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the requirements for the degree of Doctor of Philosophy in Human-Systems Engineering. 

ABSTRACT 

Balancing task allocation between humans and computers is crucial to the development of effective 
decision support systems.  This thesis investigates the appropriate balance between humans and 
automation for geospatial path problem solving within the high-risk domain of human planetary 
surface exploration, where decisions are time critical and humans must adapt to uncertainty.  In 
order to develop flexible and robust decision support systems for Lunar and planetary exploration, 
human-automation role allocations are examined to understand how humans conduct complex 
optimizations under different degrees of automated assistance. 

A work domain analysis of human planetary extravehicular activities (EVA) resulted in a framework 
for human-robotic planning, including key input variables, constraints, and outputs.  Based on this 
analysis, a prototype path planning aid was developed.  Under investigation was the use of partial 
automatic path generation and a visualization called levels of equal cost (LOEC, an aggregate cost 
map).  Human-in-the-loop testing was employed to understand the effects of the automated 
assistance and different visualizations on path planning performance across multivariate cost 
functions.  In two separate experiments, participants were tasked to make obstacle-free, least-costly 
paths based on given cost functions.

Analysis of the experimental results indicated that knowledge-based reasoning is best supported 
when operators conduct manual sensitivity analysis, a strategy that was absent when path generation 
was allocated to automation.  Leveraging computer-generated paths resulted in overall better path 
performance but also led to automation bias and decreased situation awareness.  With respect to 
visualizations,  participants using elevation contours had lower cost paths and short task times when 
automation was reliable.  However, the LOEC visualization helped participants initially create least-
costly paths for the most complex cost function.  Furthermore, LOEC visualization appears to 
promote manual sensitivity analysis, which was beneficial in the degraded automation condition, 
where low cost and time was observed for participants with this visualization.  Finally, two types of 
sensitivity analysis were observed, one that leveraged the available “what if” tools and the other that 
created whole paths.  While there was no difference in path costs across the strategies, the increase 
use of the manual sensitivity analysis (i.e., path modifications) led to decrease path cost errors.  
 
Supported by: NASA Harriett Jenkins Predoctoral Fellowship, Office of Naval Research, National 
Space Biomedical Research Institute (NSBRI/NASA) and the American Associate of University 
Women Dissertation Fellowship 
Thesis supervisor: M. L. Cummings, Assistant Professor 
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The feat of sending and returning humans to and from the Moon is extraordinary.  A new national 

vision for human space exploration has been set forth as of January 2004, which includes returning 

to the Moon and going beyond to other planetary surfaces like Mars.  Human presence on planetary 

surfaces will involve extra-vehicular activities (EVAs), either as part of field exploration, 

construction, or even recreation.  In these futuristic settings, EVA traversals, be it on foot or on 

rovers, will become a routine, daily task.  However, in light of the Apollo experience, there is still 

research and development that can be done to improve mission planning, productivity, and safety of 

EVAs, in particular, with the use of real-time decision support systems.  Additionally, we can take 

advantage of thirty-five years of technological advancements.  This thesis focuses on improving 

planetary EVAs through human and automation collaboration by investigating the real-time task of 

traversals planning and re-planning. 

A successful, productive planetary exploration program must take advantage of the strengths of 

both humans and automation, be it computer aids or robotics.  It is naïve to consider “robotic” and 

“human” missions as exclusively one or the other, when, in fact, all missions cannot be 

accomplished without the support of the other:  

“… in the space program it has been common to consider that a task must be done by either 

an astronaut or a “robot”, that if a spacecraft is manned then astronauts must do almost 

everything, and that if a spacecraft is unmanned every task must be automated.  In fact, on 

manned spacecraft many functions are automatic, and on unmanned spacecraft many 

functions are performed by human remote control from the ground.” (pg. 205, Sheridan, 

2000) 

For instance, the Mars Exploration Rovers (MER) are two robotic agents that have successfully 

explored the surface of Mars for almost three years because of the enormous team of scientists and 

engineers operating them from the Earth.  It is this assumption, that human-computer collaboration 

will be integral in future space exploration missions, which frames this thesis. 

Planetary EVAs are complex, hazardous and safety-critical.  EVA tasks currently conducted in 

microgravity already require automation, for example, for life support system control and remote 

manipulation of the robotic arm for positioning.  From the technological perspective, planetary 
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EVAs require and depend on intricate life support systems for operations in extreme environments.  

Current pressurized space suits protect astronauts from the environment, for example, providing 

thermal regulation, but they limit mobility and senses, e.g., sound, vision, smell and touch.  In 

addition, there is a limited supply of consumables, e.g., oxygen and battery power.  Astronauts must 

also conduct their EVAs within prescribed safety constraints and operational requirements.  

From a cognitive decision-support perspective, a traversing astronaut needs to manage navigation, 

physiologic- and mission-specific information, all in time-finite situations.  Planning traversals on 

other planetary surfaces will be a time consuming task undertaken weeks and months before the 

mission, involving many scientists and engineers who recommend a feasible path while keeping 

within constraints and achieving scientific or mission goals.  Managing all this information becomes 

increasingly difficult when the task changes to real-time re-planning of a traversal, i.e., the astronaut 

must change and select a new path in real-time within a finite amount of time while not violating 

constraints.  Astronauts will have many, and often, competing goals (e.g., a science objective versus a 

safety constraint) for which they will have to find an acceptable compromised solution. Re-planning 

of an EVA is inevitable since “the unexpected” is inherent to exploration; maximizing mission 

success, productivity, and safety is linked to the astronauts’ and mission controllers’ ability to re-

plan. Hence, a cognitive decision support system is would be essential in order to re-plan an EVA 

traversal in-situ. 

Path planning and re-planning is not a task that is exclusive to EVA traversals; in fact, automated 

planners are becoming ubiquitous, and are integrated into daily activities such as driving.  Geospatial 

problem solving also pertains to other “moving” objects, be it a soldier, an unmanned vehicle (air, 

ground, and underwater), a search and rescue robot, and manned aircraft.  Any decision support 

system that involves these objects requires the human operator to conduct path planning.  Thus, 

while the focus of this thesis is on human space exploration, the principles examined in this thesis, 

the human optimization process in a geospatial task, cut across all these mentioned domains.

1.2 PROBLEM STATEMENT 

Traversal re-planning is a task that requires knowledge-based reasoning, where “faced with an 

environment for which no know-how or rules for control are available from previous encounters … 
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performance is goal-controlled and knowledge-based.” (pg. 259, Rasmussen, 1983). Knowledge-

based reasoning is necessary to support astronauts confronted with uncertain, novel situations. On 

the other hand, ruled-based reasoning is emphasized in the traditional methods of astronaut training, 

focusing on repeatedly practicing how to precisely accomplish a specific task in microgravity.  

Inevitably, there will be a paradigm shift in training – rule-based training will not be sufficient for 

future space exploration missions.  Hence, any computer decision aids must support knowledge-

based reasoning. 

The central research question of this thesis addresses what is the appropriate way for decisions 

support systems to enable knowledge-based reasoning in geo-spatial path planning problems. In 

order to explore this problem, different human-automation role allocations are examined and tested 

in order to understand how humans conduct complex optimizations under different automated 

assistance.  As a result, the aspects of human-computer collaboration that promote or detract from 

path planning performance are identified.  In turn, this will help decision support system designers 

leverage human-automation collaboration to enable knowledge-based reasoning.   

1.3 THESIS OUTLINE 

The approach to exploring human-computer collaboration in a path planning task has followed 

general human-systems integration principles for the design and testing of decision support systems 

for planetary exploration.  In order to develop a path planner, the operational environment needs to 

be first defined.  This was accomplished through a work domain analysis of human planetary EVAs.  

Functional allocation between users and automation are determined, i.e., different automated 

assistance in support of users in decision processes.  Human-in-the-loop testing is employed to 

understand the effects of the automated assistance on path planning performance.  Hence, through 

experimentation, effective optimization strategies can be resolved.  Finally, the requirements for 

decision support systems for real-time EVA planning and re-planning can be generated based on 

principled and comprehensive analysis.  This thesis addresses each of these steps. 

In Chapter 2, the benefits and drawbacks of automation are described and relevant past path 

planning studies are reviewed.  This chapter identifies where this research fits in the overall field of 
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cognitive systems engineering and research gap it addresses. Guiding hypotheses, which focus on the 

benefits of data integration, visualization, and role of sensitivity analysis, are also defined. 

Chapter 3 provides a both a historical and pragmatic take on a work domain analysis for the 

prototype path planner.  As the automation planner is intended for future lunar and Mars traversals, 

one cannot “go to the field” and study how planetary exploration in extreme environments is 

performed.  Instead, a review of Apollo EVAs and the circumstances involved in planning and, 

more importantly, re-planning of lunar sorties completed. This overview is complemented with an 

observational study of excursions in a Mars-analog site in the Canadian Arctic.  This chapter 

concludes by presenting a new Planetary EVA Framework that organizes all the parameters 

pertaining to planning and re-planning these traversals. 

In Chapter 4, selected parameters and constraints from the Planetary EVA Framework were 

incorporated into a prototype path planner, aptly named PATH (Planetary Aid for Traversing 

Humans).  This chapter describes in detail all the components of PATH, such as lunar digital 

elevation maps and the implemented cost functions.  Most significantly, this chapter explains the 

importance of the developed collaborative visualization termed levels of equal cost (LOEC).   

Chapters 5 and 6 summarize the two cornerstone experiments that were designed and implemented 

to understand how humans conduct complex optimization under various automation assistance and 

collaborative elements. Experimental hypotheses are delineated in each chapter, as well as 

independent and dependent variables.  Results are presented and discussed alongside observed 

cognitive strategies; individual experimental conclusions are grouped by chapter. 

The final Chapter 7 consists of a discussion of the conclusions of this thesis, a sensitivity analysis 

meta-analysis that aggregates results from both experiments, and design recommendations for path 

planning and re-planning decisions support aids, which includes a real-time EVA aids.  Thesis 

contributions are listed and includes framework for human-robotic planetary EVA planning, path 

planning prototype, quantification of path planning performance across various conditions, 

identification of cognitive strategies, and design recommendations for planetary EVA decision 

support aids.
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Figure 2.2 System’s flexibility and robustness (Saleh et al., 2003), adapted to include human 
interaction 

Automation “brittleness” can be caused by the models (e.g., of the environment or process) or the 

algorithm itself, as these could be either out-dated, incomplete or incorrect.  Erroneous models are 

almost inevitable in domains in which any uncertainty exists.  However, issues related to automation 

use go beyond the automation itself.  For instance, humans could fail to understand the automation 

and the computer-generated solutions, resulting in users acquiring incorrect mental representations 

of the way the automation functions.  This may be associated with the automated system’s lack of 

transparency, where models are inaccessible. Even when automation works appropriately, 

researchers have found evidence for inappropriate knowledge acquisition (Glover, Prawitt, & 

Spilker, 1997) and skill degradation (Adelman, Cohen, Bresnick, Chinnis, & Laskey, 1993).  When 

automation fails, users’ trust in the computer aid decreases, which could lead to automation not 

being employed (de Vries, Midden, & Bouwhuis, 2003; Lee & Moray, 1994).   

The use of automation may result in inability to maintain mode awareness (Sarter & Woods, 1994), 

which is similar to the degradation of situation awareness (SA) reported by others (Endsley, 1996; 
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Endsley & Kaber, 1999; Strauch, 1997).  SA, as defined by Endsley, is (a) the perception of elements 

in the current environment, (b) the integration and comprehension of these elements, and (c) the 

projection of future status based on comprehension (Endsley, 1995).  A loss of SA may be attributed 

to the human operators’ lack of understanding of how and why a solution was generated by the 

automation.  SA is crucial to the human ability to apply knowledge-based reasoning such that they 

can develop workaround strategies when automation fails or is unreliable.

Contributing to the human’s lack of situation awareness may be another well-known problem, 

automation over-reliance (Layton et al., 1994; Parasuraman, Molloy, & Singh, 1993; Parasuraman & 

Riley, 1997).  Over-reliance can be considered a symptom of automation bias (Cummings, 2004; 

Mosier, Skitka, Heers, & Burdick, 1998; Skitka, Mosier, & Burdick, 1999), which is the tendency by 

users (or decision makers) to disregard or not search for contradictory information about a 

computer-generated solution.  As a result of automation bias, errors of commission and omission 

increase (Mosier & Skitka, 1996; Skitka et al., 1999).  In errors of commission, the decision maker 

continues acting as the automation dictates even though there is evidence that the solution is 

erroneous.  In errors of omission, the decision maker fails to intervene because the automation has 

not indicated errors. 

While automation has many drawbacks, the answer is not necessarily to reduce the amount of 

automation.  For example, within the domain of fault management, when the dynamics of a fault are 

fast, automation needs to be used to respond accordingly (Moray, Inagaki, & Itoh, 2000).  

Automation is indispensable for solving these time-critical faults, and the operator’s role is still 

crucial.  Automation is necessary within all decision support for complex systems, particularly when 

the tasks involve a large problem space under time pressure.  Thus, essential to developing 

automated aids for planetary exploration is the balance between automation assistance and human 

interaction, while mitigating the issues previously listed (lack of automated solution transparency, 

loss of situation awareness, and propensity towards automation bias).  

2.2 PATH PLANNING TASK AND AUTOMATION SUPPORT 

With respect to the geospatial problem solving, there have been few studies examining how 

cognitively humans optimize paths and only three that investigated the interaction between human 





the human could attempt several different paths that might satisfy the goals.  It is up the path 

planner to asses each solution and determines if it is the best plan possible.  Depending on the goals, 

a path plan might be an optimal path or it might simply meet some threshold (path cost satisficing).  

A path plan is only resolved once all these processes occur.  

Path PlanPath Plan
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Path

Information Integration Path generation

Costs

Cognitive processesExternal

Goals
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Analysis

 

Figure 2.3 Cognitive model for path planning task 

This path planning cognitive model is not unlike the simplified human information processing 

model presented in Parasuraman, Sheridan, and Wickens (2000), which includes sensory processing, 

perception/working memory, decision making and response selection.  Sensory processing is akin to 

the acquisition of information, where all available input data enters for processing.  The human path 

planner then must use his/her working memory to integrate inputs before suggesting a path 

solution.  The path generation process is thus equivalent to the decision making stage.  The loop 

within the path generation stage symbolizes that the information processing is not a strict serial 

sequence (also acknowledged by Parasuraman et al. 2000), but rather a process which includes 

attempting different path solutions and assessing these against the required goals.  Finally, the 

response selection stage is the end state of the path planning cognitive model, where a path solution 

is determined. 

The process of changing (or tweaking) a path solution (represented by the loop within the path 

generation phase) is the process of conducting sensitivity analysis on a possible path solution.  For 

Saltelli (2000), sensitivity analysis “studies the relationship between information flowing in and out 

of [a] model.”  Essentially, sensitivity analysis is assessing the effect of changing input variables of a 

 

 

31



 

 

32

model or solution.  Consequently, during path planning, it is the process of modifying a path, 

evaluating the change relative to the goal, and iterating until a satisfactory solution is achieved.  

Pannell (1997) lists decision making among the uses of sensitivity analysis, which includes testing the 

robustness of an optimal solution, investigating sub-optimal solutions, and identifying sensitive or 

important variables.  Consequently, when the human path planner conducts sensitivity analysis, 

he/she is learning about how to optimize a path and this, in turn, may lead to a better understanding 

of how a solution (in this case, a path solution) is affected by changes in input variables (Saltelli et 

al., 2000).  Thus, sensitivity analysis is an integral part of the path planning task.   

For path planning, automation can be used in different parts of the cognitive process.  The 

automation may integrate some of the information, like variables, environment and cost, for the 

human so that he/she does not need to calculate the total costs of the path solutions.  Another 

possible example is that automation generates path solutions and the human selects the one that 

meets the goals.  Wherever automation is leveraged, it will influence human path planning 

performance.  A few studies (described subsequently) have investigated various methods of 

leveraging automation in the path planning task and the effects on human planning performance.  

These have focused on human performance within the domain of aviation decision making, 

specifically investigating path planning and re-planning of flight trajectories.   

Layton et al. (1994) developed and tested a prototype en-route flight planner which required pilot 

participants’ to re-plan an aircraft flight trajectory in order to adapt to a change in environmental 

conditions (see also Smith, McCoy, & Layton, 1997).  Three versions of the planner were explored, 

each version differing in the amount of automation assistance provided. The lowest automation level 

possible allowed participants to “sketch” flight trajectories on the computer map, i.e., the human 

planner sketched paths and the computer filled in trajectory details such as arrival times. At the 

highest level, the computer interface, without prompting by the participant, provided a solution to 

the flight trajectory conflict.  In the middle, the participant could ask the computer to provide a 

flight path solution based on selected constraints.  The main result was that participants tended to 

over-rely on the computer-generated solutions, selecting sub-optimal paths. A possible reason was 

that participants did not explore the problem space as much when presented with a solution.   
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Chen and Pritchett (2001) evaluated a prototype computer aid for emergency aircraft trajectory 

generation (for divert conditions), simulating both plan and execution of new trajectories by pilots. 

The subjects’ task was to create a new trajectory, under an emergency scenario, that minimized time 

to land and did not violate constraints, i.e., weather, airspace regulations, and aircraft limits.  The 

authors tested three conditions: re-planning with no aid (only paper charts), with an aid, and an aid 

with pre-loaded plans.  Performance was measured by time to land and workload.  The worse 

performance was seen in the condition where there was an aid, but no pre-loaded plan.  The best 

performance was achieved when pilots adopted the pre-loaded plans, though there was no 

significant difference with the test condition of no aid.  The authors, however, favored the pre-

loaded aid since in a few instances, pilots were unable to create and evaluate a satisfactory trajectory.  

This study also presented evidence for automation bias, as some pilots did not improve upon the 

sub-optimal, pre-loaded plan, as well as over-reliance that occurred when pilots accepted erroneous 

information presented by the automated aid. 

In the third study, Johnson et al. (2002) investigated the effects of time pressure and automation on 

a route re-planning task.  Participants were asked to make new paths that would first, satisfy mission 

constraints (avoid threat areas and arrive at targets within an acceptable time-to-target and sufficient 

fuel), and second, minimize route cost (time spent in hazard zones and deviations from time-to-

targets).  Six time pressures were imposed on the scenarios, ranging from 20 to 125 seconds.  The 

automation  would assist the participant in one of three possible ways: 1) suggest a route that met 

mission constraints, 2) suggest a route that met hazard avoidance rules, and 3) suggest a sub-optimal 

path that met both the constraints (time-to-target and fuel restrictions) and avoided hazard zones.  A 

fourth condition, no path suggested, was also tested for comparison.  Performance was measured by 

route cost and constraint violation.  Based on their experiment, the authors concluded that full 

automation was most beneficial for the shortest time pressure (less than 30 seconds). The more time 

participants were given, performance differences decreased between automation assistances. The 

exception to this trend was around the 1 minute mark, when participants’ performance decreased 

with more automation assistance.  There was also evidence for complacency and automation bias, as 

noted by the decreased number of route modifications in the highest level of automation. 
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 Roles 
Level of Automation Monitoring Generating Selecting Implementing 

1. Manual Control Human Human Human Human 
2. Action support Human/Computer Human Human Human/Computer
3. Batch processing Human/Computer Human Human Computer 
4. Shared control Human/Computer Human/Computer Human Human/Computer
5. Decision support Human/Computer Human/Computer Human Computer 
6. Blended decision making Human/Computer Human/Computer Human/Computer Computer 
7. Rigid system Human/Computer Computer Human Computer 
8. Automated decision making Human/Computer Human/Computer Computer Computer 
9. Supervisory control Human/Computer Computer Computer Computer 
10. Full automation Computer Computer Computer Computer 

Figure 2.5 Levels of  automation by Endsley and Kaber (1999) 

These LOA frameworks help in the design of an automated path planning tool.  With increasingly 

complex problem space, more intelligence and autonomy is necessary, as implied by Riley’s LOA.  

Riley’s framework introduces the idea that a higher level of intelligence is more than presenting raw 

data.  Furthermore, there is a specific level of autonomy for “information fuser”.  Thus, a path 

planning aid should leverage automation to integrate raw data for the human operator, particularly if 

the task is complex.  The simplest method of integrating information for path planning is to 

calculate the paths’ cost.  Beyond that, visualizations may be used present integrated data.  In terms 

of path generation, based on Sheridan’s LOA, either the human operator or the automation may 

generate one or multiple possible path solutions.  Present among the levels of automation by 

Endsley and Kaber is the option of a sharing the generation of solution functionality, i.e., both 

human and computer participate in creation of path.  Thus, a path planning tool could be designed 

to accommodate path generation by the human operator, by the automation, or through a shared 

method. 

2.3 HYPOTHESES 

In general, previous studies suggest that for the task of path planning and re-planning, higher levels 

of automated assistance was beneficial for time pressured scenarios. Yet automation bias and over-

reliance occurred in every instance, particularly when automated solutions were sub-optimal. While 

these studies focused on user performance with different LOAs, they did not attempt to quantify 

how well humans optimized under different task complexities or conducted sensitivity analyses. 

Moreover, there was no discussion of the impact of the visualizations used, which could significantly 
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alter the results.  These visualizations integrate information the human operators use to generate 

path solutions.  A primary goal of this research is to examine not only the impact of increasing the 

amount of automation used in the path planning task on human performance, but also investigate 

the effects of visualizations in order to find an effective method of leveraging human-computer 

collaboration with respect to path planning optimization. 

This thesis addresses two main guiding hypotheses, which result in analysis and investigation of 

different aspects of human-computer collaborative path planning under time-pressure, their impact 

on performance and optimization strategies, across increasingly complex problems.  The more 

complex tasks include degraded automation conditions and cost functions that integrate numerous 

variables. 

The first research hypothesis addressed is: 

Hypothesis 1: As the path planning becomes more complex, e.g., an increasing number 

of manipulated variables for the path planning task and degraded automation 

conditions, higher amounts of data integration through both computation and 

visualization will be beneficial for the human operator.  These benefits include 

quickly creating near-optimal paths, maintaining awareness of important variables, 

and compensating for imperfect automation. 

Data integration through computation includes leveraging automation to generate path segments 

and to calculate total costs.  As other past path planning studies have already demonstrated 

problematic issues with using automation solely to generate path solutions (Chen & Pritchett, 2001; 

Johnson et al., 2002; Layton et al., 1994), this research will focus on investigating human-computer 

(shared) path creation.  Furthermore, in this research, data integration can also be accomplished 

through a visualization that aggregates information (both variables and costs) based on the path 

planning algorithm used to search for least-costly paths.  Thus, this visualization may simplify 

complex path planning problems for the human operator.            
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The second research hypothesis investigated is: 

Hypothesis 2: When a computer system that promotes sensitivity analysis is used for 

the task of planning (and hence, re-planning), human path planning performance will 

increase.  Improvements include providing the human operator the ability to 

understand how to optimize paths, thus achieving near-optimal solutions. 

No research to date has explored the role sensitivity analysis plays in the task of path planning in 

terms of human performance, even though it is an integral part of the human optimization process.  

Sensitivity analysis is the process of observing how much a solution changes as input variables are 

modified.  Conducting sensitivity analysis is a more time-consuming optimization strategy, however,  

computational power can be leveraged to provide aids (usually  called “what-if” tools) for the human 

operator that will assist in sensitivity analysis.  This can be accomplished by making path 

modifications and corresponding evaluations easily available.  If the human operator conducts 

sensitivity analysis, he/she will begin to acquire a better understanding of how to fundamentally 

optimize paths, which is particularly beneficial as the task becomes increasingly complex.  As 

discussed before, task complexity may be a due to number of variables manipulated during 

optimization process or degraded automation conditions.  For the latter, an increase in human path 

planning performance will be observed if the human operator successfully adapts path planning 

strategies and is able to quickly create near-optimal paths.  Finally, as the role of sensitivity analysis 

will be concurrently investigated with different functional allocations for path generation and 

visualizations, potential cross-effects can be identified.  

In order to investigate these guiding hypotheses, an automated path planner was developed and 

modeled as a planning computer aid for astronauts conducting extravehicular activities on the 

surface of the Moon.  The prototype was built based on a work domain analysis of both Apollo 

historical evidence and observational study of excursions at a Mars-analog site.  Two separate 

experiments were designed and tested, addressing the research questions presented in this chapter.  
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3  WORK DOMAIN ANALYSIS: 

CHARACTERIZING SURFACE OPERATIONS 

3.1 EXTRAVEHICULAR ACTIVITIES ON PLANETARY SURFACES  

During the Apollo program, exploration was limited to a maximum 3 day stay, with two astronauts 

in bulky spacesuits, and the use of a lunar rover in later missions.  Astronauts explored areas that 

were within a few kilometers of the lunar module.  NASA is now considering lunar missions where 

up to four astronauts are traversing simultaneously on the surface of the Moon, taking advantage of 

pressurized or un-pressurized rovers (NASA, 2005).  Future stays on the lunar surface will range 

from seven days to 180 days, with up to four sorties per week; Mars missions may last up to 600 

days.  As astronauts stay longer on other planetary surfaces, astronauts will be responsible for 

planning and re-planning of their own extravehicular activities (EVAs). 

In order to design robust decision support aids for mission planning, the first step is to characterize 

surface operations of planetary exploration.  This assessment is called a work domain analysis 

(WDA) because this investigation attempts to describe the structure of the domain, e.g., a planetary 

EVA, in terms of not just the tasks that are expected to be performed but also the constraints and 

impact of the environment.  The goal of this WDA is to understand and identify the information 

requirement for a path planning decision support system.  The work domain analysis presented in 

this chapter does not adhere to the rigid WDA definition (i.e., an abstraction hierarchical 

decomposition) presented in Rasmussen (1985) nor is it part of a formal cognitive work analysis 

(Vicente, 1999).  The approach subscribed to is more general, focusing on identifying what 

information is required for planning an EVA by taking advantage of multiple methods, including 

field observations and review of documentation, elements that are more characteristic of a cognitive 

task analysis (Rasmussen, Pejtersen, & Goodstein, 1994; Schraagen, Chipman, & Shalin, 2000). 
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This work domain analysis is not a trivial task as future surface operations may consist of advanced 

technologies (e.g., robotic assistants), different objectives (e.g., acquiring in-situ materials), and a 

growing body of knowledge (e.g., new areas of scientific value).  There are many likely combinations 

that depend on the infrastructure and mission goals.  Hence, a myriad of complex extravehicular 

activities (EVA) architectures are possible. Instead of assuming one architecture, this chapter 

introduces a framework that captures the key parameters and constraints that define a single 

planetary EVA.  Through the work domain analysis, planetary EVA variables, parameters that 

determine and affect path planning and re-planning, are identified and subsequently described.  

These variables are then categorized and organized into the Planetary EVA Framework.  Thus, the 

framework is a summary of the work domain analysis, which was conducted by reviewing Apollo 

EVAs, performing an observational study of excursions in a Mars-analog site, and interviewing 

subject-matter experts, such as planetary scientists and aerospace engineers.   

3.2 PAST EVAS: APOLLO  PROGRAM 

3.2.1 APOLLO EXTRAVEHICULAR ACTIVITIES 

Every Apollo mission that landed on the Moon included at least one EVA.  During the Apollo 11 

and 12 missions, the EVAs focused more on engineering testing, while the EVAs performed during 

Apollo 14 – 17 missions were geared more towards exploration that addressed scientific hypotheses.  

Extensive preparation was undertaken in order to maximize scientific return, involving engineers, 

scientists, astronauts, and mission planners.  Routes and estimated travel times were established 

using low-resolution photographic images and crude topographic maps.  The team of scientists and 

mission planners also allocated finite times to the scientific tasks (Muehlberger, 1981).  Each site and 

task was prioritized based on its relative importance to the overall scientific mission goal.  Many 

activities or sites were dropped due to the lack of time, which is the underlying recurring theme 

among the lunar EVAs.  

Some estimates were poor for the planned EVA tasks and thus, required additional time, affecting 

the rest of the schedule.  During the first mission that astronauts walked on the lunar surface 

(Apollo 11), EVA preparation times were optimistic.  Donning the spacesuit took longer than 
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the interaction between spacesuit, the terrain, and mobility was poorly understood, which 

consequently resulted in a very conservative “walk-back” requirement.  There are still many 

unresolved issues left from the Apollo era, such as navigation and perception problems due to the 

Moon’s environment.  A better understanding of the relationship between variables will improve 

upon future safety and science-return of Lunar exploration.    

Table 3.1 Planetary EVA variables based on Apollo EVAs 

Variable Category Variable Specifics 
Astro-agent  Astronaut 

Goals 
Sites (number and locations), prioritization of sites and tasks, tasks at 
sites, costs associated with task (including time, energy, learning curve), 
additional unexpected tasks 

Terrain Characteristics (craters, large rocks, high slopes) related to obstacles  

Exploration costs Distance, time traversing, metabolic (or energy) expenditures, oxygen 
(and consumables) used, favorable sun positions 

Transportation Walking, driving; preparation time (spacesuit and rover); interaction 
between transportation and terrain & environment 

Environment Sun glare, illumination as affecting perception and navigation; dust 
Infrastructure Lunar lander, access to lunar rover 

Consumables Life support consumables specific to astro-agent (e.g., oxygen, CO2 
scrub, water, battery supply) 

Operation rules 
Safety margins (e.g., minimum remaining reserve oxygen), walk-back 
requirement, operationally required rest stops, maximum metabolic rate 
& heart rate 

EVA components Path (sites visited, path segments), schedule (time at site and traversing 
to waypoints), energy consumed along path segments 

 

3.3 PRESENT EVAS: MER AND TERRESTRIAL ANALOGS  

3.3.1 PLANETARY EXPLORATION BY MARS EXPLORATION ROVERS (MER) 

Mars exploration is currently conducted on a daily basis by the two operational NASA Mars 

Exploration Rovers (MER).  With respect to planning, a group of scientists and engineers meet 

every Martian day (sol) to decide on the sequence of commands for each rover (NASA-JPL, 2005a, 

2005c).  These generally relate to where to go, what activities to conduct (e.g., images to take), and 

where to position the rovers’ arm (Biesiadecki, Leger, & Maimone, 2005).  Decisions are made based 

on the previous sol’s information, which includes not only imagery but also engineering information, 

such as the actual position and energy consumed by the rovers.  If activities did not materialize as 
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expected, engineers have to assess the reasons why and adapt to reflect the discrepancies.  Mission 

planners typically allot one day (8 – 10 hours) to develop their plan.   

The overall goals of the daily traverses are scientifically driven.  This means that site selection and 

activities are identified by the science leaders.  Exploration sites are determined based on imagery 

and spectroscopy data, and rely on planetary scientists’ judgment for subsequent site selection.  The 

sites that each of the rovers have investigated were not pre-determined on Earth, except the landing 

location.  All other sites were selected in-situ, and were resolved based on previous findings, as is the 

nature of exploration (Zuber, 2006).   

In order to interact with the rovers, scientists and engineers (on the ground) use the Scientific 

Activity Planner (SAP) (Norris, Powell, Fox, Rabe, & Shu, 2005; Norris, Powell, Vona, Backes, & 

Wick, 2005).  SAP is the primary science operations tool that provides planning capabilities for the 

MER.  Scientists and engineers have access to imagery that includes panoramas, camera views, and 

hyperspectral visualizations.  Processed information includes “reachability” maps (relating to where 

the instruments can reach), slope, and solar energy maps (Leger, Deen, & Bonitz, 2005).  After 

locations of interest are marked, a simulation predicts rover details like the power consumed, the 

data volume, time required, and final position (Norris, Powell, Fox et al., 2005).  

Key to the rovers’ ability to conduct exploration is their navigation ability.  The MERs’ tele-

operators define waypoints and end goal states.  The rover then can assess and determine the actual 

path, avoiding obstacles.  However, defining an 100-meters drive sequence may take an operator 

between 2 to 4 hours (Biesiadecki et al., 2005).  This is due to the manual terrain analysis that is 

incorporated in the process.  There are many terrain properties that are important: slope, elevation, 

rock size & position, terrain quality (e.g., sand, firmness), and homogeneity of terrain.  Many of these 

influence how the rovers traverse including speed, slippage, and power required.  If the rover 

encounters a navigation problem, the operator intervenes.  For example, one of the rovers 

inadvertently buried itself into a sand dune (Biesiadecki et al., 2005; NASA-JPL, 2005b).  The rover 

followed its driving commands until it realized that it was no longer advancing.  At this point, the 

rover went into a safe mode (“alive” though waiting for new instructions), alerting the engineers of 

the problem.  After weeks of terrestrial testing drive configurations and strategies, engineers were 















Table 3.5 Summary of  sites and estimated parameters for Haughton Crater excursion 

Site Tasks Path Distance Travel Time Reached? 
Junction Gravity measure 7 – 8 km 20 – 30 min √ 
Tripod Hill Gully survey, Gravity measure 7 – 8 km 20 min √ 
Old Base Camp Soil sample 4 km 15 min X 
Anomaly Hill Gravity measure 7 – 8 km 30 min √ 
Perseverance Hill Gravity measure < 1 km 5 min √ 
HMP Base Camp Gravity measure 13 - 14 km 35 min √ 

 

 

Figure 3.4 Haughton Crater excursion, with planned path, sites, and deviations from route. 

A detailed inventory of their supplies was recorded.  Their supplies fell under three categories, which 

were common to all excursions at HMP: excursion, critical and scientific supplies.  Excursion 

supplies included lunch, while critical supplies were items that were related to safety, such radios and 

repair tools for their mobility (i.e., ATV) like a tire pump.  Scientific equipment was carried that 

directly mapped to the objectives of each researcher, and included a gravimeter, cameras, hand-held 

GPS receiver, and sampling tools.  
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Table 3.8 Categorization of  planetary EVA inputs and outputs 

Type Group Variable categories 

Mission Resources 

Astro-agent 
Transportation 
Infrastructure 
Consumables 

Mission Objectives Goals: sites, tasks 
Safety Margins Operational rules 

Physical Environs Terrain 
Environment 

Input 

Models Exploration costs: consumable rates 

Output EVA Plan 

Path 
Schedule 

Other costs along path 
Contingencies 

 

Mission Constraints

Planetary Environs 
• Terrain
• Environment

Mission 
Resources
• Astro-agents
• Transportation
• Infrastructure
• Consumables

Mission 
Objectives
• Goals 

–Sites
–Tasks

EVA Plan
• Path
• Schedule & 
other costs 
along path
• Contingencies

Optimizer/

Satisficer

Safety 
margins:

Operational 
procedures

Operational Constraints
• Mobility obstacles
• Operational obstacles

Models
• Exploration costs

– Consumable rates
 

Figure 3.6 Planetary EVA Framework 
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3.5.1 INPUTS 

The input categories of a planetary EVA are mission resources, mission objectives, safety margins, 

exploration cost models, and planetary environs.  Defining each of these is necessary to develop a 

complete decision support aid from EVA planning and re-planning.  

Every EVA is conducted within a particular planetary environ, in this case, Moon or Mars, and 

includes terrain and environment models.  With respect to the terrain, vital characteristics that 

pertain specifically to path planning are elevation, slopes, rock density, rock size, and ground bearing 

strength.  Other information, for example, chemical composition, would be more relevant for the 

selection of scientific sites.  With respect to the environment, important models include lighting 

conditions (for Moon) and dust storms (for Mars).  The terrain plays an important role in mission 

planning and re-planning as it is one of the main sources of uncertainty, as exemplified in the Apollo 

EVAs, current MER experience, and HMP excursions.  Decreasing terrain uncertainty can be 

achieved by increasing the fidelity of terrain maps.  It is important to consider the uncertainty of all 

models because all EVA plans will be based on these assumptions, and thus, any model errors will 

inevitably introduce errors in the plans.   

The mission objectives, or goals, are the sites and tasks that need to be accomplished in a single 

EVA.  These goals drive the planning of the EVA.  Location, associate tasks, and priority are key 

characteristics of the mission objectives.  The goals of an EVA are not always fixed, as additional 

sites and tasks may be incorporated to take into account new discoveries or emergencies.  Thus, it is 

also imperative to know associated time and energy expenditures for specific tasks during re-

planning.   

The mission objectives can only be met if the appropriate mission resources are in place.  The 

resources are the elements available to carry out the EVA, including the astro-agents, the 

transportation modes, the infrastructure, and the consumables.  The term astro-agent is used 

because future (and current) planetary exploration encompasses both humans and robotic agents.  

Each astro-agent will have a particular capability or expertise that might be necessary to accomplish 

the EVA mission.  Potentially, a source of uncertainty may be the effect of mixed teams on 

accomplishing an EVA, which may add unexpected delays. 
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Transportation is a key element in all planetary EVAs, and the advantages of different locomotion 

options (e.g., walking or driving) need to be exploited to maximize mission success.  Several 

examples within the case studies cited reveal a poor understanding of the relationship between the 

transportation mode and terrain, resulting in re-planning of excursions.  Therefore, it is important to 

understand how the mobility type interacts with terrain characteristics (e.g., speed under different 

terrain rock densities). 

EVA planning and re-planning will have to also take into consideration the infrastructure in place on 

the planetary surface, be it a lander, a base, or even re-fueling stations.  The type of communication 

and navigation system available is essential for any real-time exploration aid.  It is important to 

determine if these systems interact with the terrain or the environment in order to model these 

relationships in the planner.  

The fourth mission resource is the available consumables.  The type and amounts of consumables 

will be determined by the selected astro-agents for the EVA mission (e.g., oxygen for humans versus 

power source for robots).  Among the mission resources, consumables are most important as it is 

these that drive mission constraints, discussed subsequently. 

The relationship between EVA inputs (mission objectives and resources) and the planetary environs 

is defined by the exploration cost models.  These cost function models would determine (or predict) 

traversed distances, durations of tasks (be it walking, roving, or working), energy consumed (e.g., 

metabolic rates or power used), rate of consumables expended, and favorable environmental 

positions.  Many cost functions are needed, as they are astro-agent and/or transportation specific, 

yet few models exist.  Reliable estimates of exploration costs (in particular time and energy 

consumed) are crucial for the planning of complex EVAs, as miscalculations will force in-situ re-

planning. 

3.5.2 CONSTRAINTS AND OUTPUTS 

The intersection of mission objectives and resources is designated as the overall mission constraints.  

Mission constraints are akin to hard constraints, absolute limitations imposed on the system.  For 

instance, the astronaut cannot consume more oxygen than the fixed amount available.  Other 
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limitations involve the type of transportation used in the EVA, and relate, for example, to the 

maximum speed of the mobility or terrain that is physically traversable. 

A subset of the mission constraints are the operational constraints, which are similar to soft 

constraints as they are delineated by established operational procedures, or safety margins.  Soft 

constraints are ones that can be violated but are imposed on the EVA for precautionary reasons.  

For example, one type of rule may be that astronauts should not exceed a particular metabolic rate 

during the traversal.  Another type of safety margin is one where an astro-agent must always return 

to base with 10% of their consumables remaining.  Mission planners will have to use the exploration 

models to assess if the EVA plan violates any of the operational procedures.  Safety margins may 

possibly be overly conservative estimates (e.g., total radiation dosages) due to limited operational 

experience of human planetary exploration, resulting in safe, but inefficient EVAs.    

Two types of operational constraints are identified: mobility and operational obstacles.  Mobility 

obstacles depend on the type of transportation used, and is further restricted by safety margins.  An 

area may be inaccessible by a rover because the rock density in that area is too high, yet that same 

location could be explored on foot (at the cost of additional time, for example).  Incomplete 

knowledge of how different transportation modes interact with the terrain will result in poor 

calculations of obstacles, and hence affect path planning. 

Operational obstacles are areas are out-of-bounds due to operation rules.  For instance, future EVAs 

may not permit exploration of areas that are out of communication range.  If using a rover, “walk-

back” requirements limit the maximum traversable distance from base or re-fueling station.  In 

terms of re-planning, it would be necessary to classify when these operational restrictions can be 

violated, i.e., in case of an emergency. 

Every EVA mission must satisfy the mission goals and constraints.  As a result, the EVA plan 

outputs a path with an associated schedule and other exploration costs.  Ideally, contingency plans 

should also be outlined for rapid re-planning (e.g., alternative routes to sites or back to base).  

Predicting associated exploration costs at sites and along path is imperative as it is this information 

that will be compared to the actual EVA.  Real-time discrepancies will indicate reasons for re-

planning.  Over time, comparative analysis between predictive and actual exploration costs will assist 
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in developing more accurate models of the cost functions, terrain, environment, and their 

interactions with transportation modes. 

3.5.3 APPLICATION OF PLANETARY EVA FRAMEWORK 

The Planetary EVA Framework is a result of comprehensive assessment of the past, present and 

future human-robot planetary exploration.  All the identified variables affect the planning and re-

planning of extra-vehicular activities.  Mission resources and objectives determine the mission 

constraints.  These are further narrowed down by the imposed safety margins, resulting in 

operational constraints.  Only within the system boundaries can an EVA plan be defined, including a 

path with adjoining schedule and other costs.  This framework is also broad enough that, with a few 

nomenclature modifications (e.g., astro-agent), it could apply to other domains that involve multiple 

types of agents and missions that require planning and scheduling.  This includes unmanned ground 

or air vehicles, rescue teams, and diving expeditions.  The specifications of each input category and 

constraints have to describe though the work domain for that particular field, just as the Planetary 

EVA Framework addresses human traverses on extra-terrestrial surfaces.     

Before sending humans to explore Moon and Mars, we need to have a clear understanding of the 

relationships between inputs and constraints across all type of planetary EVA architectures. 

Acquisition of this knowledge will not only serve the purpose of developing EVA planning decision 

support aids but also modeling future planetary surface operations with implications for logistics 

mission planning.  While additional specification with respect to the parameters and constraints is 

possible, the proposed Planetary EVA Framework is the first step in establishing a common ground 

to discuss human-robot extravehicular activities.  For the purposes of this thesis, only a small sub-

section of the framework is applied for the developed prototype EVA path planner.  
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Figure 4.2 Prototype path planner, PATH (Planetary Aid for Traversing Humans)  

4.2 TERRAIN MAPS 

This section includes a description of the path planner’s inputs: a terrain elevation map and an 

obstacle map.  Each is pre-defined by the experimenter.  Within the scope of this research, two 

terrain maps were used, based on lunar terrain data.  This component of the path planner is 

interchangeable, as the experiment can define any elevation and obstacle map. 

4.2.1 CONE CRATER: APOLLO 14 

While global mappings of the Moon are available, high resolution terrain maps of smaller areas are 

scarce.  In a previous study (Carr, 2001), Carr interpolated a 5-meter resolution elevation map of the 

Apollo 14 landing site of Cone Crater (about 3.65º south, 17.47 º west on Moon), an area roughly 
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