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ABSTRACT 
Previous research has identified broad metric classes for human-
automation performance to facilitate metric selection, as well as 
understanding and comparison of research results. However, there 
is still lack of an objective method for selecting the most efficient 
set of metrics. This research identifies and presents a list of 
evaluation criteria that can help determine the quality of a metric 
in terms of experimental constraints, comprehensive 
understanding, construct validity, statistical efficiency, and 
measurement technique efficiency. Future research will build on 
these evaluation criteria and existing generic metric classes to 
develop a cost-benefit analysis approach that can be used for 
metric selection.   

Categories and Subject Descriptors 
C.4 [Performance of Systems]: Measurement Techniques 
J.7 [Computers in Other Systems]  

General Terms 
Measurement, Performance, Experimentation, Human Factors, 
Standardization, Theory. 

Keywords 
Metric Quality, Human Supervisory Control, Validity, Statistics, 
Experiments. 

1. INTRODUCTION 
Human-automation teams are common in many domains, such as 
military operations, process control, and medicine. With 
intelligent automation, these teams operate under a supervisory 
control paradigm. “Supervisory control means that one or more 
human operators are intermittently programming and continually 
receiving information from a computer that itself closes an 
autonomous control loop through artificial effectors and sensors to 
the controlled process or task environment [1].” Example 
applications include robotics for surgery, rock sampling for 
geology research, and military surveillance with unmanned 
vehicles.  

A popular metric used to evaluate human-automation performance 
in supervisory control is mission effectiveness [2, 3]. Mission 
effectiveness focuses on performance as it relates to the final 
output produced by the human-automation team. However, this 
metric fails to provide insights into the process that leads to the 
final mission-related output. A suboptimal process can lead to a 
successful completion of a mission, e.g., when humans adapt to 
compensate for design deficiencies. Hence, focusing on just the 
mission effectiveness makes it difficult to extract information to 
detect design flaws and to design systems that can consistently 
support successful mission completion.  

Measuring multiple human-computer system aspects, such as the 
situational awareness of the human, can be valuable in diagnosing 
performance successes and failures, and identifying effective 
training and design interventions. However, choosing an efficient 
set of metrics for a given experiment still remains a challenge. 
Many researchers select their metrics based on their past 
experience. Another approach to metric selection is to collect as 
many measures as possible to supposedly gain a comprehensive 
understanding of the human-automation team performance. These 
methods can lead to insufficient metrics, expensive 
experimentation and analysis, and the possibility of inflated type I 
errors. There appears to be a lack of a principled approach to 
evaluate and select the most efficient set of metrics among the 
large number of available metrics.  

Different frameworks of metric classes are found in the literature 
in terms of human-autonomous vehicle interaction [4-7]. These 
frameworks define metric taxonomies and categorize existing 
metrics into high level metric classes that assess different aspects 
of the human-automation team performance and are generalizable 
across different missions. Such frameworks can help 
experimenters identify system aspects that are relevant to 
measure. However, these frameworks do not include evaluation 
criteria to select specific metrics from different classes. Each 
metric set has advantages, limitations, and costs, thus the added 
value of different sets for a given context needs to be assessed to 
select the set that maximizes value and minimizes cost.  

 



  
 

Figure 1. Conceptual model of human-supervisory control (modified from Pina et al. [5]). 
 
 

This paper presents a brief overview of existing generalizable 
metric frameworks and then defines a set of evaluation criteria for 
metric selection. These criteria and the generic metric classes 
constitute the basis for the future development of a cost-benefit 
methodology to select supervisory control metrics.  

2. GENERALIZABLE METRIC CLASSES 
For human-autonomous vehicle interaction, different frameworks 
of metric classes have been developed by researchers to facilitate 
metric selection, and understanding and comparison of research 
results. Olsen and Goodrich proposed four metric classes to 
measure the effectiveness of robots: task efficiency, neglect 
tolerance, robot attention demand, and interaction effort [4]. This 
set of metrics measures the individual performance of a robot, but 
fails to explicitly measure human performance.  

Human cognitive limitations often constitute a primary bottleneck 
for human-automation team performance [8]. Therefore, a metric 
framework that can be generalized across different missions 
conducted by human-automation teams should include cognitive 
metrics to understand what drives human behavior and cognition.  

In line with the idea of integrating human and automation 
performance metrics, Steinfeld et al. suggested identifying 
common metrics in terms of three aspects: human, robot, and the 
system [7]. Regarding human performance, the authors discussed 
three main metric categories: situation awareness, workload, and 
accuracy of mental models of device operations. This work 
constitutes an important effort towards developing a metric 
toolkit; however, this framework suffers from a lack of metrics to 
evaluate collaboration effectiveness among humans and among 
robots. 

Pina et al. [5] defined a more comprehensive framework for 
human-automation team performance based on a high-level 

conceptual model of human supervisory control. Figure 1 
represents this conceptual model for a team of two humans 
collaborating, with each controlling an autonomous platform. The 
platforms also collaborate autonomously. These collaboration 
layers are depicted by arrows between each collaborating unit. 
The operators receive feedback about automation and mission 
performance, and adjust automation behavior through controls if 
required. The automation interacts with the real world through 
actuators and collects feedback about mission performance 
through sensors.  

Based on this model, Pina et al. [5] defined five generalizable 
metric classes: mission effectiveness, automation behavior 
efficiency, human behavior efficiency, human behavior 
precursors, and collaborative metrics (Table 1). Mission 
effectiveness includes the popular metrics and measures 
concerning how well the mission goals are achieved. Automation 
and human behavior efficiency measure the actions and decisions 
made by the individual components of the team. Human behavior 
precursors measure a human’s initial state, including attitudes and 
cognitive constructs that can be the cause of and can influence a 
given behavior. Collaborative metrics address three different 
aspects of team collaboration: collaboration between the human 
and the automation collaboration between the humans that are in 
the team, and autonomous collaboration between different 
platforms. 

These metric classes can help researchers select metrics that can 
result in a comprehensive understanding of the human-automation 
performance, covering issues ranging from automation 
capabilities to human cognitive abilities. However, there still is a 
lack of an objective methodology to select a collection of metrics 
that most efficiently measure a system’s human-automation 
performance. The following section presents a preliminary list of 



evaluation criteria that can help researchers evaluate the quality of 
a set of metrics. 

 
Table 1. Human supervisory control metric classes and 

subclasses [9] 

 

 

3. METRIC EVALUATION CRITERIA 
The proposed metric evaluation criteria for human supervisory 
control systems consist of five general categories that are listed in 
Table 2. These categories focus both on the metrics, which are 
constructs, and on the associated measures, which are mechanisms 
for expressing construct sizes. There can be multiple ways of 
measuring a metric. For example, situational awareness, which is 
a metric, can be measured based on objective or subjective 
measures [10]. Different measures for the same metric can 
generate different benefits and costs. Therefore, the criteria 
presented in this section evaluate a metric set by considering the 
metrics (e.g., situational awareness), the associated measures (e.g., 
subjective responses), and the measuring techniques (e.g., 
questionnaires given at the end of experimentation).  

These proposed criteria target human supervisory control systems, 
with influence from the fields of systems engineering, statistics, 
human factors, and psychology. These fields have their own 
flavors of experimental metric selection including formal design 
of experiment approaches such as response surface methods and 
factor analyses, but often which metric to select and how many 
are left to heuristics developed through experience. 

 

 

Table 2. Metric evaluation criteria 

 

3.1 Experimental Constraints 
Time and monetary cost associated with measuring and analyzing 
a specific metric constitute the main practical considerations for 
metric selection. Time allocated for gathering and analyzing a 
metric also comes with a monetary cost due to man-hours, such as 
time allocated for test bed configurations. Availability of 
temporary and monetary resources depends on the individual 
project; however, resources will always be a limiting factor in all 
projects. 

The stage of system development and the testing environment are 
additional factors that can guide metric selection. Early phases of 
system development require more controlled experimentation in 
order to evaluate theoretical concepts that can guide system 
design. Later phases of system development require a less 
controlled evaluation of the system in actual operation. For 
example, research in early phases of development can assess 
human behavior for different automation levels, whereas research 
in later phases can assess the human behavior in actual operation 
in response to the implemented automation level.   

The type of testing environment depends on available resources, 
safety considerations, and the stage of research development. For 
example, simulation environments can enable researchers to have 
high experimental control, and manipulate and evaluate different 
system design concepts accordingly. In simulation environments, 
researchers can create off-nominal situations and measure 
operator responses to such situations without exposing them to 
risk. However, simulation creates an artificial setting and field 
testing is required to assess system performance in actual use. The 
types of measures that can be collected are constrained by the 
testing environment. For example, the responses to rare events are 
more applicable for research conducted in simulated 
environments, whereas observational measures can provide better 
value in field testing. 

3.2 Comprehensive Understanding 
It is important to maximize the understanding gained from a 
research study. However, due to the limited resources available, it 
is not possible to collect all required metrics. Therefore, each 
metric should be evaluated based on how much it explains the 
phenomenon of interest and how much it helps explain the 
underlying reasons for what other metrics measure. 

The most important aspect of a study is finding an answer to the 
primary research question. The proximity of a metric to answering 
the primary research question defines the importance of that 
metric. For example, a workload metric may not tell much without 
a mission effectiveness metric. However, this does not mean that 

1) Experimental Constraints (e.g., time required to 
analyze a metric) 

2) Comprehensive Understanding (e.g., causal relations 
with other metrics) 

3) Construct Validity (e.g., power to discriminate between 
similar constructs) 

4) Statistical Efficiency (e.g., effect size) 
5) Measurement Technique Efficiency (e.g., intrusiveness 

to subjects) 

1) Mission Effectiveness (e.g., key mission performance 
parameters) 

2) Automation Behavior Efficiency (e.g., usability, 
adequacy, autonomy, reliability) 

3) Human Behavior Efficiency 
a) Attention allocation efficiency (e.g., scan patterns, 

prioritization) 
b) Information processing efficiency (e.g., decision 

making) 
4) Human Behavior Precursors 

a) Cognitive precursors (e.g., situational awareness, 
mental workload) 

b) Physiological precursors (e.g., physical comfort, 
fatigue) 

5) Collaborative Metrics 
a) Human/automation collaboration (e.g., trust, 

mental models) 
b) Human/human collaboration (e.g., coordination 

efficiency, team mental model) 
c) Automation/automation collaboration (e.g., 

platforms’ reaction time to situational events that 
require autonomous collaboration) 



the workload metric fails to provide additional insights into the 
human-automation performance. Another characteristic of a 
metric that is important to consider is the amount of additional 
understanding gained using a specific metric when a set of metrics 
are already collected. For example, rather than having two metrics 
that measure mission effectiveness, having one metric that 
measures mission effectiveness and another metric that measures 
human behavior can  provide a better understanding on the team 
performance. 

In addition to providing additional understanding, another desired 
metric quality is its causal relations with other metrics. A better 
understanding can be gained, if a metric can help explain the 
underlying reasons to what the other metrics measure. For 
example, operator response to an event, hence human behavior, 
will often be dependent on the conditions and/or operator’s state 
when the event occurs. The response to an event can be described 
in terms of three set of variables [11]: a pre-event phase that 
defines how the operator adapts to the environment; an event-
response phase that describes the operator’s behavior in 
accommodating the event; and an outcome phase that describes 
the outcome of the response process. The underlying reasons for 
the operator’s behavior and the final outcome for an event can be 
better understood if the initial conditions and operator’s state 
when the event occurs is also measured. When used as covariates 
in statistical analysis, the initial conditions of the environment and 
the operator can help explain the variability in other metrics of 
interest. Thus, in addition to human behavior, experimenters are 
encouraged to measure human behavior precursors and 
automation behavior in order to assess the operator state and 
environmental conditions which may influence human behavior. 

3.3 Construct Validity 
Construct validity refers to how well the associated measure 
captures the metric or construct of interest. For example, 
subjective measures for situational awareness ask subjects to rate 
the amount of situational awareness they had on a given scenario 
or task. These measures are proposed to help in understanding 
subjects’ situational awareness [10, 12]. However, self-ratings 
assess meta-comprehension rather than comprehension of the 
situation: it is unclear whether or not operators are aware of their 
lack of situational awareness. Therefore, subjective responses on 
situational awareness are not valid to assess the actual situational 
awareness but rather the awareness of lack of situational 
awareness.  

Good construct validity requires a measure to have high 
sensitivity to changes in the targeted construct. That is, the 
measure should reflect the change as the construct moves from 
low to high levels [13]. For example, the primary task 
performance starts to break down only when the workload reaches 
higher levels [13, 14]. Therefore, primary task performance 
measures are not sensitive to changes in the workload at lower 
workload levels, since with sufficient spare processing capacity 
the operators are able to compensate for the increase in workload.  

A measure with high construct validity should also be able to 
discriminate between similar constructs. The power to 
discriminate between similar constructs is especially important for 
abstract constructs that are hard to measure and difficult to define, 
such as human workload or attentiveness. An example measure 
that fails to discriminate two related metrics is galvanic skin 
response. Galvanic skin response is the change in electrical 

conductance of the skin attributable to the stimulation of the 
sympathetic nervous system and the production of sweat. 
Perspiration causes an increase in skin conductance, thus galvanic 
skin response has been proposed and used to measure workload 
and stress levels (e.g., Levin et al. [15]). However, even if 
workload and stress are related, they still are two separate metrics. 
Therefore, galvanic skin response cannot alone suggest a change 
in workload.   

Good construct validity also requires the selected measure to have 
high inter- and intra-subject reliability. Inter-subject reliability 
requires the measure to assess the same construct for every 
subject, whereas intra-subject reliability requires the measure to 
assess the same construct if the measure were repeatedly collected 
from the same subject under identical conditions.   

Intra- and inter-subject reliability is especially of concern for 
subjective measures. For example, self-ratings are widely utilized 
for mental workload assessment [16, 17]. This technique requires 
operators to rate the workload or effort experienced while 
performing a task or a mission. Self-ratings are easy to administer, 
non-intrusive, and not expensive. However, different individuals 
may have different interpretations of workload, leading to 
decreased inter-subject reliability. For example, some participants 
may not be able to separate mental workload from physical 
workload [18], and some participants may report their peak 
workload whereas others may report their average workload. 
Another example of low inter-subject reliability is for subjective 
measures of situational awareness. Vidulich & Hughes [10] found 
that about half of their participants rated situational awareness by 
gauging the amount of information to which they attended; while 
the other half of the participants rated their SA by gauging the 
amount of information they thought they had overlooked. 
Participants may also have recall problems if the subjective 
ratings are collected at the end of a test period, raising concerns 
on the intra-subject reliability of subjective measures. 

High correlation between different measures, even if they are 
intended to assess different metrics, is another limiting factor for 
metric selection. A high correlation can be indicative of the fact 
that multiple measures assess the same metric or the same 
phenomenon. Hence, including multiple measures that are highly 
correlated with each other can result in wasted resources. 

3.4 Statistical Efficiency 
There are three metric qualities that should be considered to 
ensure statistical efficiency: total number of measures collected, 
frequency of observations, and effect size. 

Analyzing multiple measures that are correlated with each other 
would inflate type I error. That is, as more dependent variables are 
analyzed, finding a significant effect when there is none becomes 
more likely. The inflation of type I error due to multiple 
dependent variables can be handled with multivariate analysis 
techniques, such as Multivariate Analysis of Variance 
(MANOVA) [19]. It should be noted that multivariate analyses 
are harder to conduct as researchers are more prone to include 
irrelevant variables in multivariate analyses, possibly hiding the 
few significant differences among many insignificant ones. The 
best way to avoid failure to identify significant differences is to 
design an effective experiment with the most parsimonious 
metric/measure set that is expected to produce differences, and 



excluding others that are not expected to show differences among 
many treatments.  

Another metric characteristic that needs to be considered is the 
number of observations required for statistical analysis. 
Supervisory control applications require humans to be monitors of 
automated systems, with intermittent interaction. Because humans 
are poor monitors by nature [20], human monitoring efficiency is 
an important metric to measure in many applications. The 
problem with assessing monitoring efficiency is that, in most 
domains, errors or critical signals are very rare, and operators can 
go through an entire career without encountering them. For that 
reason, in order to have a realistic experiment, such rare events 
cannot be included in a study with sufficient frequency. 
Therefore, if a metric requires response to rare events, the 
associated number of observations may not enable the researchers 
to extract meaningful information from this metric. Moreover, 
small frequency of observed events cannot be statistically 
analyzed unless data is obtained from a very large number of 
subjects, such as in medical studies on rare diseases. Conducting 
such large scale supervisory control experiments is generally cost-
prohibitive. 

The number of subjects recruited for a study is especially limited 
when participants are domain experts such as pilots. The power to 
identify a significant difference, when there is one, depends on the 
differences in the means of factor levels and the standard errors of 
these means. Standard errors of the means are determined by the 
number of subjects. One way to compensate for limited number of 
subjects in a study is to use more sensitive measures that will 
provide a large separation between different conditions, that is, a 
high effect size. Experimental power can also be increased by 
reducing error variance by collecting repeated measures on 
subjects, focusing on sub-populations (e.g., experienced pilots), 
and/or increasing the magnitude of manipulation for independent 
variables (low and high intensity rather than low and medium 
intensity). However, it should also be noted that increased control 
on the experiment, such as using sub-populations, can lead to less 
generalizable results, and there is a tradeoff between the two. 

3.5 Measurement Technique Efficiency 
The data collection technique associated with a specific metric 
should not be intrusive to the subjects or to the nature of the task. 
For example, eye trackers are used for capturing operator’s visual 
attention [21, 22]. In particular, head-mounted eye trackers can be 
uncomfortable for the subjects, and hence influence their 
responses. Wearing an eye-tracker can also lead to an unrealistic 
situation that is not representative of the task performed in the real 
world.  

Eye trackers are an example of how a measurement instrument 
can interfere with the nature of the task. The measuring technique 
itself can also interfere with the realism of the study. For example, 
off-line query methods are used to measure operator’s situational 
awareness [23]. These methods are based on briefly halting the 
experiment at randomly selected intervals, blanking the displays, 
and administering a battery of queries to the operators. This 
situational awareness measure then assesses global situational 
awareness metric by calculating the accuracy of operator’s 
responses. The collection of the measure requires the interruption 
of the task in a way that is unrepresentative of the reality 
generating an artificial setting. The interruption may also interfere 

with other metrics such as operator’s performance and workload, 
as well as other temporal-based metrics. 

4. DISCUSSION 
Supervisory control of automation is a complex phenomenon with 
high levels of uncertainty, time-pressure, and a dynamically-
changing environment. The performance of human-automation 
teams depend on multiple components such as human behavior, 
automation behavior, human cognitive and physical capabilities, 
team interactions, etc. Because of the complex nature of 
supervisory control, there are many different metrics that can be 
utilized to assess performance. However, it is not feasible to 
collect all possible metrics. Moreover, collecting multiple metrics 
that are correlated can lead to statistical problems such as inflated 
type I errors.  

This paper presented a preliminary list of evaluation criteria for 
determining a set of metrics for a given research question. These 
criteria were populated under five major headings: experimental 
constraints, comprehensive understanding, construct validity, 
statistical efficiency, and measurement technique efficiency. It 
should be noted that there are interactions between these major 
categories. For example, the intrusiveness of a given measuring 
technique can affect the construct validity for a different metric. 
In one such case, if the situational awareness is measured by 
halting the experiment and querying the operator, then the 
construct validity for the mission effectiveness or human behavior 
metrics become questionable. Therefore, the evaluation criteria 
presented in this paper should be applied to a collection of metrics 
rather than each individual metric alone, taking the interactions 
between different metrics into consideration. The list of 
evaluation criteria presented in this paper is a guideline for metric 
selection. It should be noted that there is not a single set of metrics 
that are the most efficient across all applications. The specific 
research aspects such as available resources and the questions of 
interest will ultimately determine the relative metric quality. 
Future research will identify a methodology based on a cost-
benefit analysis approach, which will objectively identify the best 
set of metrics for classifications of research studies. 
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