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With the increased use of Unmanned Aerial Vehicles (UAVs), it is envisioned that UAV opera-
tors will become high level mission supervisors, responsible for information management and task
planning. In the context of search missions, operators supervising a large number of UAVs can be-
come overwhelmed with the sheer amount of information collected by the UAVs, making it difficult
to optimize the information collection or direct their attention to the relevant data. Novel decision-
support methods that account for realistic operator performance will therefore be required to aid
the operators. This paper considers a decision support formulation for sequential search tasks,
and discusses a non-preemptive scheduling formulation for a single operator performing a search
mission in a time-constrained environment. The formulation is then generalized to include opera-
tor performance obtained from previous human-in-the-loop experiments, and presents one of the
principal contributions of the paper. The sensitivity of the proposed model is analyzed in the pres-
ence of uncertainty to the operator model and search times, and a comparison is made between the
expected performance difference between this scheduling system and a greedy scheduling strategy
representative of operator planning. The paper concludes with the design of a human-in-the-loop
experiment for a scheduling, replanning task for a simulated UAV mission.

I. Introduction

Use of Unmanned Aerial Vehicles (UAVs) has extended beyond the military ISR (Information, Surveil-
lance, and Reconnaissance) roles in Iraq and Afghanistan, and has been demonstrated in recent humanitarian
crises such as in the earthquake tragedy in Haiti. In the days and weeks following the earthquake, UAVs pro-
vided highly detailed imagery that was quickly broadcast to ground-based first responders [1, 2]. As UAVs
increasingly become more sophisticated with higher levels of autonomy, it is anticipated that missions such
as these will become more commonplace. Furthermore, it is expected that UAV operators will transition
to a higher-level supervisory role, including the management of multiple UAVs under a single operator [3].
As such, the operators will become responsible for a large number of high-level planning tasks, such as
information management of the mission, possibly in coordination with analysts observing the relayed data
in close to real time [4]. Demonstration of recent DoD interest in such complex information-gathering mis-
sions, including wide-area surveillance, has been demonstrated in the upcoming deployment of the Gorgon
Stare program for UAVs and Constant Hawk/Angel Fire programs in manned vehicles [5]. These programs
have been developed to allow end users (ranging from ground controllers all the way to high-level decision
makers) to obtain multiple viewpoints of the same data stream.

The increase in UAV sensing capabilities has highlighted the issue of information bottlenecking, in
which operators have access to large databases of imagery and video to analyze but may have difficulty fully
processing the data in a timely manner [4]. Answering questions such as “what imagery needs to be looked
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Figure 1. The ability to search for multiple tasks in an environment (left) can be aided by generating a schedule representation (right).
In this simple representation, 3 tasks are available for search in a total of TH mission time. UAV arrival times dictate that the tasks will
be available at different times. An optimal schedule will output the task ordering to maximize an objective under the appropriate time
constraints

at and when?” and “how much attention should be allocated to an imagery set?” may become a nontrivial
task, particularly in the highly dynamic and stochastic nature of the environment. Operator constraints, such
as attention and workload, will also play significant factors.

For example, consider a time constrained UAV search problem shown in Figure 1, where there are 3
heterogeneous tasks (with different rewards) to be investigated by 3 UAVs under the supervision of a single
operator. Each task requires a different search time t j, may have different start times s j, and the operator
only has a finite mission time TH to identify as many tasks as possible. Due to the single operator limitation,
tasks must be viewed sequentially (e.g., Task 1, then Task 2, etc.). Even for this simple example, however, it
may not be immediately clear how to decide which task should be viewed and when. Searching Task 1 first
may seem beneficial since it is the first task available, but also takes the longest. Likewise, searching Task
3 first could be beneficial since it takes the shortest amount of time, but requires waiting for a longer period
of time, and may result in a lower accrued reward, since fewer tasks may be processed.

Furthermore, depending on the operator’s workload, or the available time to make the decision, it may be
unreasonable to expect an operator to make a good decision without external support from a properly tailored
decision support system. An additional complexity in the design of decision support systems for operators
in human supervisory control, is that the underlying algorithmic assumptions often are an approximation
of the true system, and quantifying optimality of the decision support system may be a daunting task. For
many HSC applications in fact, the success of a decision support can only be measured by the performance
improvement that the decision support can provide to an operator.

This paper formulates the sequential search task problem using a scheduling framework. We exploit pre-
viously gathered empirical data obtained from supervisory control experiments, and formulate the problem
of allocating tasks to the operator as an optimal non-preemptive scheduling problem. We build on previous
work of operator scheduling [6–9]. The work of Ref. [7, 8] proposed a scheduling protocol for the efficient
allocation of operator workload, but only used a limited lookahead to reschedule tasks for the operator and
treated the operator performance as deterministic. The work of Ref. [9] sought to emphasize the allocation
of attention, but treated a different optimization problem and treated operator performance as deterministic.
Numerous applications of operator scheduling outside the realm of UAV supervisory control include the
telephony, manufacturing, and healthcare industries [10–13]. Ref. [10] formulates the optimization of oper-
ators using network flows, while Ref. [11] uses a mixed integer linear programming approach similar to that
pursued in this paper. Yamada [13] follows a genetic algorithm approach to optimize the schedules of the



telephone operators, while Henderson [12] uses a heuristic approach. While much work has addressed the
issue of uncertainty in scheduling tasks highlighting the ability for humans to plan under uncertainty (see
Ref. [14,15] for a review), little work has addressed the issues of how operators can be supported efficiently
in UAV sequential search tasks while accounting for operator detection models, which is a key contribution
of our work.

This paper is outlined as follows: Section II presents the scheduling formulation for sequential search
tasks, while Section III presents a modification of this scheduling formulation that explicitly accounts for
operator models obtained from previous supervisory control experiments. Sensitivity of this model is inves-
tigated empirically. Section IV then compares the performance of the proposed scheduling formulation with
a greedy approximation to the operator predicted performance. An experiment description for validating
these comparisons is presented in Section V, and we conclude with future work in Section VI.

II. Scheduling UAV Search Tasks

We assume that there are N heterogeneous search tasks known to the operator, where each task T j is
defined by the following 3-tuple T j = {R j, t j,s j}, ∀ j = 1, . . . ,N. In this description, R j is the reward for
succesfully completing task j, t j is the total time required to complete or service the task, and s j indicates
the time at which the task becomes available to the operator. The operator scheduling problem is defined in
this paper as the goal of maximizing the total accumulated reward obtained from a sequence of search tasks
in a finite mission time TH . A schedule, S , is an ordered list of tasks, consisting of S = {k1,k2, . . . ,kN∗}
where ki is the index of the task in the ith location in the schedule, and N∗ ≤ N. The reward of the task is
specified clearly to the operator; hence, rational decision theory (which states that rational subjects will seek
to maximize their reward) can be applied [16].

The start time s j for each vehicle is used to model the fact that different tasks may become available
at different times, either due to vehicle constraints or because image feeds are unavailable due to commu-
nication dropouts. UAVs that are not being used by the operator to search can loiter around their intended
targets. In this paper we assume that each UAV is assigned exactly one task, as an abstract representation of
real-world surveillance systems such as Gorgon Stare [5].

In the special case when all UAVs are loitering on the targets, and the tasks are available for search
(s j = 0, ∀ j), maximizing the accumulated reward can be formulated as a knapsack problem [17]

KP:

{
max

x j∈{0,1}

N

∑
j=1

R jx j | ∑
j

t jx j ≤ TH , ∑
j

x j ≤ N

}
(1)

where x j = {0,1} is a binary decision variable that is equal to 1 if the task is chosen by the operator. Since the
tasks are all available at the beginning of the allocation problem, the restrictions are that up to a maximum
of N tasks can be serviced in the total time TH (given by the two constraints). Note that switch times from
task T j to the next task Tk are an additional realistic issue and can be a significant contributor to the total
time that an operator spends searching a task, switching times/costs can be included by encoding them in
the total service times t j.

II.A. Scheduling formulation

In the more general case when the UAVs arrive at tasks at different times, the arrival times are non-zero
(s j 6= 0, ∀ j), and the problem requires the inclusion of additional specifications. With the assumption
of a single operator, the problem can be formulated as a modification of the well-studied single machine
scheduling problem with arbitrary release dates [18]. The distinguishing feature from the classical machine
scheduling problem is that for our problem formulation, the operator seeks to maximize the accumulated
reward of each job, such as identifying a high value target, while classical machine scheduling problems
optimize the total delay, total number of tardy jobs, and flowtimes [18].



Table 1. Schedule parameters of target rewards with associated start and search duration times

Target # 1 2 3 4 5

Target reward R j 0.4 5.1 6.9 3.1 7.4
Expected reward E[R j] 0.2 2.4 2.4 0.7 0.8
Avg search time t̄ j 52 64 78 96 118
Start time s j 28 25 22 26 24

Figure 2. Sample schedules with increasing time horizon TH : TH = 245 (in red line, top); TH = 400 (in red line, bottom). Task index is
shown with task reward shown above the task (for example, in top figure, Task 3 in green has a reward of 6.9). In the top figure only task
3, 1, and 2 can be accomplished that maximizes reward in the allotted time, while tasks 5, 4, 2, and 3 can be completed with 400 time units.
Note that task 1 is now not performed since the additional time allows the operator to perform tasks 5 and 4

With the goal of maximizing the accumulated reward, the scheduling formulation can be formulated as
follows:

SP:



maxx j
k∈{0,1}

∑ j ∑k R jx
j
k

subject to: ∑k x j
k ≤ 1 ∀ j

∑ j x j
k ≤ 1 ∀k

∑ j(s j + t j)x
j
k ≤Ck, ∀k

Ck−1 +∑ j t jx
j
k ≤Ck, ∀k

Ck ≤ TH , ∀k

In problem SP the notation x j
k denotes the position k in which task j appears. Note that with this

formulation introduces an additional non-negative variable, Ck which denotes the completion time of the
kth task (which cannot exceed the total available time TH).a Two additional constraints are required for this
variable: first, the kth task cannot be completed prior to the sum of its scheduled time ∑ j s jx

j
k and the search

time ∑ j t jx
j
k. Second, the next task k cannot be completed before the previous task is completed, and the

completion time of the previous task, Ck−1. Note that this paper does not assume preemption [18], meaning
that a task cannot be interrupted in order to initiate another task.b An example of this scheduling algorithm
is shown in Figure 2 where a total of 5 tasks can be allocated in different mission times TH . (The numerical
data is found in Table 1, and shows the reward, search time, and start time for each task. The expected

aNote that the schedule and/or the completion times need not be unique, since if there is sufficient time to perform the tasks,
it may be possible to either rearrange the task list, as well as delay the start of the task. Delaying the task may be beneficial in a
setting when the tasks are arriving randomly.

b Preliminary investigation in the role of preemption has been addressed in a previous paper investigating use of relooks to im-
prove the likelihood of detection [19]. Use of preemption for this work is investigated in an ongoing human-in-the-loop experiment.



(a) Accumulated score, no operator model (b) Optimal assignment: each diamond corresponds to a task

Figure 3. Accumulated score with increased time (left) and optimal assignment (right) while solving SP

reward will be used in the next section.) In the first case (Figure 2 (top)), the mission time is set at TH = 245
time units, and the operator maximizes reward by scheduling tasks 3, 1, and 2 for a total reward of 12.4. As
the mission time is increased to TH = 400 time units (Figure 2 (bottom)), the total reward is increased to
22.5; interestingly, in order to maximize the reward, task 1 is switched with tasks 4 and 5.

An example of the increase in mission time TH is shown in Figure 3 with a new set of 5 tasks. Fig-
ure 3(a) shows the increased accumulated reward by increasing mission time, and shows unique regions of
different sensitivity to increase in TH . For example, an increase from TH = 160 to TH = 170 can increase
the accumulated reward from 7.5 to 12, while a mission time increase from TH = 150 to TH = 160 does not
generate any increase in accumulated reward. Figure 3(b) shows the task allocation as a function of the time
TH , where the diamonds correspond to which tasks were selected at a specific TH . For example, for TH = 90,
only task 1 was selected, while for TH = 210, tasks 2 and 5 were selected. Note that as expected, and as seen
in Figure 2, the tasks scheduling can remove previously desirable tasks: for example, when increasing TH

from TH = 370 to TH = 390, task 1 is replaced with task 4.

II.B. Sensitivity to uncertainty in search times

In reality, the start times s j and search times t j may not be known with certainty since these search times vary
with task difficulty, operator workload, and operator skill. Previous work has shown that search times can be
modeled with a corresponding lognormal distribution [19]. A more detailed discussion on the sensitivity of
the scheduling algorithms to the knowledge of search times in the next sections, but one method for handling
the uncertainty in the start (respectively, search) times is to substitute the expected values, s̄ j (respectively,
t̄ j), and find the optimal schedule as follows:

SPCE:



maxx j
k∈{0,1}

∑ j ∑k R jx
j
k

subject to: ∑k x j
k ≤ 1 ∀ j

∑ j x j
k ≤ 1 ∀k

∑ j(s̄ j + t̄ j)x
j
k ≤Ck, ∀k

Ck−1 +∑ j t̄ jx
j
k ≤Ck, ∀k

Ck ≤ TH , ∀k



III. Scheduling with operator model

While the deterministic formulations of SP and SPCE are appealing due to their simplicity, they lacks a
key fundamental feature that does not make it amenable to implementation in a human supervisory control
setting. For example, neither SP nor SPCE account for the fact that accumulated reward and search times
are random variables in real life. The reward of a task, R j, relies on the stochastic (search) outcome of the
human operator, and is therefore a random variable described by a specific probability distribution func-
tion. The search times t j are also random variables. This section outlines appropriate modifications for the
optimization problem to account for these realistic operator descriptions.

III.A. Operator modeling

One method for modeling the operator information gathering process is with use of 2-alternative choice
models (2-AC) [20–25], a mathematical description of human accumulation of evidence. 2-AC models
abstract the information accumulation process as a stochastic diffusion process

dx = αdt +σdW (t) (2)

where x(t) represents the integrated evidence in favor of one of the two alternatives,c A = {0,1}; σ denotes
the intensity of the Wiener process W (t); and α is the drift rate. It can be shown [26] that key characteristics
of the diffusion model of Equation (2) can be summarized by two random variables: the probability of
choosing one alternative, and mean response time

PA =
1

1+ exp(2ηθ)
+

1− exp(−2x0θ)

exp(2ηθ)− exp(−sηθ)
(3)

T̄ = θ tanh(ηθ)+
2η (1− exp(−2ηθ))

exp(2ηθ)− exp(−sηθ)
− x0 (4)

where η = (α/σ)2 acts like a signal-to-noise ratio; θ = xth/α is related to the internal threshold xth of the
human decision maker; and PA denotes the probability of choosing alternative A = 1. A key benefit of using
detection probability and mean search times is that they can be determined experimentally.

Unfortunately, 2-AC models do not include important features in supervisory control applications, such
as vigilance, boredom, or high workload. For example, a key feature in the 2-AC model is that the detection
probability increases with the time spent learning about the underlying task. However, it is known that
operator accuracy can degrade with time [27]. Additionally, 2-AC models may be overly simplistic in
situations where operators make more complex decision tasks; i.e., in cluttered image search tasks, the
operator is not simply tasked with declaring the absence or presence of the signal (the target). Rather, the
operator must also prescribe the location of the target accurately, requiring the more complex Free-Response
paradigm [28–30]. Experimental data obtained from previous experiments in supervisory control [31] has
validated operator detection models that predict that operator accuracy can decrease with time.

The model for the detection probability P(t j) has been found from previous empirical results obtained in
UAV single operator search tasks. Figure 4(a) shows the best estimate of the probability of detection (solid
line) as a function of search time for a visual search task run from previous experimental data in multi-UAV
simulated missions [31]. In this case, the estimate of detection probability P(t) was modeled using a logistic
regression of the form

P(t j) =
1

1+ exp(β T t)
(5)

cFor example, one alternative could be “target present”, while the other alternative could be “target absent”. The initial condition
x0 = 0 applies if the initial state is unbiased.



(a) Detection probability vs. time (b) Search time histogram showing mean (black line)

Figure 4. Operator detection models obtained from previous experimental results: detection probability (left) and search times (right)

with t = [1, t j]; t j is the total search time; and β = [β0,β1] is the vector of parameters of the logistic re-
gression. The regression on the parameter β was found be be described by β = [−2.3,−.037], and the 2-σ
range of the regression coefficients was given by β0 ∈ [−2.78, − 1.82] and β1 ∈ [−.05,−.025]. Operator
search times are shown in Figure 4(b), and are well approximated with a lognormal distribution with esti-
mated mean and variance parameters {µ̂,σ2}. Note that when the outcome of the search is stochastic (due
to random search times and detection probability), a reasonable formulation is that an operator would seek
to maximize an expected accumulated reward maxEp[RTH ] where the total accumulated reward up to time
T is given by RT , and we explore this further in the next section.

III.B. Operator detection model

Using the expected value of the reward, a scheduling formulation for the sequential search task problem
with operator models can be formulated as follows

SPOM



maxx j
k∈{0,1}

E
[
∑ j ∑k R jx

j
k

]
subject to: ∑k x j

k ≤ 1 ∀ j

∑ j x j
k ≤ 1 ∀k

∑ j(s j + t j)x
j
k ≤Ck, ∀k

Ck−1 +∑ j t jx
j
k ≤Ck, ∀k

Ck ≤ TH , ∀k

where E
[
∑ j ∑k Rkx j

k

]
= ∑ j ∑k E[Rk]x

j
k = ∑ j ∑k P(t j)Rkx j

k. Here, P(t j) denotes the probability of detection
of the search task. Note that the SPOMformulation is a minor modification to the SP formulation.

An example of the increase in mission time TH with the operator model and schedule using SPOM is
shown in Figure 5 (using the same set of tasks as those used in Figure 3). Figure 5(a) shows the increased
accumulated reward by increasing mission time, and shows significant differences in the original sensitivity
regions of problem SP (e.g., TH = 170 is still sensitive, while TH > 300 does not affect expected accumulated
reward much). Figure 5(b) shows the task allocation as a function of the time TH . The diamonds correspond
to which tasks were selected at a specific TH . Note that the tasks selected can vary considerably from the
optimization in SP (which does not consider the operator model). For TH = 250, optimization SP returns that



(a) Accumulated score, with operator model (b) Optimal assignment, with operator model

Figure 5. Accumulated score with increased mission time (left) and optimal assignment (right) including the operator model

(a) Average reward for 7 tasks (b) Average reward for 9 tasks

Figure 6. Comparison of average expected reward using SP and SPOM(1-σ deviation shown in thinner lines). The average reward for
SP was calculated by evaluating the expected reward with the schedule obtained by solving SP. (Note that accumulated rewards increase
mononotically when using additional MC simulations.)

the operator should look at tasks 3 and 5, for a total reward of 14.3 (see Figure 3(a)), while the optimization
SPOM would allocate tasks 1, 2, and 3, for a total expected reward of 5.19, considerably lower than that
predicted by SP. Tasks 1-3 are selected since their expected reward is much higher than that of tasks 3 and
5 combined. Note that the reward obtained by SP significantly overestimates the expected reward obtained
by SPOM.

III.C. Comparison between SP and SPOM

To validate the proposed model, the expected reward of the two problems SP and SPOM were compared in
100 Monte Carlo simulations. The task schedule for SP, SSP, was optimized based on the actual rewards
R j and the expected reward of this task list was evaluated as ∑ j∈SSP

E[R j] = ∑ j∈SSP
R jP(t j), where t j was

the search time for task j. The schedule for SPOM, SSPOM, was also evaluated, and the reward for this
task list was evaluated as ∑ j∈SPOM E[R j]. The results of a 7- and 9- task example are shown in Figures 6(a)
and 6(b), where the average expected reward for problem SPOM (in blue) is compared to the average
expected reward for problem SP (in red). The average expected reward was averaged across the 100 Monte
Carlo simulations, and 1-σ standard deviation lines are shown in the thinner lines. As anticipated, the true
expected performance of problem SP is much lower than SPOM (which accounts for the operator model).



(a) Sensitivity analysis of expected score for 9 tasks (b) Task selection sensitivity

Figure 7. Sensitivity to operator model P(t j) for different time TH

III.D. Sensitivity to operator detection model

One of the core assumptions of the scheduling problem with the operator model SPOM is the accuracy
of the operator detection model P(t j). Since the detection probability model was estimated from previ-
ous experimental results [31], it is fundamental to understand how sensitive the schedule and the schedule
performance are to the operator detection model P(t j). Unfortunately, sensitivity analysis of scheduling
problems is challenging task [32, 33], and scheduling under uncertainty is still an ongoing research topic.

For this paper, the preliminary investigation will be empirical, and we consider the sensitivity of the
detection probability as follows

P(t j) =
1

1+ exp(β̃ T t)
(6)

with β̃ = β±∆σβ ; β is the nominal parameter set of the logistic regression; and σβ is the standard deviation.
The tuning parameter ∆ introduces the amount of variability in the detection model. This parameter was then
varied in the interval ∆ ∈ [−2,2] to cover the expected variability of the logistic regression model.

Some preliminary results are shown in Figure 7(a) and Figure 7(b). Figure 7(a) shows the sensitivity of
a 9-task schedule, where the expected accumulated reward is parametrized by the time TH and the deviation
from the nominal model ∆. The schedule was re-evaluated for each value of TH and ∆, and can be seen
that for the choices of {R j, t j,s j}, the schedule performance can in fact be quite sensitive to the detection
probability model, particularly (and as expected), for longer mission times, when more tasks are available
to be placed in the optimal schedule. While the sensitivity of the optimal cost is important, it is not clear
whether the change in performance arises from the change in the reward evaluated for each task, or a change
in the task selection (which task is chosen in which order). Therefore it is more crucial to confirm the
sensitivity of the optimal task choice.

Figure 7(b) shows the effect of the change in the probability model (shown by ∆) and the change in the
task assignment for three difference times TH (TH ∈ {100,180,320}). Note that for the problem parameters
in the shorter mission time, the task choice is not sensitive to the operator model. For a time of TH = 180
units, there is no change in the optimal schedule: it is optimal to choose task 2. As a longer mission time is
chosen, it is optimal to perform task 2 followed by task 3 under the nominal model (∆ = 0). If the model is
underestimated (∆ < 0), the optimal schedule does not change, but if the model is overestimated, the optimal
choice is task 5. For even longer times, the nominal schedule (∆ = 0) is to select tasks 5, 4, and 3 (in that
order). If the model is underestimated, however, the optimal schedule is to perform tasks 2, 1, 4, and 3.



(a) Under-estimation of expected score (b) Probability of underestimating mean reward

Figure 8. Sensitivity of optimal reward to precise knowledge of search time

Future work will be devote to determining whether it is possible to determine the sensitivity of the optimal
schedule using on-line methods. An additional item of concern is the uncertainty in the search times.

III.E. Sensitivity to uncertain search times

Since the optimization of SPOM is a discrete decision problem, it can also be sensitive to the knowledge of
the search times. As for the case of the detection model, a thorough sensitivity analysis can be much more
complex, particular because the temporal effect appears in the constraints of the optimization. One way of
handling the fact that the search times are uncertain, is to substitute the mean value, t̄, and use this value as
the true value of the optimization. Thus, one can solve the following problem

SPOMCE:



maxEp,t

[
∑ j ∑k Rkx j

k

]
subject to: ∑k x j

k ≤ 1 ∀ j

∑ j x j
k ≤ 1 ∀k

∑ j(s j + t̄ j)x
j
k ≤Ci

Ci−1 +∑ j t̄ jx
j
k ≤Ci

Ci ≤ T


The SPOMCE approach can lead to a loss of performance when implemented on the actual scheduling

system, since the optimized schedule may not be feasible to implement on the real system, since the search
time durations may vary significantly from the assumed mean. For example, the schedule calculated by
SPOMCE that optimistically assumes the nominal search times, can actually lead to fewer of the tasks being
found in the allotted time TH . An example of this is shown in a 100-Monte Carlo simulation result of a 5-task
schedule with increasing time horizon TH (Figure 8(a) shows an example of Monte Carlo simulations under
a particular scenario). The optimal schedule calculated with SPOMCE is shown in blue, while the expected
value of the schedule (evaluated with realizations of the search time), is shown in red; the accumulated
reward decreases by almost 10% simply by using the realized search times. The Monte Carlo results using
100 different search times are shown in Figure 8(b), which plots the probability of underestimating the
accumulated reward (calculated as Pr(J < J∗), where J∗ is the optimal reward of SPCE). Underestimation
can occur as frequently as 40%. Sensitivity analysis, as for the case of the detection model, is an ongoing
research focus.



(a) η = 0.9 (b) η = 0.4

Figure 9. Receding horizon greedy comparison showing improvement of the scheduling algorithm over the greedy algorithm (in percent-
age): mean improvement J̄ and standard deviation σJ are calculated from simulation data

IV. Modeling the Human Operator: A Greedy Approach

Thus far, the modeling approach has been primarily focused on previously observed statistical features,
such as detection probability and decision times. However, a rich set of qualitative and quantitative behav-
ioral information has also been inferred in previous scheduling experiments that can be encoded in these
simulations. This section considers the operator high-level decision making from a behavioral perspective
from previous literature, and, encoding the previous statistical models, makes performance predictions from
the output of a decision support algorithm to what could be expected from a typical operator.

In an attempt to model the anticipated operator strategy, we take inspiration from previous results in
sequential choice (Bandit-like) problems [34, 35] and “least-commitment” strategies in manufacturing [15]
which have shown that humans will likely only exhibit a finite-horizon lookahead. We assume that operators
will greedily select the search tasks based on value or availability [9], and subjects are assumed to maximize
the reward while ensuring the task can be completed. The subjects then pick the most rewarding and feasible
task first, remove it from the available tasks, and repeat. Note that operator greedy strategies have been seen
in previous work [9, 36, 37].

The greedy operator approach model was tested against the scheduling problem SPOM in NMC = 200
Monte Carlo (MC) simulations. For each MC simulation, search times t j and start time s j were generated
randomly from first generating random instances of the mean and variance of the log-normal distribution

µ = 2.92+0.15∗ [1 : N].∗rand, σ
2 = 0.6+0.05∗ [1 : N].∗rand (7)

The search times were calculated as t j = µ( j)+ησ( j) where η was a tuning parameter that reflected
much longer search times. The optimal (SPOM) and greedy schedules were then calculated for different
times TH ∈ {100,125, . . . ,300}. The expected reward for the greedy schedule was calculated based on the
regression model of Equation (5). The expected accumulated reward for the greedy and scheduled (Jg and Js

respectively) was calculated for each instance of the search times and each TH , and the average and standard
deviation of the accumulated reward ratio of each schedule were calculated. These results are shown in
Figure 9 for two different values of η . The case for η = 0.9 (Figure 9(a)) shows that as the mission time
increases, the difference between the greedy and scheduled algorithm decreases as expected. For moderate
times, however, this problem is fairly constrained, and so the difference between the scheduled assignment
and the greedy allocation is on the order of 5%. When there is a much longer time to schedule the tasks,
as in the case of η = 0.4 (Figure 9(b)), the benefit of the scheduling algorithm is predicted to improve
performance on the order of 20%.



V. Experimental Design

An ongoing experiment is being conducted that tests the scheduling performance of operators in a group
of real-time planning tasks. The experiment takes inspiration from the obtained simulation results, and has
two goals in mind. First, we seek to validate the previous literature and determine whether or not human
subjects are efficient at scheduling search tasks as they are in scheduling job-shop problems. The primary
differences are that search tasks are primarily perceptual, and exhibit a very high variability between human
operators. Secondly, this experiment is interested in determining whether or not the addition of supplemen-
tary information is beneficial in the allocation of sequential search tasks. This additional information takes
the form of a ‘preview panel’, in which the subjects see a restricted version of the search task: presumably,
by inferring the kind of environment and the goal of the search task, the subjects should be able to obtain
more information on the difficulty of the overall task, and use this information to generate more efficient
search schedules.

Due to the tuning requirements (and sensitivity) of some of the problem parameters, this experiment will
first investigate whether or not problem SPCE can provide good decision support to the operator. Implemen-
tation of a decision support that uses SPOM will be future work.

V.A. Scheduling Modes

The operator will have a number of tasks available, which will appear stochastically. At any given time
an operator has to optimize his accumulated reward by scheduling and conducting as many search tasks as
possible. Moreover, operators are evaluated on their ability to schedule vehicle search tasks introduced in
Section II in three different scheduling modes:

1) Human Only (HO) scheduling: the operator is solely responsible for the scheduling of the search
tasks

2) Algorithm Aided (AA) scheduling: the scheduling algorithm solves problem SP and provides the
optimized sequence of tasks to the operator, who will then choose whether to implement this schedule
or not. The operator can still reschedule tasks by interacting with the optimization algorithm

3) Algorithm Only (AO) scheduling: the scheduling algorithm solves problem SP, and presents the
tasks to the operator in the optimized order. The operator is not able to change the optimized schedule;
the operator has to accept it; however, the operator is able to skip an individual task when engaged

V.B. HOSS Simulation Environment

The experiment is performed in the HOSS environment (Helping Operators Schedule Search tasks),
a simulation environment tailored to investigate human-in-the-loop search task scheduling scenarios. A
typical HOSS interface is shown in Figure 10. A single operator has an overview of a list of tasks which are,
or will be, available in the near future in Pane B (the task overview pane). The tasks are defined by a unique
ID number j, a reward R j (Low, Medium, or High), the task start time s j, and the expected search time t̄ j.

The objective of the operator is to maximize the accumulated reward by constructing appropriate sched-
ules in the HO mode, by modifying the schedules in the AA mode, and by accepting the schedules in the
AO mode. In the HO and AA modes, the operator can drag tasks from the task overview pane to the active
task list (Pane D). The operator has the ability to reschedule a task. The scheduled task are also graphically
represented in a timeline (Pane F).

Once scheduled in the active task list, depending on the start time, the task can be engaged, by clicking
the ‘Engage’ button, initiating a search task in the payload search pane (Pane A). A search task consists of a
identifying a target in an image loaded in the payload search pane. The operator can actively pan and zoom
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Figure 10. HOSS interface. The payload search pane is denoted by A, B is the task overview pane, C is the message box, the active task
list pane is given by D, E is the preview pane and finally, E is the timeline pane

in the payload search pane in order to identify and submit the target. The target description is given in the
message pane (Pane C).

As mentioned before, in order to see if an additional source of information in the form of a search
task preview helps the operator scheduling, HOSS also provides the operator with a preview (Pane E). The
preview is accompanied by a short task description. The preview feature adds another two experimental
conditions to the three scheduling modes. The results of this experiment will be published in future work.

VI. Conclusion and Future Work

This paper has presented a novel scheduling formulation for the single operator, multi-UAV problem
that is designed to maximize the operator’s accumulated reward of the search tasks in a time-pressured
environment. The formulation was generalized to include operator performance obtained from previous
human-in-the-loop experiments. Comparisons were made between the expected performance difference be-
tween this scheduling system and a greedy scheduling strategy representative of operator planning, showing
the potential for improvement of the proposed strategy.

Ongoing work is analyzing the experimental results of a human-in-the-loop experiment in which sub-
jects were asked to optimize their scheduling of search tasks in a time-pressured environment. Comparisons
between human-only and human-assisted conditions are being evaluated. Our ongoing work is also address-
ing the importance of uncertainty of search times in the scheduling recommendations made by the decision
support algorithms.
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