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ABSTRACT 

Balancing task allocation between humans and computers is crucial to the development of effective 
decision support systems.  This thesis investigates the appropriate balance between humans and 
automation for geospatial path problem solving within the high-risk domain of human planetary 
surface exploration, where decisions are time critical and humans must adapt to uncertainty.  In 
order to develop flexible and robust decision support systems for Lunar and planetary exploration, 
human-automation role allocations are examined to understand how humans conduct complex 
optimizations under different degrees of automated assistance. 

A work domain analysis of human planetary extravehicular activities (EVA) resulted in a framework 
for human-robotic planning, including key input variables, constraints, and outputs.  Based on this 
analysis, a prototype path planning aid was developed.  Under investigation was the use of partial 
automatic path generation and a visualization called levels of equal cost (LOEC, an aggregate cost 
map).  Human-in-the-loop testing was employed to understand the effects of the automated 
assistance and different visualizations on path planning performance across multivariate cost 
functions.  In two separate experiments, participants were tasked to make obstacle-free, least-costly 
paths based on given cost functions.

Analysis of the experimental results indicated that knowledge-based reasoning is best supported 
when operators conduct manual sensitivity analysis, a strategy that was absent when path generation 
was allocated to automation.  Leveraging computer-generated paths resulted in overall better path 
performance but also led to automation bias and decreased situation awareness.  With respect to 
visualizations,  participants using elevation contours had lower cost paths and short task times when 
automation was reliable.  However, the LOEC visualization helped participants initially create least-
costly paths for the most complex cost function.  Furthermore, LOEC visualization appears to 
promote manual sensitivity analysis, which was beneficial in the degraded automation condition, 
where low cost and time was observed for participants with this visualization.  Finally, two types of 
sensitivity analysis were observed, one that leveraged the available “what if” tools and the other that 
created whole paths.  While there was no difference in path costs across the strategies, the increase 
use of the manual sensitivity analysis (i.e., path modifications) led to decrease path cost errors.  
 
Supported by: NASA Harriett Jenkins Predoctoral Fellowship, Office of Naval Research, National 
Space Biomedical Research Institute (NSBRI/NASA) and the American Associate of University 
Women Dissertation Fellowship 
Thesis supervisor: M. L. Cummings, Assistant Professor 
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1 INTRODUCTION 

1.1 MOTIVATION 

On May 25, 1961, President John F. Kennedy endeavored the United States to send a man to the 

Moon and return him safely to Earth, all within a decade (1961).  Just three months shy of this 

deadline, Apollo 14 landed on the Moon, with Alan Shepard (the first American in space) and Edgar 

Mitchell.  Among their tasks were to complete two extravehicular activities (EVA), or spacewalks, 

exploring the lunar area called Fra Mauro.  In their second EVA, their destination was the edge of 

Cone Crater, an impact crater in the vast monochromatic lunar terrain.  Along this traverse, the 

astronauts became uncertain of their location and began experiencing fatigue as they unexpectedly 

climbed steep terrain.  These astronauts searched for Cone Crater, wearing bulky spacesuits, 

breathing hard, hundreds of thousands of kilometers away from Earth, and all they had to guide 

them was a paper map (Figure 1.1). 

 

Figure 1.1 Apollo 14 astronaut with lunar map (NASA image: AS14-64-9089) 
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The feat of sending and returning humans to and from the Moon is extraordinary.  A new national 

vision for human space exploration has been set forth as of January 2004, which includes returning 

to the Moon and going beyond to other planetary surfaces like Mars.  Human presence on planetary 

surfaces will involve extra-vehicular activities (EVAs), either as part of field exploration, 

construction, or even recreation.  In these futuristic settings, EVA traversals, be it on foot or on 

rovers, will become a routine, daily task.  However, in light of the Apollo experience, there is still 

research and development that can be done to improve mission planning, productivity, and safety of 

EVAs, in particular, with the use of real-time decision support systems.  Additionally, we can take 

advantage of thirty-five years of technological advancements.  This thesis focuses on improving 

planetary EVAs through human and automation collaboration by investigating the real-time task of 

traversals planning and re-planning. 

A successful, productive planetary exploration program must take advantage of the strengths of 

both humans and automation, be it computer aids or robotics.  It is naïve to consider “robotic” and 

“human” missions as exclusively one or the other, when, in fact, all missions cannot be 

accomplished without the support of the other:  

“… in the space program it has been common to consider that a task must be done by either 

an astronaut or a “robot”, that if a spacecraft is manned then astronauts must do almost 

everything, and that if a spacecraft is unmanned every task must be automated.  In fact, on 

manned spacecraft many functions are automatic, and on unmanned spacecraft many 

functions are performed by human remote control from the ground.” (pg. 205, Sheridan, 

2000) 

For instance, the Mars Exploration Rovers (MER) are two robotic agents that have successfully 

explored the surface of Mars for almost three years because of the enormous team of scientists and 

engineers operating them from the Earth.  It is this assumption, that human-computer collaboration 

will be integral in future space exploration missions, which frames this thesis. 

Planetary EVAs are complex, hazardous and safety-critical.  EVA tasks currently conducted in 

microgravity already require automation, for example, for life support system control and remote 

manipulation of the robotic arm for positioning.  From the technological perspective, planetary 
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EVAs require and depend on intricate life support systems for operations in extreme environments.  

Current pressurized space suits protect astronauts from the environment, for example, providing 

thermal regulation, but they limit mobility and senses, e.g., sound, vision, smell and touch.  In 

addition, there is a limited supply of consumables, e.g., oxygen and battery power.  Astronauts must 

also conduct their EVAs within prescribed safety constraints and operational requirements.  

From a cognitive decision-support perspective, a traversing astronaut needs to manage navigation, 

physiologic- and mission-specific information, all in time-finite situations.  Planning traversals on 

other planetary surfaces will be a time consuming task undertaken weeks and months before the 

mission, involving many scientists and engineers who recommend a feasible path while keeping 

within constraints and achieving scientific or mission goals.  Managing all this information becomes 

increasingly difficult when the task changes to real-time re-planning of a traversal, i.e., the astronaut 

must change and select a new path in real-time within a finite amount of time while not violating 

constraints.  Astronauts will have many, and often, competing goals (e.g., a science objective versus a 

safety constraint) for which they will have to find an acceptable compromised solution. Re-planning 

of an EVA is inevitable since “the unexpected” is inherent to exploration; maximizing mission 

success, productivity, and safety is linked to the astronauts’ and mission controllers’ ability to re-

plan. Hence, a cognitive decision support system is would be essential in order to re-plan an EVA 

traversal in-situ. 

Path planning and re-planning is not a task that is exclusive to EVA traversals; in fact, automated 

planners are becoming ubiquitous, and are integrated into daily activities such as driving.  Geospatial 

problem solving also pertains to other “moving” objects, be it a soldier, an unmanned vehicle (air, 

ground, and underwater), a search and rescue robot, and manned aircraft.  Any decision support 

system that involves these objects requires the human operator to conduct path planning.  Thus, 

while the focus of this thesis is on human space exploration, the principles examined in this thesis, 

the human optimization process in a geospatial task, cut across all these mentioned domains.

1.2 PROBLEM STATEMENT 

Traversal re-planning is a task that requires knowledge-based reasoning, where “faced with an 

environment for which no know-how or rules for control are available from previous encounters … 
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performance is goal-controlled and knowledge-based.” (pg. 259, Rasmussen, 1983). Knowledge-

based reasoning is necessary to support astronauts confronted with uncertain, novel situations. On 

the other hand, ruled-based reasoning is emphasized in the traditional methods of astronaut training, 

focusing on repeatedly practicing how to precisely accomplish a specific task in microgravity.  

Inevitably, there will be a paradigm shift in training – rule-based training will not be sufficient for 

future space exploration missions.  Hence, any computer decision aids must support knowledge-

based reasoning. 

The central research question of this thesis addresses what is the appropriate way for decisions 

support systems to enable knowledge-based reasoning in geo-spatial path planning problems. In 

order to explore this problem, different human-automation role allocations are examined and tested 

in order to understand how humans conduct complex optimizations under different automated 

assistance.  As a result, the aspects of human-computer collaboration that promote or detract from 

path planning performance are identified.  In turn, this will help decision support system designers 

leverage human-automation collaboration to enable knowledge-based reasoning.   

1.3 THESIS OUTLINE 

The approach to exploring human-computer collaboration in a path planning task has followed 

general human-systems integration principles for the design and testing of decision support systems 

for planetary exploration.  In order to develop a path planner, the operational environment needs to 

be first defined.  This was accomplished through a work domain analysis of human planetary EVAs.  

Functional allocation between users and automation are determined, i.e., different automated 

assistance in support of users in decision processes.  Human-in-the-loop testing is employed to 

understand the effects of the automated assistance on path planning performance.  Hence, through 

experimentation, effective optimization strategies can be resolved.  Finally, the requirements for 

decision support systems for real-time EVA planning and re-planning can be generated based on 

principled and comprehensive analysis.  This thesis addresses each of these steps. 

In Chapter 2, the benefits and drawbacks of automation are described and relevant past path 

planning studies are reviewed.  This chapter identifies where this research fits in the overall field of 
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cognitive systems engineering and research gap it addresses. Guiding hypotheses, which focus on the 

benefits of data integration, visualization, and role of sensitivity analysis, are also defined. 

Chapter 3 provides a both a historical and pragmatic take on a work domain analysis for the 

prototype path planner.  As the automation planner is intended for future lunar and Mars traversals, 

one cannot “go to the field” and study how planetary exploration in extreme environments is 

performed.  Instead, a review of Apollo EVAs and the circumstances involved in planning and, 

more importantly, re-planning of lunar sorties completed. This overview is complemented with an 

observational study of excursions in a Mars-analog site in the Canadian Arctic.  This chapter 

concludes by presenting a new Planetary EVA Framework that organizes all the parameters 

pertaining to planning and re-planning these traversals. 

In Chapter 4, selected parameters and constraints from the Planetary EVA Framework were 

incorporated into a prototype path planner, aptly named PATH (Planetary Aid for Traversing 

Humans).  This chapter describes in detail all the components of PATH, such as lunar digital 

elevation maps and the implemented cost functions.  Most significantly, this chapter explains the 

importance of the developed collaborative visualization termed levels of equal cost (LOEC).   

Chapters 5 and 6 summarize the two cornerstone experiments that were designed and implemented 

to understand how humans conduct complex optimization under various automation assistance and 

collaborative elements. Experimental hypotheses are delineated in each chapter, as well as 

independent and dependent variables.  Results are presented and discussed alongside observed 

cognitive strategies; individual experimental conclusions are grouped by chapter. 

The final Chapter 7 consists of a discussion of the conclusions of this thesis, a sensitivity analysis 

meta-analysis that aggregates results from both experiments, and design recommendations for path 

planning and re-planning decisions support aids, which includes a real-time EVA aids.  Thesis 

contributions are listed and includes framework for human-robotic planetary EVA planning, path 

planning prototype, quantification of path planning performance across various conditions, 

identification of cognitive strategies, and design recommendations for planetary EVA decision 

support aids.
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2 BACKGROUND AND HYPOTHESES: 

BALANCING HUMANS AND AUTOMATION 

WITHIN DECISION SUPPORT SYSTEMS 

Balancing task allocation between humans and computers is crucial to the development of effective 

decision support systems.  Within types of decision support systems, real-time path planning and re-

planning is often a vital task which involve of both humans and computers.  There are many 

domains that exemplify this, such as military and commercial pilots planning trajectories during 

flight or ground-based soldiers constantly revising their paths over the ground to accommodate 

dynamic changes in situations and resources. Similarly, unmanned air vehicle (UAV) operators also 

re-plan routes in response to emergent threats and targets.  Robotic applications include tele-

operation of rovers for situations like search and rescue missions and Mars exploration missions.  In 

these cases, human geospatial problem solving is an integral part of the operator’s interaction with 

the automated path planners. 

Beyond complex decision support systems, path planning has become part of everyday life, with on-

line automated planners like Mapquest1 and Google Maps2, hand-held GPS (global positioning 

systems), or in-car navigation systems.  The alacrity in which path planning algorithms are being 

integrated into technology has created a sudden gap in our understanding of how people interact 

with automated planners and how different aspects of automation affect path planning performance.  

While methods for generating paths, or trajectories, for autonomous systems have been extensively 

 

1 http://www.mapquest.com 
2 http://www.google.com/maps 
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studied within the computer science field in order to develop faster and more robust algorithms, 

little attention has been given to how humans optimize trajectories with automated assistance.  In 

terms of human-automation interaction, few investigations have focused on how people optimize 

when conducting path planning in high-risk, time-critical domains that include a certain level of 

uncertainty. 

The domain for this research is human space exploration, which embodies the definition of high-

risk, time-critical, dynamic and uncertain environmental constraints.  It is under these circumstances 

that astronauts will be expected to path plan (and re-plan) in order to optimize their extravehicular 

activities (EVA) on other planetary surfaces.  With such a large problem space and resultant 

complex optimizations, humans will have to leverage automated path planners automation.  

2.1 BENEFITS AND DRAWBACKS OF AUTOMATION 

Automation is generally introduced as a way to reduce human workload, for example, by automating 

manufacturing processes.  As computation ability has increased, automation has been used to help 

humans in tasks that were too cognitively intense (such as too many variables to control and/or 

excessive computations).  For example, automation is essential in controlling the space shuttle.  It is 

also used to help track and manage air traffic.  However, the infusion of automation has changed 

people’s responsibilities and work from active participation to monitoring and/or supervising.  

Thus, allocating the appropriate role to humans and automation, where the human is still in (or on) 

the loop of decision-making has been the focus of much research over the last fifty years.  

The benefits of automation were succinctly summarized by Fitts in the 1950s (see Table 2.1).  A 

computer’s ability to be repetitive, fast, and precise is the reason why automation has become an 

integral part of all large, complex systems.  These characteristics also make it ideal in the use of 

computer-generated path optimization, when the states of all variables are known and pre-

determined.  In juxtaposition, a human has unique abilities that even the most advanced automation 

systems still, more than fifty years later, do not have: improvisation, flexibility and, most importantly, 

inductive reasoning.  This permits humans to adapt to unexpected circumstances, resulting in 

knowledge-based reasoning, the type of problem solving in which humans can make decisions under 

novel and uncertain situations (Rasmussen, 1983).  Knowledge-based behavior (KBB) is goal-driven, 



and it assumes that the human has a mental representation and understanding of how variables in 

the problem space are interrelated.  Based on this mental model, the person can execute deliberate 

actions to accomplish a goal, instead of simply following a set of predetermined rules (rule-based 

behavior).   

Table 2.1 Fitts’ list (1951) for human-computer role allocation  

Humans are better at: Computer are better at: 
Perceiving patterns Responding quickly to control tasks 

Improvising and using flexible procedures Repetitive and routine tasks 
Recalling relevant facts at the appropriate time Reasoning deductively 

Reasoning inductively Handling many complex tasks 
Exercising judgment Fast and accurate computations 

 

Automation is governed by coded rules, resulting in an inflexibility to adapt under uncertainty, 

otherwise known as automation “brittleness” (Layton, Smith, & McCoy, 1994).  The automation’s 

“brittleness” in a highly uncertainty environment can be mitigated with human interaction (Figure 

2.1).  A similar argument exists in the system design world, where under changing or unknown 

system and environmental factors, a flexible engineering design is desirable (Saleh, Hastings, & 

Newman, 2003).  Thus, for decision support systems, design flexibility is analogous to human 

interaction (Figure 2.2).  This is important because the research domain of this thesis is space 

exploration, where “the unexpected” is an inherent quality of the domain.  Any automated path 

planning aid must be flexible enough to support astronauts’ knowledge-based reasoning while taking 

advantage of the strength of automation computation to produce adequate path solutions in high-

risk and time-critical domains.  

 

Figure 2.1 Human interaction with automation as a function of  certainty (Cummings, 2006) 
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Figure 2.2 System’s flexibility and robustness (Saleh et al., 2003), adapted to include human 
interaction 

Automation “brittleness” can be caused by the models (e.g., of the environment or process) or the 

algorithm itself, as these could be either out-dated, incomplete or incorrect.  Erroneous models are 

almost inevitable in domains in which any uncertainty exists.  However, issues related to automation 

use go beyond the automation itself.  For instance, humans could fail to understand the automation 

and the computer-generated solutions, resulting in users acquiring incorrect mental representations 

of the way the automation functions.  This may be associated with the automated system’s lack of 

transparency, where models are inaccessible. Even when automation works appropriately, 

researchers have found evidence for inappropriate knowledge acquisition (Glover, Prawitt, & 

Spilker, 1997) and skill degradation (Adelman, Cohen, Bresnick, Chinnis, & Laskey, 1993).  When 

automation fails, users’ trust in the computer aid decreases, which could lead to automation not 

being employed (de Vries, Midden, & Bouwhuis, 2003; Lee & Moray, 1994).   

The use of automation may result in inability to maintain mode awareness (Sarter & Woods, 1994), 

which is similar to the degradation of situation awareness (SA) reported by others (Endsley, 1996; 
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Endsley & Kaber, 1999; Strauch, 1997).  SA, as defined by Endsley, is (a) the perception of elements 

in the current environment, (b) the integration and comprehension of these elements, and (c) the 

projection of future status based on comprehension (Endsley, 1995).  A loss of SA may be attributed 

to the human operators’ lack of understanding of how and why a solution was generated by the 

automation.  SA is crucial to the human ability to apply knowledge-based reasoning such that they 

can develop workaround strategies when automation fails or is unreliable.

Contributing to the human’s lack of situation awareness may be another well-known problem, 

automation over-reliance (Layton et al., 1994; Parasuraman, Molloy, & Singh, 1993; Parasuraman & 

Riley, 1997).  Over-reliance can be considered a symptom of automation bias (Cummings, 2004; 

Mosier, Skitka, Heers, & Burdick, 1998; Skitka, Mosier, & Burdick, 1999), which is the tendency by 

users (or decision makers) to disregard or not search for contradictory information about a 

computer-generated solution.  As a result of automation bias, errors of commission and omission 

increase (Mosier & Skitka, 1996; Skitka et al., 1999).  In errors of commission, the decision maker 

continues acting as the automation dictates even though there is evidence that the solution is 

erroneous.  In errors of omission, the decision maker fails to intervene because the automation has 

not indicated errors. 

While automation has many drawbacks, the answer is not necessarily to reduce the amount of 

automation.  For example, within the domain of fault management, when the dynamics of a fault are 

fast, automation needs to be used to respond accordingly (Moray, Inagaki, & Itoh, 2000).  

Automation is indispensable for solving these time-critical faults, and the operator’s role is still 

crucial.  Automation is necessary within all decision support for complex systems, particularly when 

the tasks involve a large problem space under time pressure.  Thus, essential to developing 

automated aids for planetary exploration is the balance between automation assistance and human 

interaction, while mitigating the issues previously listed (lack of automated solution transparency, 

loss of situation awareness, and propensity towards automation bias).  

2.2 PATH PLANNING TASK AND AUTOMATION SUPPORT 

With respect to the geospatial problem solving, there have been few studies examining how 

cognitively humans optimize paths and only three that investigated the interaction between human 
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path planning performance and automated assistance.  This research is focused on the planning and 

optimization of paths, i.e., before execution and thus actual navigation with the path planner is 

beyond the scope of this thesis. 

When no automated assistance is involved, a few studies have investigated path planning 

optimization.  These studies focused on how people solve a traveling salesperson problem (TSP), 

which is finding the shortest path given a certain number of cities (nodes) with the constraint of 

having to visit each city once (Graham, Joshi, & Pizlo, 2000; MacGregor, Ormerod, & Chronicle, 

2000; Pizlo & Li, 2003).  TSP is considered to be a non-deterministic polynomial (NP) time  

complete problem, which means there is unlikely an algorithm that can solve the problem in a 

polynomial fashion1.  Graham et al. (2000) found that subjects were good at finding close to optimal 

paths for when the distance between the cities were equivalent to Euclidean distance (E-TSP).  Yet, 

when the distance was a multiple of the Euclidean distance (e.g., path segments were weighted), 

subjects did poorly.  Their results with respect to shortest distance paths are not too surprising since 

the problem depended on the human’s intrinsic ability to perceive relative size (Gibson, 1979), and 

hence, determining the shortest distance between points is a relatively easy task for humans.  

Nonetheless, this research confirms that when the path planning task goes beyond finding the 

shortest distance, it becomes a more difficult problem for the human.   

In real world scenarios, the path planning task typically involves the integration of many more 

variables and most do not depend on the paths’ visual size differentials.  The cognitive process of 

path planning is summarized in Figure 2.3.  First the human must acquire external information, such 

as environmental factors, variables and constraints, as each possible path plan depends on these 

numerous elements.  This information then needs to be integrated with the set of goals that a path 

needs to meet, e.g., reaching a destination in the shortest time.  The relationships between variables 

are defined through cost models.  Cognitively, these models may be heuristics or, in the case of 

shortest path, they are perceptually driven (i.e., visual size differentials).  Information, costs, and 

goals must be incorporated in order to create a path.  The path planning process may be iterative, as 

 

1 Currently, algorithms solve this problem in exponential times, as a function to the number of 
nodes. 



the human could attempt several different paths that might satisfy the goals.  It is up the path 

planner to asses each solution and determines if it is the best plan possible.  Depending on the goals, 

a path plan might be an optimal path or it might simply meet some threshold (path cost satisficing).  

A path plan is only resolved once all these processes occur.  

Path PlanPath Plan

Environment

Variables

Constraints

Goals 
met?

Path

Information Integration Path generation

Costs

Cognitive processesExternal

Goals
Sensitivity
Analysis

 

Figure 2.3 Cognitive model for path planning task 

This path planning cognitive model is not unlike the simplified human information processing 

model presented in Parasuraman, Sheridan, and Wickens (2000), which includes sensory processing, 

perception/working memory, decision making and response selection.  Sensory processing is akin to 

the acquisition of information, where all available input data enters for processing.  The human path 

planner then must use his/her working memory to integrate inputs before suggesting a path 

solution.  The path generation process is thus equivalent to the decision making stage.  The loop 

within the path generation stage symbolizes that the information processing is not a strict serial 

sequence (also acknowledged by Parasuraman et al. 2000), but rather a process which includes 

attempting different path solutions and assessing these against the required goals.  Finally, the 

response selection stage is the end state of the path planning cognitive model, where a path solution 

is determined. 

The process of changing (or tweaking) a path solution (represented by the loop within the path 

generation phase) is the process of conducting sensitivity analysis on a possible path solution.  For 

Saltelli (2000), sensitivity analysis “studies the relationship between information flowing in and out 

of [a] model.”  Essentially, sensitivity analysis is assessing the effect of changing input variables of a 
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model or solution.  Consequently, during path planning, it is the process of modifying a path, 

evaluating the change relative to the goal, and iterating until a satisfactory solution is achieved.  

Pannell (1997) lists decision making among the uses of sensitivity analysis, which includes testing the 

robustness of an optimal solution, investigating sub-optimal solutions, and identifying sensitive or 

important variables.  Consequently, when the human path planner conducts sensitivity analysis, 

he/she is learning about how to optimize a path and this, in turn, may lead to a better understanding 

of how a solution (in this case, a path solution) is affected by changes in input variables (Saltelli et 

al., 2000).  Thus, sensitivity analysis is an integral part of the path planning task.   

For path planning, automation can be used in different parts of the cognitive process.  The 

automation may integrate some of the information, like variables, environment and cost, for the 

human so that he/she does not need to calculate the total costs of the path solutions.  Another 

possible example is that automation generates path solutions and the human selects the one that 

meets the goals.  Wherever automation is leveraged, it will influence human path planning 

performance.  A few studies (described subsequently) have investigated various methods of 

leveraging automation in the path planning task and the effects on human planning performance.  

These have focused on human performance within the domain of aviation decision making, 

specifically investigating path planning and re-planning of flight trajectories.   

Layton et al. (1994) developed and tested a prototype en-route flight planner which required pilot 

participants’ to re-plan an aircraft flight trajectory in order to adapt to a change in environmental 

conditions (see also Smith, McCoy, & Layton, 1997).  Three versions of the planner were explored, 

each version differing in the amount of automation assistance provided. The lowest automation level 

possible allowed participants to “sketch” flight trajectories on the computer map, i.e., the human 

planner sketched paths and the computer filled in trajectory details such as arrival times. At the 

highest level, the computer interface, without prompting by the participant, provided a solution to 

the flight trajectory conflict.  In the middle, the participant could ask the computer to provide a 

flight path solution based on selected constraints.  The main result was that participants tended to 

over-rely on the computer-generated solutions, selecting sub-optimal paths. A possible reason was 

that participants did not explore the problem space as much when presented with a solution.   
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Chen and Pritchett (2001) evaluated a prototype computer aid for emergency aircraft trajectory 

generation (for divert conditions), simulating both plan and execution of new trajectories by pilots. 

The subjects’ task was to create a new trajectory, under an emergency scenario, that minimized time 

to land and did not violate constraints, i.e., weather, airspace regulations, and aircraft limits.  The 

authors tested three conditions: re-planning with no aid (only paper charts), with an aid, and an aid 

with pre-loaded plans.  Performance was measured by time to land and workload.  The worse 

performance was seen in the condition where there was an aid, but no pre-loaded plan.  The best 

performance was achieved when pilots adopted the pre-loaded plans, though there was no 

significant difference with the test condition of no aid.  The authors, however, favored the pre-

loaded aid since in a few instances, pilots were unable to create and evaluate a satisfactory trajectory.  

This study also presented evidence for automation bias, as some pilots did not improve upon the 

sub-optimal, pre-loaded plan, as well as over-reliance that occurred when pilots accepted erroneous 

information presented by the automated aid. 

In the third study, Johnson et al. (2002) investigated the effects of time pressure and automation on 

a route re-planning task.  Participants were asked to make new paths that would first, satisfy mission 

constraints (avoid threat areas and arrive at targets within an acceptable time-to-target and sufficient 

fuel), and second, minimize route cost (time spent in hazard zones and deviations from time-to-

targets).  Six time pressures were imposed on the scenarios, ranging from 20 to 125 seconds.  The 

automation  would assist the participant in one of three possible ways: 1) suggest a route that met 

mission constraints, 2) suggest a route that met hazard avoidance rules, and 3) suggest a sub-optimal 

path that met both the constraints (time-to-target and fuel restrictions) and avoided hazard zones.  A 

fourth condition, no path suggested, was also tested for comparison.  Performance was measured by 

route cost and constraint violation.  Based on their experiment, the authors concluded that full 

automation was most beneficial for the shortest time pressure (less than 30 seconds). The more time 

participants were given, performance differences decreased between automation assistances. The 

exception to this trend was around the 1 minute mark, when participants’ performance decreased 

with more automation assistance.  There was also evidence for complacency and automation bias, as 

noted by the decreased number of route modifications in the highest level of automation. 
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While humans have a natural capability of making shortest paths, as demonstrated by the TSP-

related studies, path planning in real world scenarios encompass large problem spaces that may 

saturate the human’s information processing capacity.  Automation assistance can and should be 

leveraged to reduce the problem space, particularly under time pressure.  The studies described 

above chose to insert automation in both the path planning processes of information integration and 

path generation (see Figure 2.3).  Information was integrated through computer aids that would 

calculate path costs for users, such as arrival times.  Path plans were generated for the humans, be it 

a complete or a partial solution.  As a result, the human had to assess and judge if the path solution 

met the goals even though he/she had not partaken in generating the solution.  Thus, these studies 

indicate that complete removal of human operator from the path creation process leads to 

complacency, over-reliance, and automation bias issues.

Even though sensitivity analysis is an integral part of path planning, none of these studies focused 

on how the automated interface may have affected this process.  In fact, how humans conduct 

sensitivity analysis, the effect on human performance, and how best to support this process within 

decision support systems has received little research interest. Most of the literature related to 

sensitivity analysis centers on its importance for model development and validation (e.g., Lu & 

Mohanty, 2001; McCarthy, Burgman, & Ferson, 1995) and the mathematical methodology of 

conducting sensitivity analysis (e.g., Frey & Patil, 2002; Saltelli & Bolado, 1998).  A few articles have 

advocated for sensitivity analysis tools for multi-attribute decision making aids (e.g., Jimenez, Rios-

Insua, & Mateos, 2003; Triantaphyllou & Sanchez, 1997).  However, no evaluation of the specific 

tools is mentioned, particularly in terms of human performance.

One series of studies has investigated interactive optimization, where the human and the automation 

are both involved in an optimization task (Anderson et al., 2000; Klau, Lesh, Marks, Mitzenmacher, 

& Schafer, 2002; Scott, Lesh, & Klau, 2002).  Their description of interactive optimization is similar 

to sensitivity analysis because the researchers have tested a few methods that allow the human 

operator to change or modify solutions (in this case, path solutions for vehicle routing with time 

windows).  These researchers also support the assertion that by allowing operators to guide or steer 

an automatic optimization process, operators will be more likely to understand a solution they 

helped create.  Even though the experiments include less than a handful of participants, these 
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studies have shown that interactive optimization is not detrimental in the optimization process and 

actually surpasses unguided search algorithms. These studies also point to different strategies 

implemented by the participants, but with as many strategies as number of subjects, trends were not 

assessed (Scott et al., 2002).  Clearly, there is still much to be learned about how best to support 

human sensitivity analysis and the associated possible benefits.  

This thesis begins to address the role sensitivity analysis has on human path planning performance.  

Furthermore, it focuses on introducing automation in the path planning process that will lead to 

sensitivity analysis, and hence collaboration between the human and the decision support aid.  For 

instance, in the previously cited studies, either a path was automatically generated or it was left for 

the human operator to solve.  This thesis investigates an intermediary state in the path generation 

stage of path planning, where the human leverages automation to create a path solution, allowing for 

sensitivity analysis and requiring the user to be actively involved in deciding a solution.  This thesis 

also examines the impact of aggregate data visualizations for multivariate path planning problems.   

2.2.1 LEVELS OF AUTOMATION 

The previous section focused on allocating automation within particular stages of the path planning 

process.  More generally, functional task allocation refers to the amount of automation used in 

decision support systems and the level of human involvement.  For example, in Chen and Pritchett’s 

computer aid (previously discussed), the automation was allocated the task of generating emergency 

aircraft trajectories while the pilot either accepted or modified these paths.  Several frameworks have 

been proposed to describe these allocations, typically called levels of automation (LOA).  These 

frameworks (subsequently discussed) help in the design of a path planning aid. 

The most commonly cited levels of automation are Sheridan and Verplank’s (1978) list which have 

evolved (Parasuraman et al., 2000) to a list of ten (Table 2.2).  Sheridan’s LOA range from one 

extreme, where the human makes all the decisions and actions, to another, where only the 

automation decides and acts.  At the lower levels, the human takes a more active role in the decision 

making process, from finding a solution (or decision) to sorting through possible alternatives 

suggested by the computer.  At level 5 (typically called management-by-exception), the automation 

begins to take an active role in decisions, and subsequently, the human is only required to accept or 
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veto solutions presented to them.  At the higher levels, the human is taken out of the decision-

making loop altogether. 

Table 2.2 Levels of  automation (from Parasuraman et al., 2000) 

Automation Level Automation Description 
1 The computer offers no assistance: human must take all decision and actions. 
2 The computer offers a complete set of decision/action alternatives, or 
3 narrows the selection down to a few, or 
4 suggests one alternative, and 
5 executes the suggestion if the human approves, or 
6 allows the human a restricted time to veto before automatic execution, or 
7 executes automatically, then necessarily informs humans, and 
8 informs the human only if asked, or 
9 informs the human only if it, the computer, decides to. 
10 The computer decides everything and acts autonomously, ignoring the human. 

 

The previous path planning studies cited, the tested range of LOA tested was from 1 to 5.  For 

example, Chen and Pritchett’s (2001) emergency aid could be described as having LOA 4 since 

participants requested new trajectories, which the automation supplied.  One version of Layton’s et 

al. (1994) aid provided a trajectory without being prompted by the user, akin to LOA 5.    It is 

important to note that Sarter and Schroeder (2001) suggest that automated decision support systems 

within high-risk domains should not implement LOA 5 as users may become vulnerable to 

automation biases.      

While there are ten levels, this set of LOA fall short of describing many systems.  If the lower levels 

(2 through 4) are applied to the topic of this research, human-computer collaboration within path 

planning, the role of the automation is essentially restricted to one or many paths generated.  The 

biggest limitation of Sheridan’s LOA is that there is no mention of how automation can assist in the 

analysis phase of the decision making process1.   

                                                 

1 In Parasuraman, Sheridan and Wickens (2000), the authors do acknowledge that a similar set of 
LOAs may be applied to information acquisition, information analysis, decision selection, and action 
implementation.  However, no proposed list adapted to each decision process step yet exists. 



Two other levels of automation frameworks are worth mentioning: Riley’s and Endsley & Kaber’s 

LOA.  Riley (1989) describes a taxonomy of automation states (see Figure 2.4) where each state is a 

combination of the automation’s role and level of information it can process (denoted as 

intelligence).  Unfortunately, while proposing a greater resolution to Sheridan’s LOA, it remains 

vague as to how automation is to fulfill these states (e.g., what must the automation do in order to 

be an assistant level of autonomy with personalized intelligence?).  The general trend however is 

highlighted in Figure 2.4, where higher levels of intelligence and autonomy are desirable with 

increasing problem space complexity.  Endsley and Kaber (1999) propose a ten-level taxonomy of 

LOA which depends on four generic functions (monitoring system status, generating options, 

selecting option, and implementing option) that could be allocated to either human, computer or 

shared.  Each of the ten levels is some combination of function and role allocation (Figure 2.5).  

This taxonomy may be adequate to describe the type of decision support system implemented as a 

whole (as opposed to the level of automation), however, it is still vague as to what exactly is implied 

by shared (human/computer) allocation. 
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Figure 2.4 Riley’s (1989) automation taxonomy, adapted to include trend with complexity 
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 Roles 
Level of Automation Monitoring Generating Selecting Implementing 

1. Manual Control Human Human Human Human 
2. Action support Human/Computer Human Human Human/Computer
3. Batch processing Human/Computer Human Human Computer 
4. Shared control Human/Computer Human/Computer Human Human/Computer
5. Decision support Human/Computer Human/Computer Human Computer 
6. Blended decision making Human/Computer Human/Computer Human/Computer Computer 
7. Rigid system Human/Computer Computer Human Computer 
8. Automated decision making Human/Computer Human/Computer Computer Computer 
9. Supervisory control Human/Computer Computer Computer Computer 
10. Full automation Computer Computer Computer Computer 

Figure 2.5 Levels of  automation by Endsley and Kaber (1999) 

These LOA frameworks help in the design of an automated path planning tool.  With increasingly 

complex problem space, more intelligence and autonomy is necessary, as implied by Riley’s LOA.  

Riley’s framework introduces the idea that a higher level of intelligence is more than presenting raw 

data.  Furthermore, there is a specific level of autonomy for “information fuser”.  Thus, a path 

planning aid should leverage automation to integrate raw data for the human operator, particularly if 

the task is complex.  The simplest method of integrating information for path planning is to 

calculate the paths’ cost.  Beyond that, visualizations may be used present integrated data.  In terms 

of path generation, based on Sheridan’s LOA, either the human operator or the automation may 

generate one or multiple possible path solutions.  Present among the levels of automation by 

Endsley and Kaber is the option of a sharing the generation of solution functionality, i.e., both 

human and computer participate in creation of path.  Thus, a path planning tool could be designed 

to accommodate path generation by the human operator, by the automation, or through a shared 

method. 

2.3 HYPOTHESES 

In general, previous studies suggest that for the task of path planning and re-planning, higher levels 

of automated assistance was beneficial for time pressured scenarios. Yet automation bias and over-

reliance occurred in every instance, particularly when automated solutions were sub-optimal. While 

these studies focused on user performance with different LOAs, they did not attempt to quantify 

how well humans optimized under different task complexities or conducted sensitivity analyses. 

Moreover, there was no discussion of the impact of the visualizations used, which could significantly 
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alter the results.  These visualizations integrate information the human operators use to generate 

path solutions.  A primary goal of this research is to examine not only the impact of increasing the 

amount of automation used in the path planning task on human performance, but also investigate 

the effects of visualizations in order to find an effective method of leveraging human-computer 

collaboration with respect to path planning optimization. 

This thesis addresses two main guiding hypotheses, which result in analysis and investigation of 

different aspects of human-computer collaborative path planning under time-pressure, their impact 

on performance and optimization strategies, across increasingly complex problems.  The more 

complex tasks include degraded automation conditions and cost functions that integrate numerous 

variables. 

The first research hypothesis addressed is: 

Hypothesis 1: As the path planning becomes more complex, e.g., an increasing number 

of manipulated variables for the path planning task and degraded automation 

conditions, higher amounts of data integration through both computation and 

visualization will be beneficial for the human operator.  These benefits include 

quickly creating near-optimal paths, maintaining awareness of important variables, 

and compensating for imperfect automation. 

Data integration through computation includes leveraging automation to generate path segments 

and to calculate total costs.  As other past path planning studies have already demonstrated 

problematic issues with using automation solely to generate path solutions (Chen & Pritchett, 2001; 

Johnson et al., 2002; Layton et al., 1994), this research will focus on investigating human-computer 

(shared) path creation.  Furthermore, in this research, data integration can also be accomplished 

through a visualization that aggregates information (both variables and costs) based on the path 

planning algorithm used to search for least-costly paths.  Thus, this visualization may simplify 

complex path planning problems for the human operator.            
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The second research hypothesis investigated is: 

Hypothesis 2: When a computer system that promotes sensitivity analysis is used for 

the task of planning (and hence, re-planning), human path planning performance will 

increase.  Improvements include providing the human operator the ability to 

understand how to optimize paths, thus achieving near-optimal solutions. 

No research to date has explored the role sensitivity analysis plays in the task of path planning in 

terms of human performance, even though it is an integral part of the human optimization process.  

Sensitivity analysis is the process of observing how much a solution changes as input variables are 

modified.  Conducting sensitivity analysis is a more time-consuming optimization strategy, however,  

computational power can be leveraged to provide aids (usually  called “what-if” tools) for the human 

operator that will assist in sensitivity analysis.  This can be accomplished by making path 

modifications and corresponding evaluations easily available.  If the human operator conducts 

sensitivity analysis, he/she will begin to acquire a better understanding of how to fundamentally 

optimize paths, which is particularly beneficial as the task becomes increasingly complex.  As 

discussed before, task complexity may be a due to number of variables manipulated during 

optimization process or degraded automation conditions.  For the latter, an increase in human path 

planning performance will be observed if the human operator successfully adapts path planning 

strategies and is able to quickly create near-optimal paths.  Finally, as the role of sensitivity analysis 

will be concurrently investigated with different functional allocations for path generation and 

visualizations, potential cross-effects can be identified.  

In order to investigate these guiding hypotheses, an automated path planner was developed and 

modeled as a planning computer aid for astronauts conducting extravehicular activities on the 

surface of the Moon.  The prototype was built based on a work domain analysis of both Apollo 

historical evidence and observational study of excursions at a Mars-analog site.  Two separate 

experiments were designed and tested, addressing the research questions presented in this chapter.  
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3  WORK DOMAIN ANALYSIS: 

CHARACTERIZING SURFACE OPERATIONS 

3.1 EXTRAVEHICULAR ACTIVITIES ON PLANETARY SURFACES  

During the Apollo program, exploration was limited to a maximum 3 day stay, with two astronauts 

in bulky spacesuits, and the use of a lunar rover in later missions.  Astronauts explored areas that 

were within a few kilometers of the lunar module.  NASA is now considering lunar missions where 

up to four astronauts are traversing simultaneously on the surface of the Moon, taking advantage of 

pressurized or un-pressurized rovers (NASA, 2005).  Future stays on the lunar surface will range 

from seven days to 180 days, with up to four sorties per week; Mars missions may last up to 600 

days.  As astronauts stay longer on other planetary surfaces, astronauts will be responsible for 

planning and re-planning of their own extravehicular activities (EVAs). 

In order to design robust decision support aids for mission planning, the first step is to characterize 

surface operations of planetary exploration.  This assessment is called a work domain analysis 

(WDA) because this investigation attempts to describe the structure of the domain, e.g., a planetary 

EVA, in terms of not just the tasks that are expected to be performed but also the constraints and 

impact of the environment.  The goal of this WDA is to understand and identify the information 

requirement for a path planning decision support system.  The work domain analysis presented in 

this chapter does not adhere to the rigid WDA definition (i.e., an abstraction hierarchical 

decomposition) presented in Rasmussen (1985) nor is it part of a formal cognitive work analysis 

(Vicente, 1999).  The approach subscribed to is more general, focusing on identifying what 

information is required for planning an EVA by taking advantage of multiple methods, including 

field observations and review of documentation, elements that are more characteristic of a cognitive 

task analysis (Rasmussen, Pejtersen, & Goodstein, 1994; Schraagen, Chipman, & Shalin, 2000). 
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This work domain analysis is not a trivial task as future surface operations may consist of advanced 

technologies (e.g., robotic assistants), different objectives (e.g., acquiring in-situ materials), and a 

growing body of knowledge (e.g., new areas of scientific value).  There are many likely combinations 

that depend on the infrastructure and mission goals.  Hence, a myriad of complex extravehicular 

activities (EVA) architectures are possible. Instead of assuming one architecture, this chapter 

introduces a framework that captures the key parameters and constraints that define a single 

planetary EVA.  Through the work domain analysis, planetary EVA variables, parameters that 

determine and affect path planning and re-planning, are identified and subsequently described.  

These variables are then categorized and organized into the Planetary EVA Framework.  Thus, the 

framework is a summary of the work domain analysis, which was conducted by reviewing Apollo 

EVAs, performing an observational study of excursions in a Mars-analog site, and interviewing 

subject-matter experts, such as planetary scientists and aerospace engineers.   

3.2 PAST EVAS: APOLLO  PROGRAM 

3.2.1 APOLLO EXTRAVEHICULAR ACTIVITIES 

Every Apollo mission that landed on the Moon included at least one EVA.  During the Apollo 11 

and 12 missions, the EVAs focused more on engineering testing, while the EVAs performed during 

Apollo 14 – 17 missions were geared more towards exploration that addressed scientific hypotheses.  

Extensive preparation was undertaken in order to maximize scientific return, involving engineers, 

scientists, astronauts, and mission planners.  Routes and estimated travel times were established 

using low-resolution photographic images and crude topographic maps.  The team of scientists and 

mission planners also allocated finite times to the scientific tasks (Muehlberger, 1981).  Each site and 

task was prioritized based on its relative importance to the overall scientific mission goal.  Many 

activities or sites were dropped due to the lack of time, which is the underlying recurring theme 

among the lunar EVAs.  

Some estimates were poor for the planned EVA tasks and thus, required additional time, affecting 

the rest of the schedule.  During the first mission that astronauts walked on the lunar surface 

(Apollo 11), EVA preparation times were optimistic.  Donning the spacesuit took longer than 
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expected, delaying the start of the first EVA on the Moon (NASA, 1969).  Delayed start times 

reduced the length of later EVAs, as was the case in Apollo 15 and 16.  Since these missions landed 

on the Moon later than expected, sleep periods were rearranged so that astronauts would be rested 

when on the lunar surface (Jones, 1995), reducing the overall surface “work” time.  Occasionally, 

deploying equipment, like the Lunar Rover Vehicle (LRV), was time-consuming, or worse, the 

equipment failed or worked inappropriately.  For example, drilling on the Moon was difficult and 

took longer than expected for astronauts on Apollo 15 and 17.  Any additional time beyond what 

was budgeted to accomplish tasks collectively resulted in changing the EVA. 

The longest “walking” EVA1 occurred during Apollo 14, where astronauts had to reach Cone 

Crater, a destination they never quite reached (Johnston & Hull, 1975; NASA, 1971; Waligora & 

Horrigan, 1975).  With only a paper map in hand, encumbered by a bulky, life support system, 

astronauts had to traverse an unfamiliar environment, unaware of their deviations from the planned 

path.  Astronauts had poor situation awareness of their location that resulted from inadequate 

surface contrast, lighting conditions, and the monochromatic terrain (Figure 3.1).  In addition, 

astronauts traversed steep terrain that resulted in high metabolic rates and increased heart rates, 

requiring extra rest stops.  Having fallen behind on their schedule and unable to accurately 

determine the edge of Cone Crater, their true destination site was abandoned and the astronauts had 

to settle for another site. 

 

1 The total average distance traversed was 1.5 km. 



 

Figure 3.1 Edge of  Cone Crater, Apollo 14 (NASA image, AS-14-64-9103) 

The later Apollo missions included a rover (Lunar Roving Vehicle, LRV), which allowed astronauts 

to traverse longer distances, but additional concerns arose (Figure 3.2).  Apollo 16 astronauts 

commented on driving slower because low sun angles made it difficult to estimate sizes (e.g., crater 

sizes) and distances (Jones, 1995).  The LRV was yet another piece of equipment that experienced 

technical difficulties, such as a “down” navigation system (Apollo 16) and a lack of power steering 

(Apollo 15).   

 

Figure 3.2 Lunar Roving Vehicle (LRV, NASA image, AS-17-147-22526) 
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The introduction of the rover to the EVAs imposed a strict safety rule: the “walk-back” 

requirement.  If the LRV became inoperable, the contingency plan was for astronauts to walk back 

to the lunar module (LM).  However, astronauts could potentially run out of oxygen before reaching 

the LM if it was too far.  Therefore, the distance between the rover and the LM was limited by the 

astronaut’s ability to walk back to the LM.  Due to the “walk-back” requirement, the farthest sites 

had the most time pressure.  This was the case during Apollo 17, when astronauts found “orange 

soil”, which led to collecting an unplanned core sample (Jones, 1995).  The crew had to quickly 

assess if they could accomplish the additional task given the time limitations.  They chose to take the 

core sample, however, they used up all their time for that site and almost violated the “walk-back” 

restriction. 

Finally, additional environmental constraints affected general performance, and thus, efficiency.  

During Apollo, the two significant environmental factors were lighting conditions (in conjunction 

with the lack of atmosphere) and dust.  For example, Apollo 12 astronauts mentioned lighting 

conditions that made it difficult to properly assess rock samples (NASA, 1970).  The pervasive lunar 

dust affected all equipment, resulting in deteriorated performance.  Space suits were very dusty after 

only three uses, in most cases.  Time spent cleaning equipment during an EVA added another, 

though small, delay.  

3.2.2 IMPLICATIONS OF APOLLO EXPERIENCE 

The successful completion of each planetary EVA during Apollo is a great feat.  However, 

regardless of the many hours spent meticulously planning and practicing each sortie, every single 

EVA conducted in Apollo had to do some sort of re-planning in order to adjust to the unexpected.  

Over the course of one sortie, even small problems accumulate over time, requiring astronauts and 

mission controllers to adapt to the new time constraints.  There are many incidents that resulted in 

time delays, the most prominent being underestimations of time required to complete tasks.   

Table 3.1 summarizes the key variables, parameters that determine and affect planetary EVAs path 

planning and re-planning, identified through the review of Apollo excursions.  These variables make 

up the specifics of the Planetary EVA Framework (discussed in section 3.5).  Most importantly, the 

Apollo experience reveals that there is a complex relationship between these variables.  For instance, 
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the interaction between spacesuit, the terrain, and mobility was poorly understood, which 

consequently resulted in a very conservative “walk-back” requirement.  There are still many 

unresolved issues left from the Apollo era, such as navigation and perception problems due to the 

Moon’s environment.  A better understanding of the relationship between variables will improve 

upon future safety and science-return of Lunar exploration.    

Table 3.1 Planetary EVA variables based on Apollo EVAs 

Variable Category Variable Specifics 
Astro-agent  Astronaut 

Goals 
Sites (number and locations), prioritization of sites and tasks, tasks at 
sites, costs associated with task (including time, energy, learning curve), 
additional unexpected tasks 

Terrain Characteristics (craters, large rocks, high slopes) related to obstacles  

Exploration costs Distance, time traversing, metabolic (or energy) expenditures, oxygen 
(and consumables) used, favorable sun positions 

Transportation Walking, driving; preparation time (spacesuit and rover); interaction 
between transportation and terrain & environment 

Environment Sun glare, illumination as affecting perception and navigation; dust 
Infrastructure Lunar lander, access to lunar rover 

Consumables Life support consumables specific to astro-agent (e.g., oxygen, CO2 
scrub, water, battery supply) 

Operation rules 
Safety margins (e.g., minimum remaining reserve oxygen), walk-back 
requirement, operationally required rest stops, maximum metabolic rate 
& heart rate 

EVA components Path (sites visited, path segments), schedule (time at site and traversing 
to waypoints), energy consumed along path segments 

 

3.3 PRESENT EVAS: MER AND TERRESTRIAL ANALOGS  

3.3.1 PLANETARY EXPLORATION BY MARS EXPLORATION ROVERS (MER) 

Mars exploration is currently conducted on a daily basis by the two operational NASA Mars 

Exploration Rovers (MER).  With respect to planning, a group of scientists and engineers meet 

every Martian day (sol) to decide on the sequence of commands for each rover (NASA-JPL, 2005a, 

2005c).  These generally relate to where to go, what activities to conduct (e.g., images to take), and 

where to position the rovers’ arm (Biesiadecki, Leger, & Maimone, 2005).  Decisions are made based 

on the previous sol’s information, which includes not only imagery but also engineering information, 

such as the actual position and energy consumed by the rovers.  If activities did not materialize as 
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expected, engineers have to assess the reasons why and adapt to reflect the discrepancies.  Mission 

planners typically allot one day (8 – 10 hours) to develop their plan.   

The overall goals of the daily traverses are scientifically driven.  This means that site selection and 

activities are identified by the science leaders.  Exploration sites are determined based on imagery 

and spectroscopy data, and rely on planetary scientists’ judgment for subsequent site selection.  The 

sites that each of the rovers have investigated were not pre-determined on Earth, except the landing 

location.  All other sites were selected in-situ, and were resolved based on previous findings, as is the 

nature of exploration (Zuber, 2006).   

In order to interact with the rovers, scientists and engineers (on the ground) use the Scientific 

Activity Planner (SAP) (Norris, Powell, Fox, Rabe, & Shu, 2005; Norris, Powell, Vona, Backes, & 

Wick, 2005).  SAP is the primary science operations tool that provides planning capabilities for the 

MER.  Scientists and engineers have access to imagery that includes panoramas, camera views, and 

hyperspectral visualizations.  Processed information includes “reachability” maps (relating to where 

the instruments can reach), slope, and solar energy maps (Leger, Deen, & Bonitz, 2005).  After 

locations of interest are marked, a simulation predicts rover details like the power consumed, the 

data volume, time required, and final position (Norris, Powell, Fox et al., 2005).  

Key to the rovers’ ability to conduct exploration is their navigation ability.  The MERs’ tele-

operators define waypoints and end goal states.  The rover then can assess and determine the actual 

path, avoiding obstacles.  However, defining an 100-meters drive sequence may take an operator 

between 2 to 4 hours (Biesiadecki et al., 2005).  This is due to the manual terrain analysis that is 

incorporated in the process.  There are many terrain properties that are important: slope, elevation, 

rock size & position, terrain quality (e.g., sand, firmness), and homogeneity of terrain.  Many of these 

influence how the rovers traverse including speed, slippage, and power required.  If the rover 

encounters a navigation problem, the operator intervenes.  For example, one of the rovers 

inadvertently buried itself into a sand dune (Biesiadecki et al., 2005; NASA-JPL, 2005b).  The rover 

followed its driving commands until it realized that it was no longer advancing.  At this point, the 

rover went into a safe mode (“alive” though waiting for new instructions), alerting the engineers of 

the problem.  After weeks of terrestrial testing drive configurations and strategies, engineers were 
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able to command the rover out to safety.  Such an incident highlights the importance of operators, 

particularly in dealing with terrain uncertainty.  

Assessment of on-going MER planetary EVAs identified additional variables, beyond the Apollo 

experience, that need to be taken into account by a comprehensive path planner (Table 3.2).  Future 

human exploration will likely be similar to that conducted by MER, where sites of interest are based 

on recent discoveries, requiring an up-to-date database of imagery, spectral data, and terrain 

properties.  Most importantly, the experience with MER highlights the value of operator and rover 

interaction.  In this case, it is the human that intervenes when the robotic agent is affected by 

unexpected events, such as the Martian terrain uncertainty.  In turn, future robotics agents could 

also prevent humans from making mistakes.     

Table 3.2 Planetary EVA variables based on MER exploration 

Variable Category Variable Specifics 

Astro-agent  Robotic agent (tele-operated rover); capabilities of agent (instrument- 
or task-related) 

Goals Determined by on-going exploration 

Terrain Rock density, ground bearing strength, homogeneity, slope, elevation, 
spectral data 

Transportation 
Minimum ground bearing strength, maximum traversable slope, 
maximum speed (function of terrain), power requirements, admissible 
slippage 

Environment Wind; seasonal solar supply 
Consumables Power supply/source, life cycles of robotic agents’ components 

 

3.3.2 PLANETARY EXPLORATION STUDIES  USING TERRESTRIAL ANALOGS 

Two studies, Carr (2001) and Clancey (2001), have used terrestrial analogs to investigate human 

planetary exploration, specifically focusing on EVA.  While Carr emphasized trades between 

transportation and communication ability for lunar exploration, Clancey focused on information 

flow between explorers when planning.   

Carr (2001) examined the effects of distributed architectures for Mars surface exploration.  There are 

two major components of this research that pertain to planetary EVAs: a month-long field 

geological mapping project that was placed into the context of planetary surface exploration, and an 
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in-depth analysis of Apollo EVA traverse to Cone Crater.  From his field experience, he emphasized 

the importance of the providing the explorer with the flexibility to alter traversals, particularly as 

mission goals change over time.  He argued that initially human missions to Mars will resemble 

Apollo, with pre-determined sites of interest; however, with longer mission durations, new sites of 

interest will be added.  This strategy shift is similar to the on-going MER exploration.  Thus, 

traverses later in the mission will be focused on solving new problems (Carr, 2001).  In the Cone 

Crater EVA analysis, Carr identified key variables for planning excursions: visibility, transportation 

costs (including metabolic expenditures) between waypoints, “accessibility map” or “reachability 

map”, and communication ability with ‘home’ mission controllers (Carr, 2001; Carr, Newman, & 

Hodges, 2003).   

Clancey (2001) conducted an ethnographic study of activities within the Haughton-Mars Project 

(HMP) research camp, a Mars-analog site1.  His main objective was to understand how astronauts 

may live and work on Mars.  With regards to excursion planning, he described it as a group activity, 

involving assessment of multiple representations, such as satellite and aerial imagery of the area.  

The scientists felt that time, date, explorers, location of exploration, and purpose of exploration 

were the key descriptors of the field excursion.  Clancey noted differences between the scientists in 

the way they chose to explore, particularly biologists and geologists.  Biologists and geologists rarely 

traveled together as they had few sites in common, and biologists visited fewer sites than geologists.  

Clancey concludes that biologists’ search is “depth-first” while a geologists’ search is “breadth-first”.    

Based on these terrestrial analog studies, additional critical planetary EVA variables that affect path 

planning are summarized in Table 3.3.  Both Carr and Clancey emphasize the nature of human 

exploration, where current information leads to new sites of interest and how explorers collaborate 

to come up with a plan.  These reports overlap with the already presented Apollo and MER review, 

hence only few, new variables are listed.  Nonetheless, these studies establish a method for using 

terrestrial analogs a means for acquiring operational requirements for future planetary EVAs.

 

1 Haughton-Mars Project site is discussed more in a subsequent section. 



Table 3.3 Planetary EVA variables based on terrestrial analog studies 

Variable Category Variable Specifics 
Astro-agent  Expertise of astronaut 
Goals Flexibility to add new sites 
Exploration costs Visibility (line of site), reachability  
Infrastructure Communication infrastructure (e.g., beacons) 

3.3.3 OBSERVATIONAL STUDY: MARS-ANALOG EXCURSIONS 

In support of this thesis and to further investigate future planetary EVAs, an observational study of 

excursions was conducted at the Haughton-Mars Project (HMP), a terrestrial Mars-analog research 

site set in an uninhabited island, high in the Canadian Arctic.  HMP is sponsored by NASA and the 

Canadian Space Agency (CSA) and managed by the Mars Institute.  They host an international, 

interdisciplinary group of scientists and engineers who return yearly within the operational season, a 

period of 5 to 6 weeks.  

The site is located next to Haughton Crater (Figure 3.3), a 38 million year old impact crater on 

Devon Island (75ºN, 90º W).  The area is of interest due to the geological similarities to the Martian 

terrain.  Due to the remoteness of this Mars-analogue terrain, exploration-like activities can be 

undertaken by geologists and other scientists.  Thus, excursions conducted at this site resemble 

sorties of long-duration planetary space missions.  Assessing and reviewing HMP excursions can 

provide insight to the potential problems astronauts may face in future planetary EVAs. 

 

Figure 3.3 Haughton Crater, Devon Island, Canada.  Area of  crater excursion highlighted. 
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During the 2005 season1, eight excursions (Table 3.4) were categorized through an “EVA Log”.  

Excursions were varied as researcher at the camp had objectives they wanted to accomplish within 

the time they were stationed at HMP.  For example, one observed traversal was conducted by two 

geologists on foot to a near-by, known location while another included a large group on all-terrain 

vehicles (ATVs) to an unexplored destination.  Some traversals observed included researchers 

wearing a mock space suit, provided by Hamilton Sundstrand.  Creating an “EVA Log” permitted a 

systematic assessment of each excursion.  

Using the log, each excursion was documented through a combination of: a) observation of pre-

excursion planning session and post-excursion debriefings, b) pre- and post-excursion interviews 

with excursion participants in addition to observations taken from actual excursions. Multiple 

methods were implemented in order to best capture as many excursion experiences as possible 

without interfering with preparation for and execution of the excursions.  Aside from the “EVA 

Log”, other excursion documentation analyzed included digital audio recordings and extensive notes 

taken during planning meetings, interviews, and debrief sessions. When possible, digital imagery was 

used to also characterize the excursion.  A hand-held GPS receiver was used to track the traversed 

path and indicate waypoints for two of the observed excursions, with limited success.   

For each “EVA Log”, the traverse leaders described the following parameters that described their 

excursion: goals, total estimated time, participants, number of sites visited, type of mobility to sites, 

estimated distances between sites, and expected environmental factors that could affect the 

excursion.  Additionally, an inventory of supplies was recorded and the excursion planning session 

was summarized.  After the excursion was performed, the leaders’ debrief included unexpected 

events that triggered re-planning.  

Table 3.4 summarizes all the excursions that were documented.  There were varied excursions, 

involving as little as two people or as many as ten.  Site selection was typically based on the scientific 

goals of the excursion.  The exception to these were traversals that were akin to technology testing, 

such those involving the mock spacesuits.  The type of mobility used was determined by the 

 

1 The duration of the observational study was only ten days. 
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distance between camp and exploration sites.  The debriefs were essential in understanding the 

factors that triggered re-planning, and how expectations differed from what actually occurred in the 

excursion.  While eight observed excursions may not seem many, the variety of observations enables 

an assessment of that is rich in information, providing insight to future human planetary exploration. 

Table 3.4 Summary of  all HMP excursions observed during 2005 season 

  1 2 3 4 5 6 7 8 

Goal 

Sample 
collection 
Trinity 
Lake 

Prototype 
space suit 
test 

Sample 
collection, 
image survey, 
gravity 
measures 

Prototype 
space suit 
test, gravity 
measures 

Reconnais-
sance 
excursion 
for suit 
testing 

Gully 
survey 
along coast 
line 

Geological 
observations 
Terrain 
assessment 

Haughton 
Crater 
revisit, 
sample 
collection 

Time 3 hours 1 hour 4 - 5 hours 2 hours 4 - 5 hours 6 hours 3 - 4 hours 4 hours 

People 2, 
geologists 10, mixed 4, researcher 

+ security 4, mixed 
6, 
researchers 
+ security 

9, mixed 2, geologist 9, mixed 

Sites 1 1 6 5 not 
specified 5 1 1 fixed 

Mobility ATV, walk ATV, walk ATV, walk ATV, walk ATV ATV ATV, walk ATV 

Planning 

Repeat site, 
preset road. 
Naïve and 
experienced 
pair. 

Repeat site, 
preset road. 
Mix of 
naïve and 
experienced 
people. 

Planning of 
sites: order, 
prioritization. 
Expected 
terrain 
difficulties. 
Unique 
opportunity. 

Repeat site, 
preset road. 
Naïve and 
experienced 
pair. 

Areas of 
interest 
identified. 
One 
researcher 
to wear 
suit, 
majority 
naïve 
people. 

Traversing 
> 20 kms 
in 
unexplored 
area. Maps 
crucial. 
Many 
naïve 
people. 

Large time 
to 
accomplish 
time, short 
time of 
travel. 

Accomplish 
sample 
collection 
that had 
been 
postponed. 
Other areas 
of interest 
identified. 

Post-
notes  2.5 hours 

Unexpected 
delays due to 
terrain. 
Postponed 
one site. 
Extra 
walking. 6 
hours. 

 

2.5 hours. 
Equipment 
repairs 
done along 
way. 

Several 
delays due 
to terrain. 
Large 
group 
traveled 
slowly. > 6 
hours 
excursion. 

 

Large 
group of 
naïve 
travelers, 
terrain 
delays. 

 

3.3.3.1 DETAILED EXCURSION EXAMPLE: INTO HAUGHTON CRATER 

One HMP excursion (#3 in Table 3.4) is described in detail below in order to illustrate a traversal 

and its similarities to Moon and Mars sorties.   
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This rare excursion into the middle Haughton Crater was the first of the 2005 season, as special 

permission is required to enter the crater.  There were four participants in this excursion, of which 

three were experienced scientists that had visited the area several times in previous years.  Each 

researcher had a clear objective: 1) taking gravity measurements at multiple sites, 2) conducting a 

gully survey, or 3) collecting soil samples at one particular site.  These objectives are part of a 

longitudinal, on-going investigation of Haughton Crater, and are critical for the prolongation of 

HMP as a research site.  The fourth person in the excursion was a safety officer (necessary 

protection in case of polar bears – a hazard exclusive to Arctic exploration). 

A couple of hours before the start of the excursion, all participants gathered to finalize the plans.  

While the traverse leader was in charge of the meeting, there was open communication between all 

parties involved.  Each researcher outlined his objectives for the traverse, identifying specific sites 

they wished to reach (Table 3.5).  Furthermore, each site was prioritized.  They used maps, both 

topographic and aerial, to determine a feasible route.  This was accomplished rather quickly as all 

three scientists had previously undertaken similar routes in past seasons.  Hence, they were also able 

to anticipate a few locations along the path that would be difficult to navigate. The meeting ended 

with safety considerations, securing essential items, like radios and ATVs, in place.  

The participants initially planned to visit six sites using the ATVs.  During the planning session, the 

scientists delineated which sites were most critical and necessary, and settled on a preliminary route 

to follow (Figure 3.4).  The traverse leader estimated a total of 4 to 5 hours to complete the 

excursion, based on the number sites, estimated time to reach each and time spent at each site.  

Additionally, this excursion was also unusual in the respect that there was a real time-pressure 

element.  Two of the researchers were leaving HMP that evening on a flight that could not be 

delayed.  Most excursions at HMP did not have this time pressure as there was no real cost involved 

with returning to camp late.  



Table 3.5 Summary of  sites and estimated parameters for Haughton Crater excursion 

Site Tasks Path Distance Travel Time Reached? 
Junction Gravity measure 7 – 8 km 20 – 30 min √ 
Tripod Hill Gully survey, Gravity measure 7 – 8 km 20 min √ 
Old Base Camp Soil sample 4 km 15 min X 
Anomaly Hill Gravity measure 7 – 8 km 30 min √ 
Perseverance Hill Gravity measure < 1 km 5 min √ 
HMP Base Camp Gravity measure 13 - 14 km 35 min √ 

 

 

Figure 3.4 Haughton Crater excursion, with planned path, sites, and deviations from route. 

A detailed inventory of their supplies was recorded.  Their supplies fell under three categories, which 

were common to all excursions at HMP: excursion, critical and scientific supplies.  Excursion 

supplies included lunch, while critical supplies were items that were related to safety, such radios and 

repair tools for their mobility (i.e., ATV) like a tire pump.  Scientific equipment was carried that 

directly mapped to the objectives of each researcher, and included a gravimeter, cameras, hand-held 

GPS receiver, and sampling tools.  
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After the excursion (Figure 3.5), the traverse leader discussed events that triggered re-planning.  Due 

to the wet weather earlier that season, the ground bearing strength of certain areas had decreased, 

making it very difficult to drive over.  Since this was the first incursion into the crater that season, 

they had not anticipated the terrain conditions would be that poor.  The traverse leader estimated 

that they had spent all together over an hour extricating their ATVs from two separate locations.  

These locations were relatively early in the route and were not the anticipated problem areas.  The 

excursion participants were left to re-assess their plan and schedule.  

 

Figure 3.5 Haughton Crater excursion images 

The first re-planning event was with Old Base Camp, the only site where soil samples were to be 

collected.  It was unreachable with ATVs due to the low ground bearing strength. Walking was too 

time-consuming as there was a pressing need to return to base for the evening flight.  Unfortunately, 
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the alternative route to the site the researchers had selected was infeasible due to a terrain 

miscalculation.  Thus, for this traversal, the researchers left out the essential site, in hopes that a 

future opportunity would arise to return and collect the necessary samples. 

The second re-planning event was at Anomaly Hill site (Figure 3.4), where the researchers opted to 

walk to the site as the terrain was too weak to support ATV travel.  While walking was time-

consuming, it was still feasible within the time constraints.  Eventually, the researchers all returned 

to camp in time for the two departing scientists to catch their flight.  The excursion (summarized on 

Figure 3.4) took a total time of about six hours. 

3.3.3.2 IMPLICATIONS OF HMP OBSERVATIONAL STUDY 

There are many important analogies that can be drawn from HMP excursions. These traversals are 

more complex than Apollo EVAs, involving a greater number of people, trekking farther and 

through much more difficult terrain.  On the other hand, HMP is an established ground research 

site, and though remote, does not necessitate critical life-support equipment such as spacesuits1.  

Regardless of the differences with the Apollo program, similar problems arise, such as leveraging 

different types of mobility and incurring delays due to terrain uncertainty.   

The additional planetary EVA variables gained from the observed HMP excursions are summarized 

in Table 3.6.  These variables played a role in determining paths, both at the pre- and re-planning 

stages.  While providing insight to longer duration missions, this study emphasized the terrain (and 

environment) as one of the main sources of uncertainty.  With respect to the environment, weather 

played an important role, particularly as to how it affected the terrain itself.  In turn, the terrain 

uncertainty (e.g., actual ground bearing strength) affected path planning and re-planning.  Plans took 

into account potential problem areas, while unanticipated ones triggered re-planning.  Furthermore, 

the selected transportation modes (ATV or rovers) interact with the terrain differently, affecting 

speed and power consumption.  Combining different modalities of transportation (e.g., walking vs. 

driving) and being able to switch during the traverse increased the likelihood of completing all the 

 

1 It could be argued, though, that the safety officer, protecting against polar bears, is a life-critical 
element. 
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mission goals.  Overall, the HMP observational study was essential in the identification of planetary 

EVA variables that would affect path planning under circumstances that go beyond Apollo, in 

particular, long duration lunar stays and Mars human missions. 

Table 3.6 Planetary EVA variables based on HMP observational study 

Variable Category Variable Specifics 

Astro-agent  Effect of mixed and large teams; experience (particularly for re-
planning) 

Goals Task-specific equipment (e.g., mass) 
Terrain Landmarks, waypoints; emphasis on ground bearing strength 

Transportation Reliability of; trade-offs between walking and driving; emphasis on 
interaction between transportation and terrain & environment 

Environment Emphasis on recent past weather affecting future terrain conditions 
Infrastructure Communication availability (interaction with terrain & environment) 
Consumables Total time available 

Operation rules 
Drive-back requirements (e.g., alternative configuration of ATV and 
explorers), safety-critical supplies (e.g., mass), continuous 
communication availability, operationally required communication stop 

EVA components Alternative plans 

 

3.4 FUTURE EVAS: BEYOND APOLLO EXPERIENCE 

Based on subject-matter expert interviews and the NASA (2005) “Exploration Systems Architecture 

Study” (ESAS), there are additional planetary EVA variables that are relevant to the planning and re-

planning of excursions.  The variables summarized (Table 3.7) pertain to the types of missions that 

have yet to be accomplished: long duration human missions on the Moon and Mars. 

 Table 3.7 Planetary EVA variables based on planned future human missions 

Variable Category Variable Specifics 
Goals Scientific return (value) of task and sites, repeatability 

Terrain In-situ materials, remote sensing information (e.g., morphology, 
chemistry), new sensed data (increasing fidelity) 

Transportation Other types (pressurized rovers, campers), preparation time 
Environment Radiation 
Infrastructure Bases, refueling stations, navigation system (e.g., global, inertial)  
Consumables Life cycle of equipment 
Operation rules Radiation limits, day/night restrictions, work-hours limits,  
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The durations of EVAs will impose additional time limitations that are driven by total work 

conducted by astronauts, acceptable radiation exposure per EVA, and restrictions on night-time 

traversals.  Mission architecture will determine the availability of other modes of transportation (e.g., 

pressurized rovers), refueling stations, and navigation systems.  The longer the mission, the more 

information is acquired, and higher fidelity models will have to be incorporated into the planning of 

excursions.  Even though these extended-stay missions are only at the conceptual design stage, 

important variables that will affect planetary EVA planning and re-planning can be identified and 

incorporated into the Planetary EVA Framework.  

3.5 PLANETARY EVA FRAMEWORK 

The proposed framework for planetary EVAs was derived based on the case studies described, such 

as the Apollo program, on-going robotic planetary exploration, and HMP Mars-analog excursions.  

The variables, identified in detail within each case study, were re-organized into input categories or 

outputs (Table 3.8).  The output is an optimized (or satisficing) EVA plan that meets the goals of the 

mission and constraints.  The mission and operational constraints are based on system boundaries, 

which are imposed by the resources and operational procedures.  The framework organizes these 

variables and constraints that affect and determine the planning and re-planning of future planetary 

sorties.   

The framework presented in Figure 3.6 is only a graphical representation of the identified variables 

that need to be accounted for in a complete decision support aid for human planetary exploration.  

Thus, the Planetary EVA Framework proposes the information requirements for such an aid, and is 

not meant to be a comprehensive representation that specifies interactions (e.g., linear vs. non-linear 

relationships between variables), nor temporal constraints that are mission or context dependent.  

The use of a Venn diagram in Figure 3.6 is utilized to illustrate that the nested constraints are based 

on multiple sources, and the relationships between variables will be defined by a priori models (e.g., 

exploration costs and terrain).  



Table 3.8 Categorization of  planetary EVA inputs and outputs 

Type Group Variable categories 

Mission Resources 

Astro-agent 
Transportation 
Infrastructure 
Consumables 

Mission Objectives Goals: sites, tasks 
Safety Margins Operational rules 

Physical Environs Terrain 
Environment 

Input 

Models Exploration costs: consumable rates 

Output EVA Plan 

Path 
Schedule 

Other costs along path 
Contingencies 

 

Mission Constraints

Planetary Environs 
• Terrain
• Environment

Mission 
Resources
• Astro-agents
• Transportation
• Infrastructure
• Consumables

Mission 
Objectives
• Goals 

–Sites
–Tasks

EVA Plan
• Path
• Schedule & 
other costs 
along path
• Contingencies

Optimizer/

Satisficer

Safety 
margins:

Operational 
procedures

Operational Constraints
• Mobility obstacles
• Operational obstacles

Models
• Exploration costs

– Consumable rates
 

Figure 3.6 Planetary EVA Framework 
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3.5.1 INPUTS 

The input categories of a planetary EVA are mission resources, mission objectives, safety margins, 

exploration cost models, and planetary environs.  Defining each of these is necessary to develop a 

complete decision support aid from EVA planning and re-planning.  

Every EVA is conducted within a particular planetary environ, in this case, Moon or Mars, and 

includes terrain and environment models.  With respect to the terrain, vital characteristics that 

pertain specifically to path planning are elevation, slopes, rock density, rock size, and ground bearing 

strength.  Other information, for example, chemical composition, would be more relevant for the 

selection of scientific sites.  With respect to the environment, important models include lighting 

conditions (for Moon) and dust storms (for Mars).  The terrain plays an important role in mission 

planning and re-planning as it is one of the main sources of uncertainty, as exemplified in the Apollo 

EVAs, current MER experience, and HMP excursions.  Decreasing terrain uncertainty can be 

achieved by increasing the fidelity of terrain maps.  It is important to consider the uncertainty of all 

models because all EVA plans will be based on these assumptions, and thus, any model errors will 

inevitably introduce errors in the plans.   

The mission objectives, or goals, are the sites and tasks that need to be accomplished in a single 

EVA.  These goals drive the planning of the EVA.  Location, associate tasks, and priority are key 

characteristics of the mission objectives.  The goals of an EVA are not always fixed, as additional 

sites and tasks may be incorporated to take into account new discoveries or emergencies.  Thus, it is 

also imperative to know associated time and energy expenditures for specific tasks during re-

planning.   

The mission objectives can only be met if the appropriate mission resources are in place.  The 

resources are the elements available to carry out the EVA, including the astro-agents, the 

transportation modes, the infrastructure, and the consumables.  The term astro-agent is used 

because future (and current) planetary exploration encompasses both humans and robotic agents.  

Each astro-agent will have a particular capability or expertise that might be necessary to accomplish 

the EVA mission.  Potentially, a source of uncertainty may be the effect of mixed teams on 

accomplishing an EVA, which may add unexpected delays. 
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Transportation is a key element in all planetary EVAs, and the advantages of different locomotion 

options (e.g., walking or driving) need to be exploited to maximize mission success.  Several 

examples within the case studies cited reveal a poor understanding of the relationship between the 

transportation mode and terrain, resulting in re-planning of excursions.  Therefore, it is important to 

understand how the mobility type interacts with terrain characteristics (e.g., speed under different 

terrain rock densities). 

EVA planning and re-planning will have to also take into consideration the infrastructure in place on 

the planetary surface, be it a lander, a base, or even re-fueling stations.  The type of communication 

and navigation system available is essential for any real-time exploration aid.  It is important to 

determine if these systems interact with the terrain or the environment in order to model these 

relationships in the planner.  

The fourth mission resource is the available consumables.  The type and amounts of consumables 

will be determined by the selected astro-agents for the EVA mission (e.g., oxygen for humans versus 

power source for robots).  Among the mission resources, consumables are most important as it is 

these that drive mission constraints, discussed subsequently. 

The relationship between EVA inputs (mission objectives and resources) and the planetary environs 

is defined by the exploration cost models.  These cost function models would determine (or predict) 

traversed distances, durations of tasks (be it walking, roving, or working), energy consumed (e.g., 

metabolic rates or power used), rate of consumables expended, and favorable environmental 

positions.  Many cost functions are needed, as they are astro-agent and/or transportation specific, 

yet few models exist.  Reliable estimates of exploration costs (in particular time and energy 

consumed) are crucial for the planning of complex EVAs, as miscalculations will force in-situ re-

planning. 

3.5.2 CONSTRAINTS AND OUTPUTS 

The intersection of mission objectives and resources is designated as the overall mission constraints.  

Mission constraints are akin to hard constraints, absolute limitations imposed on the system.  For 

instance, the astronaut cannot consume more oxygen than the fixed amount available.  Other 
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limitations involve the type of transportation used in the EVA, and relate, for example, to the 

maximum speed of the mobility or terrain that is physically traversable. 

A subset of the mission constraints are the operational constraints, which are similar to soft 

constraints as they are delineated by established operational procedures, or safety margins.  Soft 

constraints are ones that can be violated but are imposed on the EVA for precautionary reasons.  

For example, one type of rule may be that astronauts should not exceed a particular metabolic rate 

during the traversal.  Another type of safety margin is one where an astro-agent must always return 

to base with 10% of their consumables remaining.  Mission planners will have to use the exploration 

models to assess if the EVA plan violates any of the operational procedures.  Safety margins may 

possibly be overly conservative estimates (e.g., total radiation dosages) due to limited operational 

experience of human planetary exploration, resulting in safe, but inefficient EVAs.    

Two types of operational constraints are identified: mobility and operational obstacles.  Mobility 

obstacles depend on the type of transportation used, and is further restricted by safety margins.  An 

area may be inaccessible by a rover because the rock density in that area is too high, yet that same 

location could be explored on foot (at the cost of additional time, for example).  Incomplete 

knowledge of how different transportation modes interact with the terrain will result in poor 

calculations of obstacles, and hence affect path planning. 

Operational obstacles are areas are out-of-bounds due to operation rules.  For instance, future EVAs 

may not permit exploration of areas that are out of communication range.  If using a rover, “walk-

back” requirements limit the maximum traversable distance from base or re-fueling station.  In 

terms of re-planning, it would be necessary to classify when these operational restrictions can be 

violated, i.e., in case of an emergency. 

Every EVA mission must satisfy the mission goals and constraints.  As a result, the EVA plan 

outputs a path with an associated schedule and other exploration costs.  Ideally, contingency plans 

should also be outlined for rapid re-planning (e.g., alternative routes to sites or back to base).  

Predicting associated exploration costs at sites and along path is imperative as it is this information 

that will be compared to the actual EVA.  Real-time discrepancies will indicate reasons for re-

planning.  Over time, comparative analysis between predictive and actual exploration costs will assist 
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in developing more accurate models of the cost functions, terrain, environment, and their 

interactions with transportation modes. 

3.5.3 APPLICATION OF PLANETARY EVA FRAMEWORK 

The Planetary EVA Framework is a result of comprehensive assessment of the past, present and 

future human-robot planetary exploration.  All the identified variables affect the planning and re-

planning of extra-vehicular activities.  Mission resources and objectives determine the mission 

constraints.  These are further narrowed down by the imposed safety margins, resulting in 

operational constraints.  Only within the system boundaries can an EVA plan be defined, including a 

path with adjoining schedule and other costs.  This framework is also broad enough that, with a few 

nomenclature modifications (e.g., astro-agent), it could apply to other domains that involve multiple 

types of agents and missions that require planning and scheduling.  This includes unmanned ground 

or air vehicles, rescue teams, and diving expeditions.  The specifications of each input category and 

constraints have to describe though the work domain for that particular field, just as the Planetary 

EVA Framework addresses human traverses on extra-terrestrial surfaces.     

Before sending humans to explore Moon and Mars, we need to have a clear understanding of the 

relationships between inputs and constraints across all type of planetary EVA architectures. 

Acquisition of this knowledge will not only serve the purpose of developing EVA planning decision 

support aids but also modeling future planetary surface operations with implications for logistics 

mission planning.  While additional specification with respect to the parameters and constraints is 

possible, the proposed Planetary EVA Framework is the first step in establishing a common ground 

to discuss human-robot extravehicular activities.  For the purposes of this thesis, only a small sub-

section of the framework is applied for the developed prototype EVA path planner.  
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4 PATH PROTOTYPE: A DECISION 

SUPPORT AID FOR LUNAR & PLANETARY 

PATH PLANNING 

4.1 DEVELOPING A PATH PLANNER PROTOTYPE 

In order to investigate how humans conduct path planning optimization with computer support, a 

prototype automated path planner was developed.  A subsection of the Planetary EVA Framework 

(Figure 4.1) was selected to develop the path planner aid.  From the mission resources, the aid 

considers traverses that are accomplished on foot by a suited astronaut.  Six exploration costs were 

chosen with corresponding models that interacted with the lunar terrain model.  A specific area on 

the lunar surface is used, and sites involve pre-determined locations that astronauts must reach.  In 

terms of the environment, the only variable considered is sun position.  Operational constraints 

imposed were purely based on the interaction between mobility type and slope (and hence, terrain 

elevation).  The decision aid concerns itself with the path plan output.  While this might be 

considered a limited subset, the selected scenario resembles the early Apollo missions, and 

potentially, the first human missions back to the Moon.  In addition, the path is a fundamental 

component of any EVA sortie as it determines all exploration costs (like oxygen consumed) and 

establishes the schedule.  The prototype path planner aid is the basis from which a more complex 

and complete decision support aid for planetary exploration can be developed.  It is a generic 

interface that could be applied to other path planning domains beyond human planetary exploration.  

There are only a few inputs that are specific to Lunar exploration, of which all are interchangeable, 

thus, applicable to Earth and Mars.   

 



Mission Constraints

Planetary Environs 
• Terrain
• Environment

Mission 
Resources
• Astro-agents
• Transportation
• Infrastructure
• Consumables

Mission 
Objectives
• Goals 

–Sites
–Tasks

EVA Plan
• Path
• Schedule & 
other costs 
along path
• Contingencies

Optimizer/

Satisficer

Safety 
margins:

Operational 
procedures

Operational Constraints
• Mobility obstacles
• Operational obstacles

Models
• Exploration costs

– Consumable rates
 

Figure 4.1 Subset of  Planetary EVA Framework applied to prototype decision support aid 

This chapter describes the developed path planner, its features and interface specifics.  The 

prototype, named PATH (Planetary Aid for Traversing Humans, Figure 4.2), was developed over 

the course of a year and is written in Java (version 1.5).  The path planner has as inputs a terrain 

map, an obstacle map, cost function models, and other environmental conditions.  There are two 

methods in which a path can be defined: 1) either the user manually makes the entire path, or 2) the 

automation generates portions of the path.  PATH also provides the users with the capability of 

always manually modifying paths.  There are three possible map visualizations that have been 

developed and tested.  Finally, PATH’s interface, which includes tables and tabs, was modified 

between experiments, and hence, there two interfaces are described.  All of these PATH features 

(e.g., maps, cost functions, visualizations) are explained in detail in this chapter. 
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Figure 4.2 Prototype path planner, PATH (Planetary Aid for Traversing Humans)  

4.2 TERRAIN MAPS 

This section includes a description of the path planner’s inputs: a terrain elevation map and an 

obstacle map.  Each is pre-defined by the experimenter.  Within the scope of this research, two 

terrain maps were used, based on lunar terrain data.  This component of the path planner is 

interchangeable, as the experiment can define any elevation and obstacle map. 

4.2.1 CONE CRATER: APOLLO 14 

While global mappings of the Moon are available, high resolution terrain maps of smaller areas are 

scarce.  In a previous study (Carr, 2001), Carr interpolated a 5-meter resolution elevation map of the 

Apollo 14 landing site of Cone Crater (about 3.65º south, 17.47 º west on Moon), an area roughly 
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3.2 km2. While there are other explored areas on the Moon that have more varied and interesting 

terrains, high resolution elevation maps either do not exist or are not accessible.  Furthermore, this 

Cone Crater area was a site that has already resulted in a problematic expedition (Apollo 14).  The 

area is marked by the large crater on the north-east corner, including high elevations around the 

southern-face, and low elevations on the western portion of the map (Figure 4.3).  

 

Figure 4.3 Three-dimensional map of  original Cone Crater area, terrain used on PATH 

This original terrain map, as depicted in Figure 4.3, was used in the first set of experiments.  

Subsequently, the terrain was deemed as not having enough changes in slopes and limiting the 

choice of trials for experimentation.  A modified version of the terrain map was generated (Figure 

4.4).  Based on the original elevation maps of the Cone Crater area, additional small craters and 

“mole-hills” were inserted on the elevation maps.  The changes not only allowed for more diversity 

in trial choice, but also increased the complexity of each trial such that there was not always one 

clear best path.  
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Figure 4.4 Three-dimensional map of  modified Cone Crater area, terrain used on PATH 

4.2.2 GENERATING OBSTACLES 

The obstacles used in the path planner are strictly based on terrain slope.  Figure 4.5 depicts these 

obstacles for the original and modified Cone Crater terrains.  If the slope at a particular point was 

too steep for a suited astronaut, it was considered an obstacle.  A conservative slope angle was 

selected, 15 degrees, as the maximum slope suited astronauts could climb or descend.  During the 

Apollo program, spacesuits were pressurized and bulky, thus greatly limiting the astronaut’s mobility.  

If a point was surrounded by steep terrain (such as the bottom of a crater), this area became 

inaccessible, and thus, also an obstacle. While other types of obstacles are possible (such as terrain 

that is too rocky to traverse), PATH restricts itself to one type of obstacle based on terrain slope. 

 

Figure 4.5 Obstacles (slopes greater than 15 degrees) for terrain maps used in PATH. Left, 
original Cone Crater terrain; right, modified Cone Crater terrain 
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4.3 COST FUNCTIONS MODELS 

PATH also takes as input a selected cost function (or objective function) which determines a path’s 

cost.  Every generated path has an associated cost.  The most commonly used cost function within 

path planners is distance.  For PATH, any cost function is permissible, as long as it grows 

monotonically (i.e., the cost from one point to another is always greater than zero) and is 

independent of path history (i.e., the cost function does not change along the path).  These 

constraints are a consequence of the type of search algorithms implemented in PATH.  A total of six 

cost functions were tested in two different experiments: Elevation Score, Sun Score, Distance, Time, 

Metabolic Cost, and Exploration Cost.  Each is subsequently described in the following sections. 

4.3.1 SUN SCORE AND ELEVATION SCORE  

Surface visibility is a key factor in the success of lunar sorties.  In particular, sun glare was an issue 

during navigation (both on the rover and on foot) and scientific observations.  If the sun is directly 

in front of the astronaut, there is too much glare to look forward (Figure 4.6).  On the other hand, if 

the sun is directly behind the astronaut, there could be exaggerated, misleading shadows, obscuring 

the real size of slopes and obstacles.  A low sun elevation (angle above the horizon) will likely result 

in large shadows and the sun at “high noon” will create no shadows.  It is thus most favorable, for 

perception and navigation purposes, if the sun does not create glare but still provides some shadows 

on the terrain. 

 

Figure 4.6 Sun glare when returning to the lunar module (NASA image: AS14-67-9367) 
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In order to quantify favorable sun positions, Carr created a cost function, Sun Score, that assessed 

the sun position along the path trajectory (Carr et al., 2003).  The Sun Score1 (SS), Equation (1), is a 

function that takes into account the relative azimuth angle, θ, and the relative elevation angle, φ, 

between the sun and the observer (Figure 4.7).  Equation (2) defines θ, which is the difference 

between sun’s azimuth angle (θsun) and the observer’s orientation (θobserver) relative to East (0 

degrees).  Equation (3) defines φ, which is the difference between the sun’s elevation angle (φsun), and 

the terrain slope the observer is at (φobserver).   

 

Figure 4.7 Sun position angles (left), relative azimuth angle (center) and relative elevation 
angle (right) 

With respect to the Moon, the sun’s elevation and azimuth angles are considered fixed over the 

course of one EVA (about 8 hours) as the rotation period of the Moon is 28 days (as opposed to 24 

hours like on Earth).  The Elevation Score, ES (4), is a subset of the Sun Score, only taking into 

account elevation angles.  Ultimately, a high Elevation or Sun Score means that the lighting 

condition is not ideal, while low scores indicate better lighting conditions for traversing. The optimal 

sun angle is that which causes the most contrast across the surface, which is when the sun is high in 

the sky (approaching 90 degrees in relative latitude) and at a cross angle from the direction of travel 

(at 90/270 degrees in relative longitude).  If required to walk towards the sun, the best direction of 

travel is 45 degrees in relative longitude.  

                                                 

1 Carr’s original Sun Score ranged from 0 to 1.  However, the cost functions implemented have to 
grow monotonically, and thus, the function was adjusted to take this into account. 
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 (cos(2 ) 2) (cos(2 ) 2)SS θ φ= + ⋅ +  (1) 

 observersun θθθ −=  (2) 

 sun observerφ φ φ= −   (3) 

 2)2cos( += φES  (4) 

4.3.2 DISTANCE 

The cost function of Distance is based on actual distances between points on the map and is 

dependant on the map resolution.  For example, the terrain maps used had a resolution of 5 m, thus 

a lateral motion would be a distance of 5 meters while a diagonal one, would be about 7.07 meters.  

The shortest distance is achieved through a straight-line path, while avoiding obstacles. 

4.3.3 TIME COST 

The Time cost function is equivalent to duration of the sortie: how long does it take an astronaut to 

get from one location to another.  The Time cost function incorporates both distance and terrain 

slope (one more variable than the Distance function). 

While several studies have predicted, measured, and simulated lunar walking speeds, unfortunately, 

there is very little data that relates astronaut traverse velocity with terrain slope.  For example, Stone 

(1974) estimated from Apollo 11 video that astronauts traversed at a maximum speed of 2.5 m/s, 

though most of the speeds are under 1 m/s.  During Apollo 17, an average of 0.75 m/s was used to 

calculate the “walk-back” requirement (Jones, 1995).  Apollo 15 measured maximum speeds of 0.61 

m/s, but this was based on walking short distances around the lunar lander or at geological stops 

(Jones, 1995).  Minetti predicts that the optimal walking speeds on Moon will be 0.6 m/s and the 

walk-to-run-transition speed is 0.8 m/s (Minetti, 2001).  

Waligora and Horrigan (1975) have the only published data from the second EVA during Apollo 14 

that relate actual distance traveled, duration, and net elevation change on the lunar surface.  The data 

they published is plotted in Figure 4.8.  Astronauts during this EVA were had a range of walking 
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speeds between 0.4 – 1.6 m/s, walking fastest on flat terrain.  The net elevation change is over 

hundreds of meters in distance, so these velocities are only averages.  Even though the data points 

are scarce, it appears that velocities dropped faster over positive terrain slopes (i.e., uphill) while over 

negative terrain slope (i.e., downhill), velocities decrease at a slower rate.   
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Figure 4.8 Apollo 14 EVA-2, walking velocities, from Waligora and Horrigan (1975) data set 

A velocity profile for the Time cost function was developed that resembled the Apollo 14 velocity 

data (Figure 4.9).  This profile is defined by Equation (5), where v is velocity in m/s and α is slope in 

degrees.  The maximum velocity is 1.6 m/s and occurs at flat terrain.  Going downhill is faster than 

going uphill.  Time, Equation (6), is calculated by multiplying velocity by the distance traversed. 
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Figure 4.9 Velocity profile as a function of  slope for Time Cost Function 

 

4.3.4 METABOLIC COST 

The Metabolic cost function is a measure of how much energy is consumed by the astronaut while 

traversing on the lunar surface.  The Metabolic cost function builds upon the preceding function, 

and thus, integrates distance, terrain slope, and velocity information. 

Several studies have predicted and simulated energy consumption rates while traversing on the lunar 

surface (Newman, Alexander, & Webbon, 1994; Stone, 1974; Wickman & Luna, 1996; Wortz & 

Prescott, 1966).  These are summarized in Figure 4.10.  In order to make comparisons across these 

studies, energy consumptions rates were transformed to Joules/second, assuming the Wortz and 

Prescott study’s average weights and velocities, and if necessary, average oxygen consumption 

energy.  In general, these estimates are not far from the average EVA metabolic rates on the lunar 

surface (Figure 4.11), which was 273 ± 32 J/s (Waligora & Horrigan, 1975).  Unfortunately, most of 

studies do not correlate the rates with terrain.  Studies by Stone (1974) and Wickman and Luna 

(1996) provided metabolic cost models, but the latter does not include the effect of terrain slope.  
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Only the Apollo 14 data for EVA to Cone Crater correlates metabolic rates with terrain slope and 

velocity (Waligora & Horrigan, 1975), which can be used to assess metabolic cost models. 
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Figure 4.10 Summary of  lunar metabolic rates as a function of  velocity (on flat terrain) 
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Figure 4.11 Average EVA metabolic rates of  astronauts during Apollo missions (data from 
Waligora and Horrigan, 1975) 

 

 

75



There were two models considered for the Metabolic cost function, one by Stone (1974) and the 

other by Santee et al. (2001).  Stone’s model, Equation (7), is a function of velocity (v in km/hr) and 

α, slope in degrees.  This model is based on simulated lunar traverse experiments, i.e., a fitted curve 

(Figure 4.12, left).  It is interesting to note the trends exhibited by the model: there are high 

metabolic cost penalties uphill but not as much as going downhill. 

  (7) 2Energy rate  115 (0.45 1.26 sin 2.23 sin ) 100 vα α= + + ⋅ + ⋅ ⋅ ⋅
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Figure 4.12 Lunar energy consumption rates: left, Stone (1974) model and right, Santee et al. 
(2001) model 

Santee et al.’s (2001) model, Equation (8), is based on both experimental data and physical walking 

models.  The energy rate model is broken into two main components: energy to move forward, 

Equation (9), and energy to move up- or downhill, Equation (10).  Both components depend on 

velocity, v in m/s, and the mass, m in kg, of the person traversing.  The energy to walk up- or 

downhill is a function of both velocity and slope, α in degrees.  Even though Santee’s model was 

not developed for extra-terrestrial navigation, the model has a gravity factor (in m/s2), thus, it can be 

used for modeling energy rates for the Moon and Mars.  Figure 4.12 (right) plots the energy rates 

predicted for the lunar case (at a fixed velocity).  It is noteworthy to highlight that it exhibits the 

same trends as the Stone model (low rates downhill, high rates uphill). 
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In order to determine which energy consumption rate model to use, the models were compared to 

actual Apollo 14 energy rates for the Cone Crater EVA (Figure 4.13).  Apollo 14 EVA velocity and 

corresponding slopes (from Waligora & Horrigan, 1975) were used to predict metabolic rates using  

the Stone (1974) model and the Santee (2001) model.  These were plotted against actual energy 

expenditure rates from the two astronauts on the EVA.  On downhill slopes, Santee’s model is 

conservative (overestimates rates) while Stone’s model underestimates rates.  On uphill slopes, 

Santee’s model predicts higher rates than Stone’s model, but both seem to underestimate rates.  Carr 

showed that these discrepancies are due to the fact that astronauts were dragging a small science 

cart, and other than this, Santee’s model was a good estimator of walking lunar metabolic rates 

(Carr, 2001).  For this reason, and because Santee’s model has a gravity factor and is more 

conservative than Stone’s, it was used in the PATH prototype, in combination with the Time Cost 

function to form the Metabolic Cost function model for PATH, Equation (11).  In this model, there 

are high metabolic cost penalties for going uphill as opposed to downhill (Figure 4.14).

 

 TimeRateEnergy  Cost  Metabolic ⋅=  (11) 
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Figure 4.13 Metabolic rates for Apollo 14 EVA-2 compared to modeled rates 
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Figure 4.14 Metabolic cost (per meter) as a function of  slope, using Time Cost 
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4.3.5 EXPLORATION COST 

The Exploration Cost is a cost function that takes into account all the preceding cost functions, 

integrating distance, terrain slope, velocity, and sun position information.  Exploration Cost is the 

combination of the Metabolic Cost function and the Sun Score.  Sun Score is weighted against the 

Metabolic Cost.  A 1:2 ratio was selected to indicate that Metabolic Cost is more important than Sun 

Score (sun position) as energy consumed is directly related to oxygen supply (and hence, safety 

critical).  The weighting is also a ratio that PATH users could intuitively understand (i.e., Metabolic 

Cost is twice as important as Sun Score). 

 Exploration Cost (Metabolic Cost) (1 1 2 )SS= ⋅ + ⋅  (12) 

4.3.6 INCREASING COMPLEXITY OF COST FUNCTIONS 

The set of cost functions presented depend on each other and grow in the number of variables.  For 

instance, the Elevation Score only a function of the relative elevation angle, φ, and the Sun Score 

builds on Elevation Score with the addition of relative azimuth angle, θ.  These two cost functions 

are tested in the first experiment.  Distance, Time, Metabolic, and Exploration functions have a 

similar relationship (Figure 4.15).  This set of functions is tested in second experiment.  The Time 

cost function introduces the additional variable of slope.  In the Metabolic function, velocity 

becomes a more important factor, though it still depends on the same variables that determine Time 

(slope and Distance).  The Exploration cost function captures all possible cost functions by 

including both Sun Score and Metabolic Cost.  This relationship between functions is important 

because during path planning, different cost functions represent an increase in numbers of variables 

manipulated, and hence a growing task complexity. 
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Distance = ƒ(path length)

Time = ƒ(Distance, slope)

Metabolic = ƒ(Time, velocity)

Exploration = ƒ(Metabolic, Sun Score)

 

Figure 4.15 Flow and interdependences between cost functions 

4.4 AUTOMATION LEVELS 

There are two methods that a PATH user can define a path, given start and goal locations.  These 

correspond to two automation levels, LOA 2 and 4 (see section 2.2.1).  Currently, only one 

automation level at a time can be used.  LOA 2 represents the condition in which computer aid is 

used primarily as a filtering tool, and the human does most of the problem solving, while with LOA 

4, the automation, after prompting by the user, suggests a solution, leaving the problem solving 

mostly to the computer. These two levels of automation reflect the human-computer function 

allocation, in other words, how much of the path is decided by the automation or the human.  For 

the purposes of this research, these levels have been renamed passive and active automation (LOA 2 

and 4, respectively) corresponding with the role automation plays within the path planning task.  

Within active automation, the user only decides on an intermediate point between the start and goal 

locations, while the automation generates least-costly path segments (Figure 4.16, left).  Users are 

restricted to only placing their intermediate waypoint within a pre-determined critical way-area.  

Within passive automation, the user takes a more central role, deciding all the waypoints within a 

path (Figure 4.16, right), while the automation takes the more supportive role of calculating all the 

costs. These levels are described in more detail subsequently. 
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Figure 4.16 Difference between active (left) and passive (right) automation 

PATH initially starts out with the experimenter selected inputs (e.g., terrain map, cost function) and 

a start, goal, and critical way-area.  The critical way-area is an area on the map of interest (see orange 

polygon outline in Figure 4.2 and dashed outline in Figure 4.16) and represents a potential site that 

an astronaut wants to explore.  Every path must cross through this way-area when using PATH.   

With respect of the interface, the only visual difference between passive and active automation is 

found on the far right of the interface (Figure 4.17).  Within passive automation, the user must click 

on “Create Path” button before starting a path; this informs the interface that the user is going to 

make a series of waypoints that define a path.  The user then selects waypoints on the map terrain 

which are connected by straight path segments.  Once the goal is selected as a waypoint, the path is 

completed.  Within active automation, the user must make a waypoint in the critical way-area and 

then click on “AutoPath”.  The automation then calculates and plots a least-costly path from the 

start to that waypoint and from the waypoint to the goal.  With the inclusion of the way-area, the 

problem space remains relatively large, permitting the exploration of different automated paths.  

The algorithm used to find least-costly paths is the numerical potential field method, NPFM 

(Barraquand, Langlois, & Latombe, 1992; Rimon & Koditschek, 1992).  NPFM is applied to a 

discrete map, i.e., a grid space.  PATH’s terrain map is a discrete map, where every grid cell (which 

are 5 meters apart) is associated with a terrain elevation.  In general, the path planning algorithm first 

calculates the minimum total path cost from every grid cell to a pre-determined goal location.  The 

minimum cost at the goal is zero.  In order to determine the least-costly path from a pre-determined 
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start location, a gradient descent search is applied from the start grid cell, ending at the global 

minima – the goal grid cell.  Further details, advantages and disadvantages of the algorithm are 

discussed in a subsequent section (section 4.7).  The least-costly path (a sequence of grid cells from 

the start to the goal) is smoothed using the midpoint line algorithm (Breseham, 1965), creating the 

path segments.  This algorithm approximates a straight line between grid cells.    

     

Figure 4.17 Active (left) and passive (right) create path buttons on the PATH interface 

The “Done” button (Figure 4.17) indicates the user has finished creating their path, and the selected 

path is submitted as the least-costly path. 

4.5 MODIFYING PATHS: SENSITIVITY ANALYSIS TOOLS 

Once a path is defined, either through passive or active automation, the user is able to modify paths.  

Currently, only three paths can be seen at once in the PATH interface (Figure 4.2); each is color 

coded for easy distinction (blue, red, and green).  While the user is not limited to the number of 

paths they can make, only these colored paths can be seen and manipulated.  In order to create 

multiple paths, PATH gives the users the capability of clearing entire paths (with “Clear Path” 

button, Figure 4.17) or modifying paths through the “Modify Path” tab functionalities (Figure 4.18).  

Once a path is selected (either by clicking on the path itself on the map or selecting the path’s 

corresponding radio buttons, which are on the top-right corner of PATH interface, Figure 4.18), the 

user can move waypoints, add waypoints and delete waypoints.  In order to put into effect the cost 
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changes of the modified path, the user must click on “OK” under the “Modify Path” tab.  Users can 

utilize the “Cancel” button1 to undo a path modification (before pressing “OK”). 

 

Figure 4.18 Modify path functionalities and path radio buttons 

Once the “Modify Path” tab is selected, the user can move waypoints (by clicking and dragging 

waypoints on the map terrain).  The “Add WP” and “Delete WP” buttons are to add and delete path 

waypoints; they are toggle buttons, and pressing them activates and de-activates these functionalities.  

Users can only add new waypoints on the path.  Once these are added, they can be moved and 

deleted as well.  Only if the modified path is obstacle-free will users be able to update the path’s 

cost.  A warning is given to the user that he/she needs to keep modifying the path until it is 

obstacle-free. 

In summary, there are two basic modes the user can be in when modifying paths: moving or 

adding/deleting waypoints.  One can distinguish which one they are in by either observing if the 

“Add” or “Delete” buttons are depressed or by noting the cursor type.  When moving waypoints, 

the cursor is a cross-hair; when adding or deleting, the cursor is a pointed hand. 

                                                 

1 Users cannot revert to a previous path after “OK” is pressed. 
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4.6 PATH DISPLAY FEATURES  

4.6.1 PATH COST INFORMATION 

Once a path is made or modified, path information is displayed in the bottom section of the PATH 

interface.  The basic information provided includes the path cost of each individual path, the paths’ 

costs along waypoints (cost profile), and the paths’ elevation profile.  There are two versions of the 

path information displayed, each corresponding to the two experiments conducted using PATH.  

The difference between the first and the latter is the inclusion of cost bar graphs. 

The first version of path information display includes a table with total path costs, a path cost profile 

graph, and a path elevation profile (Figure 4.19, where two paths are shown).  The table at the top 

has three columns, one for each color-coded path; there are two rows, one for the total Distance of 

the path and the other for the cost based on the cost function (in the case of Figure 4.19, Sun 

Score).  Below the table, a cost profile is plotted.  The color matches the corresponding path color.  

This plot provides information as to how the path cost is changing along course of the path (x-axis 

is always Distance, while the y-axis is the particular cost function).  The end points of the path cost 

profiles are the same total costs represented in the table.  Finally, below the path cost profile is the 

path elevation profile, which plots the elevations the path encounters.  Again, colors match the 

corresponding path.  If no path exists, no information is displayed, as in the case of the “green” path 

in Figure 4.19.    

 

Figure 4.19 Path information display, version 1 
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For the second version of path information display, a cost bar graph was included and color was 

added to the table of costs (Figure 4.20).  The path cost profile and the elevation profile is still 

included but is shifted to the left to allow for the table and the cost bar graph.  Color was included 

in the table in order to match the profiles.  A cost bar graph, which has the same information as 

table (total path cost), was included after users asked for a quick way of determining which path 

created had the minimum path cost.  Color was again implemented for ease of recognition. 

 

Figure 4.20 Path information display, version 2 

4.6.2 OTHER DISPLAY FEATURES 

On the left side of the PATH interface, information about sun position, cost function, and map 

scale is displayed (Figure 4.21).  In the first experiment, only two cost functions were tested.  Their 

descriptions fit in the “Environment” tab, which also includes sun position (azimuth and elevation 

angles, both numerically and graphically).  However, for the second experiment, a more complex set 

of cost functions were tested.  Since the functions are interdependent, all cost functions had to be 

described.  Therefore, the second interface version of PATH included a “Cost Functions” tab 

(Figure 4.21).  Finally, a map scale is included for completeness.  
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In the second version of the PATH interface, a timer was shown on the far right of the display (see 

Figure 4.2 for location of timer).  This timer was an indicator for the user on how long they had 

been path planning1. 

     

Figure 4.21 PATH display of  sun position and cost functions 

4.7 MAP VISUALIZATIONS 

There were three possible map visualizations: elevations contours, levels of equal cost (LOEC) 

visualization, and elevation contours with LOEC.  Initially, these visualizations were optional, i.e., 

they could be triggered on/off by the user.  However, currently, these visualizations are fixed and 

only one can be seen at a time.   

                                                 

1 Timer was included as part of the second experimental protocol. 
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Figure 4.22 Map visualizations that include elevation contours. Left, grayscale-filled contour 
map; right, contour lines overlaid on top of  the second visualization 

The elevation contours visualization, as its name implies, provides elevation information such that 

within each contour, the elevation is relatively the same (within 10 meters).  There are two ways in 

which elevations contours were shown in PATH: grayscale-filled contour map and contour lines 

overlaid on top of levels of equal cost visualization (Figure 4.22).  For the grayscale map, white is the 

highest elevation while dark gray is the lowest elevation (black remains obstacles).  The elevation 

contours presented in the visualizations resemble topographical maps, except there are no raw 

elevation markings.  This design decision was chosen because it was deemed the addition of 

numbers would clutter the map and that the detailed information is provided in the path elevation 

profiles. 

4.7.1 LEVELS OF EQUAL COST VISUALIZATION 

The levels of equal cost (LOEC) visualization (colored gradient in Figure 4.23) displays integrated 

information about areas on the map that have relatively equal cost.  LOEC is based on the 

calculations generated from the numerical potential field method (NPFM), which is the algorithm 

used in the active automation version.  The NPFM requires a grid decomposition of the space (or 

terrain), which is based on the map resolution.  Each location on the map is a grid cell with a 

matching terrain elevation.  Obstacles are also pre-determined, and the corresponding grid cells are 

labeled as obstacles before the algorithm solves for a minimum path.  Path costs are calculated based 

on a cost function.  Each of these elements (map resolution, obstacle identification, and cost 
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function accuracy) is set in advance, and thus, the visualization representation is only as good as the 

a priori knowledge available.  

 

Figure 4.23 Levels of  Equal Cost (LOEC) visualization 

The LOEC visualization colors are based on the grid cell’s minimum total cost from that location to 

the goal.  The grid cell’s minimum total cost can be calculated because the terrain, obstacles and the 

cost function are known a priori and pre-determined.  In order to calculate this minimum total cost 

for each grid cell, a goal location is first selected and given a zero cost.  Then the path cost of 

traversing from a grid cell to the goal is computed.  The cost between grid cells is determined by the 

cost function (fixed experimentally).  All possible paths from a grid cell to the goal are attempted but 

only the minimum total cost is saved.  Essentially, this process is similar to implementing Dijkstra’s 

(1959) algorithm, which is an exhaustive search of total costs from every “node” (in this case, grid 

cells) to a reference “node” (with NPFM, the goal grid cell).  With respect to obstacles, each is given 

a high penalty cost, thus minimum costs associated with obstacles are always high. 

As a result, each grid cell has a corresponding minimum total cost that is relative to the goal.  

Together, these costs can be considered a minimum total cost field (similar to a potential field) 

where the goal location is the lowest point (with a zero cost) and obstacles are peaks of high cost.  

Since this cost field is relative to the goal (i.e., the minimum cost from any location to the goal), the 

visualization is a static map as long as the goal remains the same.  The minimum total cost field is 

rendered in color, and locations depicted in the same color have the same minimum total cost to the 

goal – thus color indicates equal levels of cost.  The color gradient chosen is between yellow and 
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purple, as they are complementary colors1, and thus, create the most contrast when side-by-side, 

helping users discern between different cost levels. 

In order to further describe the process of generating the LOEC visualization, a simple illustration 

of how a total cost map is calculated is seen in Figure 4.24.  The map is defined as a grid space, 

where the cells representing obstacles are seen in black.  A start and a goal cell are pre-selected, 

depicted in Figure 4.24 as “S” and “G”.  The minimum total cost from a cell to the goal is calculated 

based on the pre-selected cost function.  In this example, the cost function is the Manhattan 

distance (i.e., no diagonal motions from cell to cell).  All the minimum total cost values relative to 

the goal are stored and these are the costs that are represented in the LOEC visualization.  For 

instance, in Figure 4.24, all the cells with minimum cost of “5” would share a color.  In order to 

determine a least-costly path, one searches for the next smallest minimum cost until the goal is 

reached (i.e., a gradient search).  In the example presented, only one optimal path is highlighted even 

though there are many possible least-costly paths that lead to the goal. This same minimum cost 

map can be illustrated in 3D (Figure 4.25), where the peak cells are the obstacles.  

15 14 13 12 11 10 9 8 7 6 5 6 7
14 13 12 11 20 20 8 7 6 5 4 5 6
13 12 11 10 20 20 7 6 5 4 3 4 5
12 11 10 9 8 7 6 5 4 3 2 3 4
11 10 9 8 7 6 5 4 3 2 1 2 3
10 9 8 7 6 5 4 3 2 1 0 1 2
11 10 9 8 7 20 20 4 3 2 1 2 3
12 11 10 9 8 20 20 5 4 3 2 3 4
13 12 11 10 9 8 7 6 5 4 3 4 5
14 13 12 11 10 9 8 7 6 5 4 5 6

S

G

15 14 13 12 11 10 9 8 7 6 5 6 7
14 13 12 11 20 20 8 7 6 5 4 5 6
13 12 11 10 20 20 7 6 5 4 3 4 5
12 11 10 9 8 7 6 5 4 3 2 3 4
11 10 9 8 7 6 5 4 3 2 1 2 3
10 9 8 7 6 5 4 3 2 1 0 1 2
11 10 9 8 7 20 20 4 3 2 1 2 3
12 11 10 9 8 20 20 5 4 3 2 3 4
13 12 11 10 9 8 7 6 5 4 3 4 5
14 13 12 11 10 9 8 7 6 5 4 5 6  

Figure 4.24 Illustration of  LOEC generation.  Top: (left) grid map with start & goal; 
(middle) complete cost map; (right) an optimal path 

                                                 

1 Additionally, these colors were chosen because they did not overlap with the existing red, blue, and 
green paths.  
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Figure 4.25 3D illustration of  LOEC generation 

The rationale behind developing the LOEC visualization is multifold.  First, as mentioned, the 

visualization is based on the algorithm (NPFM) that determines the least-costly path between a start 

and goal location.  Thus, this visualization illustrates the computations calculated by the path planner 

in order to ascertain an optimal path.  The computations take into account all the variables and the 

underlying cost function, which may be a complex model.  In turn, users can draw upon this visually 

summarized, integrated information to help them determine a path, regardless of the number of 

variables and the complexity of relationships between variables (which will be discussed 

subsequently in detail).   

Second, the notion of “equal costs” is similar to the elevation contours, where a contour line (or 

area) represents relatively equal terrain elevations.  A contour map is a common, 2D graphical 

representation of changes in terrain elevations that is familiar to most people, thus, PATH users 

could extend the same metaphor to minimum total costs.  A color map was preferred over contours 

lines (or areas) because it was deemed that this representation would provide more granularity (i.e., 

the user could distinguish more levels of equal cost than with contour lines).  An alternative 

visualization was considered based on the minimum total cost field: a cost gradient map 

visualization.  Since the minimum cost from every location is known, the “cost slope” (the gradient 

of the cost at a particular location) could be calculated and displayed (a 2D spatial derivative of the 

minimum total cost field).  This gradient map of cost was contemplated as a possible visualization 

but it was considered to be an uncommon graphical representation, and likely unintuitive and 
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difficult for users to interpret.  Furthermore, some directional information could not be captured in 

a gradient map. 

Third, the particular algorithm implemented, NPFM, fundamentally relies on the idea of a “force 

field metaphor” (Frixione, Vercelli, & Zaccaria, 2001) and hence, leverages direct perception 

interaction (Gibson, 1979).  There are several path planning methods that could have been used to 

find least-costly paths (e.g., applying a visibility or a Voronoi graph in conjunction with a search 

algorithm like A*).  The NPFM was applied because it combines cell-decomposition space and 

artificial potential fields for planning (Khatib, 1986). The potential fields was deemed particularly 

useful for human-computer interaction since it fundamentally relies on the idea of that path 

solutions are “attracted” by the goal location and “repelled” by obstacles.  

This underlying metaphor that is the basis of the visualization provides human decision makers an 

intuitive, perceptually-based solution for a large problem space.  Hence, the visualization leverages 

on direct perception interaction, an important display design principle and of particular relevance in 

decision aids for complex domains.  According to Gibson, direct perception is a process that 

requires little inference and relies on lower levels of cognitive control.  If the human decision maker 

utilizes perception to solve the problem (i.e., “pushed” a complex problem solving task to a lower 

level of cognitive control), it could produce superior performance (Vicente & Rasmussen, 1992).  

The reason behind this is that users may potentially develop a realistic mental model of the system 

and its constraints, resulting in more correct decisions that are done quickly.  The concept of 

supporting direct perception is also present in ecological interface displays, which Rasmussen (1999) 

ascertains makes constraints visible to the user.  While the LOEC visualization is not an “ecological 

interface display”, it still supports the Gibsonian ecological approach that supports the principle of 

direct perception (Burns & Hajdukiewicz, 2004).

The colors on the LOEC visualization provide an aid to the user determining a path1.  It is 

important to point out that the LOEC visualization alone does not identify the least-costly path for 

 

1 Specific instructions about LOEC visualization and its use for participants are found within each 
experiment description. 



the user (does not show paths) but rather presents information about minimum total cost field 

changes across the entire problem space.  For the case of path planning, the problem space is the 

terrain and environmental variables.  Ideally, the human decision maker should make a path that 

follows a gradient descent, guided by the changes in color (from purple to yellow), from the start 

location to the goal (see also Figure 4.25).  This means that every “step” in the path should be 

proportional to the negative of the gradient at a particular point.  The “auto-path” function (see 

section 4.4) identifies the least-costly path in this manner (by following the least gradient descent).   

For instance, the least costly path from the start to goal locations goes through a way-area (the 

orange polygon in Figure 4.26), and the human decision maker has the choice of specifically 

traversing through area “A” or “B”.  In order to reach the goal, it is inevitable to traverse through 

some areas that are purple, like the start in this example is in a slight purple zone.  The human 

decision maker should attempt to follow the color gradient from purple to yellow.  This is not the 

same as constantly following a yellow contour, as this could result in high path costs.  The color in 

area “A” has more purple than the color in area “B”.  This communicates to the human decision 

maker that the minimum total cost from area “A” to the goal might be greater than that in area “B”.  

In order to avoid higher path costs, creating a path that goes through area “B” as opposed to “A” 

would likely be more advantageous and less costly.  The human decision maker would use this 

information alongside the other displays (e.g., path cost table and path elevation profiles) in order to 

compare path solutions.  Thus, the LOEC visualization leverages direct perception, allowing path 

planners to perceptually understand constraints and path costs by visually representing the total cost 

field. 

 

Figure 4.26 Example use of  LOEC visualization for path planning 

Finally, the LOEC visualization provides an aggregate view of the minimum total cost field, which 

was calculated using all the variables pertinent to the cost function.  This may be particularly 
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important for non-intuitive cost functions, such as those that rely on sun position as opposed to 

terrain information.  Furthermore, the LOEC may guide sensitivity analysis as users will want to 

match path segments with corresponding LOEC colors.  It is hypothesized that the LOEC 

visualization would be helpful for users in understanding the complete problem space because it 

integrates multiple variables and reduces a complex problem to one that is more intuitively and 

visually obvious.  

4.8 OUTPUT FILES 

For experimental purposes, once the user completes planning a path, and submits a path answer 

through the “Done” button, the path planner outputs two text files.  The first text file is a summary 

of the paths submitted (and is the only file the first version of PATH outputs).  The second text file 

is a complete listing of all the mouse-clicks the user has executed (tracking of interaction between 

user and interface). 

The first basic text file includes the time spent making a path and the time modifying the path (in 

milliseconds), and the total path cost of all paths present when user ended path planning, including 

the waypoints of these. The second text file the following information: trial number, time stamp, 

mouse-click stamp code, path cost (if applicable), and path waypoints (if applicable).  If a mouse-

click is associated with a change in path cost (i.e., making and modifying paths), the path cost and 

waypoints are saved. 
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5 EXPERIMENT 1: OPTIMIZING SUN-

RELATED COST FUNCTIONS 

5.1 EXPERIMENTAL OBJECTIVES 

The primary objective of this experiment was to better understand human-automation path 

planning, which included verification of selected metrics as an appropriate method for quantifying 

human optimization.  The results of this experiment are aimed at addressing the advantages and 

disadvantages of higher amounts of data integration and automation, and their impact on human 

path planning performance.  A secondary objective was to evaluate PATH as a path planning tool 

and to validate the experimental protocol for a larger study on a simpler test case.  In addition, sun-

related cost functions were the central focus as these were deemed to be atypical (i.e., people do not 

typically try to optimize sun position or geometrically dependent variables).  These sun-related cost 

functions also had incremental number of variables between functions, a similar attribute to the 

other path-related cost functions to be tested in the follow-on experiment (e.g., distance, time, 

metabolic cost). 

5.2 EXPERIMENTAL METHODS 

5.2.1 EQUIPMENT: PATH INTERFACE 

The decision support interface used was PATH (Figure 5.1), with which the participants were able 

to make, modify and submit the least-costly paths they had planned.  The experiment was run using 

the a four screen computer workstation, three of which were utilized: one screen for the 

introduction materials, a second for PATH, and a third presented the situation awareness questions 

asked between trials (Figure 5.2).  The computer screens have a 16-bit color resolution at 1280 x 



1024 pixels, and the screen-capture program Camtasia  simultaneously ran on the computer in order 

to obtain archival video of the user interactions with PATH.  The workstation was a Dell Optiplex 

GX280 with a Pentium 4 processor.   

®

 

Figure 5.1 PATH interface for experiment 1, annotated 
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Figure 5.2 Experimental set-up 

5.2.2 TASK 

For this experiment, participants were asked to complete the following task: using the given 

computer interface, make an obstacle-free, least-costly path with at least one waypoint within the 

designated way-area. The cost for each path is based on a cost (or objective) function, pre-

determined by the experimenter.  Each trial has a given start and goal locations as well as a 

designated critical way-area.  Least-costly paths for each trial always traverse the designated critical 

way-areas.   These are on the lunar terrain map provided via PATH.  Environmental conditions, i.e., 

sun azimuth and elevation angles, that were relevant to the optimized cost function were presented 

on the interface and changed for each trial (but not within trials).  After planning a path, subjects 

submitted their path solution.  After each trial, participants were asked a couple of situation 

awareness questions that directly related to the previous trial before continuing to the next.   

Subjects had to complete four path planning trials.   

5.2.3 INDEPENDENT VARIABLES 

Three independent variables were tested in this experiment: type of visualization (3 types depicted in 

Figure 5.4, elevation contours, levels of equal cost (LOEC), and combination of elevation contours 

and LOEC), level of automation (the 2 levels described previously, passive and active), and cost 
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function (2 functions, Elevation Score, ES, and Sun Score, SS).  While visualization type was a 

between-subject variable, cost functions and automation type were within-subject variables, resulting 

in a 2 x 2 x 3 repeated measures design (Figure 5.3).  
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Figure 5.3 Summary of  experimental conditions for experiment 1 

  

Figure 5.4 Possible map visualizations, including start & goal locations and designated way-
area.  From left to right, (a) elevation contours visualization, (b) levels of  equal cost 

visualization, and (c) both visualizations. 
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The independent variable of visualization was chosen as a between-subject condition because naïve 

participants were needed for the test trials1.  Furthermore, this experimental design resulted in a 

reasonable time involvement per participant (about 1.5 hours).  Thus, participants were randomly 

placed into one of three different visualization groups.  The trials that were tested in the other two 

independent variables, cost function and automation type, were not randomized because a previous 

pilot study2 showed that counterbalancing was not effective.  It was determined that participants 

were going to exhibit a learning curve regardless of presentation order.  Thus, the order of easiest to 

hardest was implemented in an attempt to equalize this learning effect.  Additionally, from the pilot 

study, it appeared that using the active automation first would bias the passive path planning 

strategies.  The first two trials used passive automation, and the last two, active automation. Within 

each automation type, participants first made an ES path and then an SS path.  The selected 

presentation order for the cost function was consistent with the increase in difficulty of the 

functions.  In summary, all participants were asked to complete four possible path planning trials 

(Table 5.1). 

Table 5.1 Summary of  trial order for experiment 1, optimizing sun-related cost functions 

Passive automation trials Active automation trials 
Elevation Score trial Sun Score trial Elevation Score trial Sun Score trial 
Trial 1 Trial 2 Trial 3 Trial 4 

 

Participants were randomly distributed into one of three possible groups which were assigned to a 

map visualization: elevation contours visualization, levels of equal cost (LOEC) visualization, or 

both visualizations (Figure 5.4).  This was the only difference between groups; all other elements, 

such as tables and modifying path functionalities, remained the same. The elevation contour map, 

which is the nominal map that users would expect, directly presented elevation gradients from which 

users could infer rates of change, but no other cost function information. With the LOEC 

visualization, participants were presented with an aggregate of information, terrain and costs.  Since 

                                                 

1 The same trials could not be shown between visualization group (if within-subjects variables) as 
this could possibly result in a confounding learning effect.    
2 See Appendix A for a summary of pilot study. 



the LOEC visualization was likely not as familiar as the contour map, a third visualization map, the 

combination of LOEC and elevation contours, was also tested.  This visualization could be powerful 

as it provides the participant with both the raw data and the total cost map. 

Two increasingly complex cost functions were used: Elevation Score (ES) and Sun Score (SS), 

Figure 5.5.  ES is considered a simpler function than SS as it has fewer variables to optimize.  ES 

relates the sun’s elevation angle to the observer’s elevation angle, or terrain slope.  SS not only 

encompasses the same information as the ES function, but also includes the relationship between 

sun’s azimuth angle and the observer’s azimuth angle, or direction of travel.  The optimal sun angle 

is when the sun is high in the sky (approaching 90 degrees in relative latitude) and at a cross angle 

from the direction of travel (at 90/270 degrees in relative longitude).  See 4.3.1 for more details. 

φ θ= + ⋅ +(cos(2 ) 2) (cos(2 ) 2)SS

φ= +(cos(2 ) 2)ES

θ, azimuth
 

Figure 5.5 Flow and interdependence between cost functions for first experiment 

Participants were tested on the two automation levels: passive and active automation.  More 

specifically, in passive automation, the user created a path by selecting path waypoints that were 

connected by straight path segments.  In active automation, the user only defined one waypoint, in 

the critical way-area, and then the automation calculated and plotted least-costly paths from the start 

to the waypoint and from the waypoint to the goal.  

5.2.4 DEPENDENT VARIABLES 

Path planning performance was measured by final path cost, total time to complete trial (both time 

spent making and modifying path), and the number of situation awareness (SA) questions that were 

answered correctly.  Multiple choice questions were used as a global measure of the participants SA, 

which was expected to vary depending on automation levels.  After every trial, participants were 

asked two questions about the previous trial.  SA is (a) the perception of elements in the current 

environment, (b) the integration and comprehension of these elements, and (c) the projection of 
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future status based on comprehension (Endsley, 1995), and the SA questions addressed the first two 

characteristics (Endsley, 1988).  Specifically, participants were asked about the elements in the 

display (e.g., sun positions), and the cost functions (e.g., how path costs would be affected by 

changes in variables).  There were a total of eight multiple-choice questions asked, four per 

automation level.  SA questions can be found in Appendix A.    

5.2.5 EXPERIMENTAL HYPOTHESES 

The first experiment with PATH was designed to investigate how well participants performed in 

creating least-costly paths when interacting with the passive and active automation levels, as well as 

the different types of visualization, with increasingly difficult cost functions. It was hypothesized 

that with active automation, participants would be able to create near-optimal least-costly paths, 

regardless of the cost function, in a shorter period of time as compared to passive automation. 

However, it was hypothesized smaller errors and shorter times would be achieved at the expense of 

decreased situational awareness. Finally, it was hypothesized that within the passive automation 

level, the LOEC visualization would assist participants in creating least-costly paths and in shorter 

periods of time as compared to participants that did not have that visualization, especially for more 

difficult cost functions.  

5.2.6 SUBJECT INSTRUCTIONS 

After participants were assigned to one of three possible visualization groups, they completed a pre-

questionnaire (see Appendix A) that asked about their average video game usage and their self-rating 

on map use experience.  No color-blind participants completed the experiment.   

There were two instructional phases in this experiment.  In the first, participants were given an 

overview of the task and their designated visualization.  The written explanation for each of the 

three possible visualizations can be found in Appendix A.  They practiced the passive automation 

with two trials, one for each of the cost functions under investigation.  There was one practice SA 

question given.  After the training trials, participants completed the test trials; they had a five minute 

time limit on each trial.  In the second phase, participants were instructed on how the active 

automation worked, and two practice trials preceded the active automation test trials.    
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As participants were conducting their path planning task, a video capture of the screen was taken.  

At the end of four trials, all subjects reviewed their video and described in detail their cognitive 

strategy used in making their optimal paths.  All participants completed a post-questionnaire that 

asked them to rate the usefulness of elements within the computer interface. 

5.2.7 PARTICIPANTS 

Twenty-seven participants volunteered for this experiment, with an average age of 25.7 ± 3.6 years. 

Participants were primarily graduate students, with 18 men and 9 women, equally distributed 

between the three visualization groups. There was no significant difference in distribution between 

average video-game usage and their self-ratings on map use experience. 

5.3 RESULTS 

Analyses were conducted on the path costs percent errors, total time to task completion, percent 

time spent modifying path, and number of correctly answered situational awareness questions. An 

alpha level of 0.05 for all statistical tests was used. Analyses of variance were applied to analyze the 

data; if the assumptions for these tests were not met, non-parametric tests were used (Kruskal-Wallis 

test for between-subject variables and Wilcoxon Signed Rank test for within-subject variables). 

5.3.1  PATH COST ERRORS 

Path cost percent errors were calculated by comparing the path cost generated by the participant to 

the automation’s minimum path cost.  The range of these errors for each condition, visualization, 

automation type, and cost function is depicted in Figure 5.6.  Using non-parametric tests, significant 

differences across automation type and cost function were found. 

In general, participants were able to optimize paths to within 35% of the theoretical optimal least 

cost even when the cost functions were unfamiliar and had little automated decision support. When 

provided with automated decision support, participants were able to generate a path to within 2% of 

the optimal. For the ES cost function, a Wilcoxon Sign Rank test yielded a significant difference 

across automation type (Z = -4.54, df = 1, p < 0.001), resulting in smaller path cost percent errors 



for active automation (M = 0.24%, SD = 0.26) as compared to passive automation (M = 4.88%, SD 

= 0.96). Similarly for SS paths, the more difficult cost function, a Wilcoxon Sign Rank test (Z = -

4.54, df = 1, p < 0.001) indicated that smaller errors were achieved when participants used active 

automation (M = 0.25%, SD = 0.17) as opposed to passive automation (M = 15.53%, SD = 6.30). 

This effect was consistent across each of the visualizations. 
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Figure 5.6 Box-plot of  path cost errors between visualizations, automation levels, and cost 
functions 

Differences across cost functions were investigated within each automation type. Within passive 

automation, a Wilcoxon Sign Rank test (Z = -4.52, df = 1, p < 0.001) showed that SS path errors (M 

= 15.53%, SD = 6.30) were significantly larger than ES path errors (M = 4.88%, SD = 0.96). This 
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effect was consistent across each of the visualizations. Within active automation, there was no 

overall difference between the ES and SS path errors (Wilcoxon Sign Rank test, Z = -0.77, df = 1, p 

= 0.440). This effect was consistent for two of the three visualizations (elevation contours 

visualization and LOEC visualization). For the participants that had both visualizations (elevation 

contours and LOEC), there was a marginally significant difference across cost functions (Wilcoxon 

Sign Rank test, Z = -1.85, df = 1, p = 0.06): SS active path errors (M = 0.29%, SD = 0.17) were 

larger than ES active path errors (M = 0.16%, SD = 0.06). 

A Kruskal-Wallis test was performed on each combination of cost function and automation type to 

examine the differences across visualizations. For each of the four conditions (i.e., trials), there was 

no significant difference between the visualizations (ES passive, χ2 (2, N =27) = 1.87, p = 0.39; SS 

passive, χ2 (2, N =27) = 0.42, p = 0.81 ; ES active, χ2 (2, N =27) = 3.19, p = 0.20; SS active, χ2 (2, N 

=27) = 1.27, p = 0.53). 

Possible effects of gender, video usage, or  map use experience were investigated.  There was no 

effect of video usage and map use experience.  When comparing if path cost errors differed between 

men and women participants, since the ratio was uneven (in this experiment it was 1:2), gender was 

not considered. 

In summary, with respect to path cost percent error, the visualization had no main effect on the 

subjects’ performance within ES or SS regardless of level of automation.  Participants, in general, 

had smaller errors for ES paths than SS paths within passive automation.  Overall, path cost errors 

were smallest within active automation, where there was no difference between the cost functions.   

5.3.2 TOTAL  TIME TO TASK COMPLETION 

Figure 5.7 shows a box-plot of times to task completion (in seconds) across visualizations, 

automation type, and cost function. A repeated measures analysis of variance (2 x 2 x 3) was 

performed to investigate the differences in total time to task completion between all the conditions.  



 Elevation Score Sun Score 

Pa
ss

iv
e 

A
ut

om
at

io
n 

 

 

105

Elevation Contours LOEC 
Visualization

Elevations and 
LOEC

Visualization

50

100

150

200

250

300

To
ta

l T
im

e

Elevation Contours LOEC 
Visualization

Elevations and 
LOEC

Visualization

50

100

150

200

250

300

To
ta

l T
im

e

14

A
ct

iv
e 

A
ut

om
at

io
n 

Elevation Contours LOEC 
Visualization

Elevations and 
LOEC

Visualization

50

100

150

200

250

300

To
ta

l T
im

e

25

26

Elevation Contours LOEC 
Visualization

Elevations and 
LOEC

Visualization

50

100

150

200

250

300

To
ta

l T
im

e

18

Figure 5.7 Box-plot of  total time to task completion (seconds) across visualization, 
automation type, and cost function 

There was no significant difference across visualizations with respect to total time (F(2,24) = 0.10, p 

= 0.91).  Expectedly, participants took significantly less time to complete the task when using active 

automation (M = 162.44, SD = 69.04) than when using passive automation (M =241.87, SD = 

63.77) (F(1,24) = 58.10, p < 0.001).  This difference is about 1.3 minutes on average.  

A marginally significant difference was found across cost functions (F (1,24) = 3.70, p = 0.07) for 

completion time. On average, participants took slightly longer to make ES paths (M = 207.79, SD = 

71.82) than SS paths (M = 196.52, SD = 82.62).  However, there was a significant interaction 



between cost function and visualization (F(2,24) = 5.78, p = 0.009).  As seen in Figure 5.8, the 

interaction was caused primarily by the active automation.  It appears that LOEC helped participants 

arrive more quickly at a solution for the ES cost function. Participants that had elevation contours in 

their visualization took longer to make ES paths than SS paths, yet for participants with the LOEC 

visualization, the opposite trend is seen. Simple contrasts revealed no significant differences between 

cost functions within specific visualization groups. 
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Figure 5.8 Means plot of  total time across visualization and cost functions: passive 
automation (left) and active automation (right) 

In summary, when using active automation, participants were able to significantly reduce the amount 

of total time spent completing the path planning task by about 1.3 minutes.  Within the passive 

automation, most participants had the tendency to take most of their allotted time for the task.  No 

main effect of visualization was detected.  There was only a marginal significant difference across 

cost functions, where participants spent slightly longer times optimizing ES paths than SS paths, 

though there was a significant interaction between visualization and cost functions.  It appears that 

LOEC subjects spent more time on SS paths than ES paths, while the subjects in the other two 

groups had the opposite effect. 
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5.3.3 PERCENT TIME SPENT MODIFYING PATH 

Participants, when creating a least-costly path with passive automation, spent a large portion of their 

time modifying paths by moving, adding, and deleting waypoints. Assessing how much time 

participants devoted to a sensitivity analysis on their path solution will provides insight in 

understanding how humans conduct optimization.  Most participants did not use this functionality 

with the active automation as much, choosing instead to repeatedly make new paths (see Figure 5.9). 

There are two possible reasons for this trend.  First, participants may have found modifying a path 

was more time consuming than just making a new path with the active automation; second, 

participants likely thought they could only make paths less optimal by modifying them as the active 

automation plotted least-costly paths between two waypoints. In order to further investigate this 

trend, the analysis was restricted to just the passive automation, where path modification was the 

most predominate.   

Within the passive automation conditions, a 2 x 3 repeated measures analysis of variance (Figure 

5.10) showed that there was a significant difference between cost functions (F(1,24) = 7.25, p = 

0.01). Participants spent more of their time modifying the more difficult SS paths (M = 50.13%, SD 

= 25.24) than the ES paths (M = 41.85%, SD = 24.25). There was no main effect based on 

visualization (F(2,24) = 1.35, p = 0.28)) and no interaction was found between function and 

visualization (F(2,24) = 0.54, p = 0.59).  Hence, participants proportionally spent more time 

modifying SS paths than ES paths in the passive automation phase of the experiment, regardless of 

which visualization was used. 
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Figure 5.9 Box-plot of  percent time spent modifying path across visualization, automation 
type, and cost function 
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Figure 5.10 Means plot of  percent time spent modifying path within passive automation 
across visualization and cost function 

5.3.4 SITUATION AWARENESS 

After each trial, two situational awareness (SA) questions were asked, totaling four questions for 

passive automation and four for active automation per participant.  The distribution of correctly 

answered questions (regardless of visualization) is shown in Figure 5.11. Within active automation, 

there was one subject that answered no questions correctly and one subject with all correct answers.  

This distribution appears to be different as compared to the passive automation trials – where 12 

subjects answered all four questions correctly and all subjects answered at least one question 

correctly.  A non-parametric test (Wilcoxon Signed Rank test) was performed to determine a 

significant difference across automation type (Z = -3.35, df = 1, p = 0.001); participants answered 

less questions correctly during the active automation phase (M = 2.33, SD = 0.78) than during the 

passive automation phase (M = 3.19, SD = 0.92) of the experiment. No difference in SA was found 

between visualization groups (Kruskal-Wallis tests, within passive automation χ2 (2, N = 27) = 1.72, 

p = 0.42; within active automation χ2 (2, N =27) = 0.68, p = 0.71). 

 

 

109



 

0 1 2 3 4

Total SA Questions Correct: 
Passive Automation

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y

0 1 2 3 4

Total SA Questions Correct: 
Active Automation

0

2

4

6

8

10

12

14

Fr
eq

ue
nc

y
 

Figure 5.11 Distribution of  correctly answered situation awareness questions for passive 
automation (left) and active automation (right) 

5.4 COGNITIVE STRATEGIES 

Based on experimental results, observations, and participant debriefs, two general path planning 

strategies were exhibited.  In one strategy, participants made one or two paths and then spent the 

rest of their time modified paths, moving, adding and deleting waypoints (manual sensitivity analysis 

strategy).  In the other strategy, participants made multiple paths, rarely utilizing the modifying path 

functionalities.  These strategies were split between passive and active automation.  During active 

automation, all participants tended not to manually modify their paths, choosing instead to make 

multiple paths in order to determine least-costly paths.   

During passive automation, the most frequent strategy implemented was the manual sensitivity 

analysis, though some chose to make multiple paths.  This division was apparent by assessing the 

distribution of average percent time spent modifying for passive trials (Figure 5.12), where those 

participants with an average greater than 40% applied the manual sensitivity analysis strategy.  The 

selection of strategy was not based on visualization as there was no difference in distribution 
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(Pearson’s chi-square test, χ2(2,27) = 2.70, p = 0.26).  Furthermore, there was no difference in 

performance (based on path cost errors) between the strategies (Mann-Whitney tests, within ES, Z 

= -0.39, p = 0.70; within SS, Z = -0.42, p = 0.68). 
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Figure 5.12 Histogram of  average percent time spent modifying across passive trials 

Participants who chose to make multiple paths before selecting their path solution did a type of 

“whole-path” sensitivity analysis.  This was most evident in the active automation where it was 

observed that participants created multiple paths in order to explore the problem space.  In this 

automation architecture, the participant had to only define one waypoint within the critical way-area 

and the automation generated the least-costly path segments.  Participants defined many different 

waypoints, examining how path cost changed relative to where the waypoint was placed, essentially 

conducting a sensitivity analysis within the way-area.  Thus, all participants implemented a type of 

sensitivity analysis, either manual or “whole-path”, in order to optimize their path solutions.   

5.5 DISCUSSION 

In this experiment, there were three visualization groups, one with elevation contours, one with the 

levels of equal cost (LOEC), and one with both elevation contours and LOEC.  In order to ensure 

that the participants in each visualization group were relatively the same, participants were randomly 

assigned to a visualization, balanced by gender and number (i.e., number of participant per group).  
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Furthermore, there was no statistical evidence that there was a group differences with respect to 

participants’ map-use experience or choice of sensitivity analysis type.  Thus, the participants within 

the visualization groups were reasonably balanced.

It was hypothesized that having the LOEC visualization would help participants make superior least-

costly paths, resulting in smaller cost errors and shorter task times than participants who did not 

have the LOEC, particularly when trying to optimize the path cost whose cost function was more 

complex. The preceding analysis did not demonstrate a main effect due to type of visualization for 

any dependent variable (either path cost error, total times, or situation awareness). 

There are several possible reasons why no effect based on the type of visualization was found. Some 

participants commented that they had not used the LOEC as a primary tool to make their least-

costly path, citing reasons such as they did not know exactly how to use it.  Another possibility is 

that the LOEC visualization is not particularly useful for cost functions with few variables.  The 

Elevation Score (ES) only optimizes one variable and the Sun Score (SS) contained two variables. 

These functions might not be complex enough to merit the use of LOEC.  Finally, more training 

time and an increased participant pool could have impacted the results. 

The cost function factor produced a significant effect for the three dependent variables which is 

expected since they represent increasing problem complexity.  For path costs within passive 

automation, ES path cost errors were significantly smaller than SS path cost errors, regardless of 

visualization.  Within active automation, no overall difference between cost functions was found, 

but there was a marginally significant difference that favored ES paths for the visualization that had 

both LOEC and elevation contours.  Thus, active automation decreased the task complexity with 

respect to minimizing path cost. 

In terms of time to completion, the cost function factor had a marginally significant main effect, 

however, there was a significant interaction between cost function and visualization. It was expected 

participants would spend more time optimizing the more difficult function, SS, regardless of 

visualization and automation type. It appears, though, that with the direct presentation of elevation 

(i.e., the visualizations with elevation contours), subjects tended to tweak their solution for the 

purely, elevation-dependent cost function (i.e., ES) more than subjects who just had the LOEC 
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visualization.  Thus, the participants that had the elevation contours in their visualization spent more 

time on the simpler ES function.  This is supported by the slightly lower percent time spent 

modifying for LOEC visualization group (compared to the other 2 visualization groups) for the ES 

cost function. These results indicate that the visualization shifts the manner in which subject 

chooses to conduct their sensitivity analysis. In essence, if the information is provided to the 

subjects, they will use it, though not necessarily to their advantage. In this case, the additional 

information of elevation contours on top of LOEC visualization gave the subject two factors to 

tweak their solution; this introduced a slightly larger error margin between cost functions in active 

automation and subjects in this visualization group appeared to spend more of their time modifying 

paths than the other two groups.  

While the different visualizations did not significantly affect subject performance, the degree of 

automation dramatically affected performance across a number of dependent variables. As 

hypothesized, when subjects used the active automation, they made smaller path cost errors and 

took less time than when using the passive automation, regardless of visualization and type of cost 

function.  The smaller path cost errors is not a surprising result as the automation is assisting the 

subjects in making the least-costly paths in a large, complex problem space. When using active 

automation, path cost errors were, at most, only a few percentages over the least possible cost, 

allowing subjects to drop about 1.3 minutes from solution times as compared to passive automation. 

For time critical tasks, this difference could be essential.  

However, this improved performance in terms of solution time came at the cost of decreased 

situation awareness.  In the passive automation trials, 81% of the subjects were able to answer 3 or 

more of the 4 SA questions, while during active automation, only 41% of subjects performed equally 

as well.  This is likely because subjects spent less time at the task and did not conduct the same level 

of sensitivity analyses (as measured by the percent time spent modifying) as they did during passive 

automation. While the passive automation caused longer solution times, it also ensured that subjects 

became familiar with the problem and thus had a better understanding of the problem space than 

did those subjects who used the automation to plan the routes. 

Moreover, it was clear that the two different automation levels produced two different planning 

strategies, which in turn likely affected their situation awareness. Participants did explore the 



 

 

114

problem space within active automation, as supported by the very small path cost errors, but they 

did so differently.  They chose to make new paths instead of modifying paths, thus eliminating the 

“manual” sensitivity analysis.  This strategy saved them time, but lowered their overall situation 

awareness.  They paid less attention to elements on the PATH interface, not comprehending how 

the automation was calculating the least-costly path.  When subjects had to do most of the problem 

solving in the path planning task (i.e., within passive automation), they appeared to conduct a more 

thorough sensitivity analysis when confronted with multi-variable cost functions and both LOEC 

and elevation contours.  Unfortunately, while having the LOEC might have induced subjects to 

apply more sensitivity analysis, a strategy that might have preserved their situation awareness, the 

ease and quickness of using the active automation prevailed.  Situation awareness thus appears to be 

a function of both time and sensitivity analysis for the geospatial task of path planning. 

5.6 CONCLUSIONS FOR EXPERIMENT 1 

In this experiment, two increasing degrees of automation, three different visualizations, and the 

interaction with optimizing increasingly complex cost functions were examined. No main 

visualization effect was found but the effect of the level of automation was strong and consistent 

across all dependent variables.  After establishing such an effect in this experiment, the next 

experiment addresses if different visualizations can affect performance within a single automation 

decision support architecture. 

When the automation generated most of the path for the participants, they were able to perform 

better in terms of time and path costs, but paid the price of decreased situation awareness.  Having 

the levels of equal cost visualization promoted sensitivity analysis, but not within active automation, 

thus it was not enough to counter the loss of situation awareness.  While the effects of automation 

level are striking and suggest that the best decision support aid would be one that is highly 

automated, the situation awareness measures demonstrate a significant drawback of highly 

automated systems in the reduction of SA. Similar automation biases, i.e., excessive reliance on 

computer-generated solutions, have been observed in other domains, such as critical event diagnosis 

and time-sensitive resource allocation (Cummings, 2004).  These results indicate that the active 

automation essentially leveled the task difficulty across problem complexity. Consequentially 
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participants did not look for more information than was necessary. Such automation bias is 

undesirable in time-critical domains because it increases likelihood of errors of omission and 

commission (Mosier & Skitka, 1996). Furthermore, the decision maker is less likely to perform well 

under unexpected situations with decreased situation awareness, preventing them from identifying 

situations in which the automation is not properly functioning and hindering them in knowledge-

based reasoning that is necessary under these circumstances.   
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6 EXPERIMENT 2: HUMAN PATH 

OPTIMIZATION 

6.1 EXPERIMENTAL OBJECTIVES 

The objectives of this second experiment were to further evaluating human-automation path 

planning performance with the different visualizations and more complex conditions.  The results of 

the first experiment (Chapter ) led to focusing on only one automation decision support 

architecture: passive automation.  The active automation in the first experiment led to superior 

performance with respect to path cost errors and total time, but no main effect due to visualization 

was detected.  

5

Additionally, in the first experiment the cost functions were relatively simple (1 – 2 

variables), thus the visualization effect may be more significant with more complex cost functions, 

which will be tested in this experiment.  Therefore, having established the effect of active 

automation, passive automation is only tested in order to further examine visualization effect. 

The first experiment also determined that situation awareness decreased with the use of active 

automation, which was evidence of automation bias.  Situation awareness is most invaluable when 

reacting to the unexpected.  Under these circumstances, the path planner needs to take into account 

the discrepancies between the expected and what is actually happening.  Discrepancies are inevitable 

as path planning (before the EVA mission) will rely on terrain information that may be incomplete 

or have limited resolution.  All predictions will be based on this terrain information, and hence, map 

resolution and accuracy will be a primary driver for why underlying exploration cost models will be 

incorrect.  For example, the planner may predict the astronaut should have 50% of oxygen 

remaining, but in reality, there is only 40%.  Thus the astronaut is faced with using a decision aid 

which is based on exploration models that are erroneous or incomplete (typically called automation 

“brittleness”).  The likelihood of this occurring is greatest in the early stages of exploration, when 



astronauts are still acquiring higher fidelity terrain and cost models.  For this reason, in this second 

experiment, a degraded automation condition is tested.    

6.2 EXPERIMENTAL METHODS 

6.2.1 EQUIPMENT: PATH INTERFACE 

The decision support interface used was PATH (version 2, Figure 6.1), with which the participants 

were able to make, modify and submit least-costly paths.  The experiment was conducted using the 

Multi-Modal Watch Station, using the same system set up as in the first experiment (see 5.2.1), with 

the exception that only two screens were used: one for introductory materials and the second for 

PATH. 

 

Figure 6.1 PATH, version 2, used in Experiment 2 
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The PATH interface version used for this experiment included a modified terrain map of Cone 

Crater, a timer clock, and user interaction tracking, which resulted in an additional output file that 

included every mouse-click the participant did during each trial along with tracking the time and cost 

of every path made.  Also, slight modifications on the interface were made, such as the bar graphs 

(lower right corner of Figure 6.1) and the model of the cost functions under a new tab (left top 

corner).  The new tab was added for two reasons: 1) to describe all the cost functions in one 

location, and 2) to allow for tracking of participants’ attempts to access this information (as they had 

to click on the tab to view the cost functions). 

6.2.2 TASK 

As in the first experiment, participants were asked to make an obstacle-free, least-costly path (with at 

least one waypoint within the designated way-area) as fast as possible.  The cost of each path was 

based on a cost function, pre-determined by the experimenter.  Each trial had a given start and goal 

locations, a designated critical way-area, the sun’s position for that trial, and lunar terrain map.  

Least-costly paths for each trial always traversed the critical way-area.  After planning and optimizing 

a path, participants submitted their path solution.  Participants had to complete a total of 6 test 

trials. 

6.2.3 INDEPENDENT VARIABLES 

Three independent variables were tested in this experiment, but under two experimental matrices 

(Figure 6.2).  Within one matrix, the variables were type of visualization (3 types shown in Figure 

6.3) and cost function (4 functions, discussed below).  Within the second matrix, the variables were 

type of visualization (3 types), cost function (only 2 selected), and type of scenario (nominal and off-

nominal).  The off-nominal scenario represented a degraded automation condition.  Since only a 

subset of the nominal cost functions were tested in the off-nominal case, two experimental matrices 

were required for the analysis and statistical models.  While the visualization type was a between-

subjects variable, the cost function and scenario type were within-subjects variables.  Thus, there was 

a 3 x 4 repeated measures design for the first experimental matrix, and a 2 x 2 x 3 repeated measures 

design for the second matrix (Figure 6.2).   



 

Figure 6.2 Experimental conditions and matrices for second experiment  

 

Figure 6.3 Possible map visualizations, including start & goal locations and designated way-
area.  From left to right, (a) elevation contours visualization, (b) LOEC visualization, and 

(c) both visualizations 

As in the first experiment, participants were randomly distributed into one of three possible 

visualization groups: elevation contours visualization, levels of equal cost (LOEC) visualization, or 

both visualizations (Figure 6.3).  While the visualization was different between participants, all other 

PATH features remained constant, such as the path information displays and the ability to modify 

paths. 

The same three visualizations were tested for similar reasons presented in the first experiment.  As 

all but one cost function depended on slope (and thus, elevation) information, the elevation 

contours remained the nominal map users would expect.  The LOEC visualization (aggregate cost 
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information) was automatically generated based on the cost function models.  The third 

visualization, which presented both LOEC and elevation contours, combined the total cost map and 

the raw elevation data. 

Four increasingly complex cost functions were tested in this experiment: Distance, Time, Metabolic, 

and Exploration (see section 4.3 for detailed explanations of cost functions).   The first cost function 

was the shortest distance between two points, i.e., Distance cost function.  The Time cost function 

depended on Distance and slope, as astronaut velocity relied on slope.  The Metabolic cost function 

built upon the Time function, including slope and velocity, to determine energy consumed as a 

function of terrain.  Finally, the Exploration function combined Metabolic costs and Sun Score as an 

overall cost function.  Sun Score, a quantifiable measure of favorable lighting condition, related the 

sun’s position (azimuth and elevation angles) with the observer’s direction of travel.  This cost 

function was tested in the first experiment.  Thus, the Exploration cost function was the most 

complex function as it captured the costs that were fundamentally related to Distance and Time as 

well as spatial information (relative sun position).  See Figure 6.4 for summary of cost functions, 

depicting interdependence and increasing complexity of the tested functions.   

Distance = ƒ(path length)

Time = ƒ(Distance, slope)

Metabolic = ƒ(Time, velocity)

Exploration = ƒ(Metabolic, Sun Score)

 

Figure 6.4 Flow and interdependences between cost functions for second experiment

Participants were tested in all four cost functions under nominal scenarios and only two cost 

functions under off-nominal scenarios (totaling 6 test trials).  In the nominal scenario, participants 

were told they could rely on the PATH interface to provide them with accurate path cost based on 

the four previously discussed cost functions.  In the off-nominal scenario, participants were 
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informed that PATH’s cost function models were inaccurate.  This is the additional degraded 

automation condition.  Under the off-nominal scenario, participants were only asked to optimize 

two cost functions: Time and Exploration.  These two were selected for the off-nominal case as they 

represented a simple and a complex function (two versus four variables). 

Even though all participants were asked to complete six possible path planning trials, they only were 

presented with four sets of start and goal locations (Table 6.1).  In the off-nominal trials, participants 

repeated the start and goal locations experienced in the Time and Exploration trials, but the maps 

were rotated (Figure 6.5) in order to disguise the fact that the same trial was presented again.  This, 

in addition to not informing the participants that the off-nominal trials were repeated, was done to 

prevent a learning effect across scenarios but to also ensure a comparable level of scenario difficulty.  

As in the first experiment, the order of the cost functions was not randomized among participants 

but rather was presented in order of increasing number of variables manipulated (in increasing 

difficulty).  Participants completed the nominal trials first and then the off-nominal.  The rationale 

for these experimental design choices is similar as in the first experiment.   

Table 6.1 Summary of  trial order for experiment 2, optimizing path planning cost functions 

Nominal scenario Off-nominal scenario 
Distance trial Time trial Metabolic trial Exploration trial Time trial Exploration trial 
Trial 1 Trial 2 Trial 3 Trial 4 Trial 2 (repeat) Trial 4 (repeat) 

 

     

Figure 6.5 Terrain map example comparison between nominal (left) and off-nominal (right) 
scenarios (with LOEC visualization) 
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6.2.4 DEPENDENT VARIABLES 

Path planning performance was measured by final path cost, total time to complete trial (both time 

spent making and modifying path), and path cost profiles.  A path cost profile (example, Figure 6.6) 

is the cost of every path the participant made over the time they completed the trial.  From the path 

cost profiles, a few other dependent measures were identified: true time, differential cost, and non-

optimal satisficing (i.e., percent time spent conducting non-optimizing satisficing and the 

corresponding cost surplus).   

 

Figure 6.6 Path cost profile illustration 

Figure 6.6 illustrates the different measures generated from the path cost profiles.  Point A is the 

cost for the first path created, while point C is the submitted path cost with its corresponding total 

time; point B is the actual minimum path cost found with its matching time.   True time is the time 

in which the participant actually found their minimum cost path (the time at point B in Figure 6.6).  

Differential cost is the difference between the submitted path cost and the first path cost made (path 

cost error disparity between point A and C in Figure 6.6).  Finally, non-optimizing satisficing is 

defined as any additional time after a minimum path cost was achieved, where participants were 

unsuccessful in finding a lower path cost solution.  Non-optimizing satisficing includes both time 

and cost errors between the minimum path cost achieved and the submitted costs.  In Figure 6.6, 

this corresponds to the path cost error and the time differences between point B and C. 

With respect to total time to complete task, it was converted to time penalty.  Participants were 

asked to complete the task as well and as fast as possible.  The time pressure was imposed by 

showing the participant a timer, an incremental clock.  The penalty time started after 4 minutes (τ, 
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tau), which was not told to the participants.  In a pilot study with an equivalent task, when 

participants were not told to take time into consideration, the 75th percentile of total time to 

completion was ~ 4 minutes.  Thus, this was deemed an appropriate time limit, as most participants 

would be able to complete the task while providing some time pressure. 

6.2.5 EXPERIMENTAL HYPOTHESES 

This second experiment was planned to examine how well participants performed in creating least-

costly paths when interacting with PATH, across different visualizations, within only the passive 

automation architecture.  Furthermore, performance and strategy changes were of interest under 

nominal and off-nominal conditions, as well as between the increasingly difficult cost functions.  It 

was hypothesized that performance would deteriorate as the number of variables manipulated within 

the cost functions increased.  However, because the problem space was made perceptually salient, 

participants with the levels of equal cost visualization (LOEC) should not experience the same path 

planning performance decline as those with no multivariate visualization.  Degraded performance 

would be indicated by an increase in path cost error, total time, and true time.  Furthermore, it was 

hypothesized performance would decrease in the off-nominal scenarios.  However, participants with 

the visualizations that contained elevation contours would be able to optimize their paths better than 

the participants that just had the levels of equal cost visualization.  Participants with just the LOEC 

visualization would be too dependent on their erroneous visualization  (a form of automation bias) 

and lacked the elevation contours that would assist them in conducting the optimization with 

degraded cost models. 

6.2.6 SUBJECT INSTRUCTIONS 

Participants were randomly assigned to one of three possible visualization groups.  Participant from 

the previous experiment were excluded from this one.  Each filled out a pre-questionnaire that asked 

about average video game use and their self-rating on map use experience.  The rating (Table 6.2) 

was changed from the first experiment to be more specific on map use experience.  No color-blind 

participants completed the experiment.  All participants were also given a “map planning” test which 

is suggested to measure “speed in visually exploring a wide or complicated spatial field” (Ekstrom, 



 

 

125

French, & Harman, 1979, pg. 39).  This test was selected because it required participants to find the 

shortest path from one point to another in a map maze and hence, might be a measure of the 

participants’ path planning ability.  

Table 6.2 Map use experience self-rating descriptors

Ranking Map use experience description 
0 I have not done much hiking and am not familiar with using topographical maps. 

1 I am familiar with topographical maps, but have not used them to plan or during hiking trips. 

2 I have done hiking trip but I am not very familiar with topographical maps, in particular, using 
them during hiking trips. 

3 I have planned and done hiking trips with the use of a topographical map. 

4 I have planned and done many hiking trips with the use of a topographical map.  I have used 
the map to navigate terrain beyond trials and/or to triangulate my position during the excursion.

 

There were two instructional phases in this experiment.  In the first, participants were given detailed 

instructions about the task, the time pressure, the cost functions that were to be optimized, and the 

visualization they were assigned.  They were given a practice trial before every nominal test trial for 

each cost function, i.e., practice trial preceded every test trial.  Participants were instructed that they 

had to minimize the path cost as fast as possible; they were informed that there was a slight 

advantage in doing the task in less time but larger penalties for longer times.      

If LOEC was part of a participant’s visualization, the cost map was explained.  Because of previous 

subjective feedback indicating confusion over the LOEC visualization in the first experiment, a 

more in-depth explanation of the LOEC visualization was included in the introduction.  Written 

description of each visualization can be found in Appendix B.  

In the second phase, participants were told that within the PATH planner “something is wrong with 

the cost functions.”  They were given two graphs (Figure 6.7) to review and examine which showed 

the differences between the expected costs (under nominal scenario) and the observed costs (under 

off-nominal scenario).  The graphs were presented to the participants so that they could acquire a 

notional idea as to how the cost function models were erroneous.  This was designed to be 

analogous to a real-world situation, where automation inaccuracies were noticeable but could not  be 



immediately addressed.  For example, an astronaut might note that actual oxygen readings were not 

what were predicted by the path planner. 
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Figure 6.7 Deviations of  cost functions between nominal and off-nominal scenarios, 
instruction comparative graphs

A video capture of the screen was taken as participants interacted with the path planning tool.  At 

the end of the trials, all participants reviewed their video and discussed strategies used to optimize 

path.  Finally, a post-questionnaire was administered that asked participants to rate the usefulness of 

elements of PATH.  The same questions from the first experiment were asked except for an 

additional usefulness rating for the new bar graphs and the preference question (for only the 

participants that had both LOEC and elevation contours visualizations) was modified to ask if 

participants agreed with the statement: “I preferred the elevation contours over the LOEC 

visualization to make least-costly paths.” 

6.2.7 PARTICIPANTS 

Thirty-four participants volunteered for this experiment, and were compensated ($10/hour) for their 

participation.  Their average age was 25.0 ± 3.5 years.  Participants were primarily graduate students, 

with 22 men and 12 women, equally distributed between the visualization groups.  There was no 

significant difference in distribution between average video-game usage, map planning test score, 

and their self-ratings on map use & hiking experience.  
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6.3 RESULTS 

Analyses of variance were used to test hypotheses if assumptions were met.  Otherwise appropriate 

non-parametric tests were used.  An alpha level of 0.05 for all statistical tests was applied.  As two 

experimental matrices were tested, the results are divided into Phase 1 (3 x 4 nominal cases) and 

Phase 2 (2 x 2 x 3 scenario comparisons with the off-nominal condition).  No covariates were used 

in the subsequent analysis.  Neither map planning scores nor map & hiking experience were 

significantly correlated with path cost errors and time penalty. 

For detailed test results and descriptive statistics, refer to Appendix B. 

6.3.1 PATH COST ERRORS 

Path cost errors were calculated by normalizing the path cost generated by each participant to the 

automation’s minimum path cost.  Non-parametric tests were used to examine the differences across 

conditions. 

6.3.1.1 PHASE 1 

The range of path cost errors1 for phase 1 of the experiment are shown in Figure 6.8.  Within each 

cost function, there was no statistical difference between visualization groups.  As Figure 6.8 

suggests, there was a significant difference between cost functions (Friedman test, p < 0.001).  

Wilcoxon Sign tests confirmed the following ranking: the Time cost function (M = 1.60, SD = 0.14) 

had significantly larger path cost errors (p < 0.0001), Distance had the smallest (M = 1.03, SD = 

0.03), and there was no statistical difference between Metabolic (M = 1.07, SD = 0.02) and 

Exploration (M = 1.06, SD = 0.02) cost functions.  Within visualizations, the results were similar (in 

agreement with the lack of visualization differences).   

 

1 Two data points were identified as outliers (3.44*SD and 4.28*SD above the mean) and were 
removed.  If data greater than 3.29*SD, as recommended by Tabachnick and Fidell (2001), it was 
considered an outlier. 
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Figure 6.8 Box-plot of  path cost errors between visualizations and cost functions, Phase 1 

6.3.1.2 PHASE 2 

The range of path cost errors for the second phase of this experiment is shown Figure 6.9.  Using 

Kruskal-Wallis tests, no significant differences in path cost errors across visualizations were found 

within the Time nor the Exploration off-nominal trials.  This is consistent with the nominal 

scenario, which indicates that visualizations did not affect path cost errors.  Similar to the nominal 

scenario, the off-nominal Time path cost errors (M = 1.53, SD = 0.20) were significantly higher (p < 

0.0001) than the off-nominal Exploration path cost errors (M = 1.10, SD =0.03). 
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Figure 6.9 Box-plot of  path cost errors between visualizations and scenario type, Phase 2 

Wilcoxon Sign tests were used to compare across scenarios (nominal vs. off-nominal cost functions).  

Overall, regardless of visualization, there was a significant difference in path cost errors between 

scenarios.  The path cost errors for the nominal Time cost function were significantly larger than the 

off-nominal errors (p = 0.05). The opposite effect was found for the Exploration cost function, 

where the path cost errors were significantly lower in the nominal scenario (p < 0.0001). 

Further comparisons between nominal and off-nominal scenarios were conducted within each 

visualization group.  For the Exploration cost function, participants within each visualization group 

had a significantly lower path cost errors for the nominal than the off-nominal scenario.  For the 

Time cost function, the difference across scenarios was driven by the significant decrease in off-

nominal path cost errors for the LOEC participants (p = 0.026).  No significant differences across 

scenarios were detected for the other two visualization groups.  These results suggest that only the 

participants with the LOEC visualization decreased their path cost errors for the Time off-nominal 

trial.  
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In summary, within the off-nominal scenario, visualization did not have a main effect on overall 

path cost errors, and the Time cost function resulted in larger errors than the Exploration function, 

which is consistent with the nominal scenario results.  Across scenarios, the results were mixed.  

Within Time, errors decreased during the off-nominal scenario, though it was mainly due to the 

performance of the LOEC participants.  Within Exploration, errors increased during the off-

nominal scenario consistently across all visualization groups.   

6.3.2 TOTAL TIME: TIME PENALTY 

Total time to complete the task was transformed to time penalty (et/τ; t, total time, τ, 4 minutes).  

Time penalty was used, as opposed to total time, because participants were instructed that there was 

a penalty for spending too much time on the task, i.e., they were to optimize the path as fast as 

possible.  As the time penalty is an exponential transformation, the median Levene’s test (Brown & 

Forsythe, 1974) was used to test for equal variance. Repeated measures analyses of variance were 

performed to investigate differences between the conditions.  If the sphericity assumption1 was not 

met, the Greenhouse-Geisser adjusted p-value is reported. 

6.3.2.1 PHASE 1 

A box-plot of the time penalties across visualizations and cost functions2 is shown in Figure 6.10. A 

repeated ANOVA (3 x 4, visualization x cost function, Figure 6.11) revealed a significant difference 

between cost functions (p = 0.001) but no significant difference across visualizations nor interaction 

between treatments. 

 

1 The sphericity assumption is similar to the ANOVA requirement of homogeneity of variances, 
except that it is within-subjects.  The assumption is that variances of the differences (between pairs) 
across groups are the same. 
2 One outlier (4.14*SD above the mean) was removed. 
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Figure 6.10  Box-plot of  time penalty between visualization and cost functions, Phase 1 
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Figure 6.11  Means plot of  time penalty across visualization and cost functions, Phase 1 
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In order to determine which cost functions affected the participants the most, all pair-wise 

comparisons were conducted (Bonferroni test).  The Time cost function took the longest to 

optimize as the time penalties were significantly larger than the ones for Distance (p = 0.003), 

Metabolic (p < 0.0001) and Exploration cost functions (p = 0.007).  There were no other significant 

differences between the other functions (i.e., equal time spent in Distance, Metabolic, and 

Exploration trials). 

Even though there was no difference detected across visualizations, Figure 6.11 shows an interesting 

trend for the LOEC visualization group.  The two groups that had elevation contours in the 

visualization had an increase in time penalty for the Time and Exploration cost functions only.  On 

the other hand, participants that had just the LOEC visualization did not have an increase for 

Exploration function, but rather a slight decrease.  Additionally, for this visualization group, there 

does not appear to be much of a difference across the cost functions as there is with the other two 

groups.  In order to understand if and how the LOEC visualization affected the time penalties (and 

thus the total time spent on the task), further investigation was conducted within this visualization.  

A simple main effects analysis of cost function within the LOEC visualization group showed that 

there were no significant differences between functions.  The results imply that the LOEC 

visualization participants spent relatively equal amounts of time optimizing each cost function.   

In summary, the Time cost function took the longest time to optimize, resulting in the highest time 

penalty.  No other significant differences between cost function were detected.  While no main 

effect due to visualization was detected using ANOVA, the trend within the LOEC group showed 

that these participants spent relatively equal amounts of time for each cost function. 

6.3.2.2 PHASE 2 

A repeated ANOVA (2 x 2 x 3, scenario x cost function x visualization) was implemented to detect 

differences among the conditions.  Figure 6.12 shows the range of time penalties for the conditions 

tested1.  There was only a significant difference with respect to cost function (p < 0.0001).  There 

 

1 Two outliers (4.14*SD and 3.51*SD above the mean) were removed. 



were no significant differences between visualization groups or scenarios, and no significant 

interactions between the conditions were detected.  This implies that the scenario did not affect the 

time spent in trying to optimize paths, and only the cost function caused a change in total time 

penalty.  In this case, participants spent more time optimizing the Time cost function than the 

Exploration cost function (Figure 6.13).     

Time Time (off-nominal) Exploration Exploration (off-nominal)

Function

1.00

2.00

3.00

4.00

5.00

Ti
m

e 
Pe

na
lty

29

2

11

14

8

3

3

8

11

24 Visualization Group
Elevation Contours
LOEC
Elevation Contours & 
LOEC

 

Figure 6.12 Box-plot of  time penalties between visualizations and scenario type, Phase 2 
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Figure 6.13 Means plot of  time penalty across visualization, type of  scenario, and cost 
function (Time, left; Exploration, right) 

6.3.3 PERCENT TIME SPENT MODIFYING PATH 

Percent time spent modifying paths was calculated as the ratio between time modifying to total time.  

This is an important measure because it is an indicator of the amount of sensitivity analysis 

conducted during path optimization. 

6.3.3.1 PHASE 1 

Figure 6.14 shows the box-plot of the percent time spent modifying.  A repeated measures ANOVA 

showed there was no overall difference across functions or visualization group, and no significant 

interaction between treatments was detected.  While there was no significant difference between 

conditions, Figure 6.15 suggests a trend based on visualization, which merits further investigation.  

The trend appears to be that when the LOEC was present in the visualization, participants were 

inclined to spend more of their time modifying paths than participants who just had the elevation 

contours.   
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  Figure 6.14 Box-plot of  percent time spent modifying path between visualization and cost 
function, Phase 1 
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Figure 6.15 Means plot of  percent time spent modifying path between visualizations and 
cost functions, Phase 1 
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Since the trend appears to be LOEC participants were spending more modifying time, all 

participants were re-grouped into two groups, those with LOEC and those without.  While no 

significant main effect based on LOEC was detected, there was a significant difference across 

groups within the Time cost function only (p = 0.016).  This implies that for the Time function, 

participants with LOEC in their visualization spent more of their time modifying paths (M = 

43.36%, SD = 18.55) than those that did not (M = 24.09%, SD = 25.10).  This effect was not seen 

with the other cost functions (Distance, Metabolic, nor Exploration).  Therefore, the LOEC groups 

trend observed in Figure 6.15 is mostly due to the difference in percent time spent modifying only 

within the Time cost function. 

From Figure 6.15, it also appears that within each visualization, cost functions do not seem to be 

treated equally, mainly for the groups that had elevation contours in their visualization. A simple 

main effects due to cost function within each visualization group did not reveal any significant 

differences.  However, there was a significant increase of percent time spent modifying the 

Exploration cost function within the participants that had the elevation contours visualization.  

Within the elevation contours visualization group, point-wise comparisons showed that these 

participants had significantly higher percent modifying times for Metabolic and Exploration cost 

functions as compared to the Time function.  Participants with the visualization group with both 

LOEC and elevation contours spent significantly higher percent modifying times for Exploration 

than Metabolic1.   Thus, for these participants, the Exploration function was viewed as challenging, 

requiring more modifying time.  Additionally, this difference within visualization supports the 

previous analysis in which indicated that participants who only had the elevation contours 

visualization spent less of their time modifying the Time cost function path. 

In summary, there was no main effect between visualization groups and cost functions with respect 

to percent time spent modifying paths.  However, there are some trends based on visualization.  

Only within the Time cost function were there any significant differences between visualizations: 

participants that had the LOEC visualization tended to spend more of their time conducting 

 

1 Point-wise comparisons for Exploration cost function between each of the three visualization 
groups, did not reveal any differences. 



sensitivity analysis on their paths as compared to those that did not have this visualization.  

Participants with just the elevation contours visualization tended to spend more of their time 

modifying paths with the Metabolic and Exploration cost functions than the Time function.   

6.3.3.2 PHASE 2 

Box-plots of the percent time spent modifying in the second phase of the experiment are shown in 

Figure 6.16. A repeated measure analysis of variance (2 x 2 x 3, scenario x cost function x 

visualization, Figure 6.17) was used to investigate the differences among the percent time spent 

modifying paths.  There was no main effect of cost function, scenario, or visualization group.  There 

were no significant interactions except for the interaction between cost function and visualization 

group (p = 0.026). 
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Figure 6.16 Box-plot of  percent time spent modifying paths between visualizations and 
scenario type, Phase 2 
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Figure 6.17 Means plot of  percent time spent modifying across visualization, cost function, 
and scenario type (nominal, left; off-nominal, right) 

The significant interaction deserves further analysis.  The estimated means plot (Figure 6.17) seems 

to reveal a change in strategy between cost functions that depends on the visualization group.  A 

simple effect analysis of function within visualization revealed that there was a marginally significant 

difference between functions within elevation contours visualization (p = 0.054) and a marginally 

significant difference within LOEC visualization (p = 0.061)1.  Therefore, the detected significant 

interaction between cost function and visualization occurs because the participants within the 

elevation contours visualization spent a larger percent time modifying the Exploration cost function 

than the Time function while the participants within the LOEC visualization did the opposite, 

spending a larger percent time modifying the Time cost function than the Exploration. 

In summary, no main effect was found between scenarios, cost function, nor visualization for 

percent time spent modifying.  Of particular interest is the lack of difference across scenarios, as it 

was expected that degraded automation would prompt participants to conduct more sensitivity 

analysis as the path costs presented by the interface could not be trusted.  There was a significant 

interaction between function and visualization, in which the elevation contours participants spent 

more time modifying Exploration paths than Time, while the LOEC participants tended to act in 

                                                 

1 There was no significant difference to report for the third visualization group. 
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the opposite fashion.  This was the same effect found in Phase 1, though it was more pronounced 

with the addition of the off-nominal scenario.  The participants that had both visualizations spent 

equal amount of their time modifying both types of functions, regardless of scenario. 

6.3.4 TRUE TIME 

True time is a dependent measure that was derived from the path cost profiles (all path costs 

through the entirety of a single trial).  True time is how long a participant took to arrive to the 

minimum path cost found.  It differs from total time or time penalty because it reflects the actual 

time that it took a participant to optimize a path, excluding any time spent afterwards attempting to 

find another solution.  Short true times indicate that participants were able to optimize the path 

quickly. 

6.3.4.1 PHASE 1 

Figure 6.18 shows the range of true times between visualizations and cost functions.  A repeated 

measures ANOVA (3 x 4, visualization x cost function, Figure 6.19) only revealed a significant 

difference between cost functions (p < 0.0001).  There were no significant differences across 

visualization and no significant interaction between treatments.  It appears from Figure 6.19 that the 

Time cost function had the longest true time.  Simple contrasts confirmed that Time cost function 

had significantly longer true times than any of the other cost functions.   
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Figure 6.18 Box-plot of  true times between visualizations and cost functions, Phase 1 

Distance Time Metabolic Exploration

Function

80

100

120

140

160

180

Es
tim

at
ed

 M
ar

gi
na

l M
ea

ns

Visualization Group
Elevation Contours
LOEC
Elevation Contours & 
LOEC

 

Figure 6.19 Means plot of  true time across visualizations and cost functions, Phase 1 
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6.3.4.2 PHASE 2 

The range of true times between scenarios, visualization and cost functions can be seen in Figure 

6.20.  A repeated measures ANOVA (2 x 2 x 3, scenario x cost function x visualizations, Figure 

6.21) revealed no main effect based on visualization, but there was a significant difference between 

cost functions (p < 0.0001) and scenario (p = 0.04).  There were no significant interactions.  The 

difference between cost function is the same as seen in the nominal case, i.e., Time had longer true 

times than the Exploration function.  With respect to scenario, the nominal true times were longer 

than the off-nominal ones.  For the Time cost function, the decrease was on average, 30 seconds, 

while for Exploration, it was 20 seconds. 
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Figure 6.20 Box-plot for true time between visualization and scenario type, Phase 2 
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Figure 6.21 Means plot of  true time across visualizations, cost functions and scenarios, 
Phase 2 (Nominal, left; off-nominal, right) 

6.3.5 DIFFERENTIAL COST 

Differential cost is a dependent measure calculated from the path cost profiles.  It is the path cost 

error difference (in percent) between the first path cost the participant made for a particular trial and 

the submitted path cost.  This metric helps to assess how much path cost error decreased during the 

optimization process.  A negative differential cost would indicate that the participant submitted a 

path that was worse than the first one they had made.  A small differential cost would indicate that 

the participant’s first path attempt was close in cost to the submitted least-costly path. 

6.3.5.1 PHASE 1 

The range of differential costs for the different cost functions across visualization can be seen in 

Figure 6.22.  ANOVA assumptions were not met, thus non-parametric tests were used. 
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Figure 6.22 Box-plot of  differential costs between visualizations and cost functions, Phase 1 

There was only one participant that had a large negative differential cost1 within the Metabolic cost 

function, likely a mistake on selecting a path to submit.  There were participants with zero 

differential costs, meaning that these participants submitted the first path they created (2 in Distance 

function, 4 in Time function, 5 each for Metabolic and Exploration functions).  The number of 

participants with zero differential costs was counted, and a Pearson’s chi-square test did not show a 

difference in distribution between visualization groups among the participants who had zero 

differential costs. 

Kruskal-Wallis tests within each cost function revealed only a marginally significant differential cost 

between visualizations for the Exploration cost function (p = 0.082) and none for the other three 

functions.  Comparisons between visualizations (Mann-Whitney tests) showed that the LOEC 

                                                 

1 There were three additional subjects with negative differential costs but these were at most -0.5%, 
i.e., essentially zero. 
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visualization group had a significantly lower differential cost than the visualization group with 

elevations contours & LOEC (p = 0.02).  No difference was detected between elevations contours 

group and the combined visualization group. 

A Friedman test was used to determine a significant difference in ranking between the cost 

functions, regardless of visualization (p < 0.0001).  All pair-wise comparisons (using Wilcoxon Sign 

tests) were statistically significant (p < 0.0001) except between Distance and Metabolic cost 

functions.  This implies that Time trial had the larges differential cost, Exploration had the smallest, 

and there was no statistical difference between the differential costs for Distance and Metabolic 

functions.  

In summary, Distance and Metabolic had overall the same differential cost, while Time had the 

largest.  In the cost function with the smallest differential cost, Exploration, there is a marginal main 

effect of visualization.  Comparisons revealed that participants with just the LOEC visualization had 

a significantly smaller differential cost than the participants in the elevation contours & LOEC 

visualization group.  This implies that these participants started out making better paths for the 

Exploration cost function than the combined visualization group.      

6.3.5.2 PHASE 2 

Figure 6.23 show box-plots of the differential cost range found for the two cost functions tested in 

the nominal and off-nominal scenarios.  In the off-nominal case there was a greater number of 

negative differential costs, indicating the paths that were submitted were higher in cost than the first 

initial path cost.  In the Time off-nominal trial, 6 participants had negative differential costs, while in 

the Exploration off-nominal, 12 participants.  The number of participants with negative differential 

costs (Figure 6.24) was counted for each visualization group.  No significant difference was detected 

in the number of participants within each visualization with negative differential costs. This implies 

that negative differential costs among the off-nominal trials cannot be attributed solely to 

visualization group.  

Figure 6.24 also depicts the number of participants that had a differential cost of zero, indicating 

that they submitted the first path they made as their optimized solution, possibly not optimizing at 



all.  In the Time off-nominal trial, there were 6 participants that had differential costs of zero, while 

in the Exploration off-nominal trial, there were only 3.  There was no statistically significant 

difference across scenarios for the number of participants with zero differential costs.  These 

participants were also evenly distributed between visualizations.  Thus, similar to negative 

differential costs, zero differential costs in the off-nominal trials cannot be solely attributed to 

visualization. 
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Figure 6.23 Box-plot of  differential costs between visualization and scenario type, Phase 2 

 

 

145



Positive Negative Zero

Differential Cost

0

2

4

6

8

10

C
ou

nt

Visualization Group
Elevation Contours
LOEC
Elevation Contours 
& LOEC

 
Positive Negative Zero

Differential Cost

0

2

4

6

8

10

C
ou

nt

Visualization Group
Elevation Contours
LOEC
Elevation Contours 
& LOEC

 

Figure 6.24 Histogram by visualization group of  number of  participants with negative or 
zero differential costs in off-nominal trials (left, Time cost function; right, Exploration cost 

function) 

Using Kruskal-Wallis tests, no differences between visualizations were detected in the off-nominal 

trials with respect to differential cost.  This result differs from the nominal case where a marginally 

significant difference was found for the Exploration function.  The difference between off-nominal 

cost functions was the same as in Phase 1, and the Time cost function had overall significantly larger 

differential costs (Wilcoxon Sign test, p = 0.019).  Within each visualization, however, no significant 

differences across cost functions were detected.      

Wilcoxon Sign tests were used to compare differential costs across scenarios.  Participants, as a 

whole, significantly decreased their differential costs in the off-nominal condition within Time cost 

function across (p = 0.008).  However, this trend was not exhibited within the Exploration cost 

function where there was no significant difference between scenarios.  Within the elevation contours 

visualization group, there was a decrease in differential costs across scenarios (marginally significant, 

p = 0.062, for the Time function and significant, p = 0.01, for the Exploration function). Within the 

LOEC visualization group, no significant difference was detected between scenarios for the Time 

cost function, yet there was a marginal significant (p = 0.074) increase across scenarios within 

Exploration function.  Within the third visualization group (both elevation contours and LOEC), 

there was no difference in differential costs across scenarios. 
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In summary, within the off-nominal trials, no differences in differential costs were found between 

visualizations.  Across cost functions, the Time function had higher differential costs than 

Exploration function, which is consistent with Phase 1.  Across scenarios, there was a significant 

decrease in mean differential costs for Time function but no difference in Exploration.  A decrease 

of differential cost for the off-nominal case would indicate some learning (as participants would 

have been initially close to their solution).  However, there was an increase in negative differential 

costs for the off-nominal condition (from 1% to 26%), meaning that these poor performers 

decreased the differential costs. 

6.3.6 NON-OPTIMAL SATISFICING 

Non-optimal satisficing refers to actions taken by a participant attempting to find a lower path cost 

after a minimum was already achieved.  Specifically, non-optimal satisficing is defined as 1) cost 

surplus: the difference between the minimum path cost achieved and the submitted path cost, and 2) 

time surplus: the percent of time spent between those ([total time – true time]/total time).  For non-

optimal cost surplus, non-parametric tests were used.  For non-optimal percent time surplus, 

ANOVA was implemented.  If the sphericity assumption was not met, the Greenhouse-Geisser 

adjusted p-value is reported. 

6.3.6.1 PHASE 1 

The range1 of non-optimal satisficing cost surplus is seen in Figure 6.25.  In Phase 1, there was little 

difference between the true minimum cost achieved and submitted cost.  The median for all 

conditions was zero.  Hence, participants generally submitted the minimum path cost they had 

already achieved.  No further analysis was conducted on this measure for this Phase 1.   

 

1 Three data points in the elevation contours group were identified as outliers (4.07*SD, 3.71*SD, 
and 5.59*SD above the mean) and hence, removed. 
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Figure 6.25 Box-plots of  non-optimal satisficing, cost surplus, between visualizations and 
cost functions, Phase 1 

The range of non-optimal satisficing for percent of time surplus can be seen in Figure 6.26.  A 

repeated measures 3 x 4 ANOVA was used to test the differences between visualization and cost 

functions (Figure 6.27).  A main effect was found for cost function (p = 0.046) but none for 

visualization.  There were no significant interactions.  A simple contrast showed that Time cost 

function had a significantly smaller percent time surplus in non-optimal satisficing when compared 

to Metabolic (p = 0.001) and Exploration (p = 0.018), but not Distance.  No other significant 

differences were detected between cost functions. 
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Figure 6.26 Box-plot of  non-optimal satisficing (percent time surplus) between 
visualizations and cost functions, Phase 1 
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Figure 6.27 Means plot for non-optimal satisficing (percent time surplus) between 
visualization and cost functions, Phase 1 
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It is interesting to note that for the Exploration cost function, the mean percent time surplus in non-

optimal satisficing increases for just the elevation contours group.  A pair-wise comparison within 

this visualization indicated significant differences between Exploration and both Time (p = 0.055) 

and Distance (p = 0.041).     

In summary, for Phase 1, participants did not submit sub-optimal path costs relative to the achieved 

minimum.  They did however, spend on average between 20 – 35% of their time conducting non-

optimal satisficing.  The lowest of these percent time surplus was found within the Time cost 

function, which was significantly lower than Metabolic and Exploration trials.  This difference 

between cost functions for percent time surplus in conjunction with the previous result where Time 

function had the largest true time, suggests that participants were feeling the time pressure of 

completing their optimized path as fast as possible.  In other words, after spending a long time 

attempting to solve the Time function path, participants did not spend additional time conducting 

non-optimal satisficing once a minimum path was found.  This is supported by a significant 

correlation within the Time function between non-optimal satisficing time surplus and true time 

(Pearson correlation = -0.48, p = 0.005). 

6.3.6.2 PHASE 2 

The range1 of non-optimal satisficing cost surplus measures (cost differences between minimum 

cost found and cost submitted) are shown in  Figure 6.28.  The non-parametric test, Kruskal-Wallis, 

did not detect a significant difference between visualizations within the off-nominal scenario.  

Comparisons across scenarios (Wilcoxon Sign tests) revealed that there was a significant increase in 

cost surplus for both Time (p = 0.032) and Exploration (p = 0.011), meaning the cost surplus was 

higher for both functions in the off-nominal scenario.  This increase in cost surplus was about 

seven-fold for each of the cost functions.  Within the off-nominal scenarios, paths made in the Time 

cost function had a significantly higher cost surplus than Exploration function (Wilcoxon Sign test, 

p = 0.001).   

 

1 Three outliers were removed (3.71*SD, 4.15*SD, and 4.48*SD above the mean). 



 

 

151

Time Time (off-nominal) Exploration Exploration (off-nominal)

Function

0

5

10

15

20

25

30

N
on

-o
pt

im
al

 s
at

is
fic

in
g,

 c
os

t s
ur

pl
us

10

23

23

9

25

20 208

11

28

24

33

18

Visualization Group
Elevation Contours
LOEC
Elevation Contours & 
LOEC

 

Figure 6.28 Box-plot of  non-optimal satisficing (cost surplus) between visualizations and 
scenarios, Phase 2 

The range of the percent time spent conducting non-optimal satisficing is shown in Figure 6.29.  

Differences in scenario, cost function, and visualization were tested using a repeated measure 

ANOVA (2 x 2 x 3, scenario x cost function x visualization, Figure 6.30).  There was a significant 

difference between cost functions (p = 0.007), where the percent time surplus is smaller for the 

Time cost function than Exploration, which is the same effect seen in Phase 1.  No difference across 

visualization was detected and no interactions were significant.  There was a significant difference 

across scenario (p = 0.033), meaning that in the off-nominal scenarios, the percent time spent in 

non-optimal satisficing increased.  There was a significant correlation between time surplus and true 

time (p < 0.0001). 
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Figure 6.29 Box-plot for non-optimal satisficing (percent time surplus) between 
visualizations and scenarios, Phase 2 
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Figure 6.30 Means plot of  non-optimal satisficing (percent time) between visualizations, 
cost functions, and scenario (nominal, left; off-nominal, right) 

In summary, across scenarios, more non-optimal satisficing occurred from nominal to off-nominal 

scenarios.  Under degraded automation conditions, participants introduced cost errors not seen in 
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the nominal case which is represented in the seven-fold increase of cost surplus in the off-nominal 

scenarios.  Within the off-nominal trials, the Time cost function had a significantly larger cost 

surplus as compared to the Exploration function.  With respect to percent time surplus, Time cost 

function trials had a smaller percent time spent non-optimal satisficing (compared to Exploration) 

and no difference in visualization was detected.  Across scenarios, there was a significant increase in 

non-optimal percent time surplus for the off-nominal trials.  In the off-nominal case, participants 

generally spent the same percent time modifying paths across scenarios, but did not realize that they 

had reached their minimum path cost, resulting in an increase of non-optimal time surplus. 

6.3.7 OTHER ANALYSES 

There are a few other analyses worth mentioning that were conducted to further investigate how 

participants performed in this second experiment. 

6.3.7.1 PATH COST ERRORS AND TOTAL TIME CORRELATIONS 

Correlations between path cost errors and time (i.e., time penalty, true time, and actual time) were 

conducted in order to assess if longer time on the optimization task was proportional to a decrease 

in errors.  The path cost errors were not normally distributed (Kolmogorov-Smirnov test, p < 

0.0001).  Furthermore, time penalty and true time were not normally distributed (p = 0.001 and p = 

0.037, respectively).  Thus, correlations were analyzed using Spearman’s rho correlations (equivalent 

non-parametric test for Pearson’s correlation).  There were no significant correlations between 

errors and any of the time measures.   

6.3.7.2 PREFERENCE BETWEEN VISUALIZATIONS 

Within the group that had both visualizations, elevation contours and LOEC, participants were 

asked if they preferred the elevation contours more than the LOEC.  Eleven participants answered 

this question (Figure 6.31), and no statistical difference between preferences (χ2(3, 11) = 0.15, p = 

0.96). 
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Figure 6.31 Histogram of  response for visualization preference within group that had both 
elevation contours and LOEC. 

6.3.7.3 COST FUNCTION TAB 

Every interaction between the participant and the PATH interface (every click) was recorded, thus 

total number of clicks per interface element (i.e., a particular button) could be assessed.  This could 

potentially provide insight to what elements of the interface were used often or not at all.  Of 

particular interest was the number of times the cost function tab (top left corner of interface, Figure 

6.1) was clicked because a high count would indicate that the participant needed detailed 

information about the cost function itself.  In general, this information was not accessed during the 

test trials though it was for the practice trials, regardless of visualization.  Even in the practice trials, 

the number of times is small.  For the off-nominal trials, most participants did not click on this tab 

either. 

6.4 COGNITIVE STRATEGIES 

Based on observation, participant debriefs, and experimental data, the following path planning 

strategies were surmised.  As in the first experiment, most participants typically created one or two 

paths and then proceeded to modify waypoints, i.e., manual sensitivity analysis.  However, it was 

observed that there were some participants that chose not to modify their paths much, if at all.  This 
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is not say these participants did not do sensitivity analysis, but rather conducted a “whole-path” 

sensitivity analysis by making multiple path alternatives.   

If the percent time spent modifying paths (a measure of the participant’s manual sensitivity analysis) 

is averaged per participant over all six test trials, a bimodal distribution emerges (Figure 6.32).  

Participants that conducted manual sensitivity analysis (modified path by adding, deleting, and/or 

moving waypoints) are the ones with average modifying times greater than 16%, which is three-

fourths of the total number of participants.  Of the participants that conducted “whole path” 

sensitivity analysis (with average modifying times less than 16%), five were in the elevation contours 

group, two were in the LOEC visualization group, and only one was in the third visualization group.  

Using a Pearson’s chi-square test, no statistically significant difference in participant distribution 

across visualizations was detected (χ2(2,34) = 3.64, p = 0.16).  Additionally, Mann-Whitney tests did 

not detect any performance differences (with respect to path cost errors) between the participants 

that chose manual versus “whole path” sensitivity analysis.     
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Figure 6.32 Histogram of  average percent time modifying across all trials 

Of the participants that did conduct manual sensitivity analysis, they primarily focused on modifying 

single waypoints.  Multi-waypoint modifications were observed, but it was not the most prominent 

strategy.  During the experimental debriefs, some participants mentioned that waypoints were 

moved or added based on the visualization presented.  Those participants that had LOEC, for 

example, would try to move waypoints into areas that were “more yellow” (smaller total cost to the 
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goal) and move away from “purple” (higher total cost to the goal).  For those participants that had 

elevation contours, they would try to keep waypoints between contours, in essence, attempting to 

make “flat” paths (with small elevation changes).  During degraded automation, participants, mainly 

those with LOEC visualization, mentioned in their debriefs that they leveraged the path elevation 

profile to make their least-costly paths.  In this case, the waypoints were added and moved based on 

path elevation profiles, where participants were attempting to make their paths “flatter”, i.e., 

reducing changes in elevations. 

Aside from using elevation contours and the LOEC colors to make and modify paths, many 

participants commented on also having used the simple heuristic of “shortest path”.  For example, 

an LOEC participant summarized his/her strategy as attempting to make the shortest path to a 

yellow area.  The choice of this heuristic is not surprising because, even though all the cost functions 

(aside from Distance) had some relationship to slope: in general the longer the path, the higher its 

cost.  Furthermore, this is representative of a “fast and frugal” heuristic (Chase, Hertwig, & 

Gigerenzer, 1998; Gigerenzer & Goldstein, 1996), where the operator implements a heuristic that 

he/she recognizes quickly or considers simple.  For the case of path planning, finding the shortest 

distance is a task that is perceptually driven and which humans perform well (see also section 2.2), 

and hence, is a relatively simple and familiar strategy to implement. 

Testing if participants utilized the simple heuristic or strategy of shortest distance, particularly for 

the more complex cost functions such as Metabolic and Exploration, can be quantified.  This can be 

done by comparing a participant’s solution to an objective shortest path solution.  If the difference 

between these costs is small, then the participant was classified as having implemented a shortest 

path heuristic.  Thus for all trials, the shortest path distance was determined and every path 

submitted as a solution by the participants per test trial was retrospectively recalculated for the 

Distance cost function (i.e., the length of each test trial path).  Comparing the length of submitted 

path to the shortest distance possible resulted in a distance error (in the case for Distance, this is the 

same path cost error found for this trial).   

Comparisons between conditions were done using a repeated measures ANOVA (see Appendix B 

for details).  Within the nominal trials (left, Figure 6.33), there was a significant difference across 

cost functions (p < 0.0001).  Simple contrasts reveal that the distance errors for all the cost 



functions were significantly larger than Distance (Time, p < 0.0001; Metabolic, p < 0.0001; 

Exploration, p = 0.011).  All other comparisons were significant (p < 0.0001) except between Time 

and Metabolic (p = 0.40).  These results indicate that participants were implementing other 

heuristics aside from the shortest path strategy for the other cost functions, though at a lesser extent 

for the Exploration cost function.   
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Figure 6.33 Means plot for distance errors (right, nominal cost functions; left, off-nominal 
cost functions across scenarios) 

Distance errors were compared across scenarios in order to determine if participants consistently 

applied a shortest path heuristic.  For the off-nominal conditions, there was a significant difference 

across cost function (p < 0.0001) and a marginal difference across scenario (p = 0.09), though there 

was a significant interaction between these conditions (p = 0.004).  Point-wise comparisons showed 

that there was a significant difference across scenarios within the Time cost function only (p = 

0.003) and not Exploration (p = 0.36).  This results means that under off-nominal conditions, there 

was no change in heuristic for the Exploration trial, while for Time, participants tended to make 

shorter paths and thus relying on the shortest heuristic more1.  

                                                 

1 A similar test was conducted for a second possible heuristic: “following contours”.  For each 
subject and trial, the submitted path was categorized as following or not a contour (elevation or 
LOEC, depending on the visualization).  Some similar results as these presented emerged, which was 
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6.5 PARETO FRONT ANALYSIS 

The two key measures of path planning performance in this experiment were path cost errors and 

total task time.  In order to better understand the relationship between these measures, individual 

participants along a Pareto front were assessed.  The Pareto front is the set of non-dominated 

solution points; in this case, if comparing task time and cost error, a non-dominated point would be 

the smallest error achieved at a particular task time. Additionally, examining the Pareto front will 

help understand the effect of visualization, cost function, and scenario in terms of the best 

performers as opposed to identifying the main effects.  Since the task was time pressured, assessing 

how participants conducted the path cost-time trade would be beneficial to the overall 

understanding of the human optimization process. 

Participant performance was plotted with respect to total task time and path cost errors.  A 

participant is included in the Pareto front if no other participant was able to reach a smaller path 

cost error in a faster time.  It is worth noting that occurrence in the Pareto front does not necessarily 

mean that the participant performed overall well.  The best participant would be one that had a very 

small cost error in a short period of time.  

6.5.1 NOMINAL SCENARIO 

The scatter plot of path cost errors versus total time was generated for each nominal cost function 

in order to determine which participants were on the Pareto front.  The Pareto fronts for the 

Distance and Metabolic cost functions (Figure 6.34) were “flat”, meaning that the participants along 

the front have relatively the same path cost with increasing total time.  In other words, regardless of 

the time spent on the optimizing task, path cost errors do not improve much.  This is expected from 

the Distance cost function, which was the easiest cost function for participants to optimize.  In the 

Distance Pareto front, there were participants from all three visualizations.  In the Metabolic Pareto 

front, there were two elevation contours participants with path cost errors of 5.2% and 4.2% 

 

not unexpected participants often applied both types of heuristics (shortest path and following 
contours).   



(subjects 5 and 19 in Figure 6.34), taking 59 and 93 seconds, respectively.  These two participants did 

not spend any time modifying paths (just making a few whole paths).  The third participant (subject 

8) in the Metabolic Pareto front had the smallest error 4.0% (in the LOEC group), however he/she 

spent 256 seconds on the task and 75% of it modifying the path.  For the Metabolic cost function, 

the best performers were in the elevation contours and additional manual sensitivity analysis helped 

decrease the path cost errors but not by a large amount.           
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Figure 6.34 Scatter plot of  path cost errors and total time for Distance (left) and Metabolic 
(right) cost functions 

The Time and Exploration cost functions have a clearer Pareto front (Figure 6.35).  The set of 

Pareto points for the Time cost function (left, Figure 6.35) identified three participants in this non-

dominated front, all in the elevation contours visualization group.  In decreasing order, the cost 

errors drop from 37.1% to 33.1% to 26.2% (subjects 17, 10, and 20, respectively1).  Compared to 

the first participant, total times spent completing the task triples and quintuples for improvements of 

4% and 11%.  The trend with respect to percent time spent modifying was 0% to 56% to 62%.  

Thus, the main difference between these participants is the amount of time spent making single 

                                                 

1 It is important, though, to note that the average path cost error for this trial was 60%. 
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waypoint modifications.  Increased time and modifications resulted in decreased cost error.  It is 

surprising that subject 17 did well in the Time cost function, the trial with the largest errors; he or 

she was the only participant that self-designated as having no map or hiking experience and did not 

do particularly well in other trials, especially the Metabolic trial.  Nonetheless, the exhibited trend 

was that increased manual sensitivity within the elevation contours participants led to improved path 

planning performance. 
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Figure 6.35 Scatter plot of  path cost errors and total time for Time (left) and Exploration 
(right) cost functions, nominal cases 

In the Pareto front for the nominal Exploration cost function (right, Figure 6.35), there was a 

participant that stands out as having superior performance (subject 7 in elevation contours group).  

However, this participant performed poorly for the Time and Exploration cost functions. Thus, the 

Pareto front for the Exploration function is considered with and without this participant. 

If considering subject 7, the Exploration function Pareto front, three of the four participants were in 

the elevation contours group.  A reduction of path cost errors was accompanied by about 20-second 

increase in total time spent optimizing.  The path cost errors along the Pareto front were 6.0%, 

5.2%, 4.8%, and 3.6% with corresponding total task time of 65, 82, 100, and 117 seconds (subjects 

17, 31, 34, and 7 in Figure 6.35).  The first two participants did no path modifications while the 
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other two spent 5% and 12% of their optimizing time modifying their paths.  Thus, though this 

trend was not as pronounced as in the Time cost function, the overall best Exploration cost 

function performers were found in the elevation contours group and a slight increase in path 

modifications led to a decrease in path cost errors. 

If considering the Exploration Pareto front without subject 7, there was a definite change across the 

Pareto front.  Of this set, the participant with the smallest path cost was an elevation contours 

participant, with a path cost error of 3.9% (subject 20).  However, he/she spent 263 seconds 

optimizing the path, 68% of it conducting path modifications.  This was the same overall trend 

observed with the other participants, where a large portion of time was spent in manual sensitivity 

analysis, though without much decrease in path cost errors.  Additionally, these other participants 

were from the LOEC visualization groups.  This trend indicates that while participants increased 

their time optimizing paths through modifications, it led to small benefits with regards to cost.  The 

participants’ inability to decrease errors over time indicates that participants understood poorly how 

to improve path cost errors for the Exploration cost function. 

For the nominal scenario, the general trend observed for the Pareto front was that participants with 

low cost errors and total times were in the elevation contours visualization group.  Furthermore, for 

the Time and (to a lesser extent) Exploration cost functions, a decrease in path cost errors was 

accompanied by an increase in percent time spent modifying, which can be interpreted as an increase 

in manual sensitivity analysis.   

6.5.2 OFF-NOMINAL SCENARIO 

The scatter plots of path cost errors versus total time for the off-nominal Time and Exploration cost 

functions are shown in Figure 6.36.  The Pareto front under the off-nominal scenario for Time was 

relatively well-defined, yet for the Exploration, it appears to be rather “flat” (i.e., little decrease in 

path cost errors with time).  

For the Time off-nominal Pareto front (left, Figure 6.36), there was a decrease in path cost errors 

from 39% to 31% to 22%, with corresponding total times of 57 to 88 to 163 seconds (subjects 6, 28, 

and 20, respectively).  Only the participant with the lowest error conducted manual sensitivity 



analysis, with 33% of his/her time spent modifying paths.  The second participant made multiple 

paths, while the remaining Pareto front participant made only one path.  It is important to note that, 

unlike the nominal case, the participants along the off-nominal Time Pareto front belong to other 

visualization groups (not just elevation contours).  While the trend was not as strong as in the 

nominal, participants decreased path costs with an increase in sensitivity analysis. 
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Figure 6.36 Scatter plot of  path cost errors and total time for Time (left) and Exploration 
(right) cost functions, off-nominal cases 

For the case of off-nominal Exploration (right, Figure 6.36), two of the three participants in the 

Pareto front were from the LOEC visualization group.  Participants decreased in errors from 8% to 

7.2% to 5.6% (subjects 17, 14 and 8, respectively).  Correspondingly, the amount of time spent was 

28, 41, and 238 seconds.  Only the participant with the smallest path cost spent any time modifying 

paths (70%).   
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Figure 6.37 Aggregate scatter plot of  path cost errors and total time across cost functions, 
visualization, and scenario (Pareto front circled) 

The most important trend observed in the off-nominal cases was the presence of participants that 

belonged to the other LOEC visualizations.  In addition, only the participants with the smallest path 

cost errors spent large amounts of time modifying paths, i.e., conducting manual sensitivity analyses.  

The Pareto front analysis suggests that in the nominal case, the best performers (low path cost errors 

and total time) are within elevation contours, while the LOEC was most useful in the off-nominal 
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cases.  If considering the Pareto front with all the independent variables1 (circle in Figure 6.37), 

there is a larger representation of participants in the elevation contours group and LOEC 

visualization group (and only two of the combination visualization group). 

6.6 DISCUSSION 

The two phases of this experiment address two conditions: one pertaining to path optimization of 

four cost functions under nominal conditions, and the other, a subset of two cost functions under 

off-nominal conditions.  In both, there were three visualization groups: elevation contours 

visualization, levels of equal cost (LOEC) visualization, and both.  As in the first experiment, it was 

not practical to test participants in all three of the visualizations.  As a result, the visualization 

method was a between-subject variable.  Participants were randomly assigned to one of the 

visualization groups, balancing the number and gender of subjects in each.  Aside from map-use 

experience, participants were also asked to complete an independent spatial ability test.  Neither of 

these metrics resulted in a viable covariate (i.e., these measures did not predict performance).  

Furthermore, there was no statistical evidence that there was a visualization group difference with 

respect to map-use experience, spatial ability test score, nor choice of strategy type.  Thus, the 

participants in this experiment were reasonably balanced across the visualization groups. 

6.6.1 NOMINAL SCENARIO 

Table 6.3 summarizes the major results for the dependent and independent variables within Phase 1. 

 

1 Only the most complex functions (Metabolic and Exploration) are shown as these are the most 
representative of what would be included in an actual path planner.  The Time cost function errors 
were significantly larger, creating a frontier at the top of the figure. 
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Table 6.3 Summary of  results for Phase 1 

 Independent Variable 

Dependent Variable Visualization 
(EC, LOEC, Both) 

Cost Function 

Path cost errors No main effect Time > Metabolic ≈ Exploration > Distance 

Time penalty No main effect Time > Distance, Metabolic, Exploration 

Percent time modifying No main effect Within LOEC groups, Time > EC Time 

True time No main effect Time > Distance, Metabolic, Exploration 

Differential cost Within Exploration: LOEC < Both Time > Distance ≈ Metabolic > Exploration 

Non-optimal satisficing 
(cost surplus) 

No main effect No main effect 

Non-optimal satisficing 
(time surplus) 

No main effect Time < Metabolic, Exploration ≈ Distance 

 

6.6.1.1 COST FUNCTIONS 

It was hypothesized that path planning performance would decrease with the number of variables 

being manipulated through the optimizing cost function, though this decline would be lessened by 

the LOEC visualization.  Thus, Distance would be the easiest to optimize, followed by Time, 

Metabolic, and Exploration cost functions.  Deteriorated performance would be observed in an 

increase of errors and time spent on path planning task.  Unexpectedly, in this experiment, Time was 

the most difficult cost function to optimize, as supported consistently through every measure of 

performance.  Difficulty is defined as having the highest path cost errors and time penalty (total 

time).  Participants, regardless of visualization group, had significantly higher path cost errors, time 

penalty (total time), and true time for the Time cost function.  Particularly for the path cost errors, 

the average magnitude of the Time errors was about ten times larger than the hypothesized more 

difficult cost functions (Metabolic and Exploration). 

As expected, optimizing to the shortest path (Distance) was the easiest for participants, regardless of 

visualization.  Their path cost errors were about 3 ± 3%.  This error doubled for Metabolic and 

Exploration, 7 ± 2% and 6 ± 2%, respectively.  Path cost errors for the Time cost functions were 60  
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± 14%.  There was no statistically significant difference between Metabolic and Exploration path 

cost errors.  While there were differences among the path cost errors, no significant difference was 

found between these three cost functions with regards to time penalty and true time.   

Cost function differences were also detected among the path cost profiles measures, specifically 

differential cost and percent time spent conducting non-optimal satisficing1.  Differential cost, 

derived from the path cost profiles, was the percent difference between the last and the first path 

cost error; it is a measure of “how close” participants were in their first attempt at optimizing the 

path.  Again, Time had the largest differential cost (26.6 ± 19.4%) while there was no difference 

between Distance (7.66 ± 6.82%) and Metabolic (8.82 ± 7.63%).  Surprisingly, the most complex 

cost function presented to participants, Exploration, had the smallest differential cost (2.97 ± 

3.05%).  These results imply that for the Time cost function, participants’ initial paths were far from 

their optimal (as compared to the other three cost functions).  On the other hand, participants 

started out relatively close to their submitted path solution for the Exploration cost function.  This 

may have been due to learning, however, the fact that there were significant differential cost 

differences between Exploration and Metabolic functions even though there was no significant 

difference in path cost error nor time penalty, implies that participants were not able to improve on 

the path cost errors for the Exploration function as much as with the Metabolic paths.  Thus, while 

Time was a difficult cost function for participants to optimize, participants still found Exploration a 

challenging function.   

Since participants spent more time attempting to optimize the Time function paths than any other 

cost function, it would be expected that the invested time would result in small path cost errors.  

Yet, this was not the case; participants did reduce their initial path errors the most (i.e., largest 

differential cost) for Time function but the cost errors were the highest.  This would suggest that 

participants could not improve on their solution any more.  However, this is not necessarily true as 

participants might have not spent more time optimizing because of the time pressure.  This 

hypothesis is supported by the fact that within the Time cost function, participants spent a 

significantly smaller percent of time in non-optimal satisficing (than in the Metabolic and 

 

1 For cost functions, there was no main effect detected for percent time spent modifying path. 
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Exploration cost functions).  Therefore, it is might be possible for participants to reduce path cost 

errors for paths based on the Time cost function if they had not been time pressured. 

To sum up the cost function effect, based on participants’ path planning performance, it appears 

that participants viewed the Metabolic and Exploration as equally difficult cost functions, yet easier 

than the Time cost function.  This is surprising because Metabolic and Exploration functions were 

more complex functions, involving three and four variables, respectively, while the Time function 

only included two (Distance and slope).  There is some evidence, with the differential cost metric, 

that indicates participants found the Exploration function challenging (based on the small 

differential costs).  Nonetheless, overall, the Time function was the most difficult cost function to 

optimize for all participants. 

Performance metrics, however, do not explain entirely why the Time cost function was the most 

difficult to optimize.  One reason may be that humans more intuitively understand how to optimize 

time.  For instance, daily people attempt to find the fastest way from one location to another, such 

as in driving tasks.  Conversely, optimizing a more complex function like Metabolic or Exploration 

is more of an abstract notion.  Participants may have felt they could optimize a path based on Time 

as opposed to Metabolic and Exploration, and hence, spent more time optimizing the conceptually 

easier function to understand.  The Metabolic and Exploration cost functions may be so intricate 

that the path planning task may have immediately exceeded the human capacity for understanding 

how to fundamentally optimize these functions.  As a result, the problem became “opaque” and 

participants relied on the information and tools they were provided (i.e., path costs and 

visualizations) without giving the problem as much thought and attention as the Time cost function 

(as exhibited by a lower time spent on task).  This would imply that participants would revert to very 

simple heuristics for the more complex cost functions of Metabolic and Exploration. 

Even though participants repeatedly mentioned during their experimental debrief that they used a 

“shortest path” heuristic, the results imply that some combination heuristic was implemented 

because the submitted paths were not the shortest paths possible.  Comparing across cost functions, 

the shortest path heuristic seems to have been applied more to the Exploration cost function than to 

the Metabolic and Time functions.  This is consistent with the fact that participants did not fully 

understand how to optimize the Exploration cost function.  The Exploration function relies on sun 
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position, and participants may not have developed a good heuristic for this additional variable.  With 

respect to the Time cost function, the shortest path heuristic was an ineffective strategy because  it 

does not take into account changes in slope which are essential in this cost function.  Therefore, 

even though participants did not primarily use this heuristic for the Time cost function, applying it 

for a portion of the path results in poor path planning performance.   

Poor performance on the Time function may have also resulted from the variability and sensitivity 

of the cost function to changes in its variables (i.e., slope).  This means that when participants 

attempted to optimize a Time path, small path modifications resulted in large path cost changes.  To 

illustrate this, Figure 6.38 has two screen captures, one for the Time and the other for the 

Exploration function, that contain two paths each.  Below the map, the path cost profiles are also 

shown.  If path costs are compared (in this case to the blue path labeled “base”), one can see that a 

relatively small path modification (red path) results in a large cost difference.  On the other hand, 

this is not seen for the Exploration function paths, where a path modification resulted in a small 

cost difference.  Thus, within the Time cost function, small changes in slope resulted in a large effect 

on the total path cost as compared to the other cost function.  Cost functions that exhibit this trait 

could be labeled “overly-sensitive” cost function.  Due to the variability, participants could more 

readily assess the impact of a path modification on the overall path cost (i.e., changes were more 

salient).  For example, this can be observed in the path cost profiles for the Time paths in Figure 

6.38.  However, this variability also makes reducing the path cost errors more challenging for the 

participant.  This implies that humans under time pressure might be ill-equipped to optimize cost 

functions, such as the Time cost function, that are very sensitive to small changes in variables. 



  

Figure 6.38 Cost differences for path modifications within cost function (left, Time; right, 
Exploration)

6.6.1.2 VISUALIZATIONS 

Overall, visualization did not have a main effect on path planning performance.  No significant main 

effects were found with path cost errors, time penalty, nor true time.  Nonetheless, there were some 

trends based on visualization.  With respect to differential cost, a visualization difference was found 

within the Exploration cost function only, where participants with LOEC visualization had smaller 

differential costs than participants with both elevation contours and LOEC visualization1.  This 

means that participants with LOEC had smaller differences between minimum and first path costs, 

i.e., they were close to their optimal solution in their first try.  This implies that for the LOEC 

visualization that aggregated multiple variables, it was the most effective for the unusual (and likely, 

unintuitive as it included sun position) cost function of Exploration.  This result is an important 

finding because it provides evidence that for a multi-variable, intricate cost function, the levels of 

equal cost visualization at least helped participants start closer to the average minimum cost. 
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With respect to the amount of time spent on optimizing task, it appears that participants that had 

the LOEC visualization tended to equalize the amount of time spent on the optimizing task 

regardless of cost function, while participants that had elevations contours (either with or without 

LOEC) spent most on Time and Exploration than Distance and Metabolic.  Another visualization-

based trend was detected in the percent time spent modifying paths.  For the Time cost function, 

participants with the LOEC in their visualization spent significantly more of their time modifying 

the path than participants with just the elevation contours visualization.  These same elevation 

contours participants also increased their time spent in non-optimal satisficing for just the 

Exploration cost function.  Most importantly, these change in strategies based on visualization did 

not affect overall path planning performance as there was no main effect based on visualization. 

It could be argued that the difference in percent time spent modifying paths by participants with the 

LOEC visualization did so because the visualization is an additional, novel tool.  However, 

significant differences were only seen within the Time cost function, and not any other cost 

function.  This result is significant when considering how these very same participants performed 

for the Time cost function in the off-nominal case (discussed in the next section). 

The effect of visualization is most evident in the Pareto front analysis, where participants with small 

cost errors and short task times were evaluated.  Under the nominal case, most of the best 

performers were in the elevation contours group.  Furthermore, the participants in the Pareto front 

set with the smallest cost (though with longer times) were those that had higher percent time spent 

modifying.  This suggests that manual sensitivity analysis, and not just longer task times, is essential 

to optimizing least-costly paths.  It is important to note though that if the participant does not 

fundamentally understand how to optimize the cost function, they could spend large portions of 

time modifying paths without decreasing the path costs.  This was seen within the participants in the 

Exploration function Pareto front set.  While it was observed that most of the best performers were 

in the elevation contours group, there was no overall statistical main effect of visualization.   

 

1 This trend was not seen for Metabolic cost function. 
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In summary, most of the best performers (participants with low cost errors and total time on task) 

were in the elevation contours group.  With respect to LOEC, participants that had this visualization 

tended to spend more time modifying paths for the perceived most difficult function of Time, and 

helped participants create a first path that was close to optimal for the most complex function, 

Exploration.  Surprisingly, for the Metabolic cost function, another complex function, these trends 

were not seen.  Perhaps the simple, shortest path heuristic for Metabolic function circumvented the 

need for participants to leverage the LOEC visualization.  Nonetheless, the mentioned trends are 

indications that participants were leveraging the visualization to achieve least-costly paths, although 

exhibited in different manners for the two cost functions of Time and Exploration.  Unfortunately, 

the visualization was not powerful enough to produce significant difference in path planning 

performance across all conditions (i.e., decreased path cost errors and total time spent on task).   

6.6.2 OFF-NOMINAL SCENARIO 

Table 6.4 summarizes the major results for the dependent and independent variables within Phase 2. 

Table 6.4 Summary of  results for Phase 2 

 Independent Variable 

Dependent Variable Visualization 
(EC, LOEC, Both) 

Cost Function Scenario 

Path cost errors No main effect Time > Exploration LOEC Time nominal > off-nominal 
Exploration nominal < off-nominal 

Time penalty No main effect Time > Exploration No main effect 

Percent time 
modifying 

No main effect 

Interaction w/ visualization 
EC, Time < Exploration 

LOEC, Time > Exploration 
Both, Time ≈ Exploration 

No main effect 

True time No main effect Time > Exploration Nominal > Off-nominal 

Differential cost No main effect Time > Exploration 

Time nominal > off-nominal 
Exploration nominal ≈ off-nominal 
# of negative diff. costs nominal < 

off-nominal 
Non-optimal  
satis-ficing  

(cost surplus) 
No main effect Time > Exploration Nominal < Off-nominal 

Non-optimal  
satis-ficing  

(time surplus) 
No main effect Time < Exploration Nominal < Off-nominal 
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For the off-nominal cases, Time and Exploration cost functions were tested.  It was hypothesized 

that path planning performance would decrease within the off-nominal scenario, resulting in 

participants introducing and increasing cost errors into their path solutions.  Furthermore, since 

participants were explicitly told that they could not depend on the automation (be it the LOEC and 

the displayed path costs), some evidence of distrust would emerge in their performance, such as 

increased time on task or more time spent optimizing paths.  Based on visualization, it was 

hypothesized that participants with elevation contours would benefit from their visualization as 

opposed to those that just had the LOEC visualization.  Thus, some automation bias was expected 

for those LOEC-only participants, in that they would make worse paths since they depended on the 

erroneous visualization.   

6.6.2.1 EFFECTS OF DEGRADED AUTOMATION 

Even though participants had an idea of the proportion of the cost function errors, without the 

ability to rely on the interface to provide accurate path costs, participants had a poor sense of when 

they had reached a minimum path cost, introducing on average, an additional 5 ± 8% error in Time 

and 1.2 ± 1.6% in Exploration cost functions.  Even though these errors are relatively small, the 

errors were as high as 28% and 5% for Time and Exploration functions, respectively.  In addition, 

true times were significantly shorter in the off-nominal compared to the nominal case, which may be 

due to some learning since the off-nominal trials were the last ones completed.  There was also a 

significantly higher number of negative differential costs in the off-nominal condition, as compared 

to the nominal, meaning that participants were submitting paths that were even worse than the first 

path that was made. This is important because it indicates that there was a decrease in path planning 

performance under degraded automation conditions.  Participants did not know they had reached a 

minimum path cost, though most were trying to find it, as suggested by the lack of difference in time 

penalty (i.e., total time) between scenarios. 

Interestingly, there was no significant difference across scenarios for the percent of time spent 

modifying paths.  This seems unusual as one might have expected that the distrust in the automation 

may have led participants to increase time spent modifying, and hence, more manual sensitivity 

analysis.  However, an increase in sensitivity analysis was seen in the metric of percent time spent 

conducting non-optimal satisficing (i.e., participants attempting to find a lower solution that was 



 

 

173

never achieved).  This was an expected result because participants would distrust the automation’s 

path costs, thus, they would spend more of their time searching for a solution.  This apparent 

disagreement might be due to a shift in type of sensitivity analysis.  The most frequent method of 

conducting sensitivity analysis was modifying paths, the strategy chosen by 26 participants.  The 

other type of sensitivity analysis, creating multiple paths, was only conducted by the remaining 8 

participant.  The dependent measure of percent time spent modifying only describes the first 

strategy.   

T

Additional time on the task overall might be expected for the off-nominal condition, yet there was 

no significant time penalty differences across scenarios.  If participants were spending equal time on 

both scenarios, it could be considered that participants were not adding more effort into finding 

their path solutions or they could have learned how to optimize the paths.  However, this is a time-

pressured task, and because of it, participants may have opted not to spend more time in the 

degraded automation condition.   

6.6.2.2 COST FUNCTIONS & VISUALIZATIONS 

Between cost functions, the results were consistent with the nominal phase of the experiment.  The 

Time cost function was the most difficult function as it had significantly higher path cost errors, and 

longer time penalties and true times when compared to the Exploration cost function.  However, 

the assessment between scenarios within each cost function suggests that participants were able to 

adapt optimization strategies for Time but not the Exploration cost function. 

Under degraded automation conditions, it was expected that participants’ performance would 

deteriorate, resulting in longer task times and larger path cost errors.  In terms of performance 

across scenarios, participants did not spend more time in the off-nominal trials as compared to the 

nominal ones.  However, within the Exploration function, path cost errors increased in the off-

nominal condition regardless of visualization.  Within the Time function, participants performed 

differently within the visualization groups with regards to path cost errors.  Participants with the 

LOEC visualization decreased their Time path cost errors in the off-nominal condition, while there 

was no significant difference across scenarios for other two visualizations. 
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It was hypothesized that since LOEC participants would exhibit some automation bias (by 

depending on the erroneous, automation-generated visualization to make their least-costly paths), 

resulting in the largest path cost errors.  This was not observed as there were no visualization 

differences within the Exploration function and there was actually a decrease in path cost errors for 

the Time function. 

The improved performance (decrease in path cost errors) of only the LOEC participants within the 

off-nominal Time trial is surprising, particularly in conjunction with the opposite effect for the 

Exploration function.  A similar trend (though not significant) was observed for the participants that 

had the combination visualization (both elevation contours and LOEC).  There was no statistical 

difference in Time path cost errors across scenarios for the participants with elevation contours 

visualization.  These differences in visualization were not seen in the Exploration case, where all 

participants performed the same. 

There are a few reasons that all participants either did equally or better in the off-nominal condition 

for the Time cost function.  First, this function was conceptually easier to understand as it depended 

on only two variables (one of them being slope) and hence, adaptation was possible.  There might 

have been a learning effect also.  Noteworthy are the post-questionnaire comments of the LOEC 

participants who mentioned leveraging the path elevation profiles1 during the off-nominal trials.  On 

the other hand, the participants with the elevation contours mostly used their visualization only.  It 

may be that the more detailed information of the path elevation profile was a more useful aid for 

determining changes in path slope.   

Another reason for the improved Time off-nominal performance of just the LOEC participants may 

be the effect of manual sensitivity analysis in the nominal phase of the experiment.  These same 

participants had spent significantly more of their time modifying the Time paths, which may have 

led to some learning and fundamental understanding of how to optimize this cost function.  

Unfortunately, the participants with both LOEC and elevation contours visualizations did not 

significantly reduce their path cost errors for the Time off-nominal trial (though there was a 

 

1 See bottom of Figure 6.1.  
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decreasing trend).  This may have occurred because participants within this visualization group had 

different strategies that either favored LOEC or elevation contours, as evidenced by the lack of 

participant preference for one visualization and post-questionnaires comments.  By introducing two 

simultaneous visualizations in one group, the number of strategies was increased, making it difficult 

to compare effective strategies between the visualizations.   

Finally, the Pareto front assessment revealed that the best off-nominal performers did not 

exclusively belong to the elevation contours group, but more of them were in the LOEC 

visualization group.  This is counter-intuitive if it is assumed that participants solely depended on the 

visualizations to make their least-costly paths.  It could be argued though that performance under 

degraded automation conditions depended on the amount of manual sensitivity analysis (amount of 

time spent modifying path) in the nominal condition, allowing participants to fundamentally 

understand the cost functions better.  There was some evidence that LOEC participants did conduct 

more path modifications, which in turn would have assisted these participants in the off-nominal 

trials.      

6.7 CONCLUSIONS FOR EXPERIMENT 2 

In this experiment, four cost functions, three visualizations, and two scenarios types were examined 

for their effect on human-led path optimization.  The cost functions tested were Distance, Time, 

Metabolic, and Exploration; each function depended on the previous, growing in number of 

variables and difficulty.  The visualizations included elevation contours, levels of equal cost (LOEC), 

and a combination of both LOEC and elevation contour lines.  Participants were tested in both 

nominal and degraded automation conditions. 

Performance as defined by errors and time spent on task were driven by the cost function, though 

not necessarily the number of variables manipulated.  The most complex cost function (the 

Exploration cost function which had the highest number of variables) was not completely 

understood by the participants.  In this case, the levels of equal cost visualization helped participants 

initially make paths that were close to their optimal.  Participants without the LOEC visualization 

did not know how to fundamentally optimize complex cost functions, like Metabolic and 

Exploration, and hence, implemented a “shortest path” heuristics. 
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On the other hand, the Time cost function was the most difficult cost function for participants to 

optimize even though it was relatively simple, depending on only two variables, Distance and slope.  

The results indicate that if a cost function is very sensitive to small changes in variables, like the 

Time function in this experiment, users could have difficulty in optimizing paths.  These types of 

functions should be labeled as “overly-sensitive” cost functions in order to differentiate them from 

truly complex cost functions, Exploration.  While Time was an “overly-sensitive” cost function, it is 

conceptually easier to comprehend than the Exploration function.  Thus, under degraded 

automation conditions, participants were able to adequately adapt path planning strategies for the 

Time but not the Exploration cost function. 

If considering the two main measures of performance in this experiment, path cost errors and time 

on task, the best performers under the nominal conditions were mostly in the elevations contours 

group.  However, in the off-nominal cases, the LOEC participants emerge as being these better 

performers.  The reasons behind this may be that while visualization did not have a main effect on 

performance, it did influence the choice of optimizing strategies.  Participants with the additional 

LOEC visualization tended to spend more time modifying the Time function (as compared to users 

that just had elevation contours) which assisted them during degraded automation conditions.  The 

levels of equal cost visualization, which aggregates all variables into one cost map, helped reduce the 

complex problem, in terms of providing an efficient optimizing strategy and promoted sensitivity 

analysis for difficult problems.   

In terms of sensitivity analysis, participants could be categorized into two types: manual and “whole-

path” sensitivity analysis.  Manual sensitivity analysis, i.e., spending time modifying path solutions, 

was preferred by about three-fourths of the participants.  Even though there was no difference in 

performance between these two strategies, there was a trend within the set of best performers which 

seemed to indicate that an increase in manual sensitivity analysis resulted in lower path cost errors. 

In conclusion, for the task of path optimization, humans perform best when they leverage sensitivity 

analysis.  While manual sensitivity analysis takes more time, it allows users to fundamentally 

understand how a path is optimized.  As the presence of the LOEC visualization promoted 

sensitivity analysis, this visualization is a desirable attribute in decision support aids during the 

optimization of paths, particularly those that depend on “overly-sensitive” cost functions. 
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7 META-ANALYSIS, RECOMMENDATIONS 

AND CONTRIBUTIONS 

7.1 LEVERAGING HUMAN-COMPUTER COLLABORATION 

The research aims of this research were to investigate how to best leverage human-computer 

collaboration for the task of path planning and re-planning.  This was accomplished by 

experimentally testing a prototype path planner with different degrees of automated data integration 

across varying task complexities.  In all the experiments, there was a “what if” tool, which was 

allowed participants to always have the ability to manually change the paths.  In the first experiment, 

automatic path generation and visualizations were assessed for their effect on human path planning 

performance.  The three visualizations tested were 1) elevation contours, 2) levels of equal cost 

(LOEC) visualization, and 2) a combination of both.  The LOEC visualization was an aggregate cost 

map.  The task complexity was increased through the number of manipulated variables within the 

path cost function.  In the second experiment, only one automation architecture was examined 

(manual path planning).  This allowed for a better assessment of the role of sensitivity analysis for 

the task of path planning.  Task complexity was further increased by introducing a degraded 

automation condition as well as more intricate cost functions.  This scenario not only made the task 

more difficult, but also mimics a condition where human path planners must adapt to an underlying 

incorrect model or a limited resolution map.  Based on the results of these experiments (described in 

Chapter 5 and 6), the following about leveraging human-computer collaboration is concluded. 

In the first experiment, passive (or manual) and active levels of automation were compared across 

three different visualizations.  In terms of human-computer collaboration, automated path segment 

generation (active automation) was helpful in decreasing the amount of time spent on the path 

planning task by 33% on average and virtually eliminated path cost errors.  Unfortunately, when 

participants used the active automation, they chose not to utilize the manual sensitivity analysis 
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(“what if”) tool even though they had done so when manually creating paths (passive automation).  

This higher automation level and the lack of manual sensitivity analysis resulted in automation bias, 

and the penalty was decreased situation awareness, meaning participants were less aware of the 

elements and integration of these than when path planning with passive automation.  Thus, while 

automated path generation was beneficial in reducing errors and time, it was detrimental with 

regards to situation awareness.  In terms of visualization, there was no main effect present in this 

experiment, thus, situation awareness was not directly affected by the type of visualization.  In high 

risk domains, human operator will have to react to unexpected circumstances and hence, must 

depend on their situation awareness.  Thus, an acceptable trade-off between errors and situation 

awareness will have decided upon for any decision support system.  Without the proper situation 

awareness, the chances of reacting appropriately in an emergency decrease due to limited 

knowledge-based reasoning capabilities. 

In the second experiment only one automation architecture, passive automation, was tested which 

allowed different benefits of the visualizations to emerge.  While there was no main effect due to 

visualization, the best performers, i.e., those that had low path cost errors and shorter task times, 

were typically found in the elevation contours visualization group.  This was found only the case for 

the nominal cases, where participants could depend on the automation.  Under degraded automation 

conditions, the participants with the LOEC visualization were more prominently represented in the 

set of best performers.   

The LOEC visualization was also helpful for the most complex cost function, Exploration.  

Participants were able to leverage the LOEC visualization in order to initially create the Exploration 

least-costly path.  When comparing the first and last paths costs (differential cost) for the nominal 

Exploration trial, participants with the LOEC were closer to an optimal solution on the first 

attempt.  This would not be important if LOEC participants performed poorly, but there was no 

significant difference across visualizations.  Therefore, while the Exploration function was a 

complex function, the LOEC visualization managed narrow down the problem space for 

participants. 

In terms of sensitivity analysis, two types of strategies emerged among both experiments: manual 

and “whole-path” sensitivity analysis.  In passive automation, both types of sensitivity analysis were 
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observed among the participants, where 25% of the participants (in both experiments) used a 

“whole-path” sensitivity analysis strategy.  During active automation (which was only present in the 

first experiment), most participants used a “whole-path” sensitivity analysis only.  Thus, for this first 

experiment, three-fourths of participants switched from manual sensitivity analysis in passive 

automation to “whole-path” in the active automation.  This switch was also accompanied by a 

decrease in situation awareness, implying that manual sensitivity analysis strategy is important for 

development of situation awareness. 

It is important to address the difference between “whole-path” sensitivity analysis that occurred 

within active as opposed to passive automation.  In active automation, whole paths were created 

after one waypoint was defined by the participant.  In passive automation, whole paths were created 

after the participant defined all the waypoints.  In essence, the type of sensitivity analysis was the 

same, however, in the passive, the user took a more important role in generating the path.  Since 

situation awareness decreased for the active automation, the implication is that whole-path 

sensitivity analysis, where the human operator is more involved in the generation of path solutions, 

is more beneficial, or desirable, than one where the automation defines most of the path. 

Within both experiments, there was no statistical difference between the sensitivity analysis types 

with respect to path cost errors.  However, within the second experiment, there are some trends that 

seem to imply that there are benefits to conducting manual sensitivity analysis.  Thus, it is 

hypothesized that human operators that conduct manual sensitivity analysis during path 

optimization are better able to adapt their optimization strategy to accommodate degraded 

automation condition.  This was most prominent within the LOEC participants1.  These participants 

tended to spend large portions of optimizing time conducting manual sensitivity analysis (i.e., larger 

percent time spent modifying) under nominal conditions.  In conjunction, they performed better in 

the off-nominal conditions when compared to other participants.  Specifically, LOEC participants 

decreased the path cost errors in the Time off-nominal path while the others showed no significant 

improvement.  Additionally, LOEC participants were more present among the best performers in 

 

1 LOEC participants in the second experiment, as degraded automation conditions were only tested 
in this experiment. 
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the off-nominal trials.  These results also imply that the presentation of the LOEC visualization 

promotes manual sensitivity analysis. 

The question then becomes “Are there benefits directly related to the type of sensitivity analysis 

strategy?”  To address this question, path planning performance between participants with different 

sensitivity analysis strategies were compared.  Of the two main performance metrics (path cost 

errors and task times), cost error was selected as the appropriate evaluation metric because task time 

could bias the comparison since conducting path modifications is a more time-consuming strategy 

than creating new paths.  In both experiments, there was no statistical difference with respect to 

path cost errors between the participants that chose manual waypoint as opposed to whole-path 

sensitivity analysis.  However, in the Pareto front analysis for the second experiment (which included 

participants with both types of sensitivity analysis strategies), there was an apparent trade-off 

between path error and time.  In general, an increase in task time led to a decrease in path cost 

errors, which was accompanied by an increase in percent time spent modifying path, as exemplified 

by the Pareto front participants for the nominal Time cost function (see section 6.5.1 and Figure 

6.35). 

This trend of improved path costs with an increase in path modifications prompted a meta-analysis 

that included participants in both experiments for all cost functions1.  Within each cost function, 

participants were given a performance score based on the path cost errors (1 through 3, representing 

best, average, and worst performance) and ranked by the percent amount of time spent modifying 

paths (see Appendix C for details).  Since it was already shown that no difference in path cost errors 

could be detected between sensitivity analysis types2, the meta-analysis focused on only the 

participants that conducted manual sensitivity analysis.  There was a significant moderate to low 

correlation between the performance score and amount of path modifications across both 

experiments (Spearman’s rho = -0.19, p = 0.008).  These results imply that more path modifications 

 

1 Only for the passive automation condition from first experiment as only this automation 
architecture was tested in the second experiment. 
2 Additionally, there was no significant correlation between performance score and type of sensitivity 
analysis. 
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result in lower path cost errors.  Thus, while conducting “whole-path” sensitivity analysis did not 

result in higher path cost errors when compared to manual sensitivity analysis, there was an 

increasing benefit to conducting more path modifications.  The limitation to this benefit is the 

additional time it requires to conduct manual sensitivity analysis.  Under time pressure, “whole-path” 

sensitivity analysis participants on average spent 1.4 minutes optimizing, while the other strategy 

took about twice as long.  

While manual sensitivity analysis helped participants reduce path cost errors, the fact remains there 

were some cost functions that participants were poor at optimizing, namely the Time cost function 

and the Sun Score function.  While it may be hypothesized that large Sun Score errors were due to 

participants not understanding how to optimize this function, the same can not assumed for the 

Time cost function.  The Time cost function was highly sensitive to small path modifications.  In 

other words, path changes resulted in large cost differences.  To a certain extent, this was also 

observed for the Sun Score.  Future investigation may want to consider how to further leverage 

active automation for “overly-sensitive” cost functions, such as developing a hybrid automated path 

generation where users defined many waypoints but the automation calculates the least costly path 

segments between these human-designated waypoints1.    

In summary, the key to a successful path planning and re-planning decision support system is to 

appropriately balance human and computer role allocation, such that humans conduct enough 

sensitivity analysis to maintain situation awareness.  Manual sensitivity analysis is a time-consuming 

task, which might be appropriate during planning, but this strategy will have to be limited under re-

planning time pressures.  Based on this thesis research, knowledge-based reasoning is supported by 

manual sensitivity analysis, which was lacking when path were automatically generated for users.  

While leveraging automatic path generation results in better path performance (i.e., lower cost errors 

and shorter task times), the dependence on this aid leads to automation bias and decreased situation 

awareness.  The missing components at the higher level of automation were time spent on the task 

and manual sensitivity analysis of the paths.  Therefore, human operators should use aids that 

promote sensitivity analysis during the planning phase in order to best understand the relationship 

 

1 Currently, in the passive automation, the path segments between waypoints is a straight line. 
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between variables and path cost.  Then, when confronted with the time pressured task of re-

planning, he/she may leverage the knowledge gained from having already conducted the sensitivity 

analysis.  

With respect to visualizations, the elevation contours representation promoted low cost paths with 

short task time when human operators could depend on the automation.  However, the levels of 

equal cost (LOEC) visualization, which aggregated total path costs, helped participants initially 

create least-costly paths for the most complex cost function.  Furthermore, LOEC visualizations 

appear to promote manual sensitivity analysis in the nominal case, which in turn was beneficial in 

the degraded automation condition, where low path errors and time was observed for participants 

with this visualization.  Finally, two types of sensitivity analysis strategies were observed, one that 

leveraged the available “what if” tools for waypoint modification and the other that created whole 

paths.  While there was no difference in performance across the strategies (i.e., both sensitivity 

analysis strategies were equally effective), the increased use of the manual waypoint sensitivity 

analysis (i.e., path modifications) led to decreased path cost errors.  

7.2 DESIGN RECOMMENDATIONS 

7.2.1 PATH PLANNING AND RE-PLANNING DECISION SUPPORT AIDS 

Based on the work domain analysis and the analysis of the experiments conducted, the following 

design recommendations for decision support aids that support both planning and re-planning of 

paths are suggested.  These recommendations are generalized beyond space application (i.e., real-

time aids for human planetary exploration), and can be applied to any complex decision support 

systems that assists operators in the tasks of path planning and re-planning within other domains, 

such as UAV operations, search and rescue robots, and ground soldiers.  The recommendations 

specific to planetary EVA are discussed in a subsequent section. 

The results of the experiments conducted in this thesis indicate a positive relationship between 

manual sensitivity analysis with both situation awareness and performance under degraded 

automation conditions.  Thus, the first design recommendation is: 
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•  Provide “what if” tools for path planning and re-planning in order to encourage 

sensitivity analysis.  A “what if” tool was essential for manual sensitivity analysis and thus, 

such a tool within an automated aid will help operators find alternative routes and plans 

when faced with re-planning.  Sensitivity analysis, for both planning and re-planning, should 

be encouraged as it was shown to possibly lead to lower path costs.  In the PATH test bed, 

the basic “what if” tool included moving, adding, and deleting of waypoints, and path cost 

changes were only visible once a modification was executed.  Further manual sensitivity 

analysis tools may be beneficial (see also 7.3).   

With respect to visualization, there was no main effect due to this test condition.  However, there 

are visualization recommendations based on the observed trends for the experiments conducted: 

• Make aggregate cost information available to human operator through direct 

perception visualizations.  With the levels of equal cost visualization (LOEC), human 

operators are leveraging direct perception, which “pushes” a complex problem solving task 

to a lower level of cognitive control.  The LOEC visualization, which aggregates multivariate 

data, was particularly useful for complex cost functions and helped to visualize high cost 

areas.  Hence, the path planner may want to take advantage of this visualization under time 

pressure to create new paths.  Additionally, LOEC users tended to conduct more sensitivity 

analysis.  Thus, if providing an aid like the LOEC visualization during pre-planning and 

training, the human operator will likely develop more accurate mental models of how the 

cost functions interact with important variables (for instance, terrain characteristics for the 

planetary EVA application), allowing for better adaptation to imperfect automation.          

• Make raw (or basic) information available to the human operator.  When the decision 

support aid’s automation models are incomplete (e.g., low map fidelity), the operator needs 

to have access to the most basic of data (which is domain specific) to adapt their new paths 

and accommodate for discrepancies.  In this thesis investigation, the raw data was terrain 

models, and best performance under nominal conditions were observed with this basic 

information visualization (elevation contours).  Providing access and the choice to both basic 
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and aggregate information is important to support both nominal and off-nominal path 

planning conditions, however, overlaying them was not beneficial. 

The work domain analysis (WDA) conducted for this research examined planetary EVAs.  However, 

there are some broader implications for this analysis as it was one that included and assessed why 

and how paths were re-planned.  Hence, the WDA, in conjunction with the results of the 

experiment, suggest the following design recommendations:  

• A human operator should be involved in both the path planning and execution 

phases of the path.  In order for re-planning to be effective, the human operator should be 

knowledgeable about how the path was planned.  He/she will then be familiar with the cost 

functions and reasoning behind the path selection.  This may be accomplished in the 

planning phase, where operators may leisurely conduct an extensive manual sensitivity 

analysis of path solutions.  If the human agent has a more complete understanding of the 

plan, upon path execution (e.g., actually traversing or operating some robotic agent along 

that path), he/she will be more aware of deviations from the plan.  Furthermore, 

understanding how deviations occurred, e.g., identifying erroneous cost functions, is 

essential for re-planning new path solutions.  

• The path planning aid should be flexible.  Though not directly tested in the PATH 

experiments, the work domain analysis indicated that re-planning revolves around assessing 

the different options available.  This can only be accomplished by providing a flexible aid for 

path planners.  In general, this corresponds to providing the human operator the ability to 

add new or remove constraints (e.g., physical terrain obstacles) and modify cost function 

models.  Specifically for the domain of planetary exploration, other automated function 

include changing the cost function models based on type of transportation modality (e.g., 

walking vs. driving) and reprioritization of sites or waypoints along the path.   

The above design recommendations can be applied to a variety of domains that require human 

operators to path plan and re-plan, including transportation domains.  In these circumstances, the 

domain is complex, requiring the operator to manipulate multiple variables, sometimes having to re-

plan under time pressure.  Therefore, the same lessons learned from this investigation (e.g., the 
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importance of sensitivity analysis, the use of display visualizations, and the need for flexibility of 

automated aid) may help operators in their routing tasks and in dealing with unexpected future 

events or imperfect automation.   

In terms of the most common, commercial path planning aids, such as automobile GPS and on-line 

path planners, these recommendations are still relevant but should be interpreted more broadly.  

Most on-line path planners find shortest or fastest routes between two locations, and provide users 

some ability to constrain paths, like avoiding tolls or highways.  The more sophisticated planners 

allow users to organize trips with multiple intermediate waypoints, while the planner automatically 

finds routes in between.  Automobile planners (and up-and-coming mobile GPS systems) have 

become highly automatic, planning routes and directing drivers to their destination.  Like on-line 

planners, paths are optimized based on time or distance.  Real-time updates allow car navigation 

systems to revise paths, avoiding traffic and leading users to the cheapest gas station or the closest 

rest stop.  Additionally, theses systems can find alternative paths and re-route drivers if they deviate 

from path (or can be triggered by user).   

Unfortunately, neither of these planners, on-line or automobile, permit users to modify the actual 

path itself (i.e., adjust multiple paths segments).  In addition, if automobile planners follow the on-

line trend, they will start multi-waypoint path planning, and hence, increase the amount of user 

interactivity.  Both of these system could introduce improvements at the planning phase, particularly 

giving users the ability to modify paths.  Integrated “what if” tools (similar to those developed for 

PATH) would help users create paths that suit their preferences and assess the cost (in terms of 

distance and time) of their modifications.  Furthermore, visualizations (analogous to LOEC) could 

assist users in the path planning phase by highlighting areas which users prefer, like scenic areas, or 

want to avoid, like construction zones.  During the planning phase, users may become familiar with 

the pros and cons of particular routes, saving some and selecting one.  If re-planning is required, the 

user could revert to one of the previously created paths that better suits his/her needs.  Thus, while 

the set of design recommendations apply more directly to complex, time-pressured domains, beyond 

planetary EVAs, they can be considered in a broader context and lessons learned are relevant to 

automated planners used daily.          



 

 

186

7.2.2 FUTURE REAL-TIME PLANETARY DECISION SUPPORT AIDS 

The investigation of this thesis focused on understanding how human-automation collaboration can 

be leveraged for the geospatial problem solving task of path planning.  Such an automated path 

planner would only be part of a larger, more sophisticated computer tool for future astronauts 

exploring the Moon or Mars.  In addition to the already discussed design recommendations, the 

following requirements are proposed specifically for real-time planetary decision support aids. 

• Functional requirements:  

o The real-time decision support aid should assist astronauts or mission controllers in 

determining if re-planning is needed.  Thus, the aid must present to the human 

operator actual and expected path costs along the traversal.   

o Real-time tracking of the position of the astronaut and other costs, such as energy 

consumed, is required.  Position (and potentially orientation) tracking should be 

overlaid with the planned path, though this depends on the navigation system in 

place on the planetary surface.   

o Automatic assessment of variables that are responsible for deviations from planned 

path.  For instance, if the source of errors is terrain-specific, path costs deviations 

can be correlated to terrain characteristics in order to determine the true relationship 

between cost and terrain (i.e., correct cost model). 

• Information requirements:  

o A complete real-time decision support aid should have access to all the inputs and 

constraints listed in the Planetary EVA Framework (Chapter 3).  These inputs and 

constraints do not need to be presented to the astronaut or mission controller at all 

times.  However, human operators must have access to this information if it is 

required for path re-planning.   



o The decision support aid should have a terrain map (both an aerial map and a digital 

elevation model, i.e., elevation information) with an overlay of the planned EVA.   

o The pertinent associated path costs must be included with the path itself.  The costs 

(already identified in the Chapter 3) include for instance, energy consumed.  The 

EVA schedule is also an essential to display alongside the path. 

o Path re-planning is likely to be triggered by incomplete cost function models or poor 

map resolution.  Providing the astronaut with a sense of the level of uncertainty 

would be beneficial (e.g., map resolution or confidence intervals of path costs).     

7.2.2.1 HARDWARE IMPLICATIONS 

The information needed for path planning and re-planning can be displayed on any type of 

computer screen.  There are several options that have been previously suggested for use by 

astronauts during EVAs: heads-up display (HUD), a spacesuit-imbedded screen, or a separate 

computer display (Figure 7.1).  HUDs and wearable computers are feasible but may interfere with 

the astronaut’s field of view (already encumbered with wearing a helmet).  Hence, a screen imbedded 

or attached to the spacesuit arm or a small, portable computer is another option.   

      

Figure 7.1 Future NASA concepts of  information systems. From left to right: heads-up 
displays (image s99_04197), spacesuit imbedded screen (image jsc2004e18850), separate 

computer screen (image jsc2004e18859). 
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Above all, astronauts (or mission controllers) must be able to interact with the map and re-planning 

aid, and be able to conduct a sensitivity analysis on planned paths in order to decrease path costs 

and maintain situation awareness, critical for knowledge-based reasoning. However, these 

requirements have associated hardware implications with respect to input devices.  High levels of 

human-computer interaction for re-planning make buttons and voice commands inadequate as they 

are poor methods for communicating geospatial information.  Thus, the physical implementation of 

re-planning decision support aids requires input devices akin to a computer mouse (i.e., pointing, 

clicking, and dragging on a screen).  Unfortunately, current pressurized spacesuit technology limits 

hand dexterity, which restricts the use of the traditional computer mouse.  If the decision aid were 

on a portable computer, a track ball could be used for pointing and dragging (with the addition of a 

button used with the other hand).  If an imbedded screen were to be implemented (such as in Figure 

7.1), a trackball is unlikely to be used.  Alternatively, it could be feasible to integrate a stylus-type 

device on to the tip of a gloved finger to point and drag on the touch screen; a button could be 

incorporated on the other hand or finger.  This would also promote direct manipulation of 

information on a screen, be it on a portable computer or on the spacesuit arm.   

7.3 POSSIBLE  FUTURE RESEARCH 

The following is a list of potential improvements for PATH and possible new research directions 

based on the experimental results of this thesis. 

• PATH improvements:  PATH was purposefully designed to be a relatively simple path 

planner (in order to conduct controlled experimentation).  The improvements mentioned 

below are based on observation and include the comments from participants. 

o Normalize path costs relative to one path.  This would help users compare costs 

between paths more easily and consequently, the bar cost graph would depict the 

path cost differences.  Potentially, this may increase the user’s ability to differentiate 

between small path cost differences. 
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o Provide to the user a sense of how much each variables or cost functions is 

contributing to the overall path cost.  This can be accomplished simply through a pie 

chart or stacked bar graph which reflected the percent each variable contributes. 

o Provide larger map and/or zooming capability for the map.  This improvement may 

affect the total task time (as it is an additional functionality that users may abuse) 

while not affecting path cost errors, yet it may provide the user the ability to make 

smaller resolution changes.  Similarly, path cost and elevation profiles may be 

enlarged. 

o Prevent or assist users from making paths that cross obstacles.  Participants were not 

permitted to make paths that included an obstacle, and thus were required to restart 

the paths if they mistakenly intersected one.  The planner could automatically fix the 

user’s path and avoid obstacles. 

o Provide additional “what if” tools.  Other aids that may assist in sensitivity 

analysis are: 1) an “undo” modification button, which would allow users to return to 

previous path, 2) a “copy” path button, 3) a “save” path button and 4) a log and 

upload capability of saved paths with corresponding costs.  These improvements are 

relatively simple compared to the often requested functionality of real-time updating 

of path cost changes while simultaneously modifying path.  This dynamic version of 

path modifications could potentially facilitate manual sensitivity analysis.  

• LOEC improvements and research opportunities: 

o Change color gradient used for LOEC visualization.  The yellow-purple color 

combination was selected in PATH’s design because it did not overlap with the path 

colors while still providing the range of colors for the user to differentiate between.  

The color differences can be made more apparent to the user by implementing a 

non-linear color gradient (currently, it is linear).  This would have the effect of 

making relatively high cost areas more purple.  If the path color constraint is 

removed, there are other methods of improving the color differences, such as 
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choosing more colors (for instance, a rainbow set) and providing the user with a 

dynamic slider (i.e., making the user select the set of colors he/she was to visualize).  

These changes would need to be tested against the present LOEC visualization in 

order to determine if these improve upon the current design. 

o Make LOEC visualization a dynamic aid.  Currently, the LOEC visualization is static 

as there is only one goal.  However, a dynamic version of the LOEC visualization 

may be implemented.  One way to do this is by permitting the user to drag the goal 

location on the map while the automation calculates and presents the new LOEC 

(for the new goal), giving the user the ability to assess relative costs between 

intermediate waypoints and allow him/her to observe how the LOEC visualization 

changes as it is moved around the map.  This would be particularly useful if users 

were tasked to create paths that traverse many critical way-areas.  The second way to 

implement a dynamic LOEC visualization is by giving the user the ability to change 

the cost function (variables or relationships) and observe how the visualization itself 

changes based on the cost function modifications.  Additionally, by making LOEC a 

dynamic visualization, it could be considered a type of sensitivity analysis aid.  Such 

an improvement on the LOEC visualization would be computationally expensive, 

and thus some preliminary studies should assess both the potential advantages over a 

static LOEC, implications of modifying cost functions models on overall path 

planning performance, and the ease of use of such an aid. 

• Trade-off between active automation and situation awareness:  This thesis investigated 

one implementation of active automation, where the user selected only one waypoint 

between a given start & goal and the automation plotted the least costly, in-between path 

segments.  Other active automation implementations (more appropriately named hybrid 

automation) could require users to select multiple waypoints whereas the automation fills the 

least costly path segments between these.  This would increase the amount of the path that is 

user defined.  Future research may examine if this method of leveraging automation 

encourages users to conduct more manual sensitivity analysis and to maintain situation 

awareness while keeping path cost errors small and short task times.    
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• Utilizing PATH as a strategic planner:  Presently, PATH is designed as a tactical planner, 

meaning it is to be used for planning paths based on current, pre-determined conditions 

(e.g., start, goal, and sun position).  A strategic planner would imply that these conditions 

could be set and changed to reflect future scenarios.  A potential new research direction with 

PATH could be to assess the effectiveness of PATH as a strategic planner, the required 

“what if” tools to facilitate this type of planning, and to further understand the operator’s 

capability to conduct these types of searches. 

• Modify PATH for real-time path re-planning:  Even though PATH is a planning aid, it 

can be modified to conduct real-time path re-planning.  This could be accomplished by 

simulating events that require the user’s to re-plan.  Furthermore, PATH could be adapted 

for Earth conditions (e.g., local terrain map) and used in real-time to re-plan traverses.  

7.4 CONTRIBUTIONS 

The aim of this research was to enable knowledge-based reasoning for geo-spatial path planning 

problem through both visualization and human-automation interaction.  In order to explore this 

problem, different human-automation role allocations were examined and tested in order to 

understand how humans conduct complex optimizations under different automated assistance levels 

in a geospatial task.  As a result, this thesis begins to fill in a critical interdisciplinary research gap 

between human interaction and artificial intelligence by examining how automation impacts path 

planning performance.  While focused on human planetary exploration, in part due to the recent 

national attention on space exploration and humans returning to the Moon, the acquired knowledge 

for human interaction with automation planners applies to a many other domains such as air traffic 

control, robotic exploration, and rescue on, above, and below the Earth.  Furthermore, the results of 

this thesis could be of particular interest to industry as automated planners are being integrated in a 

myriad of commercially-available technologies. 

This thesis has provided the following contributions: 

• A framework for human-robotic planetary EVA planning, including key input variables, 

constraints, and outputs in the form of information requirements (Chapter 3).  This 
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framework is broad enough that it can be adapted to other human-robotic planning 

domains. 

• A prototype path planner based on lunar terrain models and planetary cost functions 

(Chapter 4).  While this planner does not incorporate all the Planetary EVA Framework 

elements, it focuses on fundamental pieces, the planned path, different visualizations, and 

increasingly complex cost functions.  Thus, it can be the basis of a more complete, future 

planner. 

• Quantification of path planning performance across different decision support 

visualizations, cost function complexity, automated path generation, and degraded 

automation condition (Chapters 5 and 6).  It is concluded that sensitivity analysis is key to 

maintaining situation awareness and improving path planning performance, though the 

benefits are limited to the amount of time available to conduct path modifications.  The 

levels of equal cost visualization did not have a direct effect on performance, but it may 

encourage sensitivity analysis, which was necessary for adequate performance for users under 

the degraded automation condition. 

• Identification of cognitive strategies people use when interacting with automated path 

planners, which has not been addressed in previous research. 

• Design recommendations for future real-time decisions support aids for planetary EVAs, 

including information, functional, and hardware implications. 

Planetary exploration is a reality with rovers on Mars.  These robotic agents are the eyes and legs of 

the scientists on Earth.  If we are to send humans back to the Moon in just over a decade, and move 

on to Mars from there, we need to focus attention towards the technologies supporting people on 

other planetary surfaces as these technologies maintain humans’ safety in these extreme 

environments.  Human-system integration is the key to the success of any mission that includes both 

humans and robotic agents, and this research concentrated on developing robust decision support 

systems for EVAs to ensure safe and productive missions. 
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APPENDIX A: SUPPLEMENTARY INFORMATION 
FOR EXPERIMENT 1 

PILOT EXPERIMENT IMPLICATIONS 

Before the first experiment was undertaken, a pilot experiment was conducted.  The pilot revealed 
several issues in the experimental methods that were subsequently addressed. Participants were 
divided into one of three groups: 1) manual path planning with an elevation contours map, 2) 
manual path planning with the option of using the levels of equal cost (LOEC) visualization and 
elevation contours maps, and 3) automatic path planner with elevation contours map (highest level 
of automation).  Since participants in the second group were allowed to change the map 
visualization they were provided, they were able to opt-out from using the LOEC visualization.  
This problem was fixed by eliminating the option to choose map visualizations.   

Additionally, participants in the third group only had to request the automatic path planner for the 
least-costly path, resulting in experimental bias; the path planning task was too easy for these 
participants.  This problem was fixed in the first experiment by changing how the automatic path 
planner functioned.  Instead of providing a least-costly path from the given start and goal locations, 
the user determines an intermediate waypoint and the automatic planner only finds least-costly paths 
from the start to the intermediate waypoint and from there, to the goal.  The user’s waypoint is 
constrained to be within a given critical way-area.  The critical way-areas were designed to always 
include the least-costly path from the given start and goal locations. 

An analysis of cost function presentation order (i.e., which cost function was seen first) revealed a 
learning effect, and that counterbalancing did not work as expected.  The effect detected was that 
participants who did the hard and then easy cost functions performed better than the participants 
who did the easy and then hard cost functions.  Thus, in order to equalize the learning effect, only 
one order is implemented.  Finally, the selected trials varied in difficulty, which prevented accurate 
performance comparisons.  More emphasis was thus placed on selecting trials to ensure equal 
difficulty across conditions. 

 

PRE-QUESTIONNAIRE 

A brief pre-questionnaire was given to the participants before they started the experiment.  The 
information gathered was used to balance the visualization groups and to test (and control) for 
participant experience which may have affected path planning performance. 



 

Subject number: ________     Group number:________   

Age: ________  Gender: male/female  Color blindness: yes/no  

Occupation: graduate student/undergraduate/staff/faculty/unaffiliated  

Major: ________ 

How often do you play video games?    

Never/Less than 1 hour per week/Between 1 and 4 hours per week/ 
Between 1 and 2 hours per day/More than 2 hours per day. 

Please mark the skills you feel proficient in:  

Orienting a map/Triangulating position/Estimating distance on map/ 
Interpreting topological map/Off-trial hiking. 

 

 

VISUALIZATION DESCRIPTION 

Each subject was given the description of the visualization he/she would be using during the 
experiment.  Subjects read only the descriptions (shown below) for their own particular 
visualization, and no further instructions were provided. 

Description given to subjects for the elevation contours visualization: 
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Description given to subjects for the levels of equal cost (LOEC) visualization: 

 

 

Description given to subjects for the LOEC and elevation contours visualization: 

 

 

SITUATION AWARENESS QUESTIONS 

The situation awareness (SA) questions were designed to address SA levels 1 and 2.  SA level 1 
focuses on the perception of elements, while level 2 is about the integration and comprehension of 
these elements.  Therefore, the SA questions (asked after each trial) specifically test participants on 
their perception of elements about the previously tested trial, such as sun position or obstacles that 
had to be avoided, and their integration and comprehension about how these elements affect path 
costs.  The SA questions are shown below as presented to the participants, and include the 
corresponding SA level the question targets.   
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Practice Question (SA level 1) 

 

Trial 1: Question 1 (SA level 1) & Question 2 (SA level 2) 

  

Trial 2: Question 1 (SA level 1) & Question 2 (SA level 2) 
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Trial 3: Question 1 (SA level 1) & Question 2 (SA level 2) 

  

Trial 4: Question 1 (SA level 1) & Question 2 (SA level 2) 
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APPENDIX B: SUPPLEMENTARY INFORMATION 
FOR EXPERIMENT 2 

VISUALIZATION DESCRIPTION 

Similar to the first experiment, each subject was given the description of the visualization he/she 
would be using during the experiment.  Subjects read only the descriptions (shown below) for their 
own particular visualization, and no further instructions were provided.  These descriptions are more 
detailed than those in the first experiment because participants had commented (during the de-brief) 
that they would have preferred more explanation about the visualization (particularly those 
participants with the levels of equal cost visualization). 

 

Description given to subjects for elevation contours visualization: 
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Description given to subjects for the levels of equal cost (LOEC) visualization: 
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Description given to subjects for LOEC and elevation contours visualization: 
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ASSESSMENT OF COVARIATES 

Before the experiment was conducted, each participant completed a map planning test (with 
corresponding score) and self-rated experience with hiking and map-use.  These two metrics were 
correlated to the two main dependent measures, path cost errors and time penalty, in order to 
determine if they were significant covariates. 

Map planning test scores were tested for correlation to path cost error and time penalty for each of 
the 6 tested conditions (4 nominal, 2 off-nominal trials). There were no significant correlations 
between scores and path cost errors, or with time penalties.  Even though visualization groups were 
not balanced for map score, there was no significant difference between the groups with respect to 
scores (Kruskal-Wallis test, χ2(2, N = 34) = 0.42, p = 0.81).  Thus, scores were not used as a 
covariate in the analysis.  

Spearman’s rho correlation results between map planning test scores and path cost error 

Nominal Scenarios Off-nominal Scenario 
Map planning test score Distance Time Metabolic Exploration Time Exploration

Correlation coefficient 0.11 -0.14 0.15 -0.01 0.04 0.06 
p-value (2-tailed) 0.54 0.43 0.40 0.96 0.81 0.73 

 
 

Spearman’s rho correlation results between map planning test scores and time penalty 

Nominal Scenarios Off-nominal Scenario 
Map planning test score Distance Time Metabolic Exploration Time Exploration

Correlation coefficient -0.15 -0.03 -0.16 -0.18 -0.10 -0.20 
p-value (2-tailed) 0.40 0.87 0.36 0.31 0.57 0.27 

The original map & hiking experience 5-point scale permitted participants to self-rate how much 
familiarity they had with hiking and/or using topographic maps in their traverses.  Only one 
participant self-rated as having neither hiking nor map use experience.  In order to correlate 
experience with path cost errors and time penalty, the categories were rearranged to four bins: 1) 
little/no map experience, 2) some hiking experience, 3) intermediate experience hiking with maps, 
and 4) expert hiking with maps.  The visualization groups were not balanced for experience and no 
significant difference between visualization groups was detected (Kruskal-Wallis test, χ2(2, N = 34) 
= 0.52, p = 0.77).   

With respect to experience and performance correlations, there were no significant correlations 
between the experience and path cost errors, or with time penalties.  There was only a marginally 
significant correlation between time penalty and experience within the Distance cost function trial.  
For all the other conditions, this trend was not significant (and smaller in effect size).  Thus, 
experience was not used as a covariate in the analysis. 
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Spearman’s rho correlation results between map & hike experience and path cost error 

Nominal Scenarios Off-nominal Scenario 
Map & hike experience Distance Time Metabolic Exploration Time Exploration

Correlation coefficient 0.03 -0.12 -0.13 -0.12 0.25 0.08 
p-value (2-tailed) 0.86 0.49 0.48 0.51 0.15 0.66 

 

Spearman’s rho correlation results between map & hike experience and time penalty 

Nominal Scenarios Off-nominal Scenario 
Map & hike experience Distance Time Metabolic Exploration Time Exploration

Correlation coefficient -0.30 -0.16 -0.08 0.01 -0.21 -0.07 
p-value (2-tailed) 0.08 0.39 0.65 0.97 0.24 0.72 

 

PATH COST ERRORS 

Descriptive statistics for path cost errors within visualizations 

Nominal Off-nominal Visualization 
Group Distance Time Metabolic Exploration Time Exploration 

Elevation contours 1.04 ± 0.04 1.54 ± 0.17 1.07 ± 0.02 1.05 ± 0.01 1.58 ± 0.22 1.11 ± 0.03 
LOEC 1.03 ± 0.03  1.63 ± 0.14 1.08 ± 0.03 1.07 ± 0.02 1.47 ± 0.16 1.10 ± 0.03 

Both visualizations 1.02 ± 0.02 1.64 ± 0.10 1.06 ± 0.02 1.06 ± 0.02 1.53 ± 0.20 1.10 ± 0.04 
Total 1.03 ± 0.03 1.60 ± 0.14 1.07 ± 0.02 1.06 ± 0.02 1.53 ± 0.20 1.10 ± 0.03 

 

• In Phase 1, there was a significant difference in path cost errors between cost functions 
(Friedman test: χ2(3, N = 32) = 72.56, p < 0.001). 

Wilcoxon Sign tests results for comparisons between cost functions, Phase 1 

NOMINAL Time Metabolic Exploration 

Distance Z = -5.01, p < 0.0001 Z =-4.11, p <0.0001 Z =-3.99, p <0.0001 
Time  Z =-5.01, p <0.0001 Z =-5.09, p <0.0001 

Metabolic   Z = -0.74, p = 0.46 
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Kruskal-Wallis test results for path cost errors differences between visualization groups 
within cost function 

Cost Function Scenario Kruskal-Wallis, χ2 p-value 

Distance Nominal χ2(2,33) = 0.67 p = 0.72 
Time Nominal χ2(2,34) = 2.25 p = 0.33 
Metabolic Nominal χ2(2,33) = 2.33 p = 0.31 
Exploration Nominal χ2(2,34) = 3.94 p = 0.14 
Time Off-nominal χ2(2,34) = 1.83 p = 0.40 
Exploration Off-nominal χ2(2,34) = 0.06 p = 0.97 

 

Wilcoxon Sign test results for path cost errors differences between cost functions  

Wilcoxon Sign test & p-value 
Cost Function Comparisons Regardless of 

visualization 
Elevation 
contours LOEC Both 

visualizations 
Time off-nominal – Exploration off-nominal Z = -5.09, 

p < 0.0001 
   

Time nominal – Time off-nominal Z = -1.96, 
p = 0.05 

Z = -0.39,  
p = 0.70 

Z = -2.22,  
p = 0.026 

Z = -1.60,  
p = 0.11 

Exploration nominal – Exploration off-nominal Z = -4.86, 
p < 0.0001 

Z = -3.06,  
p = 0.002 

Z = -2.93,  
p = 0.003 

Z = -2.58,  
p = 0.01 

 

TOTAL TIME: TIME PENALTY 

Descriptive statistics for time penalty 

Nominal Off-nominal Visualization 
Group Distance Time Metabolic Exploration Time Exploration 

Elevation contours 1.69 ± 0.30  2.16 ± 0.93 1.78 ± 0.42 2.01 ± 0.62 2.00 ± 0.77 1.84 ± 0.55 
LOEC 2.06 ± 0.53 2.28 ± 0.80 2.07 ± 0.56 1.89 ± 0.49 2.38 ± 0.94 1.84 ± 0.64 

Both visualizations 1.84 ± 0.40 2.49 ± 1.16 1.93 ± 0.70 2.08 ± 0.69 2.17 ± 0.66 2.12 ± 0.80 
Total 1.82 ± 0.40 2.30 ± 0.95 1.94  ± 0.57 1.99 ± 0.59 2.18 ± 0.79 1.93 ± 0.66 

 

Repeated analysis of variance for Phase 1 

Factor F-value p-value 

Cost function F(1.91, 57.34) = 7.84 p = 0.001 
Visualizations F(2,30) = 0.36 p = 0.701 

Cost function x Visualization F(3.82, 57.34) = 1.36 p = 0.262 
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Pair-wise comparisons, Bonferroni tests (regardless of visualization) 

NOMINALa Time Metabolic Exploration 

Distance t(32) = -3.18, p = 0.003 t(33) = -0.63, p = 0.53 t(33) = -1.19, p = 0.24 
Time  t(32) = -3.89, p < 0.0001 t(32) = -2.89, p = 0.007 

Metabolic   t(33) = -1.04, p = 0.31 

a. Bonferroni adjusted p-value = 0.008 

Simple contrast of Time function 

NOMINAL Distance Metabolic Exploration 

Time F(1, 30) = 10.46, p = 0.003 F(1, 30) = 15.13, p = 0.001 F(1, 30) = 8.44, p = 0.007 

• Simple main effects within LOEC visualization showed that there was no effect due to cost 
function (F(3, 28) = 1.85, p = 0.16).  However, a single comparison between Exploration 
and Time cost functions showed significantly less time was spent on Exploration than the 
Time cost function (pair-wise comparison with least significant difference, p = 0.036). 

 

Repeated analysis of variance for Phase 2 

Factor F-value p-value 

Cost function F(1, 29) = 17.33 p < 0.0001 
Visualizations F(2, 29) = 0.13 p = 0.88 

Scenario F(1, 29) = 0.34 p = 0.56 
Cost function x Visualization F(2, 29) = 1.65 p = 0.21 

Scenario x Visualization F(2, 29) = 0.39 p = 0.68 
Function x Scenario F(1, 29) = 0.072 p = 0.79 

Function x Scenario x Visualization F(2, 29) = 0.23 p = 0.80 

 

PERCENT TIME SPENT MODIFYING PATH 

Descriptive statistics for percent time spent modifying path 

Nominal Off-Nominal Visualization 
Group Distance Time Metabolic Exploration Time Exploration 

Elevation 
Contours 

29.25% ± 
22.76 

24.09% ± 
25.10 

32.95% ± 
24.84 

34.44% ± 
27.74 

26.56% ± 
30.25 

32.62% ± 
26.39 

LOEC 43.28% ± 
14.10 

44.33% ± 
17.61 

39.53% ± 
24.81 

38.94% ± 
25.31 

41.35% ± 
25.31 

30.11% ± 
26.56 

Both 
visualizations 

37.23% ± 
23.83 

42.39% ± 
20.26 

35.18% ± 
27.29 

48.74% ± 
28.47 

39.11% ± 
26.70 

40.24% ± 
25.80 

Total 36.37% ± 
20.97 

36.56% ± 
22.72 

35.80% ± 
25.01 

40.52% ± 
27.07 

35.41% ± 
27.57 

34.27% ± 
25.81 
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Repeated analysis of variance for Phase 1 

Factor F-value p-value 

Cost function F(3, 93) = 0.788 p = 0.504 
Visualizations F(2, 31) = 1.125 p = 0.337 

Cost function x Visualization F(6, 93) = 1.433 p = 0.210 

 

Main effect due to LOEC visualization for Phase 1 

Factor F-value p-value 

Cost function F(3,96) = 0.86 p = 0.47 
LOEC F(1,32) = 2.32 p = 0.14 

Cost function x Visualization F(3,96) = 1.45 p = 0.23 

• Within the Time cost function, LOEC groups (both groups with LOEC visualization) were 
compared with elevation contours group using a simple effect test of Time (F(1,32) = 6.52, p 
= 0.016); LOEC participants spent more percent time modifying the Time cost function 
than the other visualization group. 

Simple main effect due to cost function  

Visualization F-value p-value 

Elevations contours F(3, 29) = 1.30 p = 0.29 
LOEC F(3, 29) = 0.32 p = 0.81 

Elevations contours & LOEC F(3, 29) = 2.15 p = 0.12 

 

Point-wise comparisons within Elevation contours group  

NOMINAL Metabolic Exploration 

Time t(11) = -2.30, p = 0.042 t(11) = -2.70, p = 0.021 

• Point-wise comparison between Exploration and Metabolic cost function within the 
visualization with both elevation contours & LOEC was significant (t(10) = -2.34, p = 0.041) 

 

Point-wise comparisons for Exploration cost function (Least significant difference test) 

NOMINAL LOEC 
Elevation Contours & 

LOEC 
Elevation Contours p = 0.70 p = 0.22 

LOEC  p = 0.41 
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Repeated analysis of variance for Phase 2 

Factor F-value p-value 

Cost function F(1, 31) = 0.25 p = 0.62 
Visualizations F(2, 31) = 1.04 p = 0.37 

Scenario F(1, 31) = 2.02 p = 0.165 
Cost function x Visualization F(2, 31) = 4.10 p = 0.026 

Scenario x Visualization F(2,31) = 0.61 p = 0.55 
Function x Scenario F(1,31) = 1.54 p = 0.23 

Function x Scenario x Visualization F(2,31) = 0.012 p = 0.99 

 

Simple main effect due to cost function for Phase 2 

Visualization F-value p-value 

Elevations contours F(1, 31) = 4.01 p = 0.054 
LOEC F(1, 31) = 3.77 p = 0.061 

Elevations contours & LOEC F(1, 31) = 0.76 p = 0.39 

 

TRUE TIME 

Descriptive statistics for true time 

Nominal Off-nominal Visualization 
Group Distance Time Metabolic Exploration Time Exploration 

Elevation 
Contours 

89.07 ±  
35.13 

135.12 ± 
87.54 

94.38 ± 
66.78 

96.57 ±  
72.65 

96.37 ±  
78.42 

56.08 ±  
47.93 

LOEC 129.24 ± 
66.36 

155.38 ± 
82.18 

97.49 ± 
52.58 

103.62 ± 
61.87 

141.69 ± 
107.77 

91.64 ±  
81.26 

Both 
visualizations 

98.41 ±  
61.16 

178.61 ± 
110.68 

99.99 ±  
62.49 

110.89 ± 
41.09 

138.48 ± 
90.41 

103.09 ± 
66.41 

Total 105.09 ± 
56.41 

155.75 ± 
92.96 

97.20 ±  
59.28 

103.49 ± 
58.88 

124.66 ± 
92.18 

82.80 ±  
67.28 

 

Repeated analysis of variance for Phase 1 

Factor F-value p-value 

Cost function F(3, 93) = 7.70 p < 0.0001 
Visualizations F(2, 31) = 0.53 p = 0.59

Cost function x Visualization F(6, 93) = 0.62 p = 0.71
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Simple contrasts  

NOMINAL Distance Metabolic Exploration 

Time F(1, 31) = 10.88, p = 0.002 F(1, 31) = 15.66, p < 0.0001 F(1, 31) = 11.61, p = 0.002

 

Repeated analysis of variance for Phase 2 

Factor F-value p-value 

Cost function F(1, 31) = 24.15 p < 0.0001 
Visualizations F(2, 31) = 1.23 p = 0.31 

Scenario F(1,31) = 4.62 p = 0.040 
Cost function x Visualization F(2, 31) = 0.17 p = 0.84 

Scenario x Visualization F(2, 31) = 0.44 p = 0.65 
Function x Scenario F(1, 31) = 0.26 p = 0.62 

Function x Scenario x Visualization F(2, 31) = 0.26 p = 0.77 

 

 

DIFFERENTIAL COST 

Descriptive statistics for differential cost 

Nominal Off-nominal Visualization 
Group Distance Time Metabolic Exploration Time Exploration 

Elevation 
Contours 9.98  ± 9.17 23.56 ± 18.58 7.48 ± 9.59 4.16 ± 4.11 4.84 ± 15.50 0.13 ± 1.91 

LOEC 5.02  ± 2.48 30.63 ± 24.26 10.38 ± 7.17 1.34 ± 1.65 16.68 ± 24.25 3.18 ± 3.30 

Both 
visualizations 7.78  ± 6.36 25.76 ± 15.77 8.72 ± 5.90 3.32 ± 2.17 14.94 ± 30.12 1.44 ± 7.01 

Total 7.66  ± 6.82 26.56 ± 19.44 8.82 ± 7.63 2.97 ± 3.05 11.94 ± 23.71 1.54 ± 4.59 

 

Distribution of participants with zero differential cost between visualizations, Phase 1 

Cost Function Pearson χ2 test p-value 

Distance χ2 (2,34) = 1.02 p = 0.60 
Time χ2 (2,34) = 0.43 p = 0.81 

Metabolic χ2 (2,34) = 0.47 p = 0.79 
Exploration χ2 (2,34) = 3.02 p = 0.22 
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Kruskal-Wallis test results for differential cost across visualizations 

Cost Function Scenario Kruskal-Wallis, χ2 p-value 

Distance Nominal χ2(2,34) = 1.00 p = 0.61 
Time Nominal χ2(2,34) = 0.53 p = 0.77 
Metabolic Nominal χ2(2,34) = 0.76 p = 0.68 
Exploration Nominal χ2(2,34) = 4.99 p = 0.082 
Time Off-nominal χ2(2,34) = 2.50 p = 0.29 
Exploration Off-nominal χ2(2,34) = 4.06 p = 0.13 

 

Visualization comparisons between within Exploration cost function (Mann-Whitney tests)  

EXPLORATION 
NOMINAL 

LOEC 
Elevation Contours & 

LOEC 
Elevation Contours Z = -1.54, p = 0.12 Z = -0.19, p = 0.85 

LOEC  Z = -2.33, p = 0.02 

 

• In Phase 1, there was a significant difference in differential costs between cost functions 
(Friedman test: χ2(3, N = 34) = 41.37, p < 0.0001). 

Wilcoxon Sign test results of pair-wise comparisons for differential cost between cost 
functions, Phase 1 

Cost Function Comparisons Wilcoxon Sign test  
& p-value 

Result 

Distance – Time Z = -4.42, p < 0.0001 Distance < Time 
Distance – Metabolic Z = -0.83, p = 0.41a Distance ≅ Metabolic 
Distance – Exploration Z = -3.58, p < 0.0001b,c Exploration < Distance 
Time – Metabolic Z = -4.33, p < 0.0001 Metabolic < Time 
Time – Exploration Z = -4.83, p < 0.0001 Exploration < Time 
Metabolic – Exploration  Z = -3.61, p < 0.0001 Exploration < Metabolic 

a. Only within the LOEC visualization group: Z = -2.05, p = 0.041 
b. Only within elevation contours group: Z = -1.65, p = 0.099 
c. Only within elevation contours & LOEC group: Z = -1.87, p = 0.062 
 

Distribution of participants with negative differential cost between visualizations, Phase 2 

Cost Function Pearson χ2 test p-value 

Time χ2(2,34) = 1.00 p = 0.61 
Exploration χ2(2,34) = 2.55 p = 0.28 
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Distribution of participants with zero differential cost between visualizations, Phase 2 

Cost Function Pearson χ2 test p-value 

Time χ2(2,34) = 1.00 p = 0.61 
Exploration χ2(2,34) = 1.98 p = 0.37 

 

Distribution of participants with negative and zero differential cost between visualizations, 
Phase 2 

Cost Function Pearson χ2 test p-value 

Time χ2(4,34) = 2.55 p = 0.64 
Exploration χ2(4,34) = 5.23 p = 0.27 

 

Wilcoxon Sign test results for differential costs between cost functions 

Wilcoxon Sign test & p-value 
Cost Function Comparisons Regardless of 

visualization 
Elevation 
contours LOEC Both 

visualizations 
Time off-nominal – Exploration off-nominal Z = -2.34,  

p = 0.019 
Z = -0.80, 
 p = 0.42 

Z = -1.48,  
p = 0.14 

Z = -1.60,  
p = 0.11 

Time nominal – Time off-nominal Z = -2.67,  
p = 0.008 

Z = -1.87, 
 p = 0.062 

Z = -1.42, 
p = 0.16 

Z = -1.25,  
p = 0.21 

Exploration nominal – Exploration off-nominal Z = -1.18,  
p = 0.24 

Z = -2.58,  
p = 0.01 

Z = -1.78,  
p = 0.074 

Z = -0.62,  
p = 0.53 

 

NON-OPTIMAL SATISFICING 

Descriptive statistics for non-optimal satisficing (cost surplus)  

Nominal Off-nominal Visualization 
Group Distance Time Metabolic Exploration Time Exploration 

Elevation 
Contours 0.00 ± 0.00 0.05 ± 0.15 0.08 ± 0.17 0.20 ± 0.39 6.18 ± 9.02 1.01 ± 1.26 

LOEC 0.05 ± 0.12 0.84 ± 2.04 0.17 ± 0.24 0.07 ± 0.13 3.86 ± 6.04 1.05 ± 1.44 

Both 
visualizations 0.00 ± 0.00 1.09 ± 2.88 0.04 ± 0.14 0.19 ± 0.40 4.18 ± 8.03 1.42 ± 2.18 

Total 0.02 ± 0.07 0.66 ± 2.02 0.10 ± 0.19 0.16 ± 0.33 4.80 ± 7.66 1.15 ± 1.60 
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Descriptive statistics for non-optimal satisficing (time surplus) 

Nominal Off-Nominal Visualization 
Group Distance Time Metabolic Exploration Time Exploration

Elevation 
Contours 

27.14% ± 
10.87 

21.68% ± 
19.89 

32.53% ± 
28.83 

42.92% ± 
27.16 

36.73% ± 
22.10 

54.69% ± 
28.39 

LOEC 23.21% ± 
21.01 

18.62% ± 
22.78 

39.09% ± 
23.19 

32.80% ± 
20.52 

30.38% ± 
31.45 

38.42% ± 
28.44 

Both 
visualizations 

33.87% ± 
25.99 

20.37%  ± 
22.48 

31.65% ± 
28.33 

29.36% ± 
23.49 

29.05% ± 
28.56 

34.78% ± 
30.92 

Total 28.04% ± 
19.93 

20.27% ± 
21.07 

34.37% ± 
26.35 

35.26% ± 
23.99 

32.19% ± 
26.86  

42.99% ± 
29.71 

 

Repeated analysis of variance for Phase 1, time surplus 

Factor F-value p-value 

Cost function F(2.21, 68.56) = 3.11 p = 0.046 
Visualizations F(2, 31) = 0.15 p = 0.86 

Cost function x Visualization F(4.42, 68.56) = 0.65 p = 0.65 

 

Simple contrast of time surplus, Phase 1 

NOMINAL Distance Metabolic Exploration 

Time F(1,31) = 2.27, p = 0.14 F(1,31) = 12.76, p = 0.001 F(1,31) = 6.24, p = 0.018 

 

Point-wise comparisons for Exploration function (time surplus), least significant difference 
test 

NOMINAL LOEC 
Elevation Contours & 

LOEC 
Elevation Contours p = 0.32 p = 0.19 

LOEC  p = 0.74 

 

Kruskal-Wallis test for non-optimal satisficing (cost surplus), Phase 2 

Cost Function Scenario Kruskal-Wallis test p-value 

Time Off-nominal χ2(2, 33) = 0.77 p = 0.68 
Exploration Off-nominal χ2(2, 33) = 0.25 p = 0.88 
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Wilcoxon Sign test results of pair-wise comparisons for cost surplus between cost functions, 
Phase 2 

Cost Function Comparisons Wilcoxon Sign test 
Time off-nominal – Exploration off-nominal Z = -3.36, p = 0.001 
Time nominal – Time off-nominal Z = -2.14, p = 0.032 
Exploration nominal – Exploration off-nominal Z = -2.54, p = 0.011 

 

Repeated analysis of variance (time surplus) for Phase 2 

Factor F-value p-value 

Cost function F(1, 31) = 8.24 p = 0.007 
Visualizations F(2,31) = 2.07 p = 0.14 

Scenario F(1,31) = 4.96 p = 0.033 
Cost function x Visualization F(2,31) = 0.69 p = 0.51 

Scenario x Visualization F(2,31) = 0.20 p = 0.82 
Function x Scenario F(1,31) = 0.25 p = 0.62 

Function x Scenario x Visualization F(2,31) = 0.012 p = 0.99 

 

• Correlations time surplus versus true time (off-nominal condition): 
o Time function, Pearson correlation test = -0.66, p < 0.0001. 
o Exploration function, Pearson correlation test = -0.73, p < 0.0001 

 

OTHER ANALYSES 

Kolmogorov-Smirnov normality tests 

Dependent variable K-S test, Z p-value 

Path cost errors Z = 4.34 p < 0.0001 
Time penalty Z = 1.99 p = 0.001 

Total time Z = 1.19 p = 0.12 
True time Z = 1.41 p = 0.037 

 

Spearman’s rho correlations between path cost errors and time dependent variable 

Time dependent variable Correlation coefficient p-value 

Time penalty 0.082 p = 0.25 
Total time 0.090 p = 0.20 
True time 0.065 p = 0.36 
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COGNITIVE STRATEGIES 

 

Descriptive statistics of path cost errors and Mann-Whitney test comparisons across strategy 
types for path cost errors 

Cost Function Manual sensitivity 
analysis 

“Whole-path” 
sensitivity analysis 

Mann-Whitney test 
& p-value 

Distance 1.03 ± 0.03 1.02 ± 0.03 Z = -0.69, p = 0.49 
Time 1.60 ± 0.14 1.61 ± 0.15 Z = -0.37, p = 0.72 
Metabolic 1.07 ± 0.02 1.08 ± 0.04 Z = -0.75, p = 0.45 
Exploration 1.06 ± 0.02 1.06 ± 0.02 Z = -0.28, p = 0.78 
Time (off-nominal) 1.51 ± 0.20 1.59 ± 0.20 Z = -1.14, p = 0.26 
Exploration (off-nominal) 1.10 ± 0.03 1.12 ± 0.05 Z = -0.73, p = 0.47 

 

Descriptive statistics of distance errors 

Cost Function Path error based on 
distance 

Distance 1.03 ± 0.04 
Time 1.12 ± 0.07 
Metabolic 1.13 ± 0.04 
Exploration 1.06 ± 0.04 
Time (off-nominal) 1.08 ± 0.04 
Exploration (off-nominal) 1.07 ± 0.05 

 

Repeated analysis of variance for nominal conditions, distance errors 

Factor F-value p-value 

Cost function F(1,99) = 34.48 p < 0.0001 

• Visualization was not used as a test condition to analyze shortest path heuristic 
because previous experimental results indicate that there is no main effect due to 
visualization.  Furthermore, including it as a condition did not reveal significant 
differences among visualization groups. 

Simple contrast of distance errors, nominal conditions 

NOMINAL Time Metabolic Exploration 

Distance F(1,33) = 48.3, p < 0.0001 F(1,33) = 116.0, p < 0.0001 F(1,33) = 7.20, p = 0.011 
Time  F(1,33) = 0.72, p = 0.40 F(1,33) = 19.5, p < 0.0001 

Metabolic   F(1,33) = 53.0, p < 0.0001 
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Repeated analysis of variance for off-nominal conditions, distance errors 

Factor F-value p-value 

Cost function F(1,33) = 19.46 p < 0.0001 
Scenario F(1,33) = 3.05 p = 0.09 

Cost function x Scenario F(1,33) = 9.61 p = 0.004 

 

Point-wise comparisons across scenarios within cost function (distance errors), least 
significant difference test 

 
Nominal vs. Off-Nominal 

p-value 
Time p = 0.003 

Exploration p = 0.36 
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APPENDIX C: META-ANALYSIS ASSESSING 
SENSITIVITY ANALYSIS  

A meta-analysis was conducted in order to assess the effect of sensitivity analysis across both 
experiments.  This analysis would include all participants, 61 in total, and include all test trials (a total 
of 8).  Thus, participants were ranked in the following manner: 

• Every participant was assigned a sensitivity analysis type: 0 if they chose whole-path 
sensitivity analysis, and 1 if they chose path modifications. 

• For every participant and for each function, a performance score was assigned.  Performance 
scores ranged from 1 to 3.  A score of 1 indicated that the participant had one of the 
smallest path cost errors for that trial.  Similarly, 3 indicated poor performance.  Score was 
assigned based on the average and standard deviations for that trial.  A score of 2 was 
awarded to participants whose path cost errors were ± 1 standard deviation from the mean 
error of that trial.  Above and below one SD, these participants were given scores of 1 and 3, 
respectively. 

• For every participant and for each function, a ranking of modification time was given.  Since 
the percent modifying time ranged from 0 to 85%, 9 bins were created, one for every 10 

percent increment. 
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