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Abstract— Network centric warfare (NCW) is a concept of 

operations that seeks to increase combat power by linking 
battlespace entities to effectively leverage information 
superiority. The Department of Defense (DoD) has recognized 
that a lack of understanding of human decision making relevant 
to NCW is a significant barrier limiting potential benefits. To this 
end, this report identifies ten human supervisory control 
challenges that could significantly impact operator performance 
in NCW: Information overload, appropriate levels of 
automation, adaptive automation, distributed decision-making 
through team coordination, complexity measures, decision biases, 
attention allocation, supervisory monitoring of operators, trust 
and reliability, and accountability. Network-centric operations 
will bring increases in the number of information sources, 
volume of information, and operational tempo with significant 
uncertainty, all which will place higher cognitive demands on 
operators. Thus it is critical that NCW research focus not only on 
technological innovations, but also the strengths and limitations 
of human-automation interaction in a complex system. 
 

Index Terms—Human supervisory control, decision support 

I. INTRODUCTION 
etwork Centric Operations (NCO), also known as 
Network Centric Warfare (NCW), is a concept of 
operations envisioned to increase combat power by 

effectively linking or networking knowledgeable entities in a 
battlespace. Mission success is achieved by leveraging 
information superiority through a network, rather than through 
the traditional method of sheer numerical superiority through 
platforms and weapons. Key components of NCO include 
information sharing and collaboration which will promote 
shared situational awareness and overall mission success [1]. 
To realize NCO, significant improvements will need to be 
made in areas of communications, sensor design, and 
intelligent automation. However, while technological 
advances are important for the successful integration of 
network centric operations, equally if not more critical is the 
need to understand how, when, where, and why the 
technology supports human decision makers and front line 
soldiers. Command and control domains are complex socio-
technical domains in that technology is the means to an end 
(goal or mission) defined by human intentions.  Advanced 
NCO technologies that are not designed with the express 
 

This work was supported in part by Boeing Phantom Works and the Office 
of Naval Research.  

M.L. Cummings is an Assistant Professor in the Massachusetts Institute of 
Technology Aeronautics and Astronautics Department, Cambridge, MA 0213 
USA , 617-252-1512; e-mail: missyc@mit.edu.  

 

purpose of supporting military personnel in dynamic and 
uncertain situations with rapidly shifting goals are likely to 
fail. 

The move from platform-centric warfare to NCW 
represents a shift in the role of humans both in mission 
planning and actual operation. As has already been evidenced 
in the development of fly-by-wire, highly automated aircraft 
and missile systems (such as Tomahawk and Patriot), military 
operators are less in direct manual control of systems, but 
more involved in the higher levels of planning and decision-
making. This shift in control from lower level skill-based 
behaviors to higher level knowledge-based behaviors is 
known as human supervisory control (HSC). HSC is the 
process by which a human operator intermittently interacts 
with a computer, receiving feedback from and providing 
commands to a controlled process or task environment, which 
is connected to that computer [2]. 

HSC in military operations includes mission planning and 
passive and active intelligence operations, as well as missions 
involving manned aircraft, and unmanned air, ground, surface, 
and subsurface vehicles. The use of automated technologies 
and systems is a fundamental component of NCO; thus in the 
context of human interaction, NCO is a high level human 
supervisory control problem. The number and types of 
human-machine supervisory interfaces will expand 
accordingly in NCO, but there is little understanding of how 
functions should be allocated between humans and 
automation, what level of collaboration is needed, and how 
these can be supported with actual software and hardware. 
Given the influx of voluminous information sources in NCO, 
a particularly acute problem will be how to give operators 
enough information for well-informed decisions without 
reaching cognitive saturation. Moreover HSC problems in 
NCO are further complicated by the dynamic, uncertain, and 
time-pressured elements typical of command and control 
environments. Due to the increasing importance of HSC in 
NCO, the DoD has recognized that a lack of automation 
reliability and understanding of relevant HSC issues, as 
experienced both by individuals and teams, are among the 
primary barriers limiting exploitation of the full potential of 
NCO [1].  

In this paper, ten major human supervisory control issues 
have been identified as those HSC issues that are likely to 
cause degraded performance for both the system and the 
operators/decision-makers in futuristic network centric 
operations. They are: 

• Information Overload 
•   Appropriate Levels of Automation 
•   Adaptive Automation 
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•   Distributed Decision-Making and Team 
Coordination 

•   Mitigating Complexity  
•   Decision Biases 
•   Attention Allocation 
•   Supervisory Monitoring of Operators 
•   Trust and Reliability  
•   Accountability 

These ten categories are not in rank order, are not mutually 
exclusive, and will often overlap theoretically as well as in 
actual design and testing. The importance of each category 
will be dependent on the mission context and relevant 
technological systems. They will now be discussed in turn in 
the following sections. 

II. TEN HUMAN SUPERVISORY CONTROL CHALLENGES 

A. Information Overload 
According to the DoD, the Global Information Grid (GIG), 

the actual information technology network that will link 
command and control agents, will be the enabling building 
block for NCO. The GIG is the end-to-end set of information 
capabilities, associated processes and personnel for collecting, 
processing, storing, and disseminating information to those 
who require it, on the battlefield or otherwise [1]. Metcalf’s 
Law states that the usefulness, or utility, of a network equals 
the square of the number of users [3]. While this means forces 
will have access to exponential amounts of information over 
today’s forces, it also means that information intake for the 
average NCO operator will be higher than ever seen been 
before in the command and control environment. Even if the 
information complexity does not increase (which is unlikely), 
mental workload will increase accordingly. The Yerkes-
Dodson Law [4], adapted to workload and performance 
(Figure 1) illustrates that beyond a task-dependent moderate 
level of arousal, individuals will become cognitively 
overloaded and their performance will drop.  The problem is 
predicting when and how this overload will occur for a 
dynamic decision making environment, so that the amount of 
information any single person or group is required to process 
is manageable. 

With the voluminous increase in incoming information in 
NCW, identifying the point or plateau of cognitive saturation 
is the key to designing systems that operators can effectively 
manage. Predicting this point of saturation is difficult for 
NCO systems because it is dependent on task, automation 
level, operational tempo, training, experience, and a number 
of other factors. Modeling and simulation can aid in predicting 
where these points are likely to be which could include 
cognitive, psychophysiological (to be discussed in a 
subsequent section), and predictive statistical models based on 
experimental simulations.  

B. Appropriate Levels of Automation  
While automating significant aspects of NCO is necessary 

so that information sharing can be both quick and 
comprehensive, what to automate and to what degree to 
automate a process/system is a central question in the design 
of NCO systems. For routine operations, higher levels of 
automation (LOAs) in general result in lower workload, while 
the opposite is true for low levels of automation [5].   

It is possible to have a LOA too high or too low, each with 
its own distinct set of problems [6]. For example, HSC 
problems that could results if LOA is too high include: 

• Manual or mental skill degradation. 
• Loss of situational awareness due to lack of 

automation transparency, complexity, and inadequate 
feedback. 

• More advanced automation issues such as brittleness 
& literalism; in other words, the automated system 
might not be able to handle novel or unexpected 
events. Moreover, it may not operate effectively in 
conditions near or at the edge of the intended 
operating envelope. 

• Time and difficulty to diagnose failures and manually 
take over. 

HSC problems can also occur if the LOA is too low, such as: 
• Cognitive and working memory overload in routine 

tasks under time pressure. 
• Human decision biases and heuristics. 
• Lack of repeatability and consistency. 
• Complacency and boredom. 
• Greater human interdependency and chaos when 

something fails, unless safeguards are in place. 

C. Adaptive Automation 
Military operations are often characterized by long periods 

of inactivity followed by intense periods of action during 
which time-critical decisions must be made.  At these times 
performance is most critical, yet it will likely suffer due to the 
temporary information overload placed on the operator and 
the need for the operator to cognitively reorient to the new 
situation.  With NCO and the emergence of a robustly 
networked force, the amount of information available to 
military personnel at all levels is exponentially greater.  
Therefore, the problem of information overload, particularly 
during brief bursts of actions, will become much more 
common. 

One method to alleviate such problems is the use of 
adaptive automation (AA). Changes in the level of automation 
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Fig. 1. Performance Adaptation of the Yerkes-Dodson Law 
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can be driven by specific events in the task environment, 
models of operator performance and task load, physiological 
methods, or by changes in operator performance [7]. AA has 
been shown to improve task performance [8, 9], situational 
awareness [10] and lower workload [9].  Two important 
questions to answer in deciding how and when to develop an 
adaptive automation decision support system are 1) when to 
use adaptive automation to determine under what 
circumstances the LOA should change, and 2) whether the 
computer or the human decides to change the LOA.  

AA cueing can be accomplished through models of operator 
performance which can predict the effectiveness of humans 
during particular processes and behaviors.  Thus, the model’s 
forecasted level of operator mental workload or performance 
on any number of specified tasks can be used to change the 
LOA. One primary problem with this approach is that the 
acceptable level of any measure predicted by the model must 
be carefully defined in advance.  Performance models offer 
the advantage of flexibility in the sense that they can apply to 
a large range of situations, even unexpected ones, but often 
are costly and difficult to develop, especially if higher 
reliabilities are desired. 

Psychophysiological measures such as the 
electroencephalogram (EEG), event-related brain potentials 
(ERPs), eye movements and electroculography (EOG), 
electrodermal activity (EDA), heart rate and heart rate 
variability (HRV), breathing rate and blood pressure have all 
been correlated with mental workload to varying degrees of 
success.  Experimentally, these methods are advantageous 
because they are not task specific and they can continuously 
record data.  One significant problem is that often the devices 
used to take these measurements are obtrusive and physically 
uncomfortable for subjects, creating a possible anxiety effect.  
In addition, they are very “noisy” and it is often very difficult 
to distinguish a true signal from the false ones.  While 
psychophysiological measures have been used to adaptively 
allocate automation functions in research environments, 
because of the limitations, transferring experimental AA to 
operational AA has not yet been demonstrated. 

Finally, AA may be based upon performance-based 
measures, whereupon some performance metric such as 
reaction time or task accuracy is used to determine mental 
workload.  While generally easier to measure and quantify 
than physiological measures, performance measures are 
generally task-specific (and thus not generalizable to other 
tasks) and often require the subjects to modify their natural 
task behavior to accommodate the experimental objectives. 
Moreover, performance-based measures also may only give 
the experimenter discrete samplings of operator workload at 
specific intervals instead of a constant measurement.  This 
could be inappropriate for some applications characterized by 
rapid changes in the environment like what will likely occur in 
high operational tempo settings in NCW, necessitating quick 
switches between automation modes. 

D. Distributed Decision Making  
Platform-centric command and control (C2) in past military 

operations often avoided distributed decision-making and 
minimized team coordination in favor of a clear hierarchy for 

both information flow and decision making.  Many decisions 
were made by a select few at the top level of command, and 
pains were taken to decompose various factions of the military 
into small, specialized niches that had little direct contact 
between one another (a hierarchical waterfall approach).  This 
has begun to change in recent times, and a fully realized 
vision of NCW will require that both local and global teams of 
distributed decision makers, not a few people at the top of a 
hierarchy, make decisions under time-pressure. Therefore, 
understanding the issues unique to team-based coordination 
and decision-making take on new importance in the context of 
NCW. The question is how to make effective decisions 
between and within distributed teams, particularly in the 
complex, data-rich, and time-compressed situations often seen 
in military C2 and NCW scenarios. 

There has been extensive work in the computer-supported 
cooperative work (CSCW) community that examines how 
different types of technologies, to include both software and 
hardware, support effective team decision making. 
Developing technologies that promote collaboration both 
locally and remotely in space as well as synchronous and 
asynchronous in time is highly relevant to NCW. For 
example, Navy personnel are assigned to different watch 
sections for a ship’s power plant, thus share a space but 
communicate across different times. One collaborative 
technology they use to pass knowledge is a log book. Logs are 
used by watchstanders to record significant events, time they 
occurred, who was notified, what actions were taken, etc. 
While they have existed on paper for hundreds of years on 
ships, written logs are now giving way to electronic logs, with 
added benefit of an easier search space and automated 
reminders.  

However, while many technologies developed for corporate 
settings show promise for NCW applications (e.g., electronic 
whiteboards [11], table top displays [12], more research is 
needed into both the promised benefits, as well as unintended 
consequences. For example, chat, a popular and ubiquitous 
synchronous communication tool for remotely distributed 
military individuals and teams, can have unintended 
consequences in terms of degraded human and system 
performance [13]. In a study focusing on the benefits of 
shared displays between co-located team members, the shared 
displays unexpectedly contributed to degraded performance 
due to an increase in workload [14]. Given the high risk and 
uncertainty of military time sensitive operations, more 
investigation into the impact of new collaborative 
technologies is warranted.  

While difficult to capture, Cooke et al. [15] measured 
distributed cognition in a command and control setting 
through team knowledge and succeeded in predicting 
subsequent team performance. However, distributed cognition 
across large scale time sensitive operations with multiple 
entities, both human and automated, is not well understood as 
well as how the introduction of new technologies supports or 
detracts from team situation awareness in NCW. Boiney [16] 
echoes this sentiment and in terms of time sensitive targeting, 
highlights the need for better understanding of collaborative 
sensemaking, the establishment of trust, distributed team 
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situation awareness, and appropriate information sharing to 
include communications and awareness cueing. 

Lastly, design of team architectures to include role 
allocation, team geographic distributions, communication, and 
team sizes is critical to successful NCW distributed decision 
making and team coordination. Research has shown that 
organizations operate most efficiently when their structures 
and processes match their mission environments [17], but it is 
not always clear whether traditional top-down hierarchies or 
more lateral heterarchies provide the most efficient structure 
[18]. Moreover, sensor quality and operational tempo can 
drive the need for distributed versus centralized control [19], 
thus further complicating the team architecture problem by 
adding a technological artifacts. 

E. Complexity 
Information complexity is a growing problem in many 

domains, with particular applicability to NCW. Complexity 
will be impacted by both the amount and sources of 
information, and will be further exacerbated in the future as 
sensor technologies improve and the volume of available data 
continues to grow. NCW operators will be required to 
understand resultant critical relationships and behaviors of 
that data at the same or higher level than today.  Increased 
complexity will usually manifest in increased workload and/or 
unpredictability of the system, to include the human, which 
will have a negative effect on human and system performance 
[20]. There are also well known limitations to human 
performance that are likely to be encountered as workload 
increases. Therefore, it is important that the interfaces NCW 
operators interact with help to reduce and manage this 
increased level of data complexity. 

Complexity, as defined by Merriam-Webster, is “the quality 
or state of being hard to separate, analyze, or solve”.  The use 
of the term ‘hard’ implies that complexity is relative, which 
was captured by Miller [20] when he described the difference 
between actual and perceived complexity. Perceived 
complexity results from those elements of a task or situation 
that make it hard to deal with, or in other words, what makes a 
system seem difficult. Actual complexity implies the use of 
more objective criteria for complexity, and does not take into 
account humans’ perceptions of a task or situation.  

In human supervisory control domains, displays are 
nominally designed to reduce complexity by representing the 
environment so that a correct mental model can be formed and 
correct interactions can take place [21]. Thus displays should 
reduce complexity and hence workload through transforming 
high-workload cognitive tasks such as mental computations 
into lower workload tasks through direct perception, i.e. 
visually [20]. In addition, displays should promote effective 
cognitive strategies such as grouping and rule formation to 
further reduce perceived complexity. However, one drawback 
to new display technology is that in complex and dynamic 
human supervisory control domains such as ATC and NCW, it 
is not always clear whether a decision support interface 
actually alleviates or contributes to the problem of complexity. 
While preliminary research indicates that elements of 
complexity can be measured as separate constructs and that 

display elements can add to cognitive complexity [22, 23], a 
more principled approach is needed in the development of 
metrics for display and organizational complexity. 

One other potential problematic area for cognitive 
complexity that has emerged from recent display 
technological advances is the aesthetic seductiveness of 
compelling visual, aural, and haptic displays, otherwise 
termed as the “cool factor.” While displays that use advanced 
technologies such as 3D, holographic images, virtual reality, 
and layering invariably elicit a “that’s cool” response, 
emerging trends in research show that not only are these 
technologies often not helpful, they can also be harmful. For 
example, 3D displays are gaining in popularity, yet in recent 
command and control studies, realistic 3D perspective views 
produced poor performance for precise relative position and 
distance judgments. Furthermore, despite the fact that 
operators preferred 3-D icons, conventional 2D symbols 
produced superior performance [24].  Smallman et al., [25] 
attribute this disparity between operators’ preference for 3D 
displays and their sub par performance to a concept they term 
“Naïve Realism.” Operators naïvely prefer displays that mimic 
realistic scenes over representations that are flawed and 
imprecise, which could lead to poor performance. 

F. Decision Biases 
A defining characteristic of NCW is the expected increased 

information-sharing tempo over platform-centric forces of the 
past, which will require rapid decision-making with imperfect 
information. Humans in general, and especially under time 
pressure, do not make decisions according to rational decision 
theories.  Rather, they act in a naturalistic decision-making 
(NDM) setting in which experience, intuition, and heuristics 
play a dominant role [26]. Humans generally employ 
heuristics in order to reduce cognitive load [27, 28], which 
will likely be the case in NCW settings. However, while 
heuristics can be useful, powerful tools, they can also 
introduce bias in decision making, especially when coupled 
with large amounts of information under time pressure. 

While humans can be effective in naturalistic decision 
making scenarios in which they leverage experience to solve 
real world ill-structured problems under stress [29], they are 
prone to fallible heuristics and various decision biases that are 
heavily influenced by experience, framing of cues, and 
presentation of information. For example, confirmation bias 
takes place when people seek out information to confirm a 
prior belief and discount information that does not support this 
belief [30]. Another decision bias, assimilation bias, occurs 
when a person who is presented with new information that 
contradicts a preexisting mental model, assimilates the new 
information to fit into that mental model [31]. Of particular 
concern in the design of intelligent decision support systems 
that will support NCO processes is the human tendency 
toward automation bias, which occurs when a human decision 
maker disregards or does not search for contradictory 
information in light of a computer-generated solution which is 
accepted as correct [32, 33]. Operators are likely to turn over 
decision processes to automation as much as possible due to a 
cognitive conservation phenomenon [34], and teams of 
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people, as well as individuals, are susceptible to automation 
bias [35].   

Many studies have demonstrated evidence of automation 
bias in laboratory settings. Layton, Smith, and McCoy [36] 
examined commercial pilot interaction with automation in an 
enroute flight planning tool, and found that pilots, when given 
a computer-generated plan, exhibited significant automation 
over-reliance causing them to accept flight plans that were 
significantly sub-optimal. Skitka, Mosier, and Burdick [37] 
found that when automated monitoring aids operated reliably, 
they led to improved human performance and fewer errors as 
opposed to not having an aid. However, when the automation 
failed to detect and notify operators of an event, or incorrectly 
recommended action despite the availability of reliable 
confirmatory evidence, human error rates increased 
significantly. More directly related to NCW processes, in a 
Tomahawk strike planning and execution task, Cummings 
[38] found evidence of automation bias when an intelligent 
decision aid recommended a single course of action for 
retargeting missiles to emergent targets.  

G. Attention Allocation 
An important task in supervisory control is often one of 

how to allocate attention between a set of dynamic tasks.  In 
deciding on an optimal allocation strategy, the operator acts to 
balance time constraints with relative importance of the 
required tasks. Due to the expected increases in the number of 
available information sources, volume of information and 
operational tempo in NCO, greater attentional demands will 
be placed on operators. This is a fundamental and critical HSC 
problem in NCO.  There are two general areas where attention 
allocation issues are likely to occur in NCW: Preview times 
and primary task interruption. 

In NCW, the problem of attention allocation issues and 
preview times occurs when an operator expects sensor 
information at established time intervals to accomplish some 
task, and must act on this information, whether complete or 
not, before a deadline. A central issue with the concept of 
preview times is how to maintain task priority when additional 
information is expected in the future, and how emergent 
situations influence an operator’s ability to assimilate this 
preview information. Tulga and Sheridan [39] investigated 
some aspects of this in a generic multi-task supervisory 
control paradigm. They found that at high workloads, the time 
subjects planned ahead was inversely proportional to the inter-
arrival rate of new tasks.  Using a similar paradigm, Moray et 
al. [40] found that even if subjects were given an optimal 
scheduling rule, they were unable to implement it under 
enough time pressure, resorting instead to significantly non-
optimal heuristic rules. However, it was not possible to gain 
new information about specific tasks that would influence 
planning, nor were there unexpected events that significantly 
changed the nature of the task.  In recent work examining 
intelligent agent predictions for future periods of high 
workload in order to aid operators controlling multiple UAVs, 
results revealed that subjects fixated on attempts to globally 
optimize an uncertain future schedule to the detriment of 
solving certain, local problems [41].   

Another area of concern is that of primary task disruption 
by secondary tasks. In time-pressured scenarios, interruptions 
of a primary task caused by secondary tasks can increase 
mental processing time and induce errors in the primary task 
[42]. For supervisory control tasks in command and control 
that include monitoring of displays which may or may not be 
changing rapidly, operators will periodically engage in 
interactive control tasks such as changing the course of UAVs 
or launching a missile. When task engagement occurs, 
operators must both concentrate attention on the primary task, 
but also be prepared for alerts for external events. This need to 
concentrate on a task, yet maintain a level of attention for 
alerts, causes operators to have a conflict in mental 
information processing. Concentration on a task requires 
“task-driven processing” which is likely to cause decreased 
sensitivity or attention to external events.  Interrupt-driven 
processing, needed for monitoring alerts, occurs when people 
are sensitized and expecting distraction. The conflict between 
focusing on tasks and switching attention to interruptions is a 
fundamental problem for operators attempting to supervise a 
complex system which requires dedicated attention but also 
requires operators to respond to secondary tasks, such as 
communications or alerts from non-critical sub-systems. 

H. Supervisory Monitoring of Operators 
A common operating structure in the military is one where a 

single supervisor oversees several human subordinates for the 
purpose of managing performance and relaying commands to 
the appropriate team members. Under information age C2 
structures, the need for this second function will be reduced 
(even eliminated in some cases), but performance monitoring 
will still be required. Frequently, these operators will be 
engaged in HSC tasks, so it will be the job of a supervisor to 
observe and diagnose HSC issues in one or more teams. 

HSC problems can sometimes be subtle in nature, and thus 
tend to be more difficult to detect than during many other 
types of operations. Most HSC tasks are primarily cognitive in 
nature, so the supervisor cannot easily infer accurate 
performance from physical actions of operators.  Rather than 
being able to directly observe task completion by a human, the 
supervisor can only evaluate how an operator is interacting 
with automation that completes that same task, and once it is 
done, evaluate the results of that effort. Physical actions taken 
by operators are limited to activities like typing, button 
pushing, and body movements to position themselves for 
better screen viewing.  Furthermore, the effects of operators’ 
actions can occur in remote locations from both the supervisor 
and subordinates. This physical separation means that all 
people involved with the process must form mental 
abstractions to envision a complete picture of the situation. 
Complicating this is that interaction is usually done through 
artifacts with inherent limitations, such as voice 
communication, data links, and 2-dimensional screens.  While 
this is clearly a problem with individual operators (it is one of 
the primary considerations when designing automation of this 
type), it is an even larger one for supervisors, who must try to 
synthesize information from multiple operators at once.  
Furthermore, isolating a single cause for poor performance of 
an entire team can be difficult, especially in time-pressured 



 6

scenarios characteristic of NCW environments. Lastly, 
decreases in performance may be the result of automation 
degradation and have nothing to do with the human. 
Supervisors may have difficulty separating the two. 

The main problem is then how to support supervisors of 
HSC tasks so that they are better able to understand what their 
subordinates are doing.  Many of the issues previously 
discussed in this chapter factor into this discussion.  In order 
to quickly observe and diagnose HSC problems, supervisors 
must have a high level of SA, both for individuals and teams.  
Even more so than their subordinates, it is critical that HSC 
supervisors have a clear picture of the team’s overall situation. 
The building block to achieving this superior level of SA is 
access to and absorption of all relevant data. Therefore, 
information overload will be a particularly acute problem, as a 
supervisor could be responsible for any or all of the 
information available to their numerous subordinates. 
Additionally, due to the greater range of information types 
received by HSC supervisors as compared to a single operator, 
the number of possible relationships and behaviors of this data 
is higher, thus increasing situation complexity. 

I. Trust and Reliability 

Anecdotal reports from soldiers in Afghanistan using 
unmanned ground vehicles reveal that soldiers are 
underutilizing the robots because they inherently distrust the 
robots, and this inherent distrust in autonomous systems is 
reflected in the above case study. Distrusting automation 
when it is perfectly capable has been shown to lead to disuse 
or misinterpretation of results in order to fit an operator’s 
mental model, even if the subsequent workload caused by the 
distrust is very demanding and/or time consuming [32, 43-45]. 
In process control, operators’ trust in automation has been 
shown to be primarily based on their perception of the 
automation’s competence [46], which is likely the case for the 
soldiers in Afghanistan.  

In contrast, other studies have found that pilots tend to trust 
automation even when it was failing [47, 48]. In time-
pressured scenarios with high stakes and uncertainty, 
operators can trust automated systems too much, to the 
detriment of the overall mission.  Thus designers of NCW 
systems are faced with a conundrum – how to design a system 
that is trusted and utilized to its fullest extent, yet not overly 
trusted such that humans become complacent.  

Trust is dynamic in that it changes with exposure to and time 
between system failures. For example, after an initial system 
failure, there is a sharp decrease in trust, but it rebounds with 
consistently correct automation. If the automation fails 
subsequent to this initial failure, trust decreases but it is 
regained more quickly [46, 49, 50].  Relevant to NCW, recent 
research in trust and automation reliability in UAV military 
reconnaissance missions demonstrated that while reliable 
automation aids operators, unreliable automation can 
significantly degrade performance [51]. Specifically, 
automation that caused a high rate of false alarms for system 
failures was far more disruptive than automation that failed to 
alert operators of a failure (otherwise known as a miss). As a 
result, Dixon et al. [51] recommended that any automated 

decision support system that operates below 70% would 
generate unacceptable costs.   
Calibrating an operator’s trust level to the automated system’s 
actual trustworthiness or reliability is the solution to the 
problem of too little or too much trust [44, 50]. However, this 
is still not well understood in the field of human supervisory 
control. Automation feedback in terms of self-evaluation and 
interaction with automated decision aids have been suggested 
as potential strategies for appropriate trust calibration [44, 45]. 
Displaying the automation’s confidence may facilitate better 
calibration of trust, however, displaying uncertainty and 
confidence information about an automated recommendation 
or solution is not a straightforward matter. Humans are not 
intuitive statisticians and tend to introduce biases in 
probabilistic reasoning [28]. Thus presenting probabilistic 
confidence information to operators so they can make 
unbiased decisions is not a trivial design problem. 

McGuirl and Sarter [52] demonstrated that a categorical 
trend display of a computer’s confidence in its 
recommendations was superior to a probabilistic static 
representation for in-flight icing interventions.  Uncertainty in 
information has also been successfully conveyed through 
degraded images using blended color icons, and the addition 
of numeric probabilities provided no additional advantage 
[53]. Once an operator’s trust has been properly calibrated, Xu 
et al. [54] have demonstrated that even with imperfect 
automation, human operators can still properly execute their 
tasking. Given the significant uncertainty that will exist within 
the actual NCW environment as well as the uncertainty 
introduced by imperfect automation, more research is needed 
in trust calibration techniques, especially as they apply to 
time-pressured decisions. 

J. Accountability 
In addition to the myriad of technical issues that surround 

NCW human supervisory control problems, there are also 
social and ethical considerations, especially for weapon 
systems that impact humans in such a dramatic fashion. What 
might seem to be the most effective design from a technical 
viewpoint may not be the most responsible. In one of the few 
references in the technical literature on humans and 
automation that considers the relationship between automation 
and moral responsibility, Sheridan [55] is wary of individuals 
“blissfully trusting the technology and abandoning 
responsibility for one’s own actions.”    

While many technical design issues can be resolved through 
modeling and testing, degradation of accountability and 
abandonment of responsibility when using automated systems 
is a much more difficult question to address. Automated tools 
are designed to improve decision effectiveness and reduce 
human error, but they can cause operators to relinquish a 
sense of responsibility and subsequently accountability 
because of a perception that the automation is in charge. 
Sheridan [56] maintains that even in the information 
processing role, “individuals using the system may feel that 
the machine is in complete control, disclaiming personal 
accountability for any error or performance degradation.” 

How then could systems be designed to promote 
accountability, especially in the context of NCW? One 
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tangible system architecture consideration for accountability is 
the number of people required to interact with a given 
decision support system. Research indicates that responsibility 
for tasks is diffused when people work in collective groups as 
opposed to working alone. This concept is known as 
“social loafing” (see [57] for a review). This is of particular 
concern in distributed systems like those expected in NCW 
systems since task responsibility will often be delegated to 
many. While research indicates that people experience 
degraded task responsibility through collective action, the 
potential loss of a sense of moral responsibility and agency for 
operators interacting collectively through human-computer 
interfaces is not as clearly understood.  It is likely that the 
computer interface becomes another entity in the collective 
group so that responsibility, and hence accountability, can be 
cognitively offloaded not only to the group, but also to the 
computer. This is one area in human-computer interaction and 
accountability research that deserves significantly more 
attention.  

III. CONCLUSION 
Military forces in the 21st century face complex and 

subversive threats that often cannot be defeated by 
conventional tactics. Thus, it is critical that the military be 
able to leverage all of its available information, and to have 
sufficient agility to apply relevant resources to bear on 
emerging situations. This is the driving force behind the US 
military’s transformation into the Information Age and NCW.  
However, the primary advantage of operations based upon the 
tenets of NCW, that of rapid access to information across the 
network, will likely be a major bottleneck and possible point 
of failure for those humans who must synthesize voluminous 
data from the network and execute decisions in real-time, 
often with high-risk consequences under significant 
uncertainty. Network-centric operations will bring increases in 
the number of available information sources, volume of 
information and operational tempo, all which place higher 
cognitive demands on operators.  

The 10 HSC NCW challenges identified here are not 
mutually exclusive and apply to other domains such as 
business and civilian command and control entities such as air 
traffic control and first response systems. Specifically the 
adoption of NCW principles will be problematic for human 
decision makers who need to execute supervisory control 
across complex, distributed networked systems with a high 
degree of uncertainty. The implementation of NCW will 
exponentially add to the number of available information 
sources as well as the volume of information flow. Without 
measures to mediate this volume, information overload will be 
problematic.  To manage the increase in information across 
the network, increased levels of automation will be needed but 
often introduce additional human performance problems.  One 
potential design strategy is the use of adaptive automation, 
which has been shown in certain cases to lower workload, but 
is beset with many technical and mission-critical limitations. 
Workload mitigation strategies such as increased automation 
and multimodal displays will increase complexity, which can 
cause a loss of situation awareness or an unexpected and 

unmanageable increase in mental workload.  It is therefore 
essential that designers be able to measure whether or not 
interfaces with which NCW operators interact actually reduce 
complexity instead of add to it. 

A more fundamental issue associated with the increase in 
the number of available information sources, volume of 
information, and operational tempo under NCW are operator 
attention allocation strategies.  NCW hinges on successful 
information sharing, so knowledge of the relationship between 
perceived and actual high priority tasks and associated time 
management strategies, as well as the impact of task 
disruptions is critical. As a result of NCW information 
sharing, command and control structures will change 
significantly.  Traditional hierarchical command will be 
partially replaced by distributed decision-making and low-
level team coordination.  Therefore, understanding how to 
make effective, time-pressured decisions within these 
organizational structures takes on greater importance in NCW. 
Moreover, leveraging automation to aid in supervisory 
monitoring of operators is another significant area of concern 
since NCW will contain embedded HSC systems. 

NCW will drive an increase in information-sharing tempo 
and rapid decision-making. Under these time pressures, the 
use of heuristics and other naturalistic decision-making 
methods may be subject to undesirable decision biases, both 
for individuals and groups. Often these decision biases will 
result in complacent behavior such that operators overly trust 
a complex automated system, but there is also significant 
distrust of automated systems, which is particularly linked to 
that system’s reliability. Lastly, this potentially displaced trust 
in automation and complacency can lead to a loss of 
accountability and erosion of moral responsibility. 

Unfortunately, despite the fact that NCW exists to support 
human intentions, technological determinism is pervasive in 
that the primary thrust of NCW research is directed toward 
improvements and innovations in technology [58]. The typical 
but naïve assumption is that advancements in automated 
systems will naturally improve both system and human 
performance. Without dedicated focus on the impact of NCW 
technology for both individual and team cognitive processes, 
as identified in these 10 areas, the DoD vision of a network 
with shared situational awareness, increased speed of 
command, self-synchronization, and higher operational tempo, 
lethality and survivability will be replaced with a problematic, 
sub-optimal, and reactive network with significantly increased 
risk for warfighters. 
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