proposed action, possibly sug-
gesting further details or a slight differentiation in the heuristic.
The final set of heuristics allows a nonexpert user to generate
approximately the same solutions as a more experienced
subject matter expert. However, it must be remembered that
these are simply rules of thumb for generating a schedule;
how, exactly, these lead to better performance in the schedule
are not necessarily straightforward, due to the complexity of
interactions on the flight deck.

V. Methodology

In order to determine whether or not the DCAP planning
system with the embedded ILP provided substantial benefit
over the current human-only methods of replanning, we con-
ducted a series of tests. The testing program involved three dif-
ferent testing scenarios of varying complexity, applied to three
different planning scenarios. For two of the three planning
conditions—the human heuristics (HH) and ILP conditions—
a fatal failure necessitating a schedule replan occurred at the
same prespecified time and affected the same aircraft or deck
resource. Under the HH planning condition, a human operator
utilized only the expert heuristics to manually create a new
schedule to overcome the failures. In the ILP planning condi-
tion, the same human operator utilized the ILP planner within



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CYBERNETICS

the DCAP environment to create new schedules. The third
planning condition, the baseline (no failure) case, involved no
failures and no replanning and serves as a reference point for
performance under the original schedule.

Due to the randomized nature of task durations and the var-
ious constraints on task execution (as described in Section II),
the simulation is nondeterministic—multiple replications of
a single scenario will vary not only in the total time to
execute the schedule, but also in the order in which aircraft
arrive at catapults. As such, each of the three scenarios was
tested thirty times for each of the three different planning
conditions. For each scenario, the system was given the same
initial state and schedule across all planning conditions and
replications. Replanning actions occurred in real time: a single
operator monitored the system from the outset, waiting for
the failure to occur. Once it did, the operator engaged the
replanning system (either the HH or ILP planner) to generate
a new schedule of operations for the system. While replanning
occurs, the simulation continues to execute—aircraft affected
by the failure may not be able to execute tasks, but unaffected
aircraft continue operating.

All the testing was performed on a Lenovo Thinkpad W500
laptop (2.80 GHz Intel Core 2 Duo T9600 CPU, 8 GB RAM,
Ubuntu 9.10 64-bit operating system). The DCAP system
(a JavaTM application) was run within the Eclipse Galileo
JavaTM IDE. The DCAP system and the planning modules
communicated via the LCM package, details of which are
available in [32]. The LCM package allowed for real-time
state information passing with negligible time delay, as demon-
strated in the MIT DARPA Urban Challenge vehicle. Data
were extracted through automated logging features embedded
in the DCAP source code. Data were logged upon scenario
termination, which was also automated to ensure no variation
in end conditions.

A. Test Scenarios

Three test scenarios, designated simple, moderate, and com-
plex, were used to represent different levels of complexity
in the operational environment, as defined by the number of
heuristics applied in replanning. The scenarios are detailed
below.

1) Simple Scenario: The simple scenario models the oc-
currence of a catapult failure on deck during launch operations.
Twenty aircraft (2 SMAC, 2 SUAV, 12 FMAC, and 4 FUAV)
are fueled and have weapons loaded while parked on the deck.
Aircraft then proceed to launch catapults, queuing in lines
of no more than three at each launch catapult at any given
time, similar to real operations. Aircraft launch assignments
are initially distributed across catapults. Catapult 1 remains
inaccessible for the entirety of the scenario due to several
aircraft parked in the immediate vicinity. After launching from
the catapult, aircraft proceed to a mission area. For the HH
and ILP planning conditions, catapult 3 is disabled at a set
time after simulation start (identical across both planning
conditions and all replications). This failure is fatal to the
schedule, as catapult 3 cannot be used for the remainder of
the simulation.1 Replanning after this failure should address

1Because this is a fatal failure for the schedule, the failure is not imple-
mented for the baseline planning condition, allowing it to execute without
requiring replanning.

the reassignment of aircraft to the remaining accessible and
operational catapults. The scenario terminates when all aircraft
have departed the carrier deck and reached their mission
locations.

This scenario is identified as simple as this is a relatively
common problem and replanning for the system requires the
application of only four expert user heuristics: Heuristics 1,
2, 4, and 6. Application of the heuristics involves moving
all aircraft from the failed catapult 3 forward to catapult
2 while also attempting to balance the number of aircraft
at the two remaining functional catapults (catapults 2 and
4). As described in Section III, the ILP selects actions that
minimize the overall mission duration for the system. It does
not make considerations as to the number of changes in the
schedule (heuristic 1), nor does it necessarily seek a balanced
set of launch assignments (heuristic 4). The resulting plan
may demonstrate these characteristics, but these are not the
specified criteria in replanning. Additionally, the ILP makes no
consideration of the locality of aircraft to launch catapults and,
thus, may also act in opposition to heuristic 6. However, there
are no guarantees that the HH plan is optimal in any sense—it
simply follows the rules as specified, given the current state
of the deck.

2) Moderate Scenario: The moderate scenario models a
recovery (landing) task. In this scenario, all aircraft begin at
their mission locations and immediately begin transiting to the
landing pattern (known as the Marshal Stack). This scenario
again uses twenty aircraft (2 SMAC, 2 SUAV, 12 FMAC, and
4 FUAV), timed to enter the landing pattern with a very tight
spacing and an order based on heuristic 7. FMAC aircraft enter
first, followed by SMAC aircraft, then FUAV aircraft, then
SUAVs. Two failures are introduced just before aircraft enter
the Marshal Stack—an FMAC has a hydraulic failure while an
SMAC has a fuel leak. These aircraft were chosen based on the
expected response of human operators. For a fuel leak, the HH
plan would dictate that the aircraft should be moved forward
in the Marshal Stack (so that it lands earlier). For a hydraulic
leak, the aircraft should be moved back in the Marshal Stack to
delay its landing. Typically, FMACs enter the landing pattern
first and SMACs last; thus, an FMAC experiencing a hydraulic
leak should lead to significant change in landing order, as
should an SMAC with a fuel leak. In both the cases, however,
actions should be selected that ensure that both aircraft land
before encountering a limit violation on their hydraulic fluid
and fuel, respectively.

Replanning for this scenario invokes five heuristics: 1, 2,
3, 7, and 9. In this case, applying the heuristics results in the
movement of the SMAC (fuel leak) forward in the Marshal
Stack to minimize the risk of this aircraft running out of fuel.
However, a hydraulic failure increases the possibility that the
landing strip (LZ) will be disabled after landing, in that the
aircraft may be unable to vacate the LZ or may generate debris
if it is damaged during a hard landing. In either case, a time
penalty is incurred as crew must work to clear the LZ and
prepare it for the next landing. Moving the FMAC backwards
in the Marshal Stack allows for additional aircraft to land, and
thus minimizes the potential for delays. These probabilities are
not directly considered by the ILP; rather, the ILP will select
actions that minimize mission duration while ensuring that the
hard constraints on minimum fuel and hydraulic fluid levels are
not violated. The ILP may defy heuristic 9 by not moving the
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TABLE III

Metrics Used in the Testing Program

fuel leak aircraft to the first available position, but it will still
schedule the aircraft to land with a fuel level greater than the
critical value. For the baseline case, no replanning occurs and
all aircraft land as specified in the original order. Comparing
the ILP and HH planners to the baseline thus reveals the
differences in measures of fuel consumption and flight time
for the true and urgent emergency cases in both the HH and
ILP planner.

3) Complex Scenario: The two previous test scenarios
focus only on one aspect of the launch or recovery of aircraft
in the aircraft carrier environment. The Complex scenario
focuses on both aspects, addressing a case where emergency
launches are requested in the midst of landing operations.
This scenario begins similarly to the moderate scenario, with
eighteen (rather than twenty) aircraft (2 SMAC, 10 FMAC, and
6 FUAV) returning from mission. For this scenario, the aircraft
are given much lower fuel values than in the moderate case,
increasing the importance of accurate placement of aircraft in
the landing order. As such, the initial order of entry into the
landing pattern is slightly different from that of the moderate
scenario—FUAVs enter the Marshal Stack first, followed by
FMACs and SMACs. In the midst of return operations, a
supervisor requests the launch of additional reconnaissance
aircraft. To satisfy the supervisor’s request, two additional
SUAVs must launch from the flight deck. In launching these
aircraft, only catapults 2, 3, and 4 are available (just as in
the simple scenario, catapult 1 is inaccessible due to parked
aircraft). Just as these two aircraft begin to launch, a fuel
leak arises in an SMAC arriving in the landing pattern. This
creates conflicting priorities for scheduling—a supervisor has
requested that the SUAVs be launched immediately, but the
SMAC leaking fuel must also be landed relatively quickly.
Using catapults 3 and 4 to launch the requested reconnaissance
aircraft may lead to conflicts with aircraft incoming to land.

Replanning for this scenario requires the application of
seven heuristics: 1, 2, 3, 4, 6, 7, and 9. The HH solution
requires moving the failed SMAC forward in the landing order
(to minimize the chance of running out of fuel) and sending
the launching aircraft to catapult 2 only. Utilizing only this
catapult ensures that, regardless of the time required to launch,
aircraft on approach do not experience any interference in
the landing strip area. In this case, efficiency in launching
is sacrificed to minimize the risk for the airborne aircraft.
The ILP selects actions that provide for shortest time until

launch for the two support aircraft while also balancing the
constraints on the incoming aircraft. Based on the planner’s
estimates of how quickly aircraft can launch from the deck,
the resulting assignments for the two launching aircraft may
vary substantially. If the planner predicts that both may launch
from catapults 3 and 4 before the first aircraft lands, this
assignment may be given; if it believes this is impossible,
both aircraft may be sent to the forward catapults. Just as in
the moderate scenario, no replanning occurs for the baseline
case and all aircraft land as specified in the original order.
Again, comparing the ILP and HH planners to the baseline
thus reveals differences in measures of fuel consumption and
flight time for the true and urgent emergency cases for these
planners.

B. Measurement Metrics

As noted earlier, the U.S. Navy does not perform any routine
assessments of flight deck operations and provide no detailed
metrics on assessing schedule performance. As such, we must
create our own metrics for assessing operations. In terms of
replanning strategy, both the human heuristics and the ILP
have the same goals: simultaneously minimizing total mission
duration and workload for crew and aircraft on the deck.
Additionally, a major focus of replanning is to maximize the
safety of the aircraft, primarily in that aircraft should be landed
with fuel greater than their minimum emergency level. This
is partially influenced by the amount of time the landing zone
is occupied, as occupying the landing zone prevents airborne
aircraft from landing, and thus increases the likelihood of an
aircraft burning down to its emergency fuel level.

For this experiment, nine metrics were developed to address
these issues, falling primarily into two classes: safety and time
(Table III). In terms of safety, fuel violations (FV: incremented
by one each time an aircraft drops below a certain fuel
threshold) and landing zone foul time (LZFT: the time in
which any entity is in the landing zone area, summed across
all entities) relate to the safety of aircraft in the system. Two
other metrics (SMAC 2 and FMAC 6 recovery times) address
the safety of the two aircraft that experience fuel leak failures
in the scenarios. Measures of time concern the effectiveness of
the replanning system, including measures of the total mission
duration (MD) and measures for workload of the crew [total
crew active time (TCAT)] and aircraft [total aircraft active time
(TAAT)]. Two additional measures were defined to examine
the efficiency of the plans generated by the HH and ILP—
total aircraft taxi time [the time aircraft spend taxiing on deck
(TATT)], wait time in queue-Marshal Stack [the time aircraft
spend waiting to land (WTQMS)].

In examining the performance of the three planning condi-
tions against one another, results were compared for a single
metric within a given scenario for each pairwise combination
of planning conditions. The distribution of results for each
metric from each scenario/planning condition combination
were first checked for normality (using the Kolmogorov–
Smirnov test) and heteroskedasticity (using the Levene test).
If both distributions in the pair were normal, a two-sided
ANOVA was used; otherwise, a two-sided nonparametric
Mann–Whitney U test was employed. These statistical meth-
ods test the same null hypothesis (H0: the distributions are
identical) to determine whether or not the distributions are
identical. To preserve a family wise error rate of 0.05 for
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TABLE IV

Comparison Between Heuristic and Optimal ILP Solvers

TABLE V

Results of Statistical Testing for the Simple Scenario. Bolded

Results Signify Significance at α = 0.002, Nonparametric

Mann–Whitney U Tests Were Used for Each Comparison

statistical tests in each test scenario, p values of 0.002 were
used for each ANOVA and Mann–Whitney U test.

VI. Results of Empirical Testing

We first present a comparison of our heuristic ILP solver
with COIN-OR Cbc [33] v2.0, a widely used off-the-shelf
optimizer, to demonstrate the utility of our solver in providing
good quality solutions in significantly less time. Based on
30 runs, Table IV shows that the heuristic solver is always able
to compute the optimal solutions for the moderate scenario
(where fewer number of tasks are assigned to the aircraft),
and generates solutions that only deviate from the true optimal
by less than 1.71% and 2.13% for the simple and complex
scenarios, respectively. Furthermore, the heuristic solver is
always terminated within 0.5 s, whereas the optimizer takes
more than 1.5 and 3.3 s for the simple and complex scenarios,
respectively. Keeping in mind that real-time performance is
the key requirement in our problem domain2, we adopt the
heuristic solver for the remaining tests.

We now discuss the results of statistical testing within each
scenario to compare the performance of all the three planning
conditions [baseline (B), HH-only, and ILP-supported] using
the metrics presented in Section V-B.

A. Simple Scenario

The primary differences in planner performance for the
simple scenario are highlighted by five of the nine metrics de-
scribed in Section V-B (the four unused metrics are appropriate
only for recovery operations and are thus not applicable to this
testing scenario). Figs. 2 and 3 show the resulting distributions
of values for each of the test cases. The boxplots in these (and

2In future, the planner would also need to account for deck crew members,
cyclic or repeated operations, and movement of aircraft between the surface
and hangar decks, which would further increase the ILP problem size, and,
consequently, the computation time of exact optimizers, rendering them
practically even less useful.

Fig. 2. Boxplot of landing zone foul time (LZFT) values for the simple
scenario. Red lines indicate the median value, center blue box indicates
interquartile range, and whiskers extend to largest nonoutlier points.

all subsequent figures) show the median value as a horizontal
red line, with the diagonal lines emanating from the median
denote the 95% confidence interval of the median. Horizontal
blue lines above and below the median signify the 25th and
75th quartiles, respectively. Outliers (> 90th percentile, < 10th
percentile) appear as red asterisks, with the horizontal black
lines (connected by the dashed line whiskers) signifying largest
nonoutlier values. Generally, if the 95% confidence intervals
(the diagonal lines) between two distributions in any figure
overlap, these are likely to be shown as having no statistical
difference. Nonoverlap (for instance, the LZFT values for the
B and HH conditions in Fig. 2) typically, but not always,
signifies a significant statistical difference. Table V presents
a compilation of data for the statistical tests on the remaining
metrics.

Analysis of the data revealed that, qualitatively, the HH and
ILP planners implemented similar plans. For both planning
conditions, the returned plan divided the aircraft evenly be-
tween the two remaining operational catapults. This explains
the similarity in values for LZFT (Fig. 2), TATT, and MD
(Fig. 3). The difference in the workload measures, however,
is an interesting result. Even though the total MD value was
not statistically different between the HH and ILP planners
(Table V), the ILP planner showed significant increases in both
TAAT and TCAT (measures of aircraft activity on deck). This
is likely due to the fact that the ILP planner does not consider
the actual locations of the different crew members and instead
uses expected values, which significantly affects the processing
times at the deck resources. The human heuristics, developed
through years of experience, have incorporated an understand-
ing of crew movement and requirements into its rule base.
While beneficial to the HH planner, the use of crew members
as active agents in the combinatorial optimization process in
the ILP planner would render the problem computationally
intractable for real-time scheduling. An alternative machine
learning-based approach to alleviate this issue is discussed as
a part of future work in Section VIII.

The data in Table V also shows that there was only one
instance where the ILP or HH planner showed performance
equivalent to the baseline: the ILP versus B LZFT comparison.
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Fig. 3. Boxplots of mission duration (MD) values for the simple scenario.
Red lines indicate the median value, center blue box indicates interquartile
range, and whiskers extend to largest nonoutlier points.

The fact that the baseline performs well against the HH and
ILP planners is not unexpected, as the failure of catapult 3 was
fatal to the initial schedule and significantly impairs flight deck
capabilities. The baseline should thus be able to launch aircraft
more quickly and achieve lower values of LZFT than either
the ILP or HH case. It is interesting that the ILP planner was
able to reach performance equivalent to the baseline, through
the development of plans that moved aircraft away from the
failed catapults quickly, even though this is not an explicit goal
in its optimization.

The results from this scenario also imply two other impor-
tant facts: the system itself may be resilient and the human
heuristics perform quite well in replanning for the environ-
ment. Regarding the former, despite the increases in TCAT and
TAAT values, the ILP plans were statistically equivalent to the
baseline in terms of LZFT and to the HH planner in terms of
the overall mission duration. The increases in aircraft activity
were not meaningful in terms of overall system efficiency.
Additionally, the actual cost of increases in TAAT and TCAT
is minimal. Increased TAAT results in more fuel consumption,
but this is not of great concern to the stakeholders. Large
increases in TCAT are problematic as they increase the fatigue
of the crew, which increases the chances of an error or an ac-
cident occurring. However, the average increase in the time of
activity for 100+ person crew is minimal (≈ 1 min per person).
Regarding the performance of the human heuristics, the HH
plans were never shown to be inferior to the ILP plans. In the
five metrics reviewed here, the ILP was, at best, statistically
equivalent to the HH planner. This suggests that, despite the
relative simplicity of these rules, their effect is powerful.

B. Moderate Scenario

In examining the performance of the planners in the mod-
erate scenario, mixed results were seen between planning
conditions. The ILP planner outperformed the HH planner in
measures that addressed global performance (such as mission
duration and total aircraft active time), while the HH planner
maintained superior performance in measures addressing the
high priority fuel leak aircraft (measures for SMAC #2).

TABLE VI

Results of Statistical Testing for the Moderate Scenario

Bolded results signify significance at α = 0.002. All statistical tests
nonparametric Mann–Whitney U tests, except where indicated by an

†(where a parametric ANOVA was used).

The following paragraphs present the results of the statistical
testing and a discussion of the results.

For the moderate scenario, seven metrics were useful in
revealing interesting characteristics about planner performance
(Table VI). The two remaining metrics (fuel violations and
landing zone foul time) showed no variations between plan-
ning conditions. Testing revealed a mixture of performance
in all three planner pairings; there were no cases where one
planner dominated the other in terms of performance. Unlike
in the simple scenario, the baseline case was not expected
to dominate the majority of measures due to the nature of
the failure. In the simple scenario, the failure of the catapult
was immediately fatal to the initial schedule in the system;
without replanning, aircraft at catapult 3 would never launch.
For the moderate scenario (as well as the complex scenario),
the failures do not impair the ability of the schedule to
complete, instead affecting two individual aircraft (SMAC 2
and FMAC 6) that must land before hitting their critical
fuel and hydraulic fluid measures, respectively. These failures
were allowed to occur to provide a comparison point for the
recovery time (RT) of the failed aircraft. A comparatively
smaller RT value implies that the failed aircraft landed earlier.

The first important finding in this scenario was that the
HH and ILP planners again developed qualitatively similar
schedules. Both the HH and ILP planners moved SMAC #2
(fuel leak) forward in the landing order, as demonstrated by
lower values of SMAC 2 RT as compared to the baseline
(Fig. 4). Also, both the HH and ILP planners moved FMAC #6
(hydraulic leak) backwards in the landing order, signified by
larger values of FMAC 6 RT as compared to the baseline
(Fig. 5). The difference lies in the magnitude of movement
instituted by the planners. Comparing FMAC 6 and SMAC 2
RT between the HH and ILP planners reveals that the HH
planner moved each aircraft to a greater degree than the ILP
planner (the ILP moved the SMAC forward 1 slot in the
landing order as opposed to 11 slots in the HH plan, while
moving the FMAC backwards six slots as opposed to seven in
the HH plan). This is to be expected; the HH planner will act to
minimize the time the fuel leak-stricken SMAC spends in the
air, while maximizing the time for the hydraulic leak-stricken
FMAC without breaching its emergency threshold. The second
important result concerns total mission duration, where the
ILP planner (54.4 ± 0.4 min) completed the mission in less
time than the HH planner (55.5 ± 0.4 min). The diagnostic
measure WTQMS supports this view, showing that the ILP
planner required aircraft to be in the landing pattern for less
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Fig. 4. Boxplot of emergency recovery time for SMAC #2. Red lines
indicate the median value, center blue box indicates interquartile range, and
whiskers extend to largest nonoutlier points.

Fig. 5. Boxplot of emergency recovery time for FMAC #6. Red lines
indicate the median value, enter blue box indicates interquartile range, and
whiskers extend to largest nonoutlier points.

time (209.38 ± 3.03 min) than the HH planner (223.42 ± 2.16
min). Despite the rigid architecture of the landing patterns,
the ILP planner was still better able to optimize the landing
order so as to minimize total mission duration. The planner
thus demonstrated the ability to optimize for the entire system
at the cost of a wider safety margin for the failed aircraft,
primarily SMAC #2. While the ILP may be better able to
incorporate known future probabilities into its calculations, the
conservative bias on the part of the HH planner also insulates
the system against both known and unknown possible events.
In this case, the ILP removed this conservative buffer to the
benefit of the schedule; in turn, however, removing this buffer
may reduce the trust operators place in the ILP planner.

C. Complex Scenario

The results from the complex scenario showed that both
the HH and ILP planners were able to address the failures
and the additional launches effectively, although quantitatively

TABLE VII

Results of Statistical Testing for the Complex Scenario

Bolded results signify significance at α = 0.002. All statistical tests
nonparametric Mann–Whitney U tests, except where indicated by an

†(where a parametric ANOVA was used)

they performed quite differently with respect to the metrics of
interest. This is primarily revealed through an analysis of the
six metrics from Table III: the recovery time for the emergency
aircraft (SMAC #2 RT), TAAT, TCAT, TATT, WTQMS, and
the total MD. The remaining three metrics either showed no
differences between planning conditions (FV, LZFT) or were
not applicable (FMAC 6 RT: no FMAC experienced a fuel
leak) and are not shown here.

Table VII presents a compilation of the statistical testing
data for the remaining six metrics. This table again lists
the metric name and details the statistical testing between
pairs of planning conditions. The overall trend is that the
performance of the ILP planner was significantly inferior to
both the baseline and HH planners; in fact, at no time did
the ILP planner even show equivalent performance to either
of the other planning conditions in any metric. However, the
difference in mission duration (Fig. 6) for the ILP planner
(47.18 ± 0.84 min) was only about 1 min with regards to the
B (45.91 ± 0.19 min) and HH (45.90 ± 0.23 min) planners.

Despite its inferior performance, the plans generated by the
ILP were again qualitatively similar to the HH planner—both
SUAV aircraft were sent to catapult 2 to launch, ensuring
that they do not conflict with the incoming aircraft (the other
accessible catapults, numbers 3 and 4, conflict with the landing
zone). However, changes in the landing order were quite
different. The HH planner only changed the landing order
of a small number of aircraft: SMAC #2 was moved to the
beginning of the landing order, bumping back all aircraft
ahead of it by one slot. The ILP planner made landing order
changes for almost every aircraft, but the emergency aircraft
was only moved forward one position. Each change in landing
order adds a slight switching cost to that aircraft, which,
given the dynamics of the system, may be passed on to other
aircraft. This switching cost was not purposefully designed
into the system, and thus was unknown to the ILP planner.
The accumulation of these switching costs negated the gain
from advancing SMAC #2’s landing position, resulting in a
performance that was almost identical to not having made any
change at all (the baseline case). However, the ILP planner
still landed the emergency aircraft (SMAC #2) with sufficient
fuel, caused no other aircraft to crash, and generated only one
additional fuel violation. The main goals of the replanning
were achieved, with only one additional minute of mission
time required. Even though the planner may not have reached
equivalent performance in these defined metrics, from a goal-
oriented view, the ILP planner executed its task effectively.
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Fig. 6. Boxplot of mission duration values for the complex scenario. Red
lines indicate the median value, center blue box indicates interquartile range,
and whiskers extend to largest nonoutlier points.

From the opposite perspective, however, the HH plans were
once again seen to be proficient in addressing the failures in the
system, producing plans that not only accomplished all tasks
but did so without seriously affecting the time of operation
or incurring further penalties. In this case (as opposed to
the moderate scenario), the HH planner still achieved a total
mission duration slightly better than that of the ILP planner,
while also minimizing the time required to land the failed
SMAC 2 aircraft.

VII. Discussion

The main significance of the results presented in the previ-
ous section is that the performance of experienced human oper-
ators, who use a set of relatively simple, yet flexible, heuristics,
is mostly as good and sometimes better than an integer linear
program in a challenging planning environment. Statistically
speaking, the HH planner outperformed in 11 out of the 17
measures across the three test scenarios. In the remaining six
measures, the ILP planner showed better performance in three,
with equivalent performance in the other three. However, per-
formance was shown to be comparable in our primary measure
of total mission duration. Each planner outperformed the other
on one scenario, with no statistical difference in the third
scenario. Even for the two cases showing differences in per-
formance, the difference in mission duration was only a single
minute, a minor difference for scenarios lasting more than half
an hour. The majority of the other measures show similarly
small, but statistically significant, differences. Thus, while
statistical tests suggest some variations in performance, in
terms of the actual values, the differences are not all that large.

Interestingly though, the planners differed qualitatively in
their level of risk aversion. The HH planner tried to minimize
the likelihood of potentially catastrophic accidents that, while
highly unlikely, were still possible. For instance, in the com-
plex scenario, the HH planner launched aircraft only from the
forward catapults in order to ensure complete de-confliction
with the landing strip; this ensures that, in the case of any
true fuel emergencies, the landing strip remains available. In
the moderate scenario, the HH planner acted to land the true
emergency aircraft as soon as possible regardless of its current

fuel state, minimizing the risk of losing the aircraft due to
lack of fuel. The HH planner also acted to move the urgent
emergency aircraft to the end of the landing order. Doing
so minimizes the repercussions of any crash during landing,
which would require a halt to landing operations for half an
hour or more. This, in turn, increases the risk of losing other
aircraft due to lack of fuel. The ILP planner does not contain
this level of risk aversion; it still moves the true emergency
aircraft forward in the order and the urgent aircraft backward,
but not drastically so. This lack of risk aversion on behalf of
the ILP planner seemingly led to a slight performance gain in
the moderate scenario while having no significant detriments
on safety in any of the scenarios, as no major increases in fuel
violations, hydraulic violations, or other safety measures were
observed. This suggests that there may be greater flexibility
in scheduling operations than what is assumed by the subject
matter experts.

However, a limiting factor in the current system is the ability
of the ILP and HH planners to modify the behavior of actors
(humans and vehicles) in the system. In other words, there is
no provision to command vehicles to move faster, adjust the
time between landings, or command complete reconfigurations
of the deck (for instance, rearranging aircraft to free up a
blocked catapult). This structural rigidity may explain why
neither planner ever greatly outperformed the other; it may also
explain why the lack of risk aversion in the ILP planner did not
significantly decrease safety in the system. Enabling further
modifications to actions and activities, which in turn requires
increasing the complexity of the ILP algorithm, may provide
boosts to system performance. It may also lead to a decrease in
safety, which may require implementing additional measures
to ensure that activities maintain the desired level of safety.

VIII. Conclusion

In this paper, we formally evaluate the performance of
alternative task planning approaches within a simulation envi-
ronment that replicates operations on aircraft carrier decks in-
volving real-time resource allocation with timing and sequence
constraints. Our results indicate both the power of simple
human planning heuristics in complex environments, as well
as the potential for an automated optimization-based planning
algorithm to support coordinated human–vehicle operations,
either by offloading cognitive workload to the planner or by
providing alternative plans with varying benefits.

In the future, considering that optimization algorithms en-
counter difficulties in real-time adaptation to unknown scenar-
ios and human heuristics are designed to work in uncertain
situations by accumulating several years of experience, incor-
porating these heuristics as constraints or alternate objective
functions might benefit the ILP. We would also like to take
advantage of the fundamental difference in the nature of the
plans generated by the human heuristics and the ILP, and have
the flexibility of switching between safe and risky behavior
based on the operating conditions. This would involve learning
which heuristics to turn on or activate based on prior knowl-
edge of what works better. We additionally plan to conduct
user studies to identify which type of aircraft and tasks are
prioritized depending upon the timing and safety constraints.
This would enable us to model the soft constraints either as
hard constraints or ignore them altogether, thereby, eliminating
the need for obtaining a suitable value for the violation margin
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and enhancing the usability of the system in terms of ready
acceptance of the generated schedules.

The simulation environment embedded in the DCAP system
and the methods by which the planners are allowed to schedule
operations are based on the current observations of the actual
aircraft carrier environment. However, in the future, additional
levels of autonomy in aircraft or supervisory control systems
may allow structural modifications to operations, which may
also provide performance benefits as noted earlier. One such
allowable modification is flexible or on-demand availability of
crew members to perform tasks on the deck. This allowance
will significantly increase the dimensionality of the planning
problem for the ILP, thereby, rendering it computationally
intractable to support real-time operations using any standard
solver. We have already developed a novel regression-based
approach [34] to address the issue by exploiting the similarity
in the structure (in terms of the decision variables and the
constraints) of the relaxed LP problems that are solved at
the nodes of the branch and bound trees of ILP problems.
We plan to make use of this regression approach in futuristic
DCAP environments with enhanced autonomy levels to solve
large-scale planning problems efficiently with performance
guarantees on the estimated solution values.
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