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Abstract 
 

The introduction of autonomous swarming command and control networks will 
introduce new layers of human decision making complexity never before experienced in 
command and control environments.  One of the primary advantages of swarming 
networks of autonomous vehicles is the ability of these networks to process large 
amounts of information in relatively short periods of time to more optimally achieve a 
mission goal, all while protecting humans from high risk and potentially hostile 
environments.  However, even though the human may be taken out of the physical 
control loop in these systems, it will still be critical to include the human at some level of 
decision making within these swarming networks both as a safety check and also to 
ensure that the automation is truly supporting overall mission goals.  Because of the 
revolutionary nature of swarming technology, futuristic human interaction with complex 
autonomous vehicle networks is not well understood, and more research emphasis needs 
to be placed on human requirements, strengths, and limitations for supervisory control of 
swarming networks of multiple autonomous vehicles.  This research should include an 
investigation of the interaction of increasing vehicle autonomy on human supervisory 
control, the effect of increased levels of automation in decision-making, and how 
situation awareness is impacted by these increasing levels of vehicle autonomy and 
decision making automation.   
 
Introduction 
 

There is significant growing interest in many government agencies to design and 
build networks of unmanned vehicles that will have the ability of operating 
autonomously, which will in effect, take the human out of the loop at certain levels of 
tasking. For military command and control agencies, autonomous vehicle operations 
represent a significant leap in leveraging technology to achieve successful mission 
completion.  However, command and control is a term not just representative of military 
architectures.  Any system that involves the coordination of resources by a designated 
authority to meet a common mission objective is a command and control system.  The act 
of planning, directing, coordinating, and controlling resources to include personnel, 
equipment, communications, and facilities to accomplish a mission goal applies to many 
domains such as first response systems, law enforcement, space missions etc.  

Unmanned autonomous systems of the future will require less intensive manual 
control than present day systems.  While currently unmanned aerial vehicles (UAVs) 
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require relatively concentrated human input for flight control, in the future, it is likely 
that the human role for direct flight control will diminish and the need for supervisory 
control, to include higher level cognitive reasoning, will become much more substantial.  
This is likely to be true for all autonomous vehicles, not just UAVs, which is exemplified 
by the current explorations of the Spirit and Opportunity rovers on Mars.  In addition to 
the increased need for a human in the supervisory role in this futuristic use of multiple 
autonomous vehicles, intra-vehicle collaboration in which vehicles make decisions within 
their own dedicated network without involving a human adds an entirely new layer of 
complexity, both cognitively and operationally.  This paper will discuss these complex 
autonomy issues as they relate to human decision making and supervisory control of 
swarming networks, and outline what areas of research are needed to support the human 
in the swarming command and control loop. 

 
  

Swarming and Human Supervisory Control 
 

The concept of human supervisory control is depicted in Figure 1. In supervisory 
control, a human operator monitors a complex system and intermittently executes some 
level of control on a process, always acting though some automated agent.  During 
supervisory control, an operator plans an activity that is mediated by the computer, 
instructs the computer through a series of commands to perform the desired plan, the 
human then monitors to ensure the action is executed, intervenes when the computer 
either makes a mistake or requires assistance, and then the human learns from the 
experience (Sheridan, 1992).  Supervisory control is ubiquitous in automated domains, 
and can be found in air traffic control, process control plants, emergency response 
coordination such as ambulance dispatch, remote control of robotic vehicles as well as in 
medical systems such as remote surgery.  Networks of autonomous vehicles will include 
elements of supervisory control, although this area has not been adequately researched.  
The critical supervisory element for swarming networks will be the feedback mechanism 
that allows the human to understand what, how, and why a swarm behaves like it does.  
 
 
 
 
 
 
 
 
 
 

In supervisory control systems, various levels of automation can be introduced 
into decision support systems from fully automated where the operator is completely left 
out of the decision process to minimal levels of automation where the automation only 
provides recommendations and the operator has the final say. The various levels of 
automation that can be incorporated into a decision support system are depicted in Table 
1, and are known as the SV levels as they were originally proposed by Sheridan and  
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Figure 1:  Human Supervisory Control (adapted from Sheridan, 1992)   
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Table 1: Sheridan & Verplank (1978) Levels of Automation 

Verplank (1978).  Much research has been conducted to determine what levels of 
automation promote effective human computer interaction (Billings, 1997; Endsley & 
Kiris, 1995; Hancock & Scallen, 1998; Moray, Inagaki, & Itoh, 2000; Sarter & 
Schroeder, 2001; Scerbo, 1996), however, in the command and control domain, the 
research has been limited and is virtually non-existent for human interactions with 
swarming autonomous vehicles.  The effect of increasingly higher levels of automation 
on human control of remotely piloted vehicles has been studied for a few specific military 
projects (Cummings & Guerlain, in review; Howitt & Richards, 2003; Ruff, Narayanan, 
& Draper, 2002). These studies were primarily focused on the development of decision 
aids for human interaction with the vehicles, which were assumed to be operating 
independently of one another.   

For rigid tasks that require no flexibility in decision making and with a low 
probability of system failure, higher levels of automation often provides the best solution 
(Endsley & Kaber, 1999; Kaber & Endsley, in press) However, in systems like those that 
deal with decision-making in dynamic environments with many external and changing 
constraints, higher levels of automation are not advisable because of the risks and the 
complexity of both the system and the inability of the automated decision aid to be 
perfectly reliable (Sarter & Schroeder, 2001; Wickens, 1999).   Known as the “brittleness 
problem,” automated decision-support algorithms are typically “hard-wired” in initial 
design phases, and thus are not able to able to account for and respond to unforeseen 
problems (Guerlain & Bullemer, 1996; Guerlain, 1995; Smith, McCoy, & C. Layton, 
1997).   Autonomous vehicles are generally envisioned to operate in areas of uncertainty, 
which is what makes them so invaluable, however, they will also be subject to the 
brittleness problem, which is why it is critical that a human be in the supervisory loop.   

Automation 
Level Automation Description 

1 The computer offers no assistance: human must take all decision and 
actions. 

2 The computer offers a complete set of decision/action alternatives, or 

3 narrows the selection down to a few, or 

4 suggests one alternative, and 

5 executes that suggestion if the human approves, or 

6 allows the human a restricted time to veto before automatic execution, or 

7 executes automatically, then necessarily informs humans, and 

8 informs the human only if asked, or 

9 informs the human only if it, the computer, decides to. 

10 The computer decides everything and acts autonomously, ignoring the 
human. 
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One primary concern for the interaction of human decision making with 
automated recommendations is how the automation influences performance.  Dixon and 
Wickens (2003a) have demonstrated that manual control of individual UAVs is 
impractical and automation is needed for successful mission accomplishment.  However, 
if automation aids do not achieve high reliability, UAV controllers with unreliable 
automation aiding sometimes perform poorer than those with no automated assistance 
(Dixon & Wickens, 2003b). In addition, many studies have demonstrated the human 
tendency to increasingly rely on computer-based recommendations, even though the 
recommended solutions are not always correct.  Known as automation bias, Mosier and 
Skitka (1996) demonstrated that humans have a tendency to rely upon automated 
recommendations and pay less attention to contradictory information.  In a study 
examining the potential for automation bias for in-flight retargeting of Tomahawk 
missiles, when compared to controllers using level 3 automation, controllers with a level 
4 recommendation were significantly biased by an automated recommendation 
(Cummings & Guerlain, in review).  

In another study examining the effectiveness of computer-generated 
recommendations on pilots’ decisions to counter in-flight icing problems, the results were 
ambiguous.  When the computer provided accurate advice, pilots with the aid performed 
better than pilots without the aid.  However, when the computer’s advice was erroneous, 
those people without a decision aid outperformed those with one (Sarter & Schroeder, 
2001) In addition, as illustrated in a flight-planning tool, just because a human is in the 
loop for decision making does not mean that better solutions will be found (Layton, 
Smith, & McCoy, 1994), so the trade-off between the human and automation is not 
always clear.   

 
 

Levels of Automation Versus Levels of Autonomy 
 

The previous discussion of levels of automation focused on the human-computer 
interaction in a decision making task but in the case of human supervisory control of 
swarming vehicles, another layer of possible automation levels exists between the 
airborne vehicles.  Figure 2 exemplifies how intra-vehicle autonomy could increase, 
which is not the same as increasing automation for decision support.  At the minimum 
network autonomy level, there is essentially no collaboration between airborne vehicles 
and at maximum network autonomy, vehicles are in full collaboration and need no human 
intervention for emergent situations.   

Levels of automation for decision do not necessarily increase with the increasing 
levels of intra-vehicle autonomy.  For example, if in a military battlefield a target 
suddenly emerges such as a surface-to-air missile (SAM) site and unmanned aerial 
vehicles do not have collaborative capabilities (minimum level of autonomy), the levels 
of decision support can still vary from 1-10 in that the decision of which vehicle to use to 
destroy the target can be made by the human, the computer, or some combination of the 
two.  In the case of full intra-vehicle collaboration (maximum autonomy), in the example 
of the SAM site, the network of unmanned vehicles would determine the best candidate 
to attack the target.  In this case, the levels of automation for decision support can vary 
from levels 7-10 in determining how involved the human should be in observing the 
sequence of actions and possibly kept in the loop strictly in a monitoring role.  
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This duality in levels of automation for both decision-making and intra-vehicle 
collaboration presents a difficulty supervisory control problem.  In current command and 
control domains without swarming vehicles, the problem space for supervisory control is 
limited to 10 discrete levels (Table 1.)  As networks of vehicles are created that 
communicate with both humans and one another, the problem space becomes much 
larger and perplexing.  Thus when attempting to design a decision support system for 
humans interacting with swarming vehicles, not only will it be essential to determine the 
impact of automation levels for decision making, but equally important to examine the 
effects of various levels of collaboration between vehicles and the interactions between 
the two automated systems.  

Situation Awareness and Swarming  

In a recent statement, the Office of the Secretary of Defense identified ten primary 
goals for unmanned aviation in support of the Department of Defense’s larger goal of 
force transformation.  Of the ten primary goals, one conveyed the recognition of the 
critical role that the human plays in a network of autonomous unmanned vehicles, which 
declared the need for a standard UAV interface that provides critical situational 
awareness data and precise location data to support airspace integration (Office of the 
Secretary of Defense, 2002). Indeed the military’s vision of Network Centric Warfare 
hinges on the ability of networks to provide information to support shared situation 
awareness between operators and decision makers (DoD, 2001).  Situation awareness 
(SA) has long been recognized as a critical human factor in military command and 
control systems. Military command and control centers must attempt to assimilate and 
reconstruct the battle picture based on information from a variety of sensor sources such 

Maximum 
Network 

Autonomy 

Minimum  
Network 

Autonomy

Vehicles are in full collaborative communication, and individual 
vehicle tasking changes according to a predetermined algorithm.  

There is no human intervention.

Vehicles do not communicate with one another and follow 
original tasking unless human identifies a new task. 

Vehicles communicate with one another for separation and 
threat deconfliction but still depend on human for new 

tasking. 

Vehicles collaborative with one another and the human only 
interacts with the “lead” unmanned vehicle. 

Figure 2:  Examples of Intra-vehicle Levels of Autonomy 
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as weapons, satellites, and voice communications. In fact, Klein (2000) determined that 
SA was a key element for those naval personnel engaged in tasks associated with air 
target tracking aboard Navy AEGIS cruisers.  Because of the complexity and dynamic 
nature of the command and control environment, maintenance of SA is considered to be 
of utmost importance (Santoro & Amerson, 1998).  Thus understanding how human 
supervisory control is influenced by swarming networks of autonomous vehicles is 
critical in developing these networks as well as future operational concepts.   

Situation awareness is generally defined as having three levels, which are: 1) the 
perception of the elements in the environment, 2) the comprehension of the current 
situation, and 3) the projection of future status (Endsley, 1988; Endsley, 1995).  
Advanced autonomy schemes that will be used in swarming networks will be important 
operationally, however, advanced automation and autonomy levels can create problems 
in the development and maintenance of SA.  There are measurable costs to human 
performance when higher levels of automation are used, such as skill degradation 
complacency, automation bias, and loss of situational awareness, (Parasuraman, 
Sheridan, & Wickens, 2000).   

Especially important in the development of supervisory control interfaces that 
promote SA will be the presentation of enormous amount of incoming information 
generated by the swarming networks.  This information must be classified, filtered, and 
synthesized in such a way that a human supervisor can quickly assess the status of the 
swarm and determine if any intervention is needed.   In general, swarming networks will 
optimize the aggregate performance against a set of multi-objective cost functions.  It will 
be critical to communicate this information to human decision makers who will be 
supervising both the global progress of a swarm, and possibly individual elements if a 
mission dictates.  A central issue in maintaining appropriate levels of SA in the 
supervision of swarming networks will be how to develop visualization tools for multi-
objective cost functions that should either be minimized or maximized.   

In addition, it will be important to develop human-computer interactive sensitivity 
analysis tools to determine how human-determined adjustments of variables could change 
an overall cost function.  Allowing human supervisors active participation in decision-
making processes provides not only safety-critical benefits and the promotion of SA, but 
additionally, permitting humans to “tweak” computer-generated solutions protects against 
automation brittleness and provides for a more robust system that can respond to 
uncertain and unexpected events in a flexible manner.  It will be important in this 
sensitivity analysis focus to develop visualization tools that convey both the severity of 
cost function change, but also still convey critical qualitative information such as how an 
overall balance in resource allocation would shift and affect the mission goals.  Because 
command and control scenarios generally occur under time-pressure and require rapid 
decision making, the problem of information visualization in the supervision of swarming 
networks is one not easily solved. 
 
Conclusion 
 

One of the primary advantages of swarming networks of autonomous vehicles is 
the ability of these networks to process large amounts of information in relatively short 
periods of time to more optimally achieve a mission goal, all while protecting humans 
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from high risk and potentially hostile environments.  Even though the human may be 
taken out of the physical control loop in these systems, it will still be critical to include 
the human at some level of decision making within these swarming networks both as a 
safety check and also to ensure that the automation is truly supporting overall mission 
goals.  However, one consequence of higher levels of autonomy is the trade-off in human 
understanding of present and future system states as well as the increase in cognitive 
complexity that is introduced in attempting to assimilate and understand a plethora of 
incoming information from a network of autonomous vehicles.   

Because of the potential problems that will be introduced into command and 
control scenarios by human interactions with complex autonomous vehicle networks, 
there is a clear need to explore the human requirements, strengths and limitations for 
supervisory control of swarming networks of multiple autonomous vehicles.  This 
research should include an investigation of the interaction of increasing vehicle autonomy 
on human supervisory control, the effect of increased levels of automation in decision-
making, and how situation awareness is impacted by these increasing levels of vehicle 
autonomy and decision making automation.   
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