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Abstract 

The role of unmanned vehicles in military and commercial environments continues to expand, 
resulting in Shared Manned-Unmanned (SMU) domains. While the introduction of unmanned 
vehicles can have many benefits, humans operating within these environments must shift to 
high–level supervisory roles, which will require them to resolve system errors. Error resolution 
in current Human Supervisory Control (HSC) domains is performed using a checklist; the error 
is quickly identified, and then resolved using the steps outlined by the checklist.  
 
Background research into error resolution identified three attributes that impact the 
effectiveness of an error resolution checklist: domain predictability, sensor reliability, and time 
availability. These attributes were combined into a Checklist Attribute Model (CAM), 
demonstrating that HSC domains with high levels of complexity (e.g. SMU domains) are ill-
suited to error resolution using traditional checklists. In particular, it was found that more 
support was required during such error identification, as data is uncertain and unreliable.  
 
A new error resolution checklist, termed the GUIDER (Graphical User Interface for Directed 
Error Recovery) Probabilistic Checklist, was developed to aid the human during the error 
identification process in SMU domains. Evaluation was performed through a human 
performance experiment requiring participants to resolve errors in a simulated SMU domain 
using the GUIDER Probabilistic Checklist and a traditional checklist tool. Thirty-six 
participants were recruited, and each was assigned to a single checklist tool condition. 
Participants completed three simulated error scenarios. The three scenarios had varying sensor 
reliability levels (low, medium, high) to gauge the impact of uncertainty on the usefulness of 
each checklist tool. 
 
The human performance experiment showed that the addition of error likelihood data using an 
intuitive visualization through the GUIDER Probabilistic Checklist improved error resolution in 
uncertain settings. In settings with high certainty, there was no difference found between the 
performances of the two checklists. While positive, further testing is required in more realistic 
settings to validate both the effectiveness of the GUIDER Probabilistic Checklist tool and the 
Checklist Attribute Model. 
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Chapter 1. Introduction 

The role of Unmanned Vehicles (UVs) is increasingly expanding in both simple and complex 

domains. The U.S. Department of Defense (DOD) plans to invest $17 billion in Unmanned 

Aircraft Systems (UAS) between 2008 and 2013, while between 2000 and 2008, the inventory of 

UAS in DOD components rose from 50 aircraft to more than 6000 (GAO, 2008). Aviation, 

however, is not the only domain where such unmanned system expansion is occurring, with 

unmanned ground vehicles (UGV) being introduced to both commercial customers and 

individuals. Examples include KIVA Systems, which manufactures autonomous robots for 

warehouse operations for companies such as Amazon" and Zappos" (Scanlon, 2009). iRobot", 

which introduced the Roomba, a robot vacuum cleaner in 2002, has sold 3 million of the robots 

(The Economist, 2009) and continues to be a driving force in the growth of personal robots for 

the home (iRobot Corporation, 2009), as well as for the U.S. Army with the PackBot (iRobot 

Corporation, 2009).  

 

In hostile environments where work tasks endanger human operators, the inclusion of unmanned 

vehicles to fulfill these duties may not only increase system safety, but also improve operating 

efficiency. Military equipment distribution warehouses are examples of hostile environments that 

are expanding to include unmanned vehicles. Currently, work is underway at the Massachusetts 

Institute of Technology (MIT) to develop a system of autonomous forklifts to distribute pallet-

loaded supplies in these warehouses that are located in war zones (Chandler, 2009). The 

inclusion of robotic forklifts in these complex, unstructured, and sometimes hostile military 

environments has the potential to streamline activities and increase overall throughput, while 

reducing customer wait times and potentially saving human lives.  

 

1.1. Motivation 

Although the potential benefits of automation in such hostile environments are significant, there 

are many human factors issues that are associated with the introduction of autonomous vehicles 

into such complex environments. Chief among these is the changing role of human operators 

from direct and manual control of a system to being involved in higher-level planning and 



 

 18 

decision-making (Cummings, Bruni, Mercier, & Mitchell, 2007). This shift to a supervisory role 

requires the human operator to undertake a number of new functions (Sheridan, 1992), including: 

• Scheduling tasks and planning tasks 

• Monitoring the actions of autonomous entities in the system and detecting failures 

• Intervening when required to return the system to the desired state 

 

All Human Supervisory Control (HSC) domains require monitoring for failures and overcoming 

error states to ensure high productivity while maintaining the safety of both humans and 

autonomous entities. Error resolution in supervisory control systems continues to take the form 

of serial checklists, either paper or electronic, that can serve as memory aid tools, ensuring that 

all required recovery steps have been executed (Gawande, 2009). Traditional checklists begin 

with an assumed error source and present recovery steps serially. These checklists suit domains 

where system behavior is predictable and there is consistent performance feedback. In such 

domains, the error source is relatively easy to identify and error resolution can (and should) 

begin immediately. Traditional checklists may be inappropriate for autonomous vehicle domains 

with high complexity, however, as these environments can be highly unpredictable and lack the 

clear information feedback loops present in the more predictable supervisory control domains of 

piloting aircraft and monitoring nuclear power generation systems.  

 

Shared Manned-Unmanned (SMU) domains are a subset of HSC domains that incorporate both 

autonomous vehicles and human operators interacting within a single system. While a high level 

of complexity1 typically characterizes all HSC domains (Cummings, Kirschbaum, Sulmistras, & 

Platts, 2006), SMU domains can have enhanced complexity levels due to the large number of 

distinct entities operating and interacting within the system. Uncertainty in SMU domains also 

exists, as human behavior is less deterministic and system boundaries are often undefined, 

resulting in unpredictable environmental factors acting on the domain. With such high 

complexity and uncertainty levels, error resolution in these systems can become complicated and 

could benefit from additional diagnostic information from various sources. As the prevalence of 

SMU domains will only continue to increase as technology advances, development of an error 

                                                
1 Complexity is defined by Merriam-Webster as “the quality or state of being hard to separate, analyze, or 
solve.” 
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resolution tool designed specifically for such environments is critical to ensure domain efficiency 

and the safety of humans operating within the system. Unfortunately, alternative error resolution 

tools, or checklists, designed specifically for highly complex SMU environments have not yet 

been developed.  

 

1.2. Problem statement 

Current error recovery checklists designed for use in traditional HSC domains, such as aviation 

and process control, are ill-suited to the unique characteristics of SMU domains, which are 

increasingly occurring in military, commercial, and various consumer environments. A new kind 

of error resolution tool, which allows human supervisors in SMU domains to overcome system 

errors efficiently, while maintaining domain safety, is required. This research proposes the 

development of this alternative checklist, which will be designed to satisfy the unique needs of 

SMU domains. 

 

1.3. Research objectives 

This research has three objectives: 
• Identify the important attributes of HSC domains, their relationship to each other, and 

how they can be combined to establish a domain attribute model, which can be used to 

categorize HSC domains.  

• Develop a new error resolution tool designed specifically for HSC domains that include 

autonomous vehicles. The design of this tool can be guided by previous research in serial 

checklists, complex work domains, automation, human decision-making, and information 

visualization. 

• Evaluate the new error resolution tool against a traditional checklist tool to determine 

which is more effective in supporting error resolution in a representative SMU domain. 

 

The objective of this new checklist is to improve the error identification and recovery process in 

SMU domains, ensuring that human supervisors within these environments can accurately and 

efficiently identify the source of an error, recover from the error, and transition the system back 

into an operational state.  
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1.4. Representative SMU domain 

This research employs the previously discussed autonomous forklift domain to demonstrate the 

new, alternative checklist. Currently, military distribution warehouses, which store and distribute 

items required for U.S. Army active duty, utilize manually operated forklifts. Complexity and 

uncertainty in the domain is already high, as the operations of multiple manually operated 

forklifts must be coordinated to ensure that the warehouse environment runs efficiently. The war-

zone environment introduces potential unpredictable events resulting from militant actions, and 

environmental factors, such as rain and wind, can negatively impact the open-air warehouse. 

 

To increase warehouse efficiency, as well as to remove humans from the dangerous and exposed 

position of manually operating forklifts, the U.S. Army has proposed automation in the form of 

robotic forklifts. The introduction of these robotic forklifts will result in an SMU domain. This 

envisioned SMU domain will incorporate robotic forklifts (RFs), ground-level human operators 

who will interact with and direct the RFs in their tasks, and a high-level human supervisor who 

will monitor both the RFs and the human operators. While the current military warehouse 

environment has both high complexity and uncertainty, the addition of RFs only increases the 

unpredictability of the environment, and as a direct result, traditional error resolution checklists 

may not be appropriate. Therefore, the alternative checklist developed through this research will 

be applied to the autonomous forklift domain to determine whether error resolution efficiency in 

this representative SMU domain improves with this new tool. 

 

1.5. Thesis overview 

This thesis contains the following chapters: 

• Chapter 1, Introduction, describes the motivation and research objectives of this thesis. 

• Chapter 2, Background, outlines the current state of error resolution in supervisory 

control systems. This chapter identifies the characteristics of HSC domains that are 

important in error resolution, with three domain attributes identified: domain 

predictability, sensor reliability, and time availability. These attributes are combined into 

an attribute model that categorizes HSC domains, and identifies shortcomings of current 
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checklist tools. This chapter also presents relevant research material that guides the 

design and development of the alternative checklist tool.  

• Chapter 3, GUIDER Probabilistic Checklist, uses the background research detailed in 

Chapter 2 to develop a new error resolution tool. The features of this probabilistic tool are 

demonstrated using the autonomous forklift project. Utilizing the domain attribute model 

developed in Chapter 2, two case studies are conducted to form an experimental 

hypothesis as to the best error resolution system for SMU domains. 

• Chapter 4, Experimental Evaluation, describes the human performance experiment, 

incorporating a simulation of the SMU autonomous forklift domain, used to test the 

hypothesis of this research. Details include a discussion of participants, procedures, and 

experimental design. 

• Chapter 5, Results, presents the findings of the human performance experiment using 

such metrics as number of error confirmations, cognitive strategy, and subjective appeal 

for both a traditional-style checklist and the GUIDER Probabilistic Checklist. 

• Chapter 6, Conclusions and Future Work, compares the results of the human performance 

experiment with the research hypotheses. The chapter also provides a set of design and 

future experimental recommendations based upon the experimental results. The chapter 

concludes with a description of the future work necessary to generalize this research and 

integrate alternative error resolution methods into current and future practice. 
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Chapter 2. Background 

In this chapter, common characteristics of HSC domains are investigated to determine the 

functionality that would be required for a new error resolution checklist in an SMU domain. An 

examination of current checklist systems is also performed in order to determine the 

shortcomings of current error resolution systems when applied to SMU environments.  

 

Through this initial research, three HSC domain attributes are identified that have an impact on 

error resolution: domain predictability, sensor reliability, and time availability. These attributes 

are used to identify the current HSC domains that are well-suited to error resolution with 

traditional checklists, as well as those domains that are currently not well served, providing 

justification for the development of a new error resolution tool to be used in select HSC domains. 

 

Relevant research in the fields of automation, human judgment under uncertainty, and 

information visualization is reviewed to guide the development of the alternative checklist. 

 

2.1. Classifying complex supervisory domains 

HSC domains can be grouped into two major categories: causal domains and intentional 

domains. By gaining an understanding of the characteristics of HSC domains, and which 

category individual domains fall into, the functionality required of an error resolution checklist 

can be better understood. 

 

2.1.1. Causal domains 

Causal domains are closed-loop systems that are isolated from their environment (Vicente, 

1999). These domains have a direct feedback loop between the current state of the system and 

future system actions ensuring that the goals of the domain are continually met. Causal systems 

generally operate in predictable ways, as a result of clear constraints (Cummings & Guerlain, 

2003; Wong, Sallis, & O'Hare, 1998). These constraints include behavior being dictated by laws 

of physics and the system having clear boundaries. An example of a causal domain is a power 

generation plant. 
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Supervisors in causal domains are responsible for monitoring the physical health status of the 

system, which can be closely observed through the extensive use of state sensors. If an error 

occurs in a causal system, the source of the error is relatively easy to pinpoint. With the error 

source identified, supervisors in these systems only need to recover from the failure and 

transition the causal system back to an operational state. Emergency checklists are usually used 

for error recovery, with the required steps printed on paper and stored in procedure books or 

included electronically as part of a computer system within the domain. An example of 

emergency checklist books within the Chattanooga nuclear power plant simulator is shown in 

Figure 1 (U.S. Nuclear Regulatory Commission, 2010).  

 

 
Figure 1: Shelves of emergency procedures at Chattanooga nuclear power plant simulator. 

 

2.1.2. Intentional domains 

Intentional domains are considered to be open-loop and are subject to external influences 

(Vicente, 1999). Instead of goals being met by a clear feedback loop that dictates future system 

actions, outcomes are driven by motivations of individuals and groups that are part of the 

organization active in the domain: 1) the individual acting in a supervisory role, and 2) 

individuals and groups outside of the system whose actions can impact operations. An example 

of an intentional domain is command and control. 
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There is a high level of unpredictability and uncertainty within intentional domains, with 

unanticipated events likely to occur. According to (Cummings & Guerlain, 2003; Wong et al., 

1998), this is in part due to: 

• Human decisions directly dictating system behavior, as opposed to laws of physics 

dictating system behavior 

• Systems not having obvious boundaries, and as a result, being influenced by highly 

uncertain environmental factors that cannot be controlled or anticipated  

 

If an error occurs in an intentional system, the source of the error is more difficult to identify, 

due to high levels of uncertainty. Therefore, basic emergency checklists, which focus on error 

recovery once the error source has been identified, may not be a viable option within these 

domains. 

 

SMU domains 

SMU domains fall under the categorization of intentional domains, but can have increased levels 

of unpredictability due to the inclusion of autonomous vehicles within the environment. In 

traditional intentional domains, the main system entities are humans, who perform manual 

operating tasks within the system or high-level supervision tasks of human operators and 

statically located automation. In SMU domains, however, there is the addition of mobile 

autonomous vehicles. As a result, the number of distinct entities increases, and may include: 

• Autonomous vehicles 

• Human operators that direct autonomous vehicles 

• Human operators that manually operate vehicles 

• High-level human supervisor monitoring the entire system 

 

With an increase in the number of distinct domain entities, there is also an increase in the number 

of different interactions occurring between the entities within the system, as represented in 

Figure 2 (Naval Research Laboratory, 2006). As a result, SMU domains have increased 

complexity over general intentional domains, and are often far more complex than causal-based 

systems. 
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Figure 2: SMU domain with multiple unmanned vehicles. 

 

2.2. System sensor quality 

In order to operate autonomous vehicles within an unpredictable environment, it is vital that 

autonomous vehicles can detect environmental cues that guide their actions and behavior. The 

ability to detect cues from the environment ensures that these vehicles do not have to be 

consistently teleoperated by a human operator, but can instead independently select behaviors in 

order to fulfill mission objectives. 

 

A system has reliable sensors if they consistently and accurately measure intended system 

parameters and states. Unfortunately, in many complex work environments there can be 

uncertainty associated with the data available to operators, resulting in the current state of the 

system being unclear (Vicente & Rasmussen, 1990; Vicente, 1999). For example, LIDAR (Light 

Detection and Ranging) sensors, which find the range of a distant target and allow an 

autonomous vehicle to sense potential obstacles in the environment, could provide erroneous 

data due to both systematic errors (e.g., laser detector bias) or random errors (e.g., signal-to-noise 

ratio, type of terrain, transmission properties of the atmosphere) (Huising & Pereira, 1998).  
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Low sensor reliability impacts the accuracy of the data that may be used by both automation and 

a high-level human supervisor for error resolution. If current system data transmitted by 

automation to the human supervisor is inaccurate, identification of the source of system failure 

could become more difficult and may lead to errors. In addition, if the source of system failure is 

incorrectly identified, domain efficiency and human safety within the domain could be 

compromised. 

 

2.3. Errors in SMU environments 

Reason (1990) argues that human error occurs when “a planned sequence of mental or physical 

activities fails to achieve its intended outcome” (p. 9). Unfortunately, in SMU systems, the 

source of system failure may not only be human-related. In such domains, autonomous entities 

present in the system can experience logic-based errors (resulting from pre-programmed coding 

mistakes) and component failures, with both potentially resulting in undesirable system behavior. 

When supervising SMU domains, it is important for human supervisors to be able to resolve all 

errors, both human and autonomy generated, as quickly as possible in order to return the system 

to normal operating conditions. This process, which includes identification of the error source 

and recovery from the identified error, can be grouped together using the term error resolution. 

 

When a failure occurs in an HSC domain, it is always important to identify the source of the 

failure and recover from the failure as promptly as possible, in order to transition the system 

back into an operational state. In some time-critical domains, however, both human life and the 

integrity of the system depend on efficient resolution of the error state. If an error is not resolved 

within a short, limited duration, planes can crash, nuclear reactors can meltdown, and patients 

can die. To support supervisory-level error recovery, as well as maintain efficiency in error 

resolution, checklists are often implemented in an assistive role. These checklists guide the 

supervisor, step by step, through the recovery process. As supervisory control systems are 

utilized more frequently for monitoring complex work domains, checklists for error resolution 

have been implemented widely in workstations (Commission on Engineering and Technical 

Systems, 1997).  
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2.4. Traditional checklists 

Traditional checklists present procedural steps serially as an aid to memory, ensuring that all 

required steps in some process are executed. An example of a traditional checklist, in paper-

based form, is presented in Figure 3 (Department of the Army, 2004). This checklist is for the 

Shadow 200 unmanned aerial vehicle (UAV), which is flown by the U.S. Army and Marine 

Corps for surveillance, targeting, and reconnaissance (AAI Corporation, 2010). Even though the 

UAV is flown remotely, and therefore, the loss of the aircraft does not translate directly into the 

loss of human life, it is vital that system failures do not result in damage to the structural 

integrity of these very costly machines. Therefore, it is necessary that ground-control pilots be 

given procedures to resolve all conceivable Shadow 200 emergencies, including engine failure, 

fuse failure, and high engine temperature. 

 

 
Figure 3: Shadow 200 UAV checklist. 

 

Checklists are generally implemented in HSC domains in two capacities:  

• Normal checklists: used as a memory aid for completing routine procedures. 

• Emergency checklists: used during error situations to recover from one or more system 

failures and transition the system back into an operational state. 
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Human supervisors are typically well trained on how and when to utilize Normal checklists. 

During system operation, there are predetermined time slots when particular tasks need to be 

completed before operations can progress. For example, airplane pilots must complete a “Pre-

Landing” checklist, which includes lowering the landing gear, extending the landing spoilers, 

and braking as required (Transport Canada, 2001). Interaction with Emergency checklists is less 

structured, however, as failure occurrences are often difficult to foresee. When using an 

Emergency checklist, the supervisor not only has to complete predetermined recovery steps, but 

also needs to be able to identify the source of the error so that the appropriate checklist can be 

selected.  

 

Often, traditional checklists will begin with an assumed error source that has been identified 

through automated sensor and/or human feedback. The human supervisor then proceeds serially 

through recovery steps. Traditional checklists are therefore appropriate for domains where 

system behavior is predictable and there is consistent system state feedback. In such causal 

systems, the error source is relatively straightforward to identify, system complexity is relatively 

understood, and sensor reliability is high. With this straightforward error identification process, 

error recovery can (and should) begin immediately. 

 

If the environment is intentional with the enhanced complexity of SMU interactions, the source 

of the error may be difficult to identify due to the unpredictability and uncertainty within the 

domain. The reliability of the sensors located on the autonomous vehicles in SMU environments 

can also lead to uncertainty in error identification. Attention will likely need to focus on the error 

identification process. Hence traditional checklists, which focus only on error recovery, may 

need to be modified to be appropriate for such domains.  

 

2.5. HSC domain attributes for error identification 

Based on this background research, three HSC domain attributes deemed to have an impact on 

the error resolution process were identified: domain predictability, sensor reliability, and time 

availability. 
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It is important to note that these HSC attributes predominantly impact the error identification 

portion of error resolution, as uncertainty and inaccuracy will make the identification of the error 

source more complicated. Error recovery, on the other hand, is not impacted by these domain 

attributes. Once the error has been accurately identified, the required recovery steps to resolve 

the error will remain the same, regardless of the level of domain predictability, sensor reliability, 

and time availability in the system. 

 

2.5.1. Domain predictability 

The two HSC domain classifications, causal and intentional, dictate the predictability of domain 

behavior. A system is predictable if it has well-defined boundaries; inputs and outputs into the 

system are known and documented, making unanticipated events unlikely (Vicente, 1999). Low 

Domain Predictability (LDP) could be seen as a characteristic of intentional domains, while High 

Domain Predictability (HDP) could be seen as a characteristic of causal domains. As previously 

noted, error identification may be difficult in intentional domains, as there are high levels of 

uncertainty and complexity, which can be further enhanced in SMU environments. 

 

2.5.2. Sensor reliability 

Sensor reliability assesses how accurately the system sensors measure intended system 

parameters and states. An HSC domain could have sensors whose reliabilities range from Low 

Sensor Reliability (LSR) to High Sensor Reliability (HSR). For example, inherent characteristics 

of the domain environment, such as blowing sand in war zones located within desert climates, 

can negatively impact the accuracy of domain sensors, resulting in the feedback of low reliability 

data to the system supervisor. This inaccurate data may complicate error identification when a 

system failure occurs, as the supervisor will be uncertain whether they can trust the data provided 

from the sensors, and utilize it during identification of the error source. 

 

2.5.3. Time availability 

Time availability is an important factor when recovering from an error in some HSC domains, as 

the inability to resolve an error within a restricted time window may result in harm to system 

entities. A domain has restricted time availability when system failure or human safety will be 
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compromised if the error is not resolved within a limited duration, which varies for different 

HSC domains (Inagaki, 2006), but can range from seconds to hours. An HSC domain could 

range from Low Time Availability (LTA) to High Time Availability (HTA). If there is 

uncertainty associated with the source of a system failure, error identification can be difficult in 

domains with LTA, with time pressure potentially having negative effects on human judgment 

and decision-making. 

 

An example of an LTA system is a nuclear reactor plant. The Chernobyl nuclear plant accident 

had a restricted time window for error resolution, as can be seen by the devastation left behind 

after the operational errors went unresolved and a series of consequences led to the explosion of 

a reactor. UGV systems, on the other hand, typically have medium to high time availability. 

While it is important that the error is resolved efficiently, failure to resolve the error is unlikely 

to result in the loss of human life. Damage to system integrity, however, is likely. 

 

2.5.4. Checklist Attribute Model (CAM) 

The three HSC domain attributes were combined into a graphical display, termed the Checklist 

Attribute Model (CAM), with each attribute represented as the edge of a tetrahedron (Figure 4). 

In the model, each attribute edge can be broken down into three interval scales, ranging from 

low, to medium, to high (i.e. the edge of the tetrahedron corresponding to sensor reliability 

ranges form LSR at the bottom of the tetrahedron to HSR at the top of the tetrahedron).  

 

This graphical representation categorizes HSC domains by their need for decision-support during 

error identification. Error identification in HSC domains with HDP, HSR, and HTA is not 

mentally demanding, as uncertainty is low, data is reliable, and time is available for selecting the 

source of system failure. Traditional checklists, which have been utilized in HSC domains for 

decades, can be useful in such domains, as their limited assistance during error identification and 

primary focus on error recovery steps is suitable for the low mental demands associated with 

such domains. 

 

Error identification in HSC domains with LDP, LSR, and LTA is mentally demanding as 

uncertainty is high, data is unreliable, and time is restricted for identifying the source of system 
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failure. Traditional checklists are not appropriate for these domains, as decision-support during 

error identification is not provided to assist the human supervisor in error selection. SMU 

domains, which are intentional and highly complex, are examples of environments with such 

characteristics, and therefore, are not well served by traditional checklist systems. An alternative 

checklist, which assists the supervisor during error identification, is therefore required. 

 

 
Figure 4: Human supervisory domain attributes for checklist design. 

 

Error identification in HSC domains with Medium Domain Predictability (MDP), Medium 

Sensor Reliability (MSR), and Medium Time Availability (MTA) falls into a gray zone that is 

difficult to categorize. The appropriate checklist for these domains may be either a traditional 

checklist or the alternative checklist, depending on the overall level of complexity and 

uncertainty. As any uncertainty can negatively impact the error resolution process, assistance 

during error identification in such HSC domains, provided through the alternative checklist, may 

prove beneficial. 

 

The CAM visualization represents all HSC domains. As traditional checklists are best suited to 

HSC domains with HDP, HSR, and HTA, the graphical model indicates that these checklists are 
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ideal for domains falling into the high section of the tetrahedron. As technology advances and 

environments increase in size and complexity, fewer HSC domains will have such 

characteristics. Thus, the proportion of HSC domains that are suited to error resolution with 

traditional checklists will become (and is already becoming) smaller, as depicted in Figure 4. 

Complex HSC domains, including SMU systems, will continue to increase in frequency, 

highlighting the need for an alternative error resolution tool. Considerations in the design of such 

a checklist tool are discussed in the following section. 

 

2.6. Alternative checklist design considerations 

The need for a checklist specifically designed for SMU domains has been identified. This 

checklist will incorporate a decision support tool to guide the human supervisor in accurately 

identifying the source of the error, enhancing efficiency and safety in SMU environments during 

error identification. There are many considerations that must be made in the design of such a 

checklist. These considerations are discussed in the following subsections. 

 

2.6.1. Defining role of automation 

Parasuraman and Riley (1997) define automation as “the execution by a machine agent (usually a 

computer) of a function that was previously carried out by a human” (p. 231). Automation can be 

incorporated into a system to various degrees, ranging from the human in complete control of the 

system to the automation in complete control of the system. While high levels of automation can 

result in a lower taskload for the human supervisor (Parasuraman, Sheridan, & Wickens, 2000), 

if the level of automation is too high, supervisors may experience a loss of situation awareness as 

a result of being out of the decision-making loop (Kaber, Endsley, & Onal, 2000). In addition, 

consistently relying on automation during decision-making can result in skill degradation 

(Parasuraman et al., 2000). 

 

While automation can be applied to all aspects of HSC domains, there are two particularly 

relevant applications in SMU domains: 1) the unmanned vehicles that operate within the 

environment, and 2) the decision-support tool provided to the high level supervisor in the system. 

While determining the tasks and capabilities of the unmanned vehicles in an SMU domain is 
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outside the scope of this thesis, it is essential to consider the contributing roles that the supervisor 

and the automation will play during error resolution in order to achieve efficient and safe failure 

recovery. Once an appropriate automation level has been determined, this can be built into the 

alternative checklist system. 

 

When automating an error resolution tool, four different categories related to the distinct stages 

of human information processing must be considered: information acquisition, information 

analysis, decision and action selection, and action implementation (Parasuraman et al., 2000). 

Each of these categories can be automated to varying degrees, with the appropriate automation 

range determined by considering the human performance consequences of the automation, as 

well as the reliability of the automation and the potential costs of incorrect decisions/actions. For 

error resolution support in the alternative checklist, the categories of information acquisition and 

decision and action selection were identified as the areas where automation could be of the 

greatest assistance to the human supervisor. 

 

In SMU domains, information acquisition is predominantly performed by automation through the 

use of sensors (Parasuraman et al., 2000). During error resolution, it will be useful to the human 

supervisor to have this information organized by context, location, and other criteria, absolving 

the supervisor from having to dedicate cognitive processes to such tasks. By applying automation 

to information acquisition and organization, the focus of the human supervisor can be shifted 

from low-level sensory activities to high-level reasoning about the collected data, or decision 

selection. 

 

While automation of the information acquisition process will likely be beneficial during error 

resolution, automating decision and action selection may not be appropriate due to the high level 

of complexity and uncertainty associated with SMU environments. As the sensor-collected data 

may be inaccurate, the deductive reasoning abilities of automation may be ill-suited to decision-

making and error source identification. The inductive reasoning abilities of the human 

supervisor, on the other hand, may be better matched (Fitts, 1951), and therefore, the human 

should be responsible for error source identification during error resolution. This source 



 

 35 

identification can be assisted by the automation, however, through the environmental data that it 

collects and organizes. 

 

2.6.2. Human role in error identification 

By including the human in decision and action selection, or error identification, the overall 

efficiency of the error resolution process then relies on the judgment of the human supervisor. 

Unfortunately, human judgment under uncertainty is not perfect, due to incomplete knowledge 

about the problem space and limited computational abilities. Further, time availability within an 

HSC domain can negatively impact judgment during error identification. Under time pressure, 

human decision-makers cannot always employ the decision-making strategy that determines the 

best alternative, as they may not have the time or attentional resources to consider and evaluate 

multiple hypotheses (Sarter & Schroeder, 2001). In such conditions, accuracy may be traded for 

time savings, and decision-making heuristics may need to be employed (Tversky & Kahneman, 

1974). 

 

Humans use a number of heuristics when making decisions in situations where there are time 

constraints, as well as incomplete knowledge and a bound on computing abilities. Three well-

known decision-making heuristics that may impact the error identification process are: 

• Representativeness: The probability of event B being of type A is evaluated by the degree 

to which B resembles A (Tversky & Kahneman, 1974). This, unfortunately, neglects the 

prior probability of the type A event occurring in the world. Without knowledge of past 

system performance, a human supervisor in an SMU domain may be apt to overestimate 

the likelihood of unlikely errors, due to their similarity with available system data. 

• Availability: The probability of an event is based on the ability to retrieve similar events 

from memory (Tversky & Kahneman, 1974). Decision-makers are inclined to believe that 

an event is more likely to happen in the world if that event can be easily retrieved, 

although this ease of retrieval may not accurately reflect the true probability of 

occurrence. As error identification in SMU intentional domains is difficult, this decision-

making bias could negatively impact error source identification, with the supervisor 

basing identification on availability instead of collecting data that confirms or refutes the 

believed error source. 
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• Fast and frugal: A subclass of decision-making heuristics that employ a minimum of 

time and computation to make judgments (Todd & Gigerenzer, 2000). Fast and frugal 

heuristics limit the search through options using stopping rules, one of the most basic of 

which is one-reason decision-making, where the selection between choices is based on a 

single metric. This is likely to be employed during error identification in situations with 

LTA, and would be particularly detrimental to error source selection in times of LSR. If 

the human supervisor were to use sensor data as the metric for error selection, inaccurate 

sensor data could result in incorrect error identification. 

 

Humans employ decision-making heuristics as coping mechanisms, reducing complex tasks to 

more simple judgments (Tversky & Kahneman, 1974). These heuristics are therefore quite 

useful, as they allow for time and computational savings and often produce results that are good 

enough. Sometimes, however, the employment of heuristics can lead to severe reasoning errors. 

If these errors occur in non-critical environments, then the repercussions are not as far reaching. 

For example, if a student bases team selection for a project on how well candidates represent the 

“ideal” teammate, consequences from a bad team member selection will only be felt for the 

duration of the project, resulting in limited annoyance and frustration. If a human supervisor in a 

complex environment (e.g. nuclear power generation, aviation) employs bad judgment, however, 

negative consequences can be much farther reaching, and may include loss of system integrity 

and human life. 

 

Error identification in SMU domains, as previously discussed, is difficult due to the high level of 

complexity and uncertainty in these environments. As the consequences of poor decision-making 

in critical HSC domains can be grave, it is crucial that a decision-support tool be provided to 

assist the human through the error identification process during error resolution. While the 

functions supported by such a tool were discussed in Section 2.6.1, with a focus on information 

acquisition and organization, how this tool will provide support has yet to be determined.  

 

Decision-making heuristics often involve subjective assessments of probabilities, with 

inaccuracies sometimes resulting. Specifically looking at error identification in SMU domains, 

heuristics could result in the incorrect identification of an error source. In order to prevent (or 
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limit) incorrect error identifications, historical error occurrence data could be collected by a 

decision-support tool and presented to the supervisor, providing them with real probabilistic data. 

This error likelihood data would assist the supervisor in framing the current error using concrete 

measures, as opposed to subjective, heuristic-based judgments, which can lead to judgment 

errors. The error likelihood data could be collected by the automated decision-support tool and 

presented to the supervisor as part of an organized display. The likelihood data could then be 

aggregated with other available system cues to guide the supervisor in identifying the most likely 

source of error.  

 

This compilation of error probabilities is similar to the Probability Risk Assessment (PRA) 

approach (Kirwan, 1992), or the more focused Human Reliability Assessment (HRA)  approach 

(Gertman & Blackman, 1994), where the likelihood of potential system or human failures is 

quantified and used to predict how frequently each event will occur. These approaches are used 

to assess the safety of a system, often before the system has been constructed, and therefore, the 

error likelihood values are usually best estimates. For the envisioned decision-support tool in the 

alternative checklist, the error likelihoods could be derived from historical error occurrence data, 

providing a more accurate picture of the actual error landscape. A description of the algorithm 

that would be needed to collect, analyze and calculate these error likelihoods is outside the 

current scope of this research. 

 

Even if accurate probabilistic data is collected and provided as part of the decision-support tool, 

humans are poor at interpreting probabilistic information (Tversky & Kahneman, 1974). If error 

likelihood data were to be included in the alternative checklist system as part of a decision-

support tool during error identification, an intuitive display method of presenting that 

information to the human supervisor would need to be developed. The following subsection 

discusses the benefits of such a graphical representation, as well as potential options for 

representing the error likelihood data. 

 

2.6.3. Visualization of error likelihoods 

In order to prevent potential errors in reasoning resulting from the utilization of decision-making 

heuristics, a decision-aid tool incorporating probabilistic data could be developed as part of an 
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alternative checklist. This tool would lend computing power and supply much-needed knowledge 

to decision-makers. The need to develop an intuitive decision aid for the supervisor is paramount 

to ensure that the addition of probabilistic data to the decision-making task does not overwhelm 

the supervisor. As visualizations take advantage of the natural abilities of the human vision 

system, they continue to be the best method to communicate data to human operators (Schroeder, 

Martin, & Lorensen, 2006). 

 

Visualizations are graphical representations of data or concepts that support decision-making 

(Ware, 2004). An appropriately designed visualization minimizes the cognitive complexity of a 

task (Guerlain, Jamieson, Bullemer, & Blair, 2002) and takes advantage of ecological perception, 

allowing users to directly perceive relationships within presented data (Gibson, 1979). In the 

case of probabilistic error data, it is important that users are able to compare and contrast the 

relative likelihoods of all possible errors quickly so that they can utilize this information in error 

source selection. In developing a graphic to represent the probabilistic error data, two key 

characteristics of the data need to be embodied: 1) hierarchical information, conveying the 

categorization of errors within a system (e.g., mechanical failures, automation errors, etc.) and, 

2) the relative likelihoods of each system error.  

 

Many graphical representations of likelihood data could convey both of these characteristics. 

Three options, namely tree structures, treemaps, and multi-level pie charts, are presented below. 

Each graphical representation is demonstrated using a generic error hierarchy that groups system 

errors into overall categories and subcategories, and includes associated error likelihood data, as 

summarized in Table 1. 

 

An example error hierarchy can be demonstrated using the HSC domain of aviation and the 

overall error category Landing. This category can be divided into subcategories, including 

Mechanical Failure, Fuel Shortage, and Human Error. These subcategories would then include 

all related errors; an engine failure would fall into the Mechanical Failure subcategory, while 

forgetting to lower landing gear would fall into the Human Error subcategory. Each error during 

landing could have an error likelihood associated with it, based on historical event occurrence.  
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Table 1: Generic error hierarchy with associated likelihood values. 

Overall category Subcategories Errors Likelihoods 

Error 1a.1 0.25 

Error 1a.2 0.125 Subcategory 1a 

Error 1a.3 0.0625 

Error 1b.1 0.25 
Subcategory 1b 

Error 1b.2 0.125 

Subcategory 1c Error 1c.1 0.125 

Error 1d.1 0.03125 

Error Category 1 

Subcategory 1d 
Error 1d.2 0.03125 

 

Tree structures 
The most basic graphical representation for depicting hierarchical data is a tree structure that 

starts with the overall error category at the top of the visualization. This root node is broken 

down into child nodes, or subcategories of errors, which are then broken down into actual error 

types or events. While the example hierarchical structure referenced in Table 1 and graphically 

depicted in Figure 5 only contains three levels, there is no limit on the number of levels of data 

that can be represented using a tree structure. Tree structures have been used in different tasks 

within many different fields, including operations research, computer science, business 

management, biology, and linguistics. 

 

While probabilistic data could be textually listed at each node to indicate the likelihood of 

occurrence for each error or category of errors, this representation would not intuitively convey 

the relative likelihoods of each error and would require data integration and increased mental 

workload on the part of the human supervisor. As well, the probabilistic breakdown for all errors 

in the overall error category is difficult to discern from such a representation. Due to the required 

data integration when using this representation, the tree structure graphic is not a viable option 

for the decision-support tool as part of error identification in the alternative checklist. 
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Figure 5: Decision tree visualization. 

 

Treemaps 
A treemap (Human-Computer Interaction Lab, 2003) is a graphical representation that depicts a 

hierarchical tree through the repeated subdivisions of a rectangular shape into nested rectangles. 

The outer rectangle represents the root of the tree, or the overall error category. This rectangle is 

divided into its children, or error subcategories, which can then be divided into error events or 

sources. Once again, while the example hierarchy from Table 1 has only three levels, this 

division of rectangles could continue, and multiple levels of data could be conveyed. As each 

further layer of data subdivides the space even further, however, there often needs to be a limit 

on the number of levels of data depicted. Treemaps have been commonly utilized in the fields of 

business and portfolio management for presenting both high-level overviews and low-level 

details of stock market activity (Cable, Ordonez, Chintalapani, & Plaisant, 2004; Smart Money, 

2010).  

 

In a treemap, each node or rectangle has an area proportional to a specific dimension of the data. 

For the generic error hierarchy data from Table 1, this dimension would be the associated error 

likelihood data, with the size of each rectangle representing the probability associated with each 

system error. By using object size to represent magnitude (in this case likelihood), the human 

observer can directly perceive that the larger rectangle is greater than the smaller rectangle, and 

therefore, immediately comprehend the likelihood data being conveyed (Guerlain et al., 2002). 

 

The treemap resulting from the generic hierarchy data is shown in Figure 6. As both the 

hierarchical and likelihood aspects of the error data can be depicted using this graphical 

representation, it is a potential option for the error identification support tool. 
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Figure 6: Treemap visualization. 

 

Multi-level pie charts 

In the multi-level pie chart depiction (Andrews & Heidegger, 1998; Stasko, Catrambone, 

Guzdial, & McDonald, 2000), the root of the hierarchical tree, or overall error category, is shown 

as the center of a pie chart. The next level of the tree, the error subcategories, is shown as the 

first layer of the pie chart, with the final layer of the pie chart representing the error events or 

sources. As with the other graphical representations, the pie chart graphic is capable of showing 

many hierarchical layers of data, but has been limited to three in the generic error hierarchy used 

for example purposes (Table 1). Like the tree structure, the pie chart graphic grows outwards 

with the addition of layers, unlike the treemap. The pie chart graphic is similar to the treemap 

representation, however, in that it inherently conveys a further dimension of the data: 

proportionality. In the case of the error data, this proportionality is likelihood. Each layer of the 

pie chart graphic can be seen as representing 100 percent probability, and therefore, the size of 

each error slice in the pie chart is directly proportional to its error likelihood. Once again, by 

representing magnitude (or likelihood) data through the size of the object, the human observer 

can directly perceive this information (Guerlain et al., 2002). 
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The pie chart graphic resulting from the generic hierarchy data is shown in Figure 7. As both the 

hierarchical and likelihood aspects of the error data can be depicted using this graphical 

representation, it is a potential option for the error identification support tool. 

 

 
Figure 7: Multi-level pie chart visualization. 

 

Selection of visualization 
It is vital that probabilistic data is presented graphically in order for the data to be intuitively 

understood by humans. Of the three graphical representations considered, only treemaps and 

multi-level pie charts can represent both properties of the error likelihood data in a manner that 

does not cause undue mental workload on the human supervisor. However, the multi-level pie 

chart has a representational advantage over the treemap graphic: the ease with which it can be 

scaled for single or multiple layers of data. With the pie chart, additional layers of data are added 

by attaching an additional external ring to the pie chart (i.e., the graphic begins with a central 

circle and builds out from this central point). With the treemap visualization, additional layers of 

data are added by further compartmentalizing an overall rectangle (i.e., the graphic begins with 

an external rectangle and builds in from this outer point). Due to this inherent property of the 

treemap representation, individual data points can become small and difficult to comprehend 

with the addition of further data layers, as can already be seen in Figure 6.  
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Due to this identified disadvantage, treemaps will not be considered as a potential visualization 

method for the likelihood data in this effort. Therefore, the pie chart graphic is the best method 

of visualizing this data. The pie chart could be included as part of an alternative checklist that 

supports human supervisors in SMU domains during error resolution. 

 

2.7. Summary 

Three HSC domain attributes (domain predictability, sensor reliability, time availability) were 

identified that can be used to classify the needs of human supervisors during error identification 

in emergency events. Combining these into an attribute model for checklist design, it was 

identified that few HSC domains are suited to error resolution using traditional checklist tools. In 

order to properly support error resolution in domains not suited to traditional checklist use, 

including SMU environments, an alternative checklist must be developed. The design of this new 

checklist is discussed in the next chapter. 

 

In this chapter, design considerations for this new checklist were discussed, including the roles of 

the human and of automation during error identification in the new checklist, with the 

determination that the automation should be responsible for organizing useful diagnostic data for 

error identification, while the human supervisor should be responsible for identification and 

selection of the error source. The information collected, organized, and presented by an 

automated decision-support tool was also considered, leading to the decision that probabilistic 

error likelihood data should be used to support supervisors during identification of an error 

source. Finally, methods of graphically depicting the error likelihood data were evaluated, with 

the multi-level pie chart representation found to be the most suitable depiction for use in the 

checklist, as it can convey both the hierarchical and proportional characteristics of the likelihood 

information. 
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Chapter 3. GUIDER Probabilistic Checklist 

This chapter discusses the development of the new error resolution checklist tool. To overcome 

uncertainty and data inaccuracy, this new checklist includes probabilistic error data to guide the 

user in the error identification process, and a traditional serial presentation of steps to recover 

from the identified error. The new error resolution system was termed the GUIDER (Graphical 

User Interface for Directed Error Recovery) Probabilistic Checklist. The format of the two 

Probabilistic Checklist components, error identification and error recovery, is detailed.  

 

Operations in current U.S. Army warehouse environments is described, as well as how these 

environments could change with the introduction of autonomous forklifts. A prototype design of 

the checklist for the autonomous forklift domain, termed the Error Identification and Recovery 

(EIR) display, is developed to use in testing of the new checklist tool. The GUIDER Probabilistic 

Checklist is then characterized using the Checklist Attribute Model (CAM) presented in Section 

2.5. Two HSC domains are analyzed using CAM in order to predict the appropriate checklist, 

GUIDER or traditional, for the environment. First, a commercial aviation environment is 

analyzed, and second, the autonomous forklift domain is analyzed. These analyses are used as a 

basis to form hypotheses for the human performance experiment discussed in Chapter 4. 

 

3.1. Error identification 

When a failure occurs in an HSC system, it is critical that the source of the error is identified as 

quickly as possible so that error recovery can begin and the system can be transitioned back to an 

operational state. This not only ensures that efficiency in the system is maintained, but also that 

the probability of threats to human safety posed by system errors is reduced. To aid the human 

supervisor in SMU domains, it was deemed that a decision-support tool incorporating 

probabilistic error data should be included in the error identification portion of the new checklist 

tool, in order to support the selection of the error source. To intuitively convey the error 

likelihood data to the high-level supervisor, a graphical decision aid was deemed necessary. Of 

the possibilities evaluated in Section 2.6.3, the pie chart graphic was selected over the other 

graphical representations.  
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In the GUIDER Probabilistic Checklist, error identification will be performed using various 

information sources. As in traditional error resolution checklists, feedback concerning the current 

state of the system would be provided through system sensors. Supplementing this feedback will 

be the graphical decision aid conveying error likelihood data, as well as the supervisor’s situation 

awareness of the present system state. This combination of data should contribute to more 

effective error identification under the uncertain conditions of the SMU domain, with the error 

likelihood data, and the pie chart representation of this data, overcoming many negative 

consequences related to human judgment under uncertainty, which was discussed in Section 

2.6.2. 

 

3.2. Error recovery 

Once the supervisor has selected an error from the error identification portion of the GUIDER 

Probabilistic Checklist, error resolution will transition to error recovery. This portion of the 

checklist would consist of a traditional serial presentation of the recovery steps specific to the 

identified error. As the domain predictability, sensor reliability, and time availability attributes of 

HSC domains only impact the error identification portion of error resolution, the error recovery 

methodology used in traditional HSC checklists can be used in the new error resolution tool 

designed for SMU domains.  

 

If the human supervisor identifies the error source correctly and the system failure is successfully 

resolved, the system would shift back to normal operations. If the error was incorrectly 

identified, however, and the recovery steps do not resolve the system failure, the error resolution 

process would shift back to the error identification portion of the GUIDER Probabilistic 

Checklist. The human supervisor would then be required to identify an alternative error source, 

continuing the process until the failure state has been resolved. 

 

3.3. Application: Robotic forklift checklist 

Military distribution warehouses, referred to in the U.S. Army as an SSA (Supply Support 

Activity) warehouse, store and maintain items (packed together into pallets) required for field 

operations. While manually driven forklifts are currently used to transport materials within the 
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SSA, a current project at MIT is proposing the introduction of autonomous forklifts into this 

domain. A background of the current SSA environment and an introduction to the autonomous 

forklift project are presented below. In addition, a prototype version of the GUIDER 

Probabilistic Checklist, termed the Error Identification and Recovery (EIR) display, is developed 

for the domain. 

 

3.3.1. Current SSA operations 

Pallets are transported between the different areas of the SSA environment, depicted in Figure 8, 

using manually operated forklifts. Pallets arrive in the SSA via truck bed in a reception area 

(Figure 9), are moved to a bulk lot (Figure 10), and get transported to the pickup area when 

customers arrive for requested items (Figure 11). In order to run the warehouse environment 

efficiently, multiple manually operated forklifts are used to move pallets. Currently, a high-level 

human supervisor in the system is responsible for monitoring human operators and maintaining 

efficiency. The supervisor does not have access to real-time system data, however, such as 

current locations of inventory, forklifts, or human operators, and performs monitoring duties by 

moving around the different areas of the SSA and observing operations. 

 

Errors in current SSA systems predominantly revolve around the inventory stored in the 

warehouse, which is not tracked automatically using a Radio-Frequency Identification (RFID) 

system, but is instead manually tracked through SSA personnel. When inventory arrives at the 

SSA, human operators manually enter the inventory into a database system and then it is placed 

in bulk storage until the customer arrives for pick up. Every morning, a single employee also 

records all current items in the bulk area of the SSA and updates this information on a large 

summary board (Figure 12). 

 

Using this inventory process, errors are common. Receiving trucks arriving at the wrong SSA are 

unloaded without verifying the contents of the shipment. When the items are processed, the 

mistake is realized and the items need to be reloaded onto the truck bed and shipped to the 

correct location. Items are also misplaced and cannot be located when the customer arrives. Both 

of these errors, while not compromising system safety, negatively impact the efficiency of the 

SSA, as well as customer opinion of the operation. 
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Figure 8: Notional layout of a U.S. Army SSA. 

 

 
Figure 9: Truck delivering pallets of materials to receiving area of an SSA. 
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Figure 10: Bulk storage of materials in an SSA. 

 

 
Figure 11: Customer vehicles waiting to receive requested materials from SSA. 
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Figure 12: Tracking of items located in bulk area of SSA. 

 

3.3.2. SSA domain with autonomous forklifts 

Due to the location of some SSAs in active warzones, as well as a first step towards increased 

efficiency in the warehouse environment, a group of researchers at MIT are building an 

autonomous forklift that will replace the manually operated forklifts that are currently employed 

in the SSA domain (Chandler, 2009). This autonomous forklift project hopes to introduce 

unmanned robotic forklifts (RFs) into military equipment distribution warehouses and has the 

potential to streamline activities in these complex and sometimes hostile environments. It is 

envisioned that the RFs will move pallets within the SSA environment based on directions from 

ground-level human operators working alongside, and interacting with, the RFs. A human 

supervisor will also be included in the SSA environment to perform real-time monitoring of both 

RFs and human operators, to carry out planning and scheduling for the system entities, and to 

resolve system failures. The three distinct entities that would operate within this envisioned 

robotic SSA are shown in Figure 13. The following subsections discuss the requirements for 

each of these entities in the autonomous forklift environment. 
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Figure 13: Entities operating within the forklift domain. 

 

Robotic forklifts 
In order to accomplish the pallet pickup and delivery task, the RFs would need to have a number 

of capabilities. These include (Walter, 2009):  

• Detecting pallets with variable structure and load 

• Inferring the geometry of a priori unknown trucks 

• Avoiding obstacles within the SSA 

• Retaining a common world model of the SSA 

• Safely and smoothly interacting with human operators in the environment 

 

To meet these needs, the prototype RF (altered Toyota 3-ton forklifts) has been outfitted with 

Sick© (http://www.sick.com/) LIDARs for sensing objects, Hokuyo© (http://www.hokuyo-

aut.jp/) LIDARs for detecting pallets and trucks, four cameras (facing forward, backward, right, 

and left) for human operator and high-level supervisor situation awareness, and Light-Emitting 

Diodes (LED) signs to indicate the current task the RF is undertaking for the benefit of nearby 

human operators. Further modifications to the forklift are expected in order to achieve higher 
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reasoning levels by the RF, cooperative task allocation among multiple RFs, and localization 

within an environment without the use of GPS (Global Positioning System) (Walter, 2009).  

 

Human operators 
The role of human operators within the SSA would be to direct the RFs within the warehouse 

environment. This direction would be given using a handheld tablet PC, allowing the human 

operators to circle target pallets in the environment using the tablet touch screen and stylus. An 

example screenshot of the tablet PC can be seen in Figure 14, with a pallet circled. Once an RF 

has picked up a pallet, the operator would circle a drop-off location (e.g., in bulk storage if the 

item has just arrived at the SSA or in the issue area if a customer has arrived for an item). It is 

envisioned that operators would also give directions through voice commands and gesturing. 

 

 
Figure 14: Tablet PC user interface for directing the RF in SSA. 

 

Human supervisor 
The human supervisor would be responsible for monitoring the RFs and the human operators 

working within the SSA warehouse environment. The supervisor would be responsible for high-

level tracking of system entities, planning and scheduling tasks, and error resolution. The needs 

of the high-level supervisor for this final task would be met through the Error Identification and 
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Recovery (EIR) display, which would allow the supervisor to identify an error in the system, 

recover from the identified error, and transition the SSA back into an operational state. This EIR 

display would need to incorporate a checklist system to assist the supervisor through the error 

resolution task. 

 

The envisioned SSA of the future, incorporating autonomous forklifts, has many of the 

characteristics of an SMU domain. There would be multiple unmanned forklifts, human 

operators, and potentially manned forklifts driven by the human operators in this shared 

environment. The unmanned forklifts and human operators would work within close proximity 

of one another. The result would be a high-level of complexity, due to the large number of 

potential interactions within the environment. Sensor reliability would also be a concern, as the 

forklifts would be operated in an environment where weather, blowing sand, and militant actions 

could negatively impact sensor accuracy. As this envisioned SSA is representative of an SMU 

domain, it was selected as a representative environment for demonstrating the GUIDER 

Probabilistic Checklist. 

 

3.3.3. Sources of error 

The first step of applying a checklist to a domain is to identify all potential errors within the 

environment. This step was undertaken for the representative domain, with the identification of 

all errors that could occur in robotic forklift field operations. An error model was developed that 

grouped system errors by functional step or point of occurrence in pallet pickup and delivery 

(Table 2). Seven distinct steps were identified in the functional process that involved a human 

operator summoning a robotic forklift to pick-up a pallet in the receiving area of the SSA (Figure 

8) and delivering it to the bulk lot: 

• Summon: Human operator calls an RF to the reception area to begin task. 

• Approach truck: RF approaches truck that is carrying target pallet. 

• Approach pallet: RF zones in on the location of the target pallet on the truck. 

• Pick up pallet: RF inserts tines into pallet slots and lifts pallet off of the truck. 

• Transport pallet: RF transports pallet to location designated by the human operator. 

• Unload pallet: RF lowers pallet into drop-off location and removes tines from pallet slots. 

• Withdraw: RF withdraws from drop-off location and waits for further instructions. 
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Table 2: Summary of potential errors in robotic forklift field operations. 

Functional Step (FS) Errors 

Summon 

-Voice command misunderstood by forklift 
-Gesture command misunderstood by forklift 
-Forklift does not receive command 
-Mechanical failure 

Approach truck 

-Operator designates path to wrong truck 
-Forklift takes wrong path 
-Forklift path blocked 
-Mechanical failure 

Approach pallet 

-Operator designates wrong pallet 
-Operator designates multiple pallets 
-Operator designates non-pallet 
-Operator designates pallet slots incorrectly 
-Forklift detects wrong pallet 
-Forklift detects non-pallet 
-Forklift cannot detect pallet slots 
-Forklift path blocked 
-Mechanical failure 

Pick up pallet 

-Forklift cannot find pallet slots 
-Pallet too heavy 
-Forklift picks up wrong pallet 
-Mechanical failure 

Transport pallet 

-Operator designates path to wrong location 
-Forklift takes wrong path 
-Obstacle in approach path 
-Forklift drops pallet/distribution unstable 
-Forklift transports wrong pallet 
-Mechanical failure 

Unload pallet 

-Obstacle in unloading location 
-Forklift cannot unload pallet 
-Forklift unloads pallet incorrectly 
-Forklift drops off wrong pallet 
-Mechanical failure 

Withdraw -Obstacle in withdraw path 
-Mechanical failure 

 

There are a number of distinct errors, as can be seen in Table 2, that could occur during each of 

the seven functional steps. These errors could result from forklift failure, human error, or as a 

result of an interaction between the two entities (RFs and operators). To limit the scope, only 

those errors that could occur during the Approach Pallet functional step were considered for the 
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development of the EIR display for the forklift domain. There are nine errors that were identified 

at this functional step, with the errors grouped into four categories: 

 

1) Pallet identification 

• Operator designates wrong pallet: Using the tablet PC, the operator identifies an incorrect 

pallet for pickup. The result is the RF approaching the wrong pallet. 

• Operator designates multiple pallets: Using the tablet PC, the operator identifies multiple 

pallets for pickup. The result is uncertainty as to which pallet the RF should pickup. 

• Operator designates non-pallet: Using the tablet PC, the operator identifies an object for 

pickup that is not a pallet. The result is the RF approaching the wrong object. 

• Forklift detects wrong pallet: While the operator identifies the correct pallet, the forklift 

approaches the wrong pallet.  

• Forklift detects non-pallet: While the operator identifies the correct pallet, the forklift 

approaches an object for pickup that is not a pallet. 

 

2) Slot identification 

• Operator designates pallet slots incorrectly: Using the tablet PC, the operator incorrectly 

identifies the two slots of the pallet. As a result, it may not be possible for the RF to insert 

its tines into the pallet slots. 

• Forklift cannot detect pallet slots: While the operator correctly identifies the two pallet 

slots, the forklift cannot detect the slots. 

 

3) Obstacle 

• Forklift path blocked: An object blocks the path of the forklift during pallet approach. 

 

4) Mechanical failure 

• Forklift mechanical failure could occur during any step of the pallet pickup and delivery 

process. For simplicity in design of the EIR display, motor failure and structural failure 

(e.g., wheel damage, forklift frame damage) were considered as the primary sources of 

mechanical failures. 

 



 

 56 

3.3.4. The GUIDER representation 

To demonstrate the GUIDER Probabilistic Checklist for error identification, the approach pallet 

functional step was chosen. The approach pallet step involves the forklift moving toward a pallet 

and inserting its tines into the pallet slots. A probabilistic error tree (Figure 15) was developed to 

attach likelihood data to each of the ten error sources that could occur during the approach pallet 

step, with each of the errors grouped into the four categories presented in Section 3.3.3. As the 

autonomous forklift domain is still in development, historical probability data is not available. 

Instead, preliminary estimates were chosen for the ten possible errors.  

 

 
Figure 15: Probabilistic error tree summarizing the potential forklift errors. 

 

This probabilistic decision tree was then transformed into a more intuitive graphical form, 

adapting the decision tree into the pie chart graphic presented in Section 2.6.3, simultaneously 

conveying to the supervisor both the hierarchical structure of the data and the relative likelihood 

of occurrence of each possible error source during an error event (Figure 16). The graphic, 

appearing when the forklift encounters an error, summarizes all possible error sources at the 

current functional step. The current functional step (pallet approach) is displayed in the center of 

the GUIDER graphic. The high-level error categories at this stage are shown in the next ring of 

the graphic, with their portion of the pie chart equivalent to the combined probabilistic 

occurrence of all errors in that category. Finally, each individual error is shown in the outermost 

ring, with individual likelihood data conveyed through the overall portion of the full pie chart. 
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Figure 16: GUIDER representation of probabilistic error tree. 

 

In order to utilize the GUIDER Probabilistic Checklist within the autonomous forklift domain, 

the error resolution tool needed to be incorporated into an EIR display. This display would be a 

primary component of a decision-support system for the high-level supervisor operating within 

the forklift environment. A prototype version of the EIR display is discussed in the next 

subsection. 

 

3.3.5. Error Identification and Recovery (EIR) display 

GUIDER was incorporated into an EIR display as part of a decision-support tool for supervisors 

in the robotic forklift domain. This EIR display allows the supervisor to track error occurrences 

for each unmanned forklift, identify the source of the error, and recover from the error.  

 

The identification screen of the interface consists of the following six components (Figure 17):  

1. Forklift tabs that allow the supervisor to select which forklift information he would like 

to view in the interface. Once a forklift has been selected, the other screen components 

would be specific to that selected forklift. In Figure 17, the supervisor is currently 

viewing information concerning Robotic Forklift 1 (RF1). 
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2. Forklift View, which provides the supervisor with ground level perspective of the RF 

domain through the real-time camera on the forklift. Each forklift is outfitted with four 

cameras: front, right, back, and left, with the Forklift View always showing the footage 

from the front camera. In Figure 17, the Forklift View shows a pallet, outlined in blue, 

which has been identified by the forklift. 

3. Operator View, which shows the supervisor the current view of the handheld operator 

tablet used to control the forklift. This view is a combination of one of the four cameras 

on the forklift (the current view is selected by the human operator), as well as any 

annotations that have been made to the view using the tablet stylus. In Figure 17, the 

operator is currently monitoring the left camera on the forklift. 

4. Identification portion of GUIDER Probabilistic Checklist. In Figure 17, multiple pallets 

designated is the error selected in the GUIDER pie chart graphic. 

5. Additional diagnostic tests (e.g., Check Operator Tablet) to confirm or refute error 

sources. In Figure 17, the diagnostic tests related to multiple pallets designated are 

present. 

6. Function bar indicating process the forklift is in during the pickup/delivery phase. In 

Figure 17, RF1 is currently undertaking the approach pallet functional step. 

 

The recovery screen of the interface consists of the following five components, many identical to 

those of the identification screen (Figure 18): 

1. Forklift tabs that allow the supervisor to select which forklift information he would like 

to view in the interface.  

2. Forklift View, which gives the supervisor ground level perspective of the robotic forklift 

domain through the real-time camera on the forklift.  

3. Operator View, which shows the supervisor the current view of the handheld tablet used 

to control the forklift.  

4. Recovery portion of GUIDER Probabilistic Checklist. In Figure 18, the recovery 

checklist for multiple pallets designated is shown. 

5. Function bar indicating process the forklift is in during the pickup/delivery phase. 
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Figure 17: Identification screen in Error Identification and Recovery (EIR) display. 

 

 
Figure 18: Recovery screen in Error Identification and Recovery (EIR) display. 
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When an error occurs in the robotic forklift domain, the error is indicated in the EIR display in 

four ways:  

1. The tab representing the forklift experiencing the error changes to red (Component 1 in 

Figure 17). 

2. The functional step that the forklift was undertaking when the error occurred is 

highlighted in red (Component 6 in Figure 17). 

3. The source of error suggested by the system through state sensors is displayed 

(Component 4 in Figure 17). 

4. The source of error suggested by the system is highlighted in yellow in the GUIDER 

graphic (Component 4 in Figure 17). 

 

As the information provided by system sensors may not be accurate, the human supervisor has 

two options available: 1) to confirm the error source suggested by the system sensors, or 2) to 

refute this suggestion and select a different error source. If the supervisor agrees with the error 

suggested by the system, error resolution begins immediately by confirming the error source. 

The error resolution process would then shift to error recovery. It is possible, however, that 

information available to the supervisor does not coincide with the suggested error source. This 

inconsistency could be due to unpredictability in the SMU domain or inaccurate sensor feedback. 

For example, blown sand in the environment, which is likely to be an operational factor for the 

RF in current war zones (e.g., Iraq, Afghanistan), could impact LIDAR performance and make 

the detection of pallets within the forklift domain unreliable.  

 

The human supervisor can use the information included in the EIR interface to identify the 

source of error. On the left of the display, real time forklift and operator views are included to 

supply the supervisor with additional information concerning the cause of the error (Components 

2 and 3 in Figure 17). A second source of information is the GUIDER pie chart graphic, which 

summarizes all possible errors that could be the source of the failure, as well as their likelihood 

of occurrence (Component 4 in Figure 17). If the suggested error has a very small likelihood, the 

supervisor may be unwilling to accept the suggested error source as the true error source. 

Moreover, the supervisor may have information not available to the system, such as unusual 

environmental conditions (e.g., muddy areas). Finally, once an error has been selected using the 
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pie chart graphic, diagnostic tests, such as checking the pallet identification number (to verify if 

the identified pallet is the target pallet) and current position of the forklift in the domain (to 

compare this position to the location of the target pallet) are available to provide additional 

information to either confirm or refute the selected error source (Component 5 in Figure 17).  

 

To illustrate an example where disagreement between supervisor and the RF sensor system could 

occur, consider the situation where the sensors suggest that multiple pallets have been designated 

for pickup, as opposed to a single pallet. The EIR interface for such a situation is shown in Figure 

19. 

 

 
Figure 19: Multiple pallets designated suggested by system as error source. 

 

The supervisor, after performing the further diagnostic test of viewing the operator tablet (Figure 

20), might instead decide that the actual source of error is that the human operator has circled the 

target pallet incompletely. The supervisor would therefore disagree with the system suggestion 

and instead conclude that a non-pallet designation has occurred (Figure 21). By clicking 

CONFIRM, the error resolution process would proceed to error recovery for the non-pallet 

designation error. The associated recovery screen of the EIR interface is shown in Figure 22. 
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Figure 20: Diagnostic test inspecting Operator Tablet view. 

 

 
Figure 21: Non-pallet designated selected as error source. 
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Figure 22: GUIDER incorporated into Error Identification and Recovery (EIR) display. 

 

The human supervisor would then complete the required recovery steps to return the system to 

an operational state. For the non-pallet designated error, these steps could include the supervisor 

sending instructions to the closest operator to re-designate the target pallet. If the recovery steps 

resolve the system failure, the supervisor correctly identified the error. If the failure persists, the 

supervisor incorrectly identified the error and reiteration of the error identification process would 

be required. 

 

3.4. Revised Checklist Attribute Model (CAM) 

The GUIDER Probabilistic Checklist was designed to meet the needs of error resolution within 

SMU domains. Therefore, the features of the checklist make it applicable for the following 

domain attributes: 

• Low Domain Predictability (LDP): SMU domains are intentional environments (Section 

2.1.2) that are highly complex and uncertain. Therefore, SMU domains could benefit 

from a combination of contextual system data and supervisor perspective to overcome 

uncertainty during error identification, which is the premise of the probabilistic checklist.  
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• Low Sensor Reliability (LSR): The knowledge of the supervisor can guide the error 

resolution process, instead of error resolution being solely dependent on the sensor 

information being received by the system, which is imprecise.  

• Low Time Availability (LTA): If a domain has a high level of uncertainty and 

complexity, decision-support could help to streamline the error identification process, 

making the probabilistic checklist a viable option when there is low time available for 

resolving the failure.  

 

Considering the characteristics of traditional checklists and the GUIDER Probabilistic Checklist, 

the CAM presented in Section 2.5.4 (Figure 4) can be revised to include checklist tool 

suggestions (Figure 23); the top of the tetrahedron would represent the end of the spectrum best 

suited to traditional checklist systems, and the base of the tetrahedron would represent the end of 

the spectrum best suited to the GUIDER Probabilistic Checklist. The middle of the tetrahedron 

(or the medium part of the attribute scale) would remain a gray zone that does not allow for the 

immediate classification of an HSC domain. 

 

 
Figure 23: Revised Checklist Attribute Model (CAM). 

 

As a result of this revision, classification of an HSC domain using CAM would allow a system 

designer to predict the best checklist tool for that domain. If a majority of the classifications were 

low (at least two of the three ratings on the domain attribute scale are low), the GUIDER 



 

 65 

Probabilistic Checklist would be recommended. If the majority of the classifications were high, 

the Traditional Checklist would be recommended. If the majority of the classifications were 

medium, or each domain attribute was rated uniquely (i.e. one low rating, one medium rating, 

one high rating), the recommendation would be unclear.  

 

This rating technique, while intuitive, is a subjective classification method that would need 

validation before utilization as part of an error resolution design process. The classification of 

existing HSC domains using CAM could assist in this validation process. The best checklist tool 

for error resolution within a domain could be hypothesized through CAM classification, with this 

hypothesis either accepted or rejected through experimental testing within a simulated version of 

the environment. If error resolution performance were best using the predicted checklist tool, 

there would be further evidence to validate CAM. On the other hand, if error resolution 

performance were best using the tool not predicted, there would be evidence against the validity 

of CAM. 

 

Classifications for two example HSC domains are presented in the following section to 

demonstrate the use of CAM. These classifications are then used as the basis for the formation of 

hypotheses in a human performance experiment to test the GUIDER Probabilistic Checklist. 

 

3.5. Example domain classifications 

Two representative HSC domains were examined to demonstrate the use of CAM (Figure 23) for 

checklist selection. The first domain is a traditional system: commercial aviation. The second 

domain is the robotic forklift SMU environment. 

 

3.5.1. Commercial aviation 

The domain of commercial aviation was selected because it has many contrasting characteristics 

with SMU domains. Traditional checklists have been used in commercial aviation for decades 

and while accidents resulting from checklist errors still occur, these assistive devices continue to 

be the primary method used for error resolution. Given the three previously identified domain 
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attributes and applying them to commercial aviation, a traditional checklist is shown to be the 

appropriate checklist selection.  

 

Domain predictability 
The commercial aviation domain is an example of a generally causal-system in that the system 

has clear constraints, the behavior of the system is well understood, and there is a clear feedback 

loop between the state of the system and the pilot supervising the flight. As a result of these clear 

boundaries, the aircraft almost always acts and responds in an expected manner. It should be 

noted, however, that there might be unexpected environmental factors that may act on the 

system, including severe weather and other objects in flight (birds, aircraft). These may result in 

unpredictable system behavior, and therefore impact human performance in this environment. As 

commercial aircrafts are rarely impacted by unpredictable environmental factors, it is concluded 

that this domain has high domain predictability (HDP). 

 

Sensor reliability 

In the domain of commercial aviation, there is limited uncertainty associated with the sensor data 

provided to the pilot. Due to the clear boundaries of the system and high reliability of sensors, it 

is possible to provide feedback data to the pilot for almost all system components for most 

situations. These sensors have been refined over the last half-century, resulting in high-

functioning and reliable equipment systems (Dismukes, Berman, & Loukopoulos, 2007). As a 

direct result, aircraft accidents have decreased substantially. We can conclude that the sensor 

reliability in commercial aircraft systems is very reliable. Using the domain attribute scale, it is 

evaluated as having high sensor reliability (HSR). 

 

Time availability 
The low time availability of the commercial aviation domain is immediately apparent, as an 

aircraft accident can result in not only the loss of the system, which is quite costly, but also the 

passengers. If the proper steps are not followed during aircraft operation, or error events are not 

resolved in a timely manner, serious consequences can result. It should be noted, however, that 

while it is vital that errors in commercial aviation be resolved quickly, the time available for 

error resolution could vary greatly between error events. It can be concluded that error resolution 
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in the commercial aviation domain is almost always time critical, as system and operator safety 

could be compromised. Using the determinant scale in Figure 23, it is evaluated as having low 

time availability (LTA). 

 

Overall evaluation 
Receiving two high ratings for domain predictability and sensor reliability, using the checklist 

classification model we can form the hypothesis that a traditional checklist system will better aid 

error recovery in the HSC domain of commercial aviation. 

 

3.5.2. Forklift domain 

A high-level supervisor in the robotic forklift domain will be responsible for monitoring human 

and autonomous entities in the system, maximizing workflow efficiencies, and monitoring for 

and recovering from system errors. An examination of the domain using the identified attributes 

can help to determine which checklist style is most appropriate for this system. 

 

Domain predictability 
The robotic forklift domain falls into the general classification of an intentional command and 

control environment, with unclear constraints. The domain has dynamic entities, both in the form 

of human operators and unmanned vehicles, and is highly influenced by unforeseen 

environmental factors present in war environments. Moreover, human decision-makers, whose 

behavior is guided by decision-making heuristics, impact these domains. With such unclear 

system boundaries, the overall system response would be quite variable for unexpected events. 

Using the domain attribute scale, it can be concluded that the robotic forklift domain has low 

domain predictability (LDP). 

 

Sensor reliability 
In the robotic forklift domain, many sensors will be required to guide the forklift during the 

pallet pickup and delivery process, as well as provide feedback to the supervisor during this task. 

For example, during pallet approach, sensors will be needed that locate the pallet, identify the 

pallet, locate the slots of the pallet, and guide the forklift tines into those pallet slots. In addition, 
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other sensors would be required to operate at all times, such as obstacle detectors and sensors 

that monitor for mechanical and system failures.  

 

Due to the system having unclear boundaries and a wide range of environmental factors acting 

on it, it is impossible to incorporate sensors to provide feedback information for all system 

entities for all situations. The operating conditions of the military warehouse environment also 

complicate information feedback loops. In war zones, weather, uneven ground, and militant 

actions may result in sensors becoming damaged or inoperable, leading to inaccurate data being 

communicated to the supervisor. 

 

Due to the difficult operating conditions and unclear boundaries of the robotic forklift domain, 

sensor reliability may be compromised. Using the domain attribute scale, this domain is 

evaluated as having low sensor reliability (LSR). 

 

Time availability 

In the robotic forklift domain, it is important that orders are fulfilled in a timely manner. 

Delivery trucks must be unloaded efficiently, the unloaded pallets taken from the reception area 

and moved into bulk lot storage promptly, and with quick delivery to customers. While it is 

important for time inefficiencies to be avoided, errors that cause system delay seldom impact 

overall system health or operator safety if they are not resolved immediately. Instead, these 

errors will likely lead to longer wait times and negative customer feedback. In isolated situations, 

however, the efficient movement of equipment may be vital to military operations. In such cases, 

quickness of processing becomes more critical. 

 

It can be concluded that error resolution in the robotic forklift domain is usually not time critical 

on the order of seconds, although time will occasionally be a factor. Using the determinant scale, 

it is evaluated as having medium time availability (MTA). 

 

Overall evaluation 
Receiving two low ratings for system predictability and sensor reliability and one medium rating 

for time availability, using the checklist classification model we can form the hypothesis that the 
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GUIDER Probabilistic Checklist system will more effectively assist error identification and 

recovery in this SMU domain. 

 

3.6. Summary 

The GUIDER Probabilistic Checklist was designed for highly complex and uncertain SMU 

domains, supplying the human supervisor with error likelihood data to aid them during the error 

identification process. This likelihood data was included in the checklist to provide contextual 

information about past system performance, which when combined with the present situation 

awareness of the supervisor, could combine to improve error identification. The pie chart graphic 

was selected as the graphical representation of the error likelihood information, with the graphic 

intuitively conveying the hierarchical and proportional characteristics of the likelihood data.  

 

The GUIDER Probabilistic Checklist was applied to the RF SSA environment as a representative 

SMU domain. The GUIDER Checklist, including graphical likelihood representation, was 

incorporated into a prototype EIR display. For demonstration purposes, only a small subset of the 

potential errors in the RF domain was considered during the development of this EIR interface. 

The resulting EIR display included the GUIDER Probabilistic Checklist (with pie chart graphic), 

video footage from the on-forklift cameras, and a serial presentation of recovery steps once an 

error source had been identified and confirmed.  

 

Based on the revised Checklist Attribute Model (CAM), it was determined that the newly 

designed GUIDER Probabilistic Checklist could better aid error resolution in an SMU domain 

when compared to a traditional checklist. This hypothesis will be tested through a human 

performance experiment that is described in the next chapter. In order to test the two error 

recovery systems, error scenarios will be simulated using the robotic forklift domain and an EIR 

interface developed from the prototype screenshots included in Section 3.3.5. 
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Chapter 4. Experimental Evaluation 

A human performance experiment was conducted to evaluate the effectiveness of the GUIDER 

Probabilistic Checklist compared to a more traditional checklist in an SMU environment. The 

forklift domain was utilized as a representative SMU domain, with simulated forklift error 

scenarios created for the EIR display discussed in Section 3.3.5. This chapter describes the setup 

of the experiment, including apparatus used in the simulations, hypotheses, and the experimental 

procedure. 

 

4.1. EIR simulation 

In order to evaluate research hypotheses through a human performance experiment, a specific 

EIR interface was developed and potential error scenarios were simulated. The two components 

of the EIR simulation, the simulated error scenarios and the EIR display are described in the 

following subsections. 

 

4.1.1. Error scenarios 

In order to assess the hypotheses formulated using the Checklist Attribute Model (CAM), which 

was presented in Section 3.4, one of the three attributes identified in the model had to be 

incorporated into the experiment as an independent variable. By adjusting this variable in 

different error scenarios, the predictions of CAM could be verified or refuted. The attribute that 

was selected as an independent variable was sensor reliability. This attribute was chosen because 

it could be easily varied in the simulated testing conditions utilized for the experiment. 

 

It was decided that the error scenarios would only involve a single robotic forklift (identified as 

RF1), and all failures would occur at the approach pallet functional step. The limiting of the 

failure to a single process step reduced the potential error sources in the simulated forklift 

environment to ten. Each of the ten errors was grouped into one of six system sensor groups. The 

potential errors for the simulated scenarios, as well as the associated sensor groups, are 

summarized in Table 3. 
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Table 3: Sensor groups and related pallet approach errors. 

Sensor Group Potential Error 
Frame failure 

Mechanical 
Motor failure 

Obstacle detection Path blocked 
Multiple pallets designated 

Non-pallet designated Pallet designation 
Wrong pallet designated 

Non-pallet detected 
Pallet detection 

Wrong pallet detected 
Slot designation Incorrect slot designation 
Slot detection Slots not detected 

 

Three error scenarios were created to represent each of the three levels of sensor reliability that 

were included in CAM: low reliability, medium reliability, and high reliability. The related 

reliability level for each sensor group for the three simulated scenarios is shown in Table 4. 

 

Table 4: Sensor reliability levels for simulated error scenarios. 

Sensor Group Scenario 1 (Low) Scenario 2 (Medium) Scenario 3 (High) 
Mechanical Low High High 

Obstacle detection Low Low High 
Pallet designation Medium Medium Medium 
Pallet detection Low Medium High 
Slot designation Low Medium Medium 
Slot detection Low Low High 

 

4.1.2. EIR display 

The design of the simulated EIR display is based on the prototype EIR interface that was 

presented in Section 3.3.5. Two unique simulated displays were used representing: 1) the 

GUIDER Probabilistic Checklist, and 2) a Traditional Checklist, which did not include a 

decision-support tool to assist the participant through error identification, and instead listed all 

potential error sources alphabetically. The adoption of two EIR displays allowed for the testing 
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and comparison of the two distinct checklist tools. Both simulated interfaces consisted of six 

components: 

• Component 1: Forklift tabs that allow the supervisor to select which forklift information 

they would like to view in the interface.  

• Component 2: Forklift View, which gives the supervisor ground level perspective of the 

robotic forklift domain through the real-time camera on the forklift. 

• Component 3: Sensor reliability levels (instead of the Operator View that was included in 

the original EIR interface). 

• Component 4: Error resolution checklist tool (GUIDER or Traditional). 

• Component 5: Additional diagnostic tests to confirm or refute error sources. 

• Component 6: Process bar indicating process the forklift is in during pickup/delivery. 

 

The EIR interface designed for the GUIDER Probabilistic Checklist is shown in Figure 24 and 

the EIR interface designed for the Traditional Checklist is shown in Figure 25. 

 

For each simulated error scenario, the EIR display was customized in a number of ways. The 

Forklift View (Component 2) was unique to each of the three error scenarios, with the camera 

image aiding the participant in developing a fuller perspective of the current system state. 

Diagnostic tests were also available for each scenario, providing additional information to 

confirm or refute an error source. As part of the sensor feedback to the system, an error source 

was suggested to the participant at the top of the error resolution checklist tool (Component 4), 

which could be correct or incorrect (Table 5). The accuracy of this suggestion, or the level of 

trust that should be placed in this information, was indicated to the participant through the 

reliability level of the sensor group responsible for detection of the suggested error source (Table 

3). For example, the suggestion of motor failure in Scenario 1 is likely to be inaccurate as the 

mechanical sensor group responsible for the detection of that error source has a low reliability 

level. As can be seen in Table 5, the only scenario for which the suggested error source and the 

true error source matched was Scenario 3, which had predominantly high reliability sensors. 
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Figure 24: Identification screen, GUIDER Checklist. 

 

 
Figure 25: Identification screen, Traditional Checklist. 
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Table 5: Suggested and true error source for each error scenario. 

 Scenario 1 (Low) Scenario 2 (Medium) Scenario 3 (High) 
Suggested Error Motor failure Incorrect slot designation Wrong pallet detected 

True Error Slots not detected Wrong pallet designated Wrong pallet detected 
 
The participants were required to aggregate the provided diagnostic information presented in the 

error identification portion of the simulated EIR interface to identify what they believed to be the 

true source of the system failure. This information included the Forklift View, the sensor 

reliability levels, the suggested error based on the sensor feedback, error likelihood information 

(GUIDER Checklist only), and the available diagnostic tests. The diagnostic tests provided 

additional information to confirm or refute each of the potential error sources. For example, one 

diagnostic test available within the EIR display allowed a participant to check the pallet 

identification number of the detected pallet against the goal pallet. A second diagnostic test 

option allowed a participant to view the operator tablet to see the pallet that was designated by 

the operator, as well as the method of designation. The diagnostic test information provided was 

identical for both checklist types (GUIDER, Traditional). 

 

Once participants identified an error, they needed to confirm the error selection by clicking on 

the CONFIRM button located at the bottom of the GUIDER checklist. Up until the confirmation 

of an error, participants could continue to collect diagnostic data for any of the potential error 

sources. After clicking CONFIRM, they transitioned into error recovery. In the error recovery 

portion of the simulated EIR display, participants were presented with a recovery task that 

needed to be completed in order to resolve the identified error. For example, if non-pallet 

detected was the confirmed error source, the first step in the recovery checklist would state: 

“Forklift 1 path planning software needs to be validated. Assign task to.” While the error 

recovery task was unique to the ten potential error sources, each task needed to be assigned to 

one of three operators within the simulated environment: Operator A, Operator B, or Operator C. 

A physical printout of the current location of the forklift and operators was provided to the 

participants, so that they could determine which operator to assign the task to in the environment, 

based on proximity to the failed forklift. This environment map was unique for each of the 

simulated error scenarios. The map for Scenario 1 is shown in Figure 26. 
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Figure 26: Map of forklift environment for Scenario 1. 

 

Once a participant assigned the task to an operator, the assignment would be processed and the 

simulation would assess whether the participant had correctly or incorrectly identified the error 

source. If participants had selected the incorrect error source, they would be alerted, “Incorrect 

error identified. Please try again”. This situation is shown in Figure 27 for the GUIDER 

Probabilistic Checklist and in Figure 28 for the Traditional Checklist, with participants 

transitioning back into the error identification portion of the checklist by clicking the Reselect 

button. If the correct error was selected, participants were alerted, “Error identified” and then 

continued to the next simulated error scenario by clicking the Continue to next scenario button. 

This situation is shown in Figure 29 for the GUIDER Probabilistic Checklist and in Figure 30 for 

the Traditional Checklist. 
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Figure 27: Recovery screen after incorrect confirmation, GUIDER Checklist. 

 

 
Figure 28: Recovery screen after incorrect confirmation, Traditional Checklist. 
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Figure 29: Recovery screen after correct confirmation, GUIDER Checklist. 

 

 
Figure 30: Recovery screen after correct confirmation, Traditional Checklist. 
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4.2. Hypotheses 

The Checklist Attribute Model (CAM), presented in Section 3.4 and Figure 23, classifies 

traditional checklist systems and the newly designed GUIDER Probabilistic Checklist system by 

three HSC domain attributes: domain predictability, sensor reliability, and time availability. If a 

domain receives a majority of high ratings on the three domain attribute scales, it is hypothesized 

that a traditional checklist system is most appropriate for error resolution within that domain. If a 

domain receives a majority of low ratings on the three domain attribute scales, it is instead 

hypothesized that the GUIDER Probabilistic Checklist system with decision-support during error 

identification, is more appropriate. Finally, if a domain receives a majority of medium ratings on 

the three domain attribute scales, or a single rating each of low, medium, and high, a hypothesis 

as to the best error resolution system cannot be made. As a result of the case study of the forklift 

domain (Section 3.5.2), it is hypothesized that the GUIDER Probabilistic Checklist is most 

appropriate and that gains in performance over a traditional checklist tool would be greatest at 

levels of low sensor reliability (LSR). 

 

A human performance experiment tested this hypothesis in terms of participant performance on 

the three simulated error scenarios, the cognitive strategy of the participants, and subjective user 

feedback concerning the appeal of each error checklist system. 

 

4.2.1. Performance 

It was hypothesized that human supervisors would have higher performance in low sensor 

reliability HSC domains when using the GUIDER Probabilistic Checklist compared to the 

Traditional Checklist. Conversely, it was hypothesized that in HSC domains with high sensor 

reliability, performance would be better with the Traditional Checklist. In general, it was 

hypothesized that performance in high reliability settings would be better than performance in 

medium reliability settings, and that performance in medium reliability settings would be better 

than performance in low reliability settings. 

 

Performance was measured using two metrics. The first was the number of error confirmations 

made before completing an error scenario. An error confirmation was made once the participant 
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clicked the CONFIRM button on the interface and transitioned into the error recovery portion of 

the checklist. This metric evaluated the ability of the participant to combine the diagnostic 

information presented in the EIR display to make a correct error diagnosis. As the GUIDER 

Probabilistic Checklist provides error likelihood data that the Traditional Checklist system does 

not, it was hypothesized that the error identification process would be improved when using the 

GUIDER Probabilistic Checklist under low sensor reliability settings. 

 

The second performance metric was time to complete scenario. This metric was predicted to be 

highly correlated with the number of error confirmations made by the participant. This 

relationship is evident, as the more incorrect errors confirmed, the longer it would take for the 

error scenario to be completed. Therefore, it was hypothesized that time to complete scenario 

would be lower when using the GUIDER Probabilistic Checklist when compared to the 

Traditional Checklist, due to the predicted positive impact of error likelihood data on the error 

diagnosis process. The time difference between the two checklist systems would be most 

apparent in low sensor reliability settings, where data uncertainty is high, and was predicted to be 

undetectable in high sensor reliability settings, where data uncertainty is low. 

 

4.2.2. Cognitive Strategies 

It was hypothesized that error-resolving performance in the error scenarios would be improved 

when the provided diagnostic information was used to identify and confirm the true error source. 

Therefore, a participant that is able to identify the error correctly within one or two error 

confirmations is likely to have more fully utilized the diagnostic data than a participant that ends 

up selecting many errors before correct selection. In this manner, it could be assumed that the 

more time participants spend in the error identification phase before making their first error 

confirmation, the more diagnostic data collection that was performed.  

 

It was hypothesized that performance with both the GUIDER Probabilistic Checklist and the 

Traditional Checklist would be improved when the participant spends more time in error 

identification before making the first error confirmation. This hypothesis was evaluated using the 

metric, time to first error confirmation. This metric was hypothesized to show greater statistical 

difference in the low sensor reliability scenarios where more data uncertainty is present, than in 
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high reliability settings where there is little to no data uncertainty. It was assumed that this metric 

would be negatively correlated with number of error confirmations. 

 

A second metric that assesses error identification strategy is use of diagnostic tests. The use of 

diagnostic tests during the error identification process indicates that the human supervisor is 

undergoing the process of confirming or refuting an error source, and is presently uncertain 

about the true source of the system failure. It was hypothesized that in low reliability settings, 

participants that utilize the diagnostic tests more frequently would be more successful during 

error identification. Once again, it was assumed that this metric would be negatively correlated 

with number of error confirmations. 

 

4.2.3. Subjective feedback 

It was hypothesized that participants would prefer the error identification and recovery task when 

using the GUIDER Probabilistic Checklist, as opposed to the Traditional Checklist. This 

prediction was made because the GUIDER Probabilistic Checklist would provide more 

information to guide the user in identifying the source of a system failure than would the 

Traditional Checklist. Therefore, the participant should feel more confident in the error 

identification process when utilizing the GUIDER Probabilistic Checklist. 

 

It must be noted that as participants only interacted with a single checklist type, a direct 

comparison of the two checklists by a single participant could not be made. Therefore, the 

subjective user interaction questions were isolated appraisals of the tool that had been used, as 

opposed to a contrast of the tools. This is a limitation of the experimental design, and in future 

studies, it would be beneficial to have participants utilize each checklist so that a direct 

comparison can be made. 

 

4.3. Apparatus 

The experimental platform was developed using Sun Microsystems Java programming language. 

Java was chosen mainly to leverage its portability property. For the experiment, the simulations 
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were run on a MacBook Pro (Intel Core 2 Duo, 2.8 GHz, 8GB RAM, 256GB SSD and a 15.2” 

monitor) laptop equipped with an Apple Magic Mouse and Altec-Lansing speakers (Figure 31).  

 

 
Figure 31: Apparatus setup for experiment. 

 

4.4. Participants 

Thirty-six computer literate participants between the ages of 18 and 31 were recruited, and were 

reimbursed with two movie tickets for their time. The mean age of participants was 22.81 years, 

with a standard deviation of 2.92 years. All of the participants were undergraduate students, 

graduate students, or researchers at the Massachusetts Institute of Technology (MIT) and came 

from a variety of disciplines, including computer science, business, aerospace, and biomedicine. 

Gender of the participants was balanced, with 18 male participants and 18 female participants. 

Eight of the participants had utilized some form of checklist in a formal setting, including 

checklists for aviation, Air Force satellite operations, and medical environments. A summary of 

the descriptive statistics is included in Appendix A. 

 

As the GUIDER Probabilistic Checklist is a new conception of error identification and recovery 

systems, it was determined that a general user base should first be used to verify the potential of 

the new checklist. If positive results are found through this preliminary testing, subject matter 

experts could be recruited to evaluate the two checklist systems.  
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4.5. Procedure 

The experimental procedure consisted of four parts: pre-experiment interaction, training, error 

scenarios, and post-experiment interaction. Each experimental component is discussed in the 

following section. The experiment lasted approximately 50 minutes. 

 

4.5.1. Pre-experiment interaction 

Upon arrival, participants were asked to fill out the Consent to Participate Form (Appendix B). 

After giving consent, participants completed a brief demographic survey documenting age, 

gender, previous checklist experience, and video gaming experience (Appendix C). The survey 

was conducted online using free online survey software (www.surveymonkey.com), with the 

data automatically saved online, organized by participant. Once the survey was finished, 

participants progressed into the training portion of the experiment. The time to complete the pre-

experiment component was 5 minutes. 

 

4.5.2. Training 

A PowerPoint tutorial was developed for both the Traditional Checklist system and the GUIDER 

Probabilistic Checklist system (Appendix D). The tutorial slides began with an overview of the 

autonomous forklift domain, introducing the entities within the system, including forklifts, 

human operators, and human supervisor. The tutorial also introduced the components of the EIR 

interface and the information contained in the interface that would be helpful to the participant 

during the error resolution task. This included the forklift view picture, the reliability level of the 

six sensor groups in the forklift domain, the error likelihood data (for those participants in the 

GUIDER treatment), and the diagnostic tests for each of the ten potential error sources. In order 

to prepare those participants assigned to the GUIDER treatment to understand the pie chart 

graphic, four additional slides detailing the error likelihood graphical representation were 

included in that tutorial. 

 

Near the end of the tutorial slides, a training video was included. The video was approximately 

four minutes in length, and reinforced the information that was presented in the tutorial slides 

using an example error scenario and voice over (Appendix E). Interaction with the interface was 
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demonstrated, as well as the specifics of how the available diagnostic data could be utilized to 

pinpoint the error source. The video concluded with the selection of the true error source and 

recovery from the identified error.  

 

With the video complete, participants were given final experiment instructions, which described 

the number of error scenarios included in the experiment, the goal of the experiment, and a 

description of the performance metrics that would be measured. Before beginning the 

experimental trials, participants were also given the opportunity to interact with the simulation 

through the same error scenario that was used in the training video. Once they felt comfortable 

with the system and all lingering questions had been addressed, the experiment began. Overall, 

training took approximately 20 minutes to complete. 

 

4.5.3. Error scenarios 

At the beginning of each scenario, participants read a contextual background summary 

discussing the reliability of sensors in the environment, as well as a summary of recent system 

behavior (Figure 32). This background varied for each of the three error scenarios (low 

reliability, medium reliability, high reliability), but was identical for each of the two checklist 

types (GUIDER, Traditional).  

 

The participants then began the experimental trials. Participants were asked to use the available 

information to identify the source of the failure in the system, confirm the error, and recover 

from the error by assigning the recovery task to one of three operators working within the forklift 

environment. The last task was used to promote cognitive effort during error recovery; there was 

no correct operator assignment and the assignments made by participants were not analyzed. 

Participants iterated on this process until they had identified the true source of error.  

 

When participants completed a scenario, they transitioned directly into the next scenario. Once 

the true error source had been identified for each scenario, the testing portion of the experiment 

was complete. For each error scenario, a number of items were tracked and collected in unique 

files with CSV format. This information included the time the scenario began, time of error 

selections, time and location of diagnostic test selections, the error sources confirmed, time of 
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error source confirmations, operator assignment to recovery tasks, and whether the error was 

correctly or incorrectly identified. The overall time to complete the three error scenarios was 20 

minutes. 

 

 
Figure 32: Contextual background screen for low reliability error scenario. 

 

4.5.4. Post-experiment questionnaire 

After completing the three error scenarios, the experiment concluded with the participants 

completing a subjective user interaction questionnaire (Appendix F). Once again, this survey was 

conducted online using free online survey software (www.surveymonkey.com), and probed 

participants about satisfaction with the checklist system, level of confusion, and overall 

performance. Workload-related questions were also included, such as mental workload level and 

frustration level. 

 

4.6. Experiment design 

The experiment was a 2x3 fixed factor design with two independent variables: Checklist System 

(GUIDER, Traditional) and Sensor Reliability Level (Low, Medium, High). There were repeated 

measures on the Sensor Reliability Level factor. Therefore, participants received three 

experimental treatments, undertaking the error resolution task for each reliability level for a 



 

 86 

single assigned checklist. Participants were randomly assigned to one of the two error recovery 

systems and the three trials were randomized (www.randomization.com) and balanced, ensuring 

that the order of sensor reliability level was varied (Appendix G). 

 

4.7. Summary of performance metrics 

A variety of performance metrics were measured in order to verify or refute the hypotheses 

presented in Section 4.2. Each of these metrics is described below: 

• Number of error confirmations: The number of errors identified and confirmed by the 

participant during the error scenario before recovering from the failure. While there were 

only ten errors to select from, this number could be greater than ten if participants re-

confirmed a previously confirmed error source. 

• Time to complete scenario: The total time from the start of the scenario (participant 

clicking “Begin Scenario” button in contextual background) up until the system error had 

been resolved. 

• Use of diagnostic tests: The number of diagnostic tests utilized by participants before 

their first error confirmation. This metric could range in value from zero (if no diagnostic 

checking was performed) to ten (if diagnostic tests for each error source were checked). 

This metric was assumed to be an estimate of the amount of probing and information 

gathering the participants performed before identifying and confirming their first error 

source. 

• Time to first error confirmation: The time from the start of the scenario (participant 

clicking “Begin Scenario” button in contextual background) up until participants made 

their first error confirmation. This metric was assumed to be an estimate of the amount of 

probing and information gathering the participants performed before identifying and 

confirming their first error source. 

• Error resolution strategy: The information source that was emphasized during error 

confirmation. This metric was difficult to assess for many of the available information 

sources, and was therefore limited to two sources: suggested error and likelihood data. A 

participant was counted as basing error confirmation on the suggested error if the first 

error confirmation made by the participant matched the suggested error. A participant 



 

 87 

was counted as basing error confirmation on likelihood data if the first error confirmation 

made by the participant matched the error with the highest likelihood. 

• Subjective user interaction: Subjective data that was collected using a five-point Likert 

scale. There were eight questions on the user interaction questionnaire (Appendix F), and 

therefore, eight data points for each participant.  

 

4.8. Summary 

An experiment was conducted to evaluate the effectiveness of the new error recovery tool, 

termed the GUIDER Probabilistic Checklist. This experiment consisted of three distinct 

simulated errors in the forklift domain, with each scenario varying in the reliability level of 

system sensors (low, medium, high). Participants were either assigned to perform the error 

resolution tasks using the GUIDER Probabilistic Checklist or a Traditional Checklist. When 

presented with an error, participants were tasked with identifying the source of the error and 

recovering from the error. The metrics used to assess performance were number of error 

confirmations and time to complete scenario. 

 

Once the experiment was complete, data had been collected for each of the performance metrics 

for all 36 participants. In order to confirm or refute the hypotheses presented in this chapter, the 

data needed to be formally analyzed using appropriate inferential statistical tests. The statistical 

tests utilized, and the results of those tests, are presented in the next chapter. 
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Chapter 5. Results 

Statistical analyses were conducted to compare the GUIDER Probabilistic Checklist with the 

Traditional Checklist within the complex and uncertain autonomous forklift domain. The two 

primary dependent variables were: number of error confirmations and time to complete scenario. 

As number of error confirmations and time to complete scenario were highly positively 

correlated (! = 0.810, p < .001), only the results relating to number of error confirmations are 

reported. Secondary performance metrics measured in the experiment were use of diagnostic 

tests, time to first error confirmation, error resolution strategy, and subjective checklist 

assessment.  

 

An analysis of variance (ANOVA) test was initially utilized for the analyses of the primary 

dependent variable data. If the data did not meet normality and homogeneity of variance 

assumptions (or the transformation of this data did not meet these assumptions), nonparametric 

tests were instead implemented. The effects of gender, age, and video gaming experience were 

found to have no significant impact on this performance data, and were therefore excluded from 

any further analysis. The results for the first error scenario undertaken by each participant was 

excluded from analysis of the primary variable data to limit the impact of learning effects. 

 

Correlations and qualitative analysis of the cognitive strategies were used to discern relationships 

between error recovery methodology and the two independent variables (checklist type, 

reliability level). Finally, a Mann-Whitney U test was used to compare the user interaction 

feedback data obtained for the GUIDER tool and the Traditional tool. An alpha of 0.05 was used 

for all statistical tests. It must be noted that due to the high number of statistical tests that were 

performed during data analysis, the family-wise alpha value would be much lower than 0.05, and 

therefore, tests needed a high level of statistical significance before their results could be 

considered meaningful. 

 

For a summary of the collected data, assumption tests, and detailed test results, see Appendix H, 

Appendix I, and Appendix J, respectively. 
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5.1. Number of error confirmations 

During the error identification process, participants had to determine which of the ten potential 

errors was the source of the failure. Once they believed that they had identified the correct error 

source, participants would lock-in this selection by clicking the CONFIRM button at the bottom 

of the checklist, transitioning them into error recovery. 

 

The number of error confirmations metric measured the number of error confirmations that were 

made by a participant in order to identify the true error source and complete an error scenario. 

This count data could range from one, if the participant identified the correct error source on the 

first error confirmation, to ten, if the participant identified each of the available error sources 

before correctly identifying the true error source. There was also potential for more than ten error 

confirmations, if the participant re-identified an already confirmed error source. In the collected 

data set this value never exceeded 10, although some participants did repeat certain error 

confirmations. An ANOVA analysis was initially employed to analyze the collected data. 

Unfortunately, the data did not meet the assumptions of the ANOVA test, and therefore, 

nonparametric analysis was utilized. The results of the normality and homogeneity tests are 

included in Appendix I.  

 

The Pearson’s chi-square test of independence was used to assess whether the number of error 

confirmations made in each reliability level, and when using each checklist type, were 

independent. For example, the test assessed whether participants differed in their number of error 

confirmations when using GUIDER compared to the Traditional tool, or in the low reliability 

setting compared to the high reliability setting. There was no significance found between the two 

checklist types across all reliability levels (#8,72 = 9.817, p = .278), with the relationship between 

number of error confirmations and checklist type graphically depicted in Figure 33. However, 

there was significance found between the three reliability levels across both checklist types 

(#16,72 = 47.123, p < .001). The relationship between number of error confirmations and 

reliability level is graphically depicted in Figure 34.  
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Figure 33: Effect of checklist on number of error confirmations. 

 

 
Figure 34: Effect of reliability on number of error confirmations. 
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As a significant effect of reliability on number of error confirmations was found, it was 

necessary to perform further testing to determine the nature of the relationship. The comparison 

between the three reliability levels was made using a Wilcoxon Signed Ranks test. A significant 

difference was found between the low and high reliability levels (Z = -4.086, p < .001) and the 

medium and high reliability levels (Z = -4.143, p < .001). No difference was found between the 

low and medium reliability levels (Z = -1.229, p = .219). 

 

It was also important to assess the differences in number of error confirmations between the two 

checklist types at each of the three reliability levels, as it was hypothesized that GUIDER would 

result in significantly better performance at the low reliability level compared to the Traditional 

tool. The factor level means comparison was performed using a Mann-Whitney U test (mean and 

standard deviation data is included in Table 6). The relationship between number of error 

confirmations and the interaction of checklist type and reliability level is graphically depicted in 

Figure 35. 

 

Table 6: Descriptive statistics for number of error confirmations. 

OVERALL Low Reliability Medium Reliability High Reliability 
Mean 3.14 4.50 1.14 

Median 2.00 4.00 1.00 
Mode 2 5 1 

STDEV 2.26 2.59 0.54 
Min 1 1 1 
Max 9 10 4 

TRADITIONAL CHECKLIST Low Reliability Medium Reliability High Reliability 
Mean 2.28 5.17 1.11 

Median 2.00 5.00 1.00 
Mode 2 5 1 

STDEV 1.74 2.81 0.32 
Min 1 1 1 
Max 8 10 2 

GUIDER CHECKLIST Low Reliability Medium Reliability High Reliability 
Mean 4.00 3.83 1.17 

Median 4.00 3.50 1.00 
Mode 4 4 1 

STDEV 2.43 2.23 0.71 
Min 1 1 1 
Max 9 8 4 
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Figure 35: Effect of checklist and reliability on number of error confirmations. 

 

A significant difference was detected at the medium reliability level (Z = -2.114, p = .039), with 

the GUIDER Checklist resulting in significantly fewer error confirmations in comparison with 

the Traditional Checklist. No statistical difference was detected at the low reliability level (Z = -

2.011, p = .052) or the high reliability level (Z = -1.446, p = .514). Full statistical results have 

been included in Appendix J. 

 

5.2. Cognitive strategies 

The error identification strategies used by participants impacted their performance on the 

primary dependent variable, number of error confirmations. The cognitive strategy utilized by 

each participant was broken into two categories: information collection during error 

identification and information emphasis during error confirmation. 
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5.2.1. Information collection 

Two performance metrics were used to determine how much information participants collected 

during the error identification process. The first metric was use of diagnostic tests and the second 

metric was time to first error confirmation. These metrics are described in Section 4.7. 

 

A Spearman’s rank correlation was used to assess the statistical relationship between the metrics 

that described the amount of information collected and the primary dependent variable, number 

of error confirmations. The metric use of diagnostic tests had a significant negative correlation 

with number of error confirmations in the low reliability scenario (! = -0.565, p = .004). This 

indicated that as diagnostic test use increased, the number of errors confirmed by participants 

decreased. In the high reliability scenario, however, there was a significant positive correlation 

(! = 0.507, p = 0.012), indicating that the number of error confirmations rose with the increased 

use of diagnostic tests. Therefore, those participants that collected more data performed worse 

than those participants that did little data collection under the high reliability condition. No 

significant correlation was found in the medium reliability scenario (! = -0.129, p = .547). 

 

Significant correlations were also found between time to first error confirmation and number of 

error confirmations. In the low reliability scenario, there was a significant negative correlation 

(! = -0.538, p = .007), while in the high reliability scenario there was a trend towards a positive 

correlation (! = 0.349, p = .095). In other words, spending more time collecting diagnostic data 

had a positive impact in the low reliability condition, but negatively impacted performance in the 

high reliability condition. Once again, there was no significant correlation found at the medium 

reliability level (! = -0.172, p = .422). All associated statistical tests are included in Appendix J. 

 

5.2.2. Information emphasis 

While it was important to determine how much information participants gathered during the 

error identification process, it was also important to determine the information source on which 

they based their error confirmation. The metric that described this was error resolution strategy. 

As it was very difficult to discern the exact cognitive strategy of participants during the error 

identification process, this metric was limited to only two information sources for which concrete 
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evidence could be collected. The first was the suggested error information. A participant was 

said to base error diagnosis on the suggested error source if the first error selected from the 

available error list during diagnostic data collection was the suggested error, while a participant 

was said to base error confirmation on the suggested error source if the first error source 

confirmed by the participant matched the suggested error.  

 

The second information source for which concrete evidence was collected was likelihood data. A 

participant was said to base error diagnosis on likelihood if the first error selected from the 

available error list during diagnostic data collection was the most likely error source (based on 

the GUIDER pie chart graphic), while a participant was said to base error confirmation on 

likelihood if the first error confirmation made matched the most likely error source. This 

information source data was only gathered for those participants assigned to the GUIDER 

Probabilistic Checklist, as they were the only participants that were provided with error 

likelihood information. Data on the number of participants basing error diagnosis and error 

confirmation on one of these two information sources is summarized in Table 7, grouped by 

reliability level.  

 

Table 7: Error resolution strategies of participants. 

Low Medium High 
Basis Checklist 

Diagnosis Confirmation Diagnosis Confirmation Diagnosis Confirmation 
Traditional 

(N = 18) 5 2 16 7 16 16 
GUIDER 
(N = 18) 6 2 11 8 13 16 Suggestion 

Total 
(N = 36) 11 4 27 15 29 32 

Likelihood GUIDER 
(N = 18) 2 6 1 0 1 0 

 

There was great disparity between the number of participants that based error identification on 

the suggested error for each of the three reliability levels. In the high reliability scenario, 29 of 

36 participants started the error identification process by clicking on the diagnostic test 

information associated with the suggested error source. In the medium reliability scenario, the 

number was similar, with 27 of 36 participants beginning the diagnostic process with the 

suggested error source. In the low reliability scenario, however, only 11 of 36 participants based 
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their error resolution strategy on the suggested error. A similar trend was observed for the first 

error confirmation made by participants, with 32 of 36 confirming the suggested error in the high 

reliability scenario, 15 of 36 participants confirming the suggested error in the medium reliability 

scenario, and only 4 of 36 participants confirming the suggested error in the low reliability 

scenario. This trend did not seem to be affected by the type of checklist tool used for error 

resolution, with similar numbers observed in both the Traditional and GUIDER settings.  

 

The reverse trend was seen for the likelihood data in that more participants relied on this 

information in the low reliability scenario compared to the medium and high reliability scenarios. 

When beginning the error identification process, 2 of 18 participants in the low reliability 

scenario started error resolution by clicking on the diagnostic tests associated with the most 

likely error source. In the medium and high reliability scenarios, only 1 of 18 participants 

followed this strategy. When confirming their first error source, 6 of 18 participants in the low 

reliability scenario selected the most likely error, compared to zero participants in the medium 

and high reliability settings. 

 

5.3. Subjective feedback 

Checklist tool preference was found by comparing the collected responses from the subjective 

user interaction questionnaire (Appendix F) using a Mann-Whitney U test. As each participant 

only interacted with a single checklist system, a direct comparison between the two tools could 

not be made. Subjective preference was also deduced from comments made by participants at the 

end of the user interaction questionnaire. Both of these sources of feedback are discussed in the 

following subsections. 

 

5.3.1. Questionnaire data 

No significance was found between the responses for the two checklists on any questions. Full 

results are included in Appendix H and all associated statistical tests are included in Appendix J. 
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5.3.2. General participant feedback 

Of the 36 participants that took part in the experiment, 17 chose to leave additional comments at 

the end of the user interaction questionnaire. Six participants (2 using GUIDER Checklist, 4 

using Traditional Checklist) mentioned some difficulties in initially understanding the forklift 

domain and felt that additional training time should have been provided before beginning the 

three simulated error scenarios. Two participants (both using GUIDER Checklist) also stated that 

the first scenario they partook in was difficult (low reliability scenario for one participant, 

medium reliability for other participant), which provides further evidence that a longer or 

enhanced training session might have been beneficial to participants. 

 

Most other comments were related to the design of the checklist tools. Three participants 

mentioned a desire to have already-selected error sources removed or highlighted to ensure that 

these errors were not reselected in the future. One such participant stated that he was very 

focused on the diagnostic information available and did not devote mental resources to tracking 

the errors he had already selected. By the time the participant realized the need to perform the 

tracking of already confirmed errors, it was too late. Two other participants assigned to the 

Traditional Checklist noted their desire to have the error sources listed by highest likelihood of 

occurrence in the system, as opposed to an alphabetical listing. A single participant noted a 

desire to have the sensor reliability levels incorporated into the GUIDER pie chart graphic as a 

combined display. Finally, three participants stated a general liking for their checklist tool: one 

participant from the Traditional Checklist setting, and two participants from the GUIDER 

Checklist setting. 

 

5.4. Discussion of experimental findings 

The human performance experiment collected experimental data to evaluate two error resolution 

checklist tools at three sensor reliability levels. Important statistical findings that were identified 

through this experiment have been summarized in Table 8. 

 

The collected data followed a somewhat predictable pattern for the primary performance metrics. 

Performance, as measured by number of error confirmations, was significantly better when in 
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the high reliability setting compared to the medium and low reliability setting. There was no 

significant difference between the medium and low reliability setting, however, as had been 

hypothesized in Section 4.2.1.  

 

Table 8: Summary of experimental results. 

 Traditional GUIDER Overall 

Low - Cognitive strategy 
difficult to discern 

- Cognitive strategy 
based on likelihood 
data 

- More confirmations than 
high scenario; no difference 
to medium scenario 

- Improved performance with 
increased use of diagnostic 
tests 

Medium 
- More error 

confirmations 
compared to 
GUIDER tool 

- Fewer error 
confirmations 
compared to 
Traditional tool 

- More confirmations than 
high scenario; no detected 
difference to low scenario 

- Cognitive strategy based on 
suggested error; not based on 
likelihood data 

High 

- Indistinguishable 
difference in 
primary 
performance 
compared to 
GUIDER tool 

- Indistinguishable 
difference in 
primary 
performance 
compared to 
traditional tool 

- Less confirmations than low 
and medium scenarios 

- Worse performance with 
increased use of diagnostic 
tests 

- Cognitive strategy based on 
suggested error; not based on 
likelihood data 

 

The interaction effects for the six checklist/reliability pairs (Traditional/high, 

Traditional/medium, Traditional/low, GUIDER/high, GUIDER/medium, GUIDER/low) were 

also investigated, with interesting findings. It was hypothesized that the GUIDER Checklist 

system would provide its biggest performance gains during error resolution when uncertainty 

was the greatest. In other words, at the low reliability setting, the GUIDER Checklist was 

predicted to have significantly better performance when compared to the Traditional Checklist 

system. Performance was only found to be statistically different for the two checklists at the 

medium reliability setting, with improved performance occurring with the use of the GUIDER 

Checklist. Insignificant differences between the two checklists were found for both the low and 

high reliability settings. 
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These results can be explained by considering the scenario uncertainty for each of the three 

reliability levels. While the data provided to the participants in the low reliability setting was 

uncertain and potentially inaccurate, the participants were told about this uncertainty and as a 

result, their cognitive strategy for error resolution was appropriately adjusted. Participants in the 

low reliability setting were more inclined to collect data during the error identification portion of 

error resolution, and statistical data indicated improved performance in the low reliability setting 

with increased use of diagnostic tests and increased time spent collecting data during error 

identification. Participants in the low reliability setting were also less likely to base their 

diagnostic process and error confirmation on the suggested error source, and for those in the 

GUIDER Checklist, were more likely to base confirmation on the provided likelihood data.  

 

In the high reliability setting, there was little to no data uncertainty, and once again, participants 

were completely informed about the high certainty level of the data. As a result, participants 

were inclined to use fewer diagnostic tests and spend less time collecting data during the error 

identification portion of error resolution. This behavior did not negatively impact the 

performance of participants, as the high level of certainty did not warrant a cautious approach to 

error identification. Participants in the high reliability scenario were also likely to use the 

suggested error source to guide their diagnostic approach, and to select the suggested error as 

their first error confirmation. 

 

Interestingly, in the high reliability scenario, performance was hindered with additional data 

collection and diagnostic test use. This result could be attributed to the level of trust participants 

placed in the diagnostic data included as part of the EIR display. From the cognitive strategy 

data, it is known that 29 of 36 participants began the error identification process by checking the 

diagnostic data for the suggested error source, which in this scenario, was the true error source. 

Participants that were trusting of this diagnostic data didn’t need to perform any other data 

gathering, as the diagnostic information indicated that the suggested error was in fact the failure 

source. Participants that were not trusting of this data, however, continued collecting data, and it 

appears, eventually made an incorrect error identification. This result indicates that in domains 

with high data certainty, it is vital that humans interacting with the system have a high-level of 

trust in the data collected by automation, or error resolution performance can suffer. 
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In the medium reliability setting, data uncertainty was more limited compared to the low 

reliability setting, but overall uncertainty was at its maximum as participants were unsure 

whether they could trust the information provided to them by the system. While the impact of 

this uncertainty on information collection was unclear, it was evident that the information 

emphasis of participants more closely mirrored the strategy employed in the high reliability 

setting instead of the low reliability setting. The large number of participants (41.6%) that based 

their error resolution strategy on the suggested error, and the low number of participants in the 

GUIDER Checklist setting that based their error resolution strategy on the likelihood data (0%), 

provide evidence for this approach. This suggests that participants had difficulty creating an 

independent strategy for the medium reliability setting, and as a result, performance suffered. 

However, this performance decrement was significantly improved by the inclusion of the error 

likelihood data in the GUIDER Checklist, with this added information significantly reducing 

number of error confirmations. The inclusion of error likelihood data as part of the GUIDER 

Probabilistic Checklist reduced general scenario uncertainty during error resolution. This 

reduction in uncertainty impacted performance levels for the three scenarios. This change in 

human behavior supported the hypothesis that performance would be worst in the low reliability 

condition and best in the high reliability condition. 

 

5.5. Summary 

The results of the human performance experiment indicate that humans have difficulty creating 

independent decision-making strategies for more ambiguous certainty levels. Participants in the 

experiment were uncertain how much to trust system data in the medium reliability scenario, and 

performance suffered as a result. The addition of error likelihood data through the GUIDER 

Checklist tool appears to improve error resolution performance in highly uncertain settings. Due 

to these positive findings, this checklist design should be investigated further for use in SMU 

supervisory domains, where the reliability of sensor data is often uncertain. 

 

Considerations for further research, including design recommendations and limitations of these 

findings, will be discussed in the next chapter.  
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Chapter 6. Conclusions and Future Work 

The goal of this research was to design an alternative checklist, or error resolution tool, for 

resolving errors in Shared Manned-Unmanned (SMU) domains. This research began with an 

overview of current checklist systems used in traditional Human Supervisory Control (HSC) 

domains and through this research, three attributes that impact the effectiveness of a checklist 

within such environments were identified: domain predictability, sensor reliability, and time 

availability. These attributes were combined into the Checklist Attribute Model (CAM) that 

indicated that a large portion of HSC domains, including SMU environments, are not currently 

well served by traditional checklist systems. This finding justified the need for the development 

of an alternative checklist tool that would redesign the error identification portion of error 

resolution. This research is presented in Chapter 2, Background. 

 

The development of the alternative checklist, named the GUIDER (Graphical User Interface for 

Directed Error Recovery) Probabilistic Checklist, was then discussed. Past work in the fields of 

automation, human judgment under uncertainty, and data visualization were used to guide the 

design of the alternative checklist. A prototype version of the display, which included the 

GUIDER Probabilistic Checklist, was created for the autonomous forklift SMU domain under 

development at the MIT, and termed the Error Identification and Recovery (EIR) display. The 

design of GUIDER is detailed in Chapter 3, GUIDER Probabilistic Checklist. 

 

The final objective of this research was to compare error resolution human performance between 

the newly developed GUIDER Checklist and a more traditional error resolution tool. This 

comparison was made using a human performance experiment outlined in Chapter 4, 

Experimental Evaluation. The findings of this experiment were discussed in Chapter 5, Results, 

and are summarized in a subsection below. Design recommendations resulting from this 

experiment, as well as experiment recommendations and future work, are presented in this 

chapter. 
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6.1. Experimental results 

A significant difference in performance was found for the sensor reliability independent variable, 

with performance significantly worse (higher number of error confirmations) for both the low 

and medium levels when compared to the high reliability level. No significant main effect was 

found for checklist type, indicating that neither checklist was superior to its competitor over all 

reliability levels. 

 

Interestingly, performance at the medium reliability level was improved when using the 

GUIDER Probabilistic Checklist compared to the Traditional Checklist, while no significance 

was seen between the checklists at the low or high reliability levels. These results were attributed 

to the actual level of uncertainty that existed during the different reliability settings. While the 

low reliability setting had some uncertainty associated with the data that was presented to the 

participant, the participant was well aware of this low certainty level, and as a result, 

implemented an error resolution methodology that suited the situation. In the medium reliability 

setting, the participant was unsure whether they should trust the provided system data, or distrust 

the data. The results indicate that the GUIDER Checklist, and the additional error likelihood data 

that it provided, assisted the participant with this ambiguous uncertainty level. 

 

The collected cognitive strategy data indicates that many participants implemented an error 

resolution methodology at the medium reliability level that was similar to the strategy 

implemented at the high reliability level. At both levels, participants were more likely to base 

their diagnosis strategy on the error suggested by system sensors. Participants were also more 

likely to select the suggested error as their first error confirmation. Error diagnosis and 

confirmation at the low reliability level was much less likely to be based on the suggested error 

source, indicating the understanding of the participants that when uncertainty was high, such 

information was not to be trusted. As the overall performance at the medium reliability level was 

improved when using the GUIDER Checklist as opposed to the Traditional Checklist, it appears 

that uncertainty levels were mitigated through the decision-support provided by the GUIDER 

Checklist and the graphical presentation of error likelihood information contained within the 

checklist. 
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6.2. Design recommendations  

Design recommendations for an error resolution tool for SMU domains stem from the 

experimental findings and observations of the human performance experiment. These 

recommendations focus on design modifications to the GUIDER Probabilistic Checklist for all 

SMU domains, as opposed to the prototype EIR display that was developed for the autonomous 

forklift environment.  

 

6.2.1. Certainty indicator 

While set reliability levels were included for the sensor groups as part of the experiment, in 

many SMU domains, the actual reliability of sensors will often be unknown. This will result in a 

setting very similar to the medium reliability scenario, where there is a high level of uncertainty 

due to the lack of concrete knowledge about the operating environment.  

 

The error resolution strategy employed by participants in the medium setting closely matched the 

methodology used in the high sensor reliability scenario. This behavior occurred even though 

reliability levels for all sensor groups were included in the EIR display and participants were 

aware that the data was untrustworthy. Such error resolution strategies should not be employed 

in actual SMU environments as they result in a longer error resolution time and an increase in the 

number of incorrect error confirmations, as demonstrated by the collected experiment data. To 

ensure that the error resolution strategy employed by the human supervisor is appropriate, further 

graphical indication could be included beside the suggested error source to represent the need to 

proceed with caution. This indicator could help to overcome the inclination of the human to trust 

the suggestion even when there is no concrete evidence to justify this trust.  

 

This visualization could be adjusted using color or size to indicate certainty level. If an error 

suggestion is trustworthy, it could be made more salient, drawing the eyes of the supervisor to 

the suggestion. Suggestions that should be trusted could also be made larger, again increasing 

saliency. It is important, however, even in uncertain conditions, that the supervisor can see the 

suggested error source. 
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6.2.2. Combined pie chart graphic 

During the human performance experiment, one participant noted a desire to have the sensor 

reliability information incorporated into the GUIDER pie chart graphic to create a combined 

display of reliability and likelihood data. Many participants shifted their gaze between the 

reliability information on the EIR display and the error resolution checklist tool. Such an 

integrated display would result in less cognitive resources having to be dedicated to the 

integration of these two separate information sources. 

 

A combined pie chart display could be designed in a number of ways. The color of each pie slice 

(representing a potential error source) could change based on the reliability of the sensor 

associated with that error. Gradations of a single color could be used for this purpose, with 

higher contrast between a pie slice and the background (increased salience) associated with more 

reliable error sources, and lower contrast between a pie slice and the background (decreased 

salience) associated with more unreliable error sources. As an alternative, an additional ring 

could be added to the pie chart, with this ring incorporating the reliability data. This could create 

clutter within the display, however, which should be avoided. This new graphic would have to be 

tested and compared to the current layout of the GUIDER Checklist to determine if it presents 

any benefit to the supervisor during error resolution. 

 

6.2.3. Indication of selected errors 

User feedback that was provided at the end of the user interaction survey indicated a further 

possible design modification to the GUIDER Probabilistic Checklist, which was graphically 

depicting potential error sources that had already been confirmed during the error identification 

process. Participants stated that it was difficult to retain a tally of selected errors during error 

resolution, since their focus was placed on assimilating the different sources of diagnostic data, 

including sensor reliability levels, the suggested error source, and the probabilistic error data.  

 

Visual indication of already-selected errors could be performed using color, by reducing the 

contrast between the text and the pie graphic, and therefore, reducing saliency. A further design 

intervention could prevent the reselection of an already confirmed error source. This could be 
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seen as removing the authority of the human, however, and may frustrate some supervisors. 

Therefore, color is recommended to transmit this information to the supervisor. When using 

color to transmit data properties, however, colorblind users should always be considered. 

 

A second modification to the GUIDER Probabilistic Checklist could be the inclusion of an 

archival tool to track previous user actions. By accessing this area of the checklist, users could 

see all past interactions ordered by time of occurrence. The benefit of both a visual indication of 

selected errors and an archival tool would have to be tested using a heuristic evaluation (Nielsen, 

2005), cognitive walkthrough (Wharton, Rieman, Lewis, & Polson, 1994), or another human 

performance experiment. 

 

6.2.4. Limiting error sources 

The potential for visual clutter with the increase in error sources is a final identified limitation of 

the pie chart graphic. If the pie is subdivided into many different errors, the error names, as well 

as the associated likelihood data, may be difficult to discern. For this reason, it is recommended 

to limit the number of error categories or error sources at a given level. Further experimental and 

usability testing would be required to prescribe exact limits. 

 

6.3. Experiment recommendations and future work 

The results of this thesis indicate that the GUIDER Probabilistic Checklist tool for error 

resolution shows promise in domains with ambiguous uncertainty levels. In such settings, the 

GUIDER Checklist was demonstrated to improve identification accuracy and error recovery time 

during error resolution. There are limitations to these findings, however, as a result of both the 

experimental design and the resources available to run the experiment. The following are 

recommendations for future work building upon the research presented in this thesis. 

 

• The GUIDER Probabilistic Checklist was evaluated using a simulated version of the 

autonomous forklift domain currently under development at MIT. Testing in a more 

realistic setting with SMEs is required to determine the true effectiveness of this 

alternative checklist tool.  
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• GUIDER and the Traditional Checklist should be compared in an HSC domain 

categorized by CAM as being appropriate for traditional checklist use (high system 

predictability, high sensor reliability, high time availability) to further assess the 

Checklist Attribute Model. An example domain would be the commercial airline 

industry, which was previously evaluated using CAM in Section 3.5.1. 

• Difficult error cases should be investigated. These include situations where the system 

detects an error when no error actually exists, as well as compound errors that are the 

result of more than one failure. 

• A direct method of obtaining subjective user feedback that directly compares the 

GUIDER Checklist tool and Traditional Checklist tool should be considered. This would 

result in a within-subjects experimental design where each participant resolves an error 

scenario using each checklist type. 

• Trust by human supervisors in data collected and provided by automation should be 

further investigated to determine how this trust could be maximized in HSC domains. It 

appears that low levels of trust can negatively impact error resolution performance, even 

under high reliability conditions. 

• The design recommendations presented in Section 6.2 that resulted from observations of 

the human performance experiment should be addressed and further investigated. 

 

If further testing were to occur outside the autonomous forklift domain, a new prototype EIR 

display incorporating the GUIDER Probabilistic Checklist (and potentially a Traditional 

Checklist, for comparison purposes) would have to be developed to meet the specific needs of 

that environment.  

 



 

 107 

Appendix A: Descriptive Statistics 

Subject Gender Age Occupation Checklist Games 
1 F 22 EECS N Everyday 
2 M 30 EECS N Few times/yr 
3 M 26 EECS N Everyday 
4 M 20 EECS N Few times/wk 
5 M 23 Business N Few times/mo 
6 M 20 Aerospace N Few times/wk 
7 M 23 Aerospace Y Few times/mo 
8 M 23 Biology N Everyday 
9 M 22 EECS N Few times/yr 

10 F 22 EECS N Few times/wk 
11 F 23 Biomedical N Few times/yr 
12 F 18 Aerospace N Few times/mo 
13 M 20 EECS N Few times/yr 
14 F 24 Aerospace Y Few times/mo 
15 F 22 Aerospace N Few times/yr 
16 M 21 Aerospace N Few times/wk 
17 F 22 Aerospace N Few times/yr 
18 F 20 EECS N Few times/yr 
19 M 25 Aerospace Y Few times/mo 
20 F 24 Aerospace N Few times/yr 
21 M 23 Aerospace N Few times/wk 
22 M 19 EECS N Few times/mo 
23 M 24 Aerospace Y Few times/mo 
24 F 25 EECS N Few times/yr 
25 M 24 Physics N Few times/wk 
26 F 18 Chemistry Y Few times/yr 
27 F 28 Media Arts N Few times/mo 
28 F 23 Aerospace N Never 
29 F 21 EECS Y Few times/mo 
30 M 24 Transportation N Few times/yr 
31 F 20 Architecture N Never 
32 M 26 EECS Y Few times/mo 
33 F 21 Aerospace N Few times/yr 
34 F 31 Business Y Few times/yr 
35 F 22 EECS N Never 
36 M 22 EECS N Few times/mo 
N 18M, 18F $ 14EECS, 13 Aero 8Y, 28N 13yr, 11mo 

Mean $ 22.81 $ $ $ 
Std. Dev. $ 2.92 $ $ $ 
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Appendix B: Consent to Participate 

CONSENT TO PARTICIPATE  

IN NON-BIOMEDICAL RESEARCH 

 

Investigating Error Recovery in a Shared Human-Robot Environment 

 

You are asked to participate in a research study conducted by Dr. Mary Cummings and Jackie 

Tappan from the Humans and Automation Laboratory (HAL) at the Massachusetts Institute of 

Technology (MIT). The results of this study will be used in academic conferences and journals. 

You are eligible to participate because you are over 18. You should read the information below, 

and ask questions about anything you do not understand, before deciding whether or not to 

participate. 

 

•  PARTICIPATION AND WITHDRAWAL 

Your participation in this study is completely voluntary and you are free to choose whether to be 

in it or not. If you choose to be in this study, you may subsequently withdraw from it at any time 

without penalty or consequences of any kind.  The investigator may withdraw you from this 

research if circumstances arise which warrant doing so.  However, we do not foresee this 

occurring in this study. 

 

•  PURPOSE OF THE STUDY 

The purpose of this study is to evaluate error recovery checklists in shared manned-unmanned 

domains. The collected data will be used to guide error recovery processes in many shared 

supervisory control domains. 

 

•  PROCEDURES 

After giving your consent, you will be asked to fill out a brief demographic survey documenting 

age, gender, previous checklist experience, video gaming experience, and sleepiness levels. Once 

this survey has been completed, you will be asked to undergo a training session to get used to the 

checklist that will be used throughout the experiment, as well as the general interface. This will 

mainly be done through a slide presentation.  
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The main experiment will consist of three separate error recovery scenarios. At the beginning of 

each scenario, you will read a contextual background summary discussing the reliability of 

sensors in the environment, a summary of recent system errors, and other pertinent details. After 

reading the contextual background, you will begin the error recovery scenarios. For each 

scenario, you will have to both identify and recover from an error in the simulated manned-

unmanned environment. Time to recover, accuracy of error selection, and frequency and location 

of mouse clicks will be recorded. 

 

After completing three error scenarios, you will be asked to complete a subjective usability 

survey. The study should be completed within 60 minutes. 

 

•  POTENTIAL RISKS AND DISCOMFORTS 

We do not foresee any risks or discomforts resulting from your participation in this study. 

 

•  POTENTIAL BENEFITS  

The data will be used to help researchers in designing more effective error recovery checklists 

for shared supervisory control domains, particularly those incorporating unmanned surface 

vehicles. Such domains will be able to operate more efficiently and more safely. 

 

•  PAYMENT FOR PARTICIPATION 

You will be given two movie tickets at the completion of this study. 

 

•  CONFIDENTIALITY 

Any information that is obtained in connection with this study and that can be identified with you 

will remain confidential and will be disclosed only with your permission or as required by law.  

 

•  IDENTIFICATION OF INVESTIGATORS 

If you have any questions or concerns about the research, please feel free to contact Professor 

Missy Cummings (Principal Investigator) at missyc@csail.mit.edu or 617-252-1512, or Jackie 

Tappan (Co-Investigator) at jtappan@csail.mit.edu or 617-715-4317.  
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•  EMERGENCY CARE AND COMPENSATION FOR INJURY 

If you feel you have suffered an injury, which may include emotional trauma, as a result of 

participating in this study, please contact the person in charge of the study as soon as possible. 

 

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the provision of, 

emergency transport or medical treatment, including emergency treatment and follow-up care, as 

needed, or reimbursement for such medical services.  M.I.T. does not provide any other form of 

compensation for injury. In any case, neither the offer to provide medical assistance, nor the 

actual provision of medical services shall be considered an admission of fault or acceptance of 

liability. Questions regarding this policy may be directed to MIT’s Insurance Office, (617) 253-

2823. Your insurance carrier may be billed for the cost of emergency transport or medical 

treatment, if such services are determined not to be directly related to your participation in this 

study. 

 

•  RIGHTS OF RESEARCH SUBJECTS 

You are not waiving any legal claims, rights or remedies because of your participation in this 

research study.  If you feel you have been treated unfairly, or you have questions regarding your 

rights as a research subject, you may contact the Chairman of the Committee on the Use of 

Humans as Experimental Subjects, M.I.T., Room E25-143b, 77 Massachusetts Ave, Cambridge, 

MA 02139, phone 1-617-253 6787. 
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SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE 

 

I understand the procedures described above.  My questions have been answered to my 

satisfaction, and I agree to participate in this study.  I have been given a copy of this form. 

 

________________________________________ 

Name of Subject 

 

________________________________________ 

Name of Legal Representative (if applicable) 

 

________________________________________  ______________ 

Signature of Subject or Legal Representative   Date 

 

SIGNATURE OF INVESTIGATOR  

 

In my judgment the subject is voluntarily and knowingly giving informed consent and possesses 

the legal capacity to give informed consent to participate in this research study. 

 

 

________________________________________  ______________ 

Signature of Investigator     Date 
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Appendix C: Demographic Questionnaire 

Please answer the following questions: 

 
1. Gender: 

o Male 

o Female 

 
2. Age:______________________________________________________________________ 

 
3. Occupation or research field:___________________________________________________ 

 
4. Do you have any previous experience using checklists? 

o Yes 

o No 

 
5. If so, please describe in detail:__________________________________________________ 

 
6. How often do you play video games? 

o Never 

o Few times a year 

o Few times a month 

o Few times a week 

o Everyday 
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Appendix D: Training Tutorials 
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%#*M#H!H)$+%
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/0+5/%?5+(%)**+*%>)0),:+(@%

%#*M#H!H)$O%

#!%!--.-$"15.91-:$/2$(;6-10$<=>62?".@.A$!29/-.2>12AB$$C$$+8$
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Appendix E: Training Video Script 

The scenario begins at the contextual background screen. There are two major components to 

this screen: the first is the background summary, which will give you an overview of recent 

system behavior, and the second is the sensor reliability level summary, which provides an 

overview of each of the six sensor groups in the system. The sensors can range in reliability from 

low, to medium, to high. This summary provides an overview of how accurate information 

provided by the sensor group can be assumed to be. If a sensor has low reliability, information 

provided by that sensor to the supervisor may be inaccurate, while if a sensor group has high 

reliability, information provided by that sensor can be assumed to be fairly accurate. Once you 

have reviewed this information, you can begin the scenario. 

   The five components discussed in the tutorial presentation are easily identifiable. At the top of 

the interface are the different forklift tabs; you have the forklift view, which is the feedback from 

the on-forklift camera; you have a copy of the sensor reliability summary that was presented in 

the contextual summary; the error identification and recovery checklist, with the error 

identification portion currently shown. Once you select an error and confirm it, the interface will 

transition into the error recovery portion. Finally, at the bottom of the interface are the seven 

steps that make up the pallet pick up and delivery process.  

   Currently, we can see that Forklift 1 is encountering an error at the Approach Pallet functional 

step. We can see this because Approach Pallet is highlighted, and colored red, and also because 

the system is suggesting an error source. When trying to determine whether the suggested error 

source is the true error source, there are a number of information sources that can be used. The 

first is the sensor reliability summary that is presented. This information guides the supervisor in 

whether they should trust the error source being suggested by the system. In this particular case, 

it can be seen that the Obstacle Detection Sensors, which provides information about the Path 

Blocked error, has a high reliability level. Therefore, the suggested error source should be 

considered fairly accurate. Other information sources include the forklift view, the error 

likelihood data presented in the pie chart graphic [this statement was only included in the 

probabilistic checklist video], as well as the diagnostic tests, which can be accessed after 

selecting an error source. For example, by clicking on Wrong Pallet Detected, you can access the 

diagnostic tests related to this error at the bottom of the interface. When clicking on a diagnostic 

test, the diagnostic information is presented in the Forklift View portion of the interface. Some 
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errors will not have any diagnostic test information available, but will instead have additional 

information available from the supervising assistant. In the experiment, the experimental 

administrator will play the supervising assistant. If you want this information, simply ask the 

administrator for any available information on that particular error. Ultimately, it is up to you to 

decide what information you need to identify the true error source and recover from the error. 

   Once you have selected what you believe to be the error source, you can confirm it and move 

to error recovery. There are a couple of steps that must be completed before an error can be 

resolved. The first step is assigning the recovery task to one of the ground-level operators in the 

environment. You should assign the task to the operator that is closest to the failed forklift using 

the map of the system provided. Once you have assigned the task, the operator will investigate 

the error, and the error will either be resolved, if you identified the error correctly, or remain, if 

you incorrectly identified the error source. If incorrectly identified, you will have to return to 

Error Identification and select a new error source. If correctly identified, you can continue to the 

next error scenario. 
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Appendix F: User Interaction Questionnaire 

Please answer the following questions about the checklist system that you just used to complete 
the experimental task. 
 
1. I liked using this checklist system for error recovery. 

o Strongly agree 

o Agree 

o Neither agree or disagree 

o Disagree 

o Strongly disagree 

 
2. I found the error recovery task ________________ with this system. 

o Very straightforward 

o Straightforward 

o Neither straightforward or confusing 

o Confusing 

o Very confusing 

 
3. I felt ________________ using this checklist system for error recovery. 

o Very confident 

o Confident 

o Neither confident or unsure 

o Unsure 

o Very unsure 

 
4. I felt ________________ recovering from errors using this checklist system. 

o Very comfortable 

o Comfortable 

o Neither comfortable or uncomfortable 

o Uncomfortable 

o Very uncomfortable 

5. Overall, I was ________________ with this checklist system. 
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o Very satisfied 

o Satisfied 

o Neither satisfied or unsatisfied 

o Unsatisfied 

o Very unsatisfied 

 
6. My mental workload during this task was: 

o Very high 

o High 

o Neither high or low 

o Low 

o Very low 

 

7. My frustration level during this task was: 

o Very high 

o High 

o Neither high or low 

o Low 

o Very low 

 

8. My overall performance on this task was: 

o Very high 

o High 

o Neither high or low 

o Low 

o Very low 
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Appendix G: Randomization of Participants 

 

Subject Display Type Order Scenario 1 Scenario 2 Scenario 3 
1 T 3 Medium Low High 
2 P 3 Medium Low High 
3 T 5 High Low Medium 
4 P 6 High Medium Low 
5 T 4 Medium High Low 
6 P 2 Low High Medium 
7 P 5 High Low Medium 
8 P 4 Medium High Low 
9 T 1 Low Medium High 

10 T 1 Low Medium High 
11 P 2 Low High Medium 
12 T 2 Low High Medium 
13 T 5 High Low Medium 
14 T 6 High Medium Low 
15 T 4 Medium High Low 
16 P 1 Low Medium High 
17 P 5 High Low Medium 
18 P 4 High Medium Low 
19 T 4 High Medium Low 
20 P 1 Low Medium High 
21 P 3 Medium Low High 
22 T 3 Medium Low High 
23 T 2 Low High Medium 
24 P 4 Medium High Low 
25 T 6 High Medium Low 
26 P 5 High Low Medium 
27 T 5 High Low Medium 
28 P 4 Medium High Low 
29 T 1 Low Medium High 
30 T 3 Medium Low High 
31 T 4 Medium High Low 
32 P 6 High Medium Low 
33 T 2 Low High Medium 
34 P 1 Low Medium High 
35 P 2 Low High Medium 
36 P 3 Medium Low High 

 

T = Traditional Checklist 
P = GUIDER Probabilistic Checklist 
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Appendix H: Collected Data 

Number of error confirmations: 

 

Overall Descriptive Statistics 

 Low Reliability Medium Reliability High Reliability 
Mean 3.14 4.50 1.14 

Median 2.00 4.00 1.00 
Mode 2 5 1 

STDEV 2.26 2.59 0.54 
Min 1 1 1 
Max 9 10 4 

 

Traditional Checklist 

Subject Checklist Low Reliability Medium Reliability High Reliability 
1 T 3 10 1 
3 T 2 5 1 
5 T 3 2 1 
9 T 8 5 1 

10 T 2 3 1 
12 T 1 7 1 
13 T 1 3 1 
14 T 2 5 1 
15 T 2 3 1 
19 T 1 10 1 
22 T 1 5 2 
23 T 2 5 1 
25 T 1 5 1 
27 T 2 8 1 
29 T 1 2 1 
30 T 2 4 2 
31 T 5 10 1 
33 T 2 1 1 

Mean 2.28 5.17 1.11 
Median 2.00 5.00 1.00 
Mode 2 5 1 

STDEV 1.74 2.81 0.32 
Min 1 1 1 
Max 8 10 2 
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GUIDER Probabilistic Checklist 

Subject Checklist Low Reliability Medium Reliability High Reliability 
2 P 1 4 1 
4 P 5 4 1 
6 P 5 1 1 
7 P 5 3 1 
8 P 4 6 1 

11 P 7 1 1 
16 P 1 3 1 
17 P 1 1 1 
18 P 4 2 1 
20 P 3 5 1 
21 P 4 7 1 
24 P 4 6 1 
26 P 2 3 1 
28 P 2 7 1 
32 P 9 2 4 
34 P 3 2 1 
35 P 9 8 1 
36 P 3 4 1 

Mean 4.00 3.83 1.17 
Median 4.00 3.50 1.00 
Mode 4 4 1 

STDEV 2.43 2.23 0.71 
Min 1 1 1 
Max 9 8 4 
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Time to complete error scenario: 
 

Overall Descriptive Statistics 

 Low Reliability Medium Reliability High Reliability 
Mean 455.69 530.22 135.78 

Median 402.00 425.00 104.50 
STDEV 237.43 310.93 108.85 

Min 136 142 26 
Max 1052 1416 585 

 

Traditional Checklist 

Subject Checklist Low Reliability Medium Reliability High Reliability 
1 T 180 840 60 
3 T 292 611 385 
5 T 422 400 72 
9 T 844 359 68 

10 T 366 241 69 
12 T 180 720 120 
13 T 212 473 107 
14 T 372 1147 130 
15 T 315 311 81 
19 T 331 929 45 
22 T 279 1416 585 
23 T 565 1010 124 
25 T 408 1025 107 
27 T 218 416 26 
29 T 313 439 96 
30 T 228 475 204 
31 T 446 711 145 
33 T 981 222 91 

Mean 386.22 652.50 139.72 
Median 323.00 543.00 101.50 
STDEV 217.45 343.15 136.38 

Min 180 222 26 
Max 981 1416 585 
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GUIDER Probabilistic Checklist 

Subject Checklist Low Reliability Medium Reliability High Reliability 
2 P 136 536 192 
4 P 543 385 134 
6 P 738 161 151 
7 P 617 351 102 
8 P 502 626 97 

11 P 724 142 113 
16 P 396 323 72 
17 P 335 160 124 
18 P 711 361 102 
20 P 784 775 146 
21 P 472 607 63 
24 P 262 434 84 
26 P 207 186 73 
28 P 433 973 169 
32 P 592 277 300 
34 P 1052 311 324 
35 P 726 366 50 
36 P 223 369 77 

Mean 525.15 407.94 131.83 
Median 522.50 363.50 102.00 
STDEV 241.98 222.78 75.91 

Min 136 142 50 
Max 1052 973 324 
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Time to first error confirmation: 

Overall Descriptive Statistics 

 Low Reliability Medium Reliability High Reliability 
Mean 212.44 150.64 90.92 

Median 183.50 111.00 64.00 
STDEV 153.64 110.33 98.28 

Min 39 14 11 
Max 713 508 505 

 

Traditional Checklist 

Subject Checklist Low Reliability Medium Reliability High Reliability 
1 T 60 180 41 
3 T 168 200 345 
5 T 198 125 48 
9 T 221 51 24 

10 T 135 48 25 
12 T 120 60 60 
13 T 172 242 75 
14 T 212 508 66 
15 T 156 80 41 
19 T 299 93 26 
22 T 227 319 505 
23 T 322 275 71 
25 T 386 254 60 
27 T 125 47 11 
29 T 273 378 73 
30 T 126 235 93 
31 T 102 70 114 
33 T 696 179 52 

Mean 222.11 185.78 96.11 
Median 185.00 179.50 60.00 
STDEV 145.08 129.73 125.40 

Min 60 47 11 
Max 696 508 505 
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GUIDER Probabilistic Checklist 

Subject Checklist Low Reliability Medium Reliability High Reliability 
2 P 112 107 143 
4 P 74 77 85 
6 P 205 103 125 
7 P 58 142 53 
8 P 220 130 56 

11 P 125 94 89 
16 P 364 105 39 
17 P 291 115 83 
18 P 297 132 77 
20 P 378 254 107 
21 P 195 107 29 
24 P 92 48 39 
26 P 90 29 22 
28 P 148 334 126 
32 P 47 80 96 
34 P 713 128 295 
35 P 202 14 17 
36 P 39 80 62 

Mean 202.78 115.50 85.72 
Median 171.50 106.00 80.00 
STDEV 165.38 74.94 64.07 

Min 39 14 17 
Max 713 334 295 
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Error resolution strategy: 

Diagnoses (D) and confirmations (C) based on suggested error for each checklist. 

Low Reliability Medium Reliability High Reliability Subject Checklist 
D C D C D C 

1 T 0 1 0 1 1 1 
3 T 0 0 1 0 1 1 
5 T 0 0 1 0 1 1 
9 T 0 1 1 1 1 1 

10 T 0 0 1 1 1 1 
12 T 0 0 1 1 1 1 
13 T 0 0 1 0 1 1 
14 T 0 0 1 0 1 1 
15 T 0 0 1 1 1 1 
19 T 1 0 1 0 1 1 
22 T 1 0 0 1 1 0 
23 T 1 0 1 0 1 1 
25 T 0 0 1 0 1 1 
27 T 0 0 1 0 0 1 
29 T 1 0 1 0 1 1 
30 T 0 0 1 0 0 0 
31 T 0 0 1 1 1 1 
33 T 1 0 1 0 1 1 

Traditional Total 5 2 16 7 16 16 
Low Reliability Medium Reliability High Reliability Subject Checklist 
D C D C D C 

2 P 0 0 1 1 1 1 
4 P 1 0 0 1 0 1 
6 P 0 0 0 0 1 1 
7 P 0 1 0 0 1 1 
8 P 0 0 1 1 1 1 

11 P 0 0 1 0 1 1 
16 P 1 0 1 1 1 1 
17 P 1 0 1 0 1 1 
18 P 0 0 1 1 1 1 
20 P 0 0 0 0 0 1 
21 P 0 0 1 1 1 1 
24 P 0 1 0 1 1 1 
26 P 1 0 1 0 1 1 
28 P 0 0 1 0 1 1 
32 P 1 0 1 0 0 0 
34 P 1 0 1 0 0 0 
35 P 0 0 0 0 1 1 
36 P 0 0 0 1 0 1 

Probabilistic Total 6 2 11 8 13 16 
  

Overall Total 11 4 27 15 29 32 
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Diagnoses and confirmations based on likelihood data for probabilistic checklist. 

Low Reliability Medium Reliability High Reliability Subject Checklist 
D C D C D C 

2 P 0 0 0 0 0 0 
4 P 0 0 0 0 0 0 
6 P 0 0 0 0 0 0 
7 P 0 1 0 0 0 0 
8 P 1 0 0 0 0 0 

11 P 0 0 0 0 0 0 
16 P 0 0 0 0 0 0 
17 P 0 0 0 0 0 0 
18 P 0 1 0 0 0 0 
20 P 1 1 1 0 0 0 
21 P 0 0 0 0 0 0 
24 P 0 1 0 0 0 0 
26 P 0 0 0 0 0 0 
28 P 0 0 0 0 0 0 
32 P 0 1 0 0 1 0 
34 P 0 1 0 0 0 0 
35 P 0 0 0 0 0 0 
36 P 0 0 0 0 0 0 

Total 2 6 1 0 1 0 
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Subjective user interaction: 

User interaction questionnaire data. 

Subject Checklist Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 
1 T 4 2 3 4 4 3 4 3 
3 T 2 5 5 4 4 2 5 2 
5 T 3 4 2 2 3 2 5 2 
9 T 4 3 3 3 3 4 2 2 

10 T 4 3 2 4 4 4 4 3 
12 T 4 5 4 4 5 3 3 4 
13 T 3 3 5 4 4 4 4 3 
14 T 4 3 4 4 4 4 4 3 
15 T 4 4 3 4 4 4 3 3 
19 T 4 2 5 5 4 4 2 3 
22 T 2 4 2 2 2 5 5 2 
23 T 3 2 3 3 2 3 5 2 
25 T 5 4 4 4 5 3 3 2 
27 T 5 5 4 4 4 3 2 3 
29 T 4 3 4 4 3 3 2 4 
30 T 5 4 4 4 4 3 3 3 
31 T 4 3 2 4 3 3 4 1 
33 T 4 4 3 4 4 3 3 4 

Mean 3.78 3.50 3.44 3.72 3.67 3.33 3.50 2.72 
STDEV 0.88 0.99 1.04 0.75 0.84 0.77 1.10 0.83 

 
Subject Checklist Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

2 P 4 3 2 3 4 4 2 3 
4 P 4 4 2 4 3 2 2 1 
6 P 5 4 3 4 4 3 2 3 
7 P 2 2 1 3 2 3 4 3 
8 P 4 4 4 5 4 4 4 3 

11 P 4 3 2 3 4 3 4 3 
16 P 5 5 4 4 5 2 1 4 
17 P 5 4 4 5 5 4 3 5 
18 P 3 2 2 3 3 3 3 2 
20 P 4 4 4 4 4 4 3 3 
21 P 4 4 2 4 4 4 4 2 
24 P 4 4 4 4 4 3 3 3 
26 P 4 5 5 5 5 3 2 4 
28 P 5 3 3 4 4 5 4 4 
32 P 5 4 4 4 4 4 4 2 
34 P 4 3 4 4 4 2 2 3 
35 P 2 3 2 3 2 3 5 5 
36 P 4 4 3 4 4 4 4 2 

Mean 4.00 3.61 3.06 3.89 3.83 3.33 3.11 3.06 
STDEV 0.91 0.85 1.11 0.68 0.86 0.84 1.08 1.06 
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Appendix I: Statistical Assumption Tests 

Correlation, number of error confirmations and time to complete scenario: 

 
 

Number of error confirmations: 

 
ANOVA assumption checks of number of error confirmations data for checklist type. 
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ANOVA assumption checks of number of error confirmations data for reliability level. 
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Appendix J: Detailed Statistical Results 

Number of error identifications: 

 
Chi-Square Test of relationship between number of confirmations and checklist. 

 

 
Chi-Square Test of relationship between number of confirmations and reliability. 
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Wilcoxon Signed Rank Test comparing number of error confirmations at each of the three 

reliability levels. 
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Mann-Whitney Test comparing number of error confirmations at low reliability level between 
traditional checklist and GUIDER checklist. 

 

 
 

Mann-Whitney Test comparing number of error confirmations at medium reliability level 
between traditional checklist and GUIDER checklist. 
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Mann-Whitney Test comparing number of error confirmations at high reliability level between 
traditional checklist and GUIDER checklist. 
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Cognitive strategies: 

 
Correlation between number of error confirmations at low reliability and number of diagnostic 

tests utilized at low reliability. 
 

 
Correlation between number of error confirmations at medium reliability and number of 

diagnostic tests utilized at medium reliability. 
 

 

 
Correlation between number of error confirmations at high reliability and number of diagnostic 

tests utilized at high reliability. 
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Correlation between number of error confirmations at low reliability and time to first error 

confirmation at low reliability. 
 

 
Correlation between number of error confirmations at medium reliability and time to first error 

confirmation at medium reliability. 
 

 
Correlation between number of error confirmations at high reliability and time to first error 

confirmation at high reliability. 
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Subjective user interaction: 

 

 
Mann Whitney Test comparing participant responses to subjective survey questions. 
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