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by 
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Master of Science in Aeronautics and Astronautics 
ABSTRACT 

Deciding if and what objects should be engaged in a Ballistic Missile Defense System 
(BMDS) scenario involves a number of complex issues. The system is large and the 
timelines may be on the order of a few minutes, which drives designers to highly 
automate these systems. On the other hand, the critical nature of BMD engagement 
decisions suggests exploring a human-in-the-loop (HIL) approach to allow for 
judgment and knowledge-based decisions, which provide for potential automated 
system override decisions.  

This BMDS problem is reflective of the role allocation conundrum faced in many 
supervisory control systems, which is how to determine which functions should be 
mutually exclusive and which should be collaborative. Clearly there are some tasks that 
are too computationally intensive for human assistance, while other tasks may be 
completed without automation. Between the extremes are a number of cases in which 
degrees of collaboration between the human and computer are possible. This thesis 
motivates and outlines two experiments that quantitatively investigate 
human/automation tradeoffs in the specific domain of tracking problems.  

Human participants in both experiments were tested in their ability to smooth 
trajectories in different scenarios. In the first experiment, they clearly demonstrated an 
ability to assist the algorithm in more difficult, shorter timeline scenarios. The second 
experiment combined the strengths of both human and automation to create a        
human-augmented system.  Comparison of the augmented system to the algorithm 
showed that adjusting the criterion for having human participation could significantly 
alter the solution. The appropriate criterion would be specific to each application of this 
augmented system. Future work should be focused on further examination of 
appropriate criteria. 
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1. Introduction 

This chapter addresses the motivation for research into occluded trajectory smoothing. 
In this thesis, occluded trajectories, or incomplete trajectories that contain gaps, will be 
considered in the context of radar tracks in the Ballistic Missile Defense System (BMDS). 
However, such trajectories can be encountered in a number of other areas of tracking 
problems such as satellite tracking or air traffic control. This chapter first addresses 
particular issues involved in the BMDS that motivated this research and how these 
issues might be addressed by a collaborative effort between humans and automation. 
Next it presents the problem statement and the four research objectives addressed in 
this thesis. A brief description of the subsequent chapters concludes the introduction. 

1.1. Motivation 

The basic function of the BMDS is to protect a designated area, such as the continental 
United States, against ballistic missile attacks. These attacks can be characterized by 
scenarios that give launch points, numbers of objects launched, and targets. However, 
the number of objects launched may be much larger than the number of available 
missiles to defend against them so deciding if and which objects should be engaged 
becomes a more complex issue. The system is very large as it has many interconnected 
elements and is physically spread over an area that is a significant fraction of the Earth. 
The information for such decisions may be incomplete and/or inconclusive, and, given 
the enormity of the decision-making task, the timelines may be extremely short. For an 
intercontinental ballistic missile, the flight time is on the order of half a hour [1]. The 
magnitude of the task and the short timelines drive designers to highly automate these 
systems because of the computational speed, repeatability, and high consistency that 
automated systems provide. On the other hand, the grave nature of BMDS engagement 
decisions suggests exploring a human-in-the-loop (HIL) approach to exploit the 
judgment and knowledge-based decisions that humans can provide [2], which could 
allow the humans to override automated system decisions when anomalies are 
apparent.  

This BMDS problem is representative of the role allocation conundrum faced in many 
supervisory control systems, which is how to determine which functions should be 
mutually exclusive between the human and automation, and which should be 
collaborative [3]. There are some tasks that are simply too fast or computationally 
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intensive for humans to make useful contributions, especially in time-pressured 
environments.  An example of such a task in the BMDS is real-time target tracking 
computations. On the other hand, there are tasks that are tractable by humans in the 
available time, and these may be completed without automation or with basic computer 
assistance. An example of such a task in the BMDS is in setting defended target 
priorities. Between these extremes are a number of cases in which degrees of 
collaboration between the human and computer are possible.   

Because humans can reason inductively and generate conceptual representations based 
on both abstract and factual information, they also have the ability to make decisions 
based on qualitative and quantitative information [4]. In addition, allowing operators 
active participation in decision-making processes provides not only safety benefits, but 
promotes situational awareness and also allows a human operator, and thus a system, 
to respond flexibly to uncertain and unexpected events (as opposed to the brittleness of 
many algorithms).  Thus, decision support systems that leverage the collaborative 
strength of humans and automation in supervisory control planning and resource 
allocation tasks could provide substantial benefits, in terms of both human and 
computer impacts on system performance. 

To make these notions of human-automation collaboration more concrete, this thesis 
motivates and discusses two experiments that quantitatively investigated 
human/automation role allocation tradeoffs in the specific domain of trajectory 
smoothing.  The need for smoothing occurs when, due to normal processing errors, 
trajectories do not appear as continuous curves but as segments and thus create 
ambiguity about how the segments should be connected. Computers running predictive 
algorithms could be relied upon for proper connection of such track segments. 
However, this task has clear vision-based pattern recognition elements, so it is possible 
that human operators could perform as well, or better than, the automation. The 
possibility that humans can make contributions to these problems has support in a 
number of studies which investigated the ability of humans to perceive lines in data 
that is incomplete or has the appearance of being occluded [5]. The experiments 
assessed how well humans and a specific algorithm, known as the Lincoln Multi Target 
Smoother (LMTS), described in Chapter 2, compare in the task of correlating track 
segments that offer cases of varying difficulty. The ultimate goal is to determine an 
empirically-based rationale for a collaborative human-automation track correlation 
decision support system. 

1.2. Problem Statement 

The problem is to determine the best way to perform the trajectory smoothing task. 
Both human and the LMTS, collectively referred to as the decision sources in this thesis, 
each have a set of comparative strengths that can potentially be combined to output a 
better solution in the track smoothing environment than either acting alone.  

1.3. Research Objectives 

In order to address the problem statement, the goal of this research is to understand 
both human and algorithm strengths and explore the possible areas of collaboration. 
This goal is addressed through the following objectives. 
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• Objective 1. Study the various ways in which LMTS and human participants 
smooth trajectories. In order to achieve this objective, the way in which LMTS 
operates is investigated. Next, the prior research into the ability for humans to 
perceive and interpolate occluded contours was reviewed. This information is 
described in detail in Chapter 2. 

• Objective 2. Study and assess if human participants can outperform the LMTS 
algorithm in smoothing occluded trajectories.  Experiment One, discussed in 
Chapter 3, addresses whether a human operator, presented with the same data as 
the LMTS, can give more accurate, smooth trajectories than the algorithm. The 
results from that experiment are given in Chapter 4. 

• Objective 3. Analyze to what degree participant confidence correlates with 
accuracy in trajectory smoothing. Experiment One also addresses the confidence 
that the subjects had in their solutions by asking them to estimate confidence for 
each smoothed trajectory. Since confidence may play an important role in an 
actual application of this research, it is useful to determine if participant 
performance would correlate with confidence. These results are also discussed in 
Chapter 4 

• Objective 4. Study a collaborative effort between human participants and the 
LMTS. Experiment Two, discussed in Chapter 5, was designed to investigate 
whether a collaborative effort can produce a better solution than LMTS acting 
alone. This experiment builds on the results of Experiment One. The subsequent 
results and evaluation of the second experiment are discussed in Chapter 6. 

1.4.  Outline 

This thesis is organized into seven chapters: 

• Chapter 1, Introduction, provides the motivation for this research, the problem 
statement, and the research objectives. 

• Chapter 2, Background, addresses objective one by providing a summary of the 
information used to create and interpret the two experiments. It explains 
Lincoln’s Multi Target Smoother (LMTS) algorithm, discusses how the human 
visual system interprets and connects occluded contours, and details possible 
areas for collaboration between humans and automation. 

• Chapter 3, Experiment One Design, explains the initial experiment design and 
addresses the second and third research objectives. It outlines the hypotheses, 
participants, apparatus, experimental design, and subsequent testing. 

• Chapter 4, Experiment One Results and Discussion, addresses the results of the 
initial track smoothing experiment and discusses their implications. The results 
are addressed in four categories, missed and false trajectories, accuracy of correct 
trajectories, total performance, and confidence. The discussion addresses the two 
hypotheses stated in Chapter 3 in the context of the results of the experiment. 
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• Chapter 5, Experiment Two Design, explains the second experiment’s design and 
addresses the fourth research objective. It outlines the hypothesis, participants, 
apparatus, experimental design, and subsequent testing. 

• Chapter 6, Experiment Two Results and Discussion, addresses the results of the 
second track smoothing experiment and discusses their implications. The results 
are addressed in three categories: missed and false trajectories, accuracy of 
correct trajectories, and total performance. The summary addresses the 
hypothesis stated in Chapter 5 using the results of the experiment. 

• Chapter 7, Conclusions and Future Work, examines results from both experiments 
to suggest ways in which human operators can contribute to the track smoothing 
task. This chapter summarizes the rationale of a collaborative effort by discussing 
the cost and benefits of invoking human assistance in the track smoothing task. 
Future work is also discussed. 

 

 

 

 

 

 

2. Background 
This chapter discusses the background information used to create and interpret the 
experiments in this thesis. The Lincoln Multi Target Smoother (LMTS) algorithm, which 
is the algorithm that was used in this research effort for connecting and smoothing 
contours, is presented first. A contour is defined as a “continuous perceived boundary 
between regions of a visual image [6],”  which in this case is defined by trajectories. The 
chapter then discusses how the human visual system interprets and connects occluded 
contours. While the occluded vision field of study is diverse, this research will only deal 
with the particular areas that apply to occluded track smoothing problems in 
supervisory control domains. Possible areas for collaboration between humans and 
automation are discussed in the final section. 

2.1. The LMTS Algorithm 

Many radars process both signature and metric data. Signature information is 
dependent on the tracked object’s inertial properties, such as spin about its center of 
mass, while metric data are dependent upon kinematic data such as the object’s 
trajectory. The metric data usually have six dimensions (position and velocity in three 
dimensions). In many current algorithms, data are processed sequentially on a pulse-
by-pulse basis as they are received. While these algorithms tend to work well with 
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widely-spaced targets in multi-target scenarios, noise and interference among closely 
spaced targets often disrupt pulse-by-pulse algorithm performance [7]. Sequential 
algorithms by design cannot backtrack to connect information that may be missed by 
poor tracking. In order to overcome this limitation, a batch model algorithm, the LMTS 
used in this experiment, was created in 2007. 

Batch mode algorithms collect data pulse-by-pulse just as sequential algorithms would, 
but they store some set of data points for a certain predetermined period of time prior 
to processing. In this manner, a batch mode algorithm can collect a large amount of 
information that enables it to connect trajectories that may be separated in distance and 
time. LMTS operates by connecting partial trajectory segments through a series of 
ballistic fits [7]. Even though it functions at a high percentage of accuracy, some 
researchers at MIT Lincoln Laboratory noticed that in certain instances, the algorithm 
was not able to match all of the trajectories. One main source of failure is due to the 
step-by-step processes the algorithm uses. The algorithm connects partial trajectories 
only if they meet a chi-square test of fit to a ballistic trajectory. One downfall of this 
procedure is that if the partial trajectories fall within the chi-squared distribution, they 
are connected with no further consideration of their accuracy compared to other 
possibilities. The best fits are matched first, and then successively worse fits are 
matched. This difficulty is illustrated in Figure 2-1, which shows a plot of occluded 
radar information that could be processed by LMTS. The dashed box highlights an 
occluded region where the algorithm has calculated multiple, high probability fits to the 
partial trajectories on either side of the occlusion. In such cases, LMTS will always 
choose the highest probability. For example, if two possible trajectories can be 
calculated, say the probability of smoothing Trajectory 1 is pT1 = .95 and to smooth 
Trajectory 2 is pT2 = .92, Trajectory 1 will be formed instead of Trajectory 2. 
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Figure 2-1: Trajectories occluded by a data drop out. 

However, if the standard error of fit is large enough, the probability of Track 1 existing 
may not be significantly different from Track 2. In multiple test cases, it was shown that 
frequently two almost-equivalent trajectories were incorrectly plotted, one with a small 
amount of error and one with a large amount of error, as shown in Figure 2-2. These 
cases were most prominent for trajectories which were occluded over a point of 
crossing. 
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                                 (a)                    (b) 

Figure 2-2:  Figure 2-2a depicts multiple partially occluded trajectories, in which the different colors 
represent the different connected trajectories by LMTS. The algorithm mistakenly connected the 

trajectories, which are shown correctly connected in Figure 2-2b. 

 

These errors, while few, were obvious to the LMTS developers when the LMTS results 
were plotted. While it would likely take a complicated and computationally expensive 
algorithm to correct these errors and output a better solution, there is no guarantee it 
would be 100% accurate.  

2.2. Human Performance in Track Smoothing 

Because of potential errors in LMTS, the possibility that a human operator could assist 
to improve overall performance was considered in this thesis. This will be discussed in 
this section in terms of Gestalt theory and extrapolation, as they relate to occluded 
contour perception. 

2.2.1. Gestalt Theory and Occluded Contour Interpolation 

Trajectory smoothing can be interpreted as occluded contour interpolation given 
trajectories with incomplete segments. Gestalt theory studies human perception of 
occluded contours and contains specific theories on how humans connect, or in this case 
smooth, those contours. There are a number of specific areas such as similarity, 
proximity, good continuation, and closure that are applicable to the smoothing 
problem. While these features do not prescribe the specific steps for the interpolation of 
occluded contours, they give some insight into how the human visual system works [8].  
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Figure 2-3: A representation of occluded trajectories. The 3 sections are representations of similarity, 

proximity, and good continuation (left, right and bottom section respectively). 

Similarity implies that contour shape and orientation leads to a grouping together of 
patterns. In the case of trajectory smoothing, the similarity of partial trajectories allows 
the human to accurately interpolate them. The upper left section of Figure 2-3 shows 
how similarity plays an important role in interpolating the correct trajectory, which is a 
shown by the two arrows. Proximity maintains that items close together will be 
grouped more frequently than those farther apart. The upper right section of Figure 2-3 
displays how the partial trajectories are much more difficult to interpolate when they 
are farther apart. Quantitatively, there may exist some distance over which proximity 
can filter out wrong choices in interpolation [9]. Furthermore, that range may exist but 
be substantially different depending upon whether a human or LMTS is trying to 
interpolate. Good continuation is the name of a Gestalt principle which states that 
objects arranged along lines will be visually grouped together. It can be seen as a 
combination of similarity and proximity, as it represents how patterns are simply a 
separation of whole figures. For example, a disconnected parabolic contour, which is 
representative of partial trajectories, does not appear as a two segments but as one 
continuous curve, as shown in bottom section of Figure 2-3. This effect is, however, 
dependent upon the proximity (they are close together) and similarity (they are mirror 
images of each other) of the segments.  

Good continuation has been tested using occluded contours [5, 10, 11]. Kellman and 
Shipley showed that a disrupted line segment would be perceived as whole if 1) the 
linear extension of the two edges intersects and 2) the turning angle, or the angle at 
which the two edges intersect, does not exceed 90°. More recent research has challenged 
the last constraint by showing there may be no “hard cutoff” in the turning angle 
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criteria, rather this results in a decrease in precision of interpolation [5]. This loss in 
precision could be remedied by ensuring that neighboring segments are co-circular 
(tangent to the same circle) [11]. Additionally, there has been a limited amount of 
research showing that parabolas, similar to ballistic trajectories, may play an important 
role in connection [12, 13].  Parabolas can act as a connection tool, where the visual 
system projects parabolas, independent of the perceived crossing angle, to interpolate 
occluded line segments. This often leads to the interpolation of a smooth rather than a 
sharp, discontinuous connection. 

The type of connections humans make during interpolation has been investigated  in an 
experiment where the subjects were asked to place a dot to estimate the point of 
connection between two equally sloped projected surfaces [14]. It was found that the 
subjects predicted a smooth connection rather than a discontinuous one, such as the 
linear extension of the edges of the surfaces, in about 90% of the trials. While only three 
subjects participated in this experiment, the results suggest that humans tend to favor 
smooth connections in the trajectory smoothing case, particularly for parabolic 
connections. 

Closure is a Gestalt property that addresses the fundamental tendency of humans to 
want to close gaps. Humans can perceive inside and outside space between contours, 
allowing them to fill in the boundary that should, in their mind, exist [6]. Since partial 
trajectories can be defined as occluded trajectories (for which closure will be applicable), 
this relationship allows the closure property to be useful in trajectory smoothing. As 
long as a partial trajectory can be identified as being one trajectory the human will tend 
towards closing the gap.  

2.2.2. Extrapolation 

Extrapolation, defined as the extension of a contour beyond itself, is another possible 
theory used to interpret occluded contours.  Some work has shown that the completion 
of discontinuous curves is sometimes the extension of one curve rather than 
interpolation, which is the connection of two pieces [15]. Furthermore, some partial 
trajectories do not have connecting information, and in those cases extrapolation would 
be the only way to smooth that trajectory. LMTS does not have any capability to 
extrapolate, and therefore the human ability to extend trajectories may provide further 
utility in the trajectory smoothing task. Figure 2-4 shows that the bold partial trajectory 
can be interpolated to the left of the vertical line. However, it must be extrapolated to 
the right where there are not any possible connecting segments. The extrapolation will 
most likely follow the same shape as its surrounding elements. This means that while 
LMTS would not be able to fully interpret the occluded trajectory, human extrapolation 
may be able to accurately predict the extension of the bold segment. While interpolation 
will be the primary focus of this research, the ability to extrapolate may provide 
additional capability that human participants could add to the trajectory smoothing 
task. 
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Figure 2-4: The bold trajectory can only be extrapolated to the right of the vertical line. 

2.3. Barriers to Interpolation 

Noise, or possible distractions, is a well-researched area of contour perception [16-19]. 
This section will define noise and relate it to the way in which trajectory information is 
presented. Specifically, each incomplete trajectory can be considered as an occluded 
contour, and other trajectories present in the display act as noise, potentially interfering 
with the specific contour a human will try to connect. The bold contour displayed in 
Figure 2-4 is an example of this. If one tries to interpolate this contour to the left, 
determining which contours to connect becomes a difficult problem, as the correct 
contour is obscured by the contours surrounding it. This section will discuss several 
aspects of contour interpolation in noise, including contour detection and how noise 
may hinder interpolation, as well as the effects of orientation in noise. 

2.3.1. Contour Interpolation in Noise 

Noise can be defined as the surrounding information in which the target curvature, i.e. 
the curvature that a human is trying to interpolate, is presented [17]. Specifically, noise 
can create illusory effects, which in turn alters the perception of the contours. In the 
trajectory smoothing case, this means the perception of the actual curvature may be 
altered, which impacts how well the human will be able to interpolate trajectories. 
Subsequent sections discuss target contour detection in noise and how noise may act as 
an inhibitor to contour detection. 
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2.3.2.  Target Contour Detection in Noise 

Target contour detection is the ability to focus on a single partial trajectory in noise. A 
common approach to detection begins with filtering the information to determine edges 
in a figure [19]. Edge detection is important because it allows the observer to 
distinguish contours in possibly noisy, densely packed backgrounds. It has also been 
shown that edge detection is no different for straight lines (such as chevrons) or 
curvatures [16]. Therefore in the case of trajectory smoothing, all types of trajectories 
should be able to be detected in noise irrespective of their actual shape. 

2.3.3.  Noise as an Inhibitor 

Perception of a curvature (which occurs after detection) is the ability of the visual 
system to correctly identify how convex or concave a curvature is. It has been shown 
that human interpolation may have a “specific sensitivity to contour curvature” [18]. 
There may be aspects of the visual system that readily grasp different curvatures. 
Therefore, it is important to understand how the sensitivity to target curvature would 
vary dependent upon different noise factors. Recognition of curved lines in straight-line 
noise was shown to be independent of numbers of “distracters,” which are all the 
segments besides the target curvature. This is particularly applicable in the case of 
trajectory smoothing, as the noise contains surrounding trajectories that could be any 
shape from straight lines to steeply curved trajectories. However, it has also shown that 
the perception of straight lines can be altered, and is dependent upon the number of 
curved contours that exist as noise [18]. So, while curvature is more easily deciphered in 
the presence of straight-line distracters, it is also true that straight lines can appear to be 
curved when surrounded by other curved lines. Figure 2-5 shows how surrounding a 
target curvature with noise could alter its perception.   

 
Figure 2-5: The dashed target curvature, a straight line, could be perceived to be curved depending upon 

the degree of curvature of surrounding contours. 

Foster showed that humans’ responses to different curvatures from straight lines to 
partially curved lines (0 to 20’ arc) can be grouped into categories of straight, just 
curved and more than just curved that he defined as a “discrete encoding process” [17]. 
This process allowed him to place curvature detection into various categories in which 
an observer would be more or less sensitive to multiple contour curvatures. While the 
exact numbers for the categories in this process are not applicable to this thesis because 
they apply to research done on angle changes on the order of minutes, this research 
shows that there may be a separate discrete encoding process for the varying curvatures 
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in the discontinuous trajectories that allows the human to readily perceive and connect 
them. 

2.3.4. Orientation of Noise 

The presence and orientation of distracting contours is important in perceiving and 
interpolating contours of interest. There is evidence that contour detection is achieved 
through the use of separate contour filters that are in effect tuned to different contour 
orientations [20]. Moreover, there exists some relationship between orientation and the 
observer’s viewing condition in the ability to decipher symbols. This is interesting as 
many of the “symbols” used to determine those contour filters are similar in shape to 
the crossings found in track smoothing/identification data. Furthermore, there is 
evidence that the shape of curvature is distinguished by the same visual devices that 
recognize orientation [16]. Therefore in the case of trajectory smoothing, altering the 
orientation of noise may affect the perception of partial trajectories.  

Secondly, integration of various contour properties suggests that the visual system has 
filters that preferentially perceive certain orientations [21-23]. For example, certain 
orientations may become visually salient to the human before others. Furthermore, 
some recent experiments have suggested that human perception may be more accurate 
in certain orientations. In a study using various types of displays, it was shown that 
performance of contour interpolation in 3D decreased slightly by “inducing surfaces 
with a vertical rather than a horizontal tilt direction” [24]. This suggests that a 
horizontal display of information may provide superior results than a vertical 
orientation.  

2.4. Human-Automation Collaboration 

LMTS was developed to solve the problem of trajectory smoothing in the BMDS. Like 
many other automated tools used to assist in problem-solving tasks, it has been shown 
that LMTS may not function in situations that were not anticipated during its creation. 
For example, LMTS may function poorly when dealing with smaller amounts of data as 
it was designed to smooth a completed, long term data set. To deal with this in other 
areas, studies have suggested that cooperative problem-solving systems should be 
considered [25]. Given that humans have been shown to have some track smoothing 
abilities, a collaborative effort could possibly produce the best solution for the track 
smoothing application.  

Similar to this smoothing application, path planning research deals heavily with 
perception. The ability for collaboration in these studies depends on a unified 
understanding of the search space, and thus perception of that space is vital.  The 
Human-Guided Search (HuGS) platform [26], developed as a tool for solving 
optimization problems, focused on involving people in a heavily automation-
dominated field. The HuGS platform requires people to alter selection criteria by 
presenting solutions in a simple step by step process. This allows the human-user to 
gain different views of the search space, altering perception of the problem and 
therefore arriving at alternative human-aided solutions that can be evaluated.  
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Other work has recommended that if technology cannot fully solve a complex issue, the 
design of a support system can influence alternative solutions [25]. Multiple 
visualizations of an automated solution could be given to users to see if a difference in 
perception would alter overall performance [27]. In the trajectory smoothing case, a 
possible application of this work would be to provide human insight into areas that are 
problematic for LMTS, which could in turn allow LMTS to generate alternative, better 
solutions.  

Fitts’ List [28]  has been adapted to illustrate which traits of each decision source may 
prove helpful in the trajectory smoothing task. However, since this is the first time the 
track smoothing task has been performed by human operators, certain assumptions 
have been made about which decision source, human or algorithm would be better at 
certain tasks. This Fitts’ List adaptation simply defines possible superior traits, rather 
than presenting a “who is better at what” table. 

Table 2-1: 
Fitts’ List [28] of Possible Superior Traits From Each Decision Source Adapted to 

LMTS Settings 

Humans Are Better At LMTS Is Better At 
Resolving uncertainty to improvise fits to 
trajectories 

Using strict rules to evaluate likelihood of a 
match 

Extrapolating trajectories  
Consistently producing results, such that 
each application of the algorithm to the same 
data will provide the same output 

Viewing data thought knowledge-based 
filters to resolve uncertainty 

Defining the curvature of the various partial 
trajectories 

Recalling previous similar pattern-matching 
experiences Quick and efficient computation 

 
2.5. Summary 

Previous research has shown that either automation or a human acting alone often does 
not generate an acceptable end result [25-27]. It has been suggested that the automation 
can utilize its computational speed to search the solution space while keeping the 
human involved [25]. Leveraging the human ability to intuitively assess the LMTS 
solutions and modify automated solutions allows for use of both parties’ strengths.  

This chapter has presented the operation and potential weaknesses of LMTS and how a 
human operator may be able to assist in those areas. The potential for human 
contribution to the track smoothing task is supported by research that has taken place in 
a wide variety of fields and affords an understanding of how humans interpret 
occluded contours. Gestalt theory provides some proposed bounds on this capability 
while other research shows that depending on the application, these boundaries may be 
altered or may not exist at all. Finally, the possibility of a collaborative solution through 
reliance on human perception was discussed. 
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3. Experiment One Design 
An experiment was designed investigate whether a human could better connect 
trajectories than the LMTS algorithm, and the conditions under which the human 
outperformed LMTS most dramatically. The subsequent sections will describe how that 
information was collected and analyzed. The hypotheses, participants, apparatus, 
experimental design, and testing will be discussed. 

3.1. Hypotheses  

The data used for this experiment are simulated outputs of a hypothetical radar’s real-
time, multi-target tracker an example of which is shown in Figure 3-1. The data contains 
incomplete segments similar to those discussed earlier. As discussed in the last chapter, 
the amount of information available to the decision source plays an important role in 
perception and interpolation. In the case of trajectory smoothing, there are distinct cases 
in which LMTS performs better or worse, which can be used to measure the degree of 
difficulty of a data set. Human and algorithm performance are expected to vary with 
both the degree of difficulty and the amount of information present. The confidence of 
human participants is also expected to vary. The following hypotheses capture the 
expected decision source performance.  

 
Figure 3-1: Occluded radar data as used in the experiment. 

3.1.1. Hypothesis One 

Human and algorithm performance will deteriorate with shorter data spans and narrower 
crossing angles, as there is less information and trajectories are harder to interpolate.  
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3.1.2. Hypothesis Two 

Human participants will be less confident with shorter data spans and narrower crossing angles, 
as there is less information and trajectories are harder to interpolate. 

3.2. Participants 

A total of 29 participants participated in the initial experiment, 20 male and 9 female. 
The participants were all Lincoln Laboratory employees who received no additional 
compensation for their participation. The subject pool ranged in age from the early 20s 
to mid 70s, and included a sampling of individuals with diverse backgrounds. The 
participants’ ages can be split into 4 groups as follows: 38% were over 50, 31% were 
ages 35-50, 28% were 25-35, and 3% 18-25. The population spanned multiple fields of 
work including engineers, scientists, librarians, executive assistants, and support staff.  
The complete subject demographic information is listed in Appendix A.    

A pre-experiment survey asked participants the amount of time spent drawing on a 
computer (Appendix A). Out of the 29 participants, 17 had computer drawing 
experience. The amount of experience was split into three categories where 7 drew on a 
yearly basis, 5 drew on a monthly basis, and 5 drew on a weekly basis. It was 
considered important to acquire such a diverse sample population in the initial 
experiment to explore the overall human ability to interpolate incomplete contours. 

3.3. Apparatus 

This section outlines the interface and the equipment used by the human participants to 
smooth trajectories.  

3.3.1. Track Smoothing Interface 

In order to conduct the experiment to investigate human operator performance in track 
smoothing, an interface was designed to allow a human to interpret and interpolate the 
radar plots (Figure 3-2). The design of this interface was guided by principles that direct 
that effective displays should allow users to have appropriate control, both in solution 
creation and editing and provide them with error correction and appropriate feedback, 
while keeping the interface as simple as possible, especially for a time-constrained task 
[29]. While the interface was not designed to be an actual operational interface, it was 
designed to evaluate concepts for an operational interface insofar as possible. In order 
for the user to efficiently produce best-fit tracks, simple graphing ability, including an 
editing capability, was vital. From an operational standpoint, to keep the participant 
aware of the time available for fitting the tracks, a timer was placed in the interface. The 
resulting interface has four major components: plotting area, interaction panel for track 
fitting including the capability for the user to express his/her confidence in the fit, plot 
appearance, and timer. These are discussed below. 

The plotting area, which constitutes the majority of the interface in Figure 3-2, displays 
the simulated radar plot that is presented to the subjects. This is the working area for 
the subjects to select their best fit for each track. The radar track data is displayed in 
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gray so as not to prejudice subjects about possible connections. The option of utilizing 
color-coded data in a subsequent experiment may be considered for future work. 

 

 

 

 

The panel of buttons at the top left of the interface in Figure 3-2 is used for plotting the 
fitted trajectories and manipulating them. The user can initiate, complete, and edit 
tracks using this panel. To initiate a trajectory, the user clicks “Create New Track” 
which gives the operator the ability to plot. The user clicks then points along the 
proposed trajectory until the trajectory is completed, which is finalized by clicking the 
button “Complete Track”. The trajectory is then plotted using a spline fit, with a 
segment fitted in between each of the plotted points. After completion a user can adjust 
or delete trajectories by selecting the trajectory to be edited, then choosing “Delete 
Track” or “Delete End Point”. 

 In addition, this panel allows the user to select a confidence that he/she feels 
appropriate for each segment of each track. This estimate is color-coded along the track, 
indicating when confidence estimates change from point to point along the track. 
Appendix B explains the operation of the interface in detail. 

Figure 3-2: Track Smoothing Interface 
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The panel of buttons in the lower left of the interface in Figure 3-2 allows the user to 
change the plot appearance during the experiment. One button allows the user to select 
a “right/left” or “up/down” data display and allows for adjustment for individual 
preferences as well as allowing operators to observe a different orientation to spot 
potential patterns. A second button allows the user to inhibit the display of previous 
tracks that may be interfering with a current selection; the remaining data is then 
darkened to alert the user to the fact that visibility of previous selections has been 
turned off. 

Lastly, because the tasks must be completed in a specified time, a timer is included in 
the interface to keep the user aware of the time available for the task. The timer’s size 
and font were chosen to be salient while not taking away from the task at hand. In the 
present experiment the users are given ten minutes to complete each scenario. 

3.3.2. Test Bed 

The experiment was run on a Dell Precision 670 computer with a Intel Xeon CPU 3.2 
GHz processor and a NVIDIA Quadro FX 3400 graphics card. The monitor was a Dell 
2001FP with a resolution of 1280 x 1024. All experiments were run in a study room in 
the library at Lincoln Laboratory.  

3.4. Experimental Design 

The independent and dependent variables are outlined in this section. 

3.4.1. Independent Variables 

The first independent variable is decision source, as both LMTS and human participants 
were tested. It has been shown that over a long time period, the algorithm performs 
well; however, at shorter time spans the algorithm’s performance degrades [7]. 
Therefore the second independent variable, the data span, was selected to test cases that 
represent temporal effects. For the experiment, data spans of 30%, 60% and 100% of the 
interval over which radar data were available (which is represented as Time After 
Launch or TAL) were investigated. For the data used here, these data spans were on the 
order of 3, 6, and 9 minutes, which represent operational scenarios. 

The data were also sorted by degree of difficulty. Like the data span, the degree of 
difficulty affects the algorithm’s ability to accurately smooth trajectories. Observations 
show that cases with shallow crossing angles and high track density are the most 
difficult cases [7]. Therefore the third independent variable, degree of difficulty, was 
split into two categories, easy and hard. Based on previous LMTS experience, the hard 
degree of difficulty was defined as trajectories crossing at <15° degrees, shown in 
Figure 3-3, and the easy degree of difficulty was defined as crossings at >15°, shown in 
Figure 3-4. 
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Figure 3-3: Hard Degree of Difficulty 

 
Figure 3-4: Easy Degree of Difficulty 
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The experiment was conducted by presenting the subjects with representative data 
segments on an interface and asking them to fit lines to the segments that they perceive 
as actually connected. In parallel with the human subject testing, the same data 
presented to the subjects were also presented to the LMTS algorithm. The results for 
both cases were scored using truth data that were generated as part of the simulation. 
The independent variables for the experiment are summarized in Table 3-1. Given the 
three independent variables, this is a 2x2x3 fully crossed within-subjects experiment.  
 

Table 3-1: 
Independent Variable Breakdown 

Variable Levels 

Decision source Human or Computer 

Degree of difficulty Hard or Easy 

Data span 30, 60 or 100% of the available data interval 

 
 

3.4.2. Dependent Variables 
 
Trajectory detection and trajectory fit were the primary dependent variables used to 
score performance. A measure of the confidence of each subject on each trajectory, 
defined below as confidence density, was used to answer the third research objective. 
These variables are defined below. 
 
Trajectory Detection 
 
Each decision source was tasked with correctly detecting each trajectory present in the 
data. Both the humans and LMTS could miss some trajectories (Missed Trajectory) or 
plot additional trajectories (False Trajectory) as neither decision source had previous 
knowledge of the number of truth trajectories that existed. These scores were tallied for 
each plot using a matching algorithm, which uses the relative range from the plotted to 
the truth trajectory to calculate which user trajectory should be matched with a truth 
trajectory, as displayed in Figure 3-5. 
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Figure 3-5: The dotted lines show the user plotted trajectories and the solid lines the corresponding truth. 

 

 

Trajectory Fit 

In addition to detection, it is important to quantitatively determine how accurate each 
decision source was. The closer the human or algorithm matches the corresponding 
truth trajectory, the better the score. This score is calculated from goodness-of-fit 
measures used in linear regression modeling. The truth trajectory is assumed to be the 
model (regression fit), while the line plotted by the participants or the algorithm is 
assumed to represent the observations. The mean squared error (MSE) and the root 
mean squared error (RMSE), shown in Equation 3-1 and Equation 3-2 respectively, are 
calculated for each plotted track [30]. The number of samples along the line was set at N 
= 500. This was selected by observing that, while the results changed significantly from 
as N was increased from 100 to 500, there was little change beyond this. 

  Equation 3-1: Mean Squared Error 

  Equation 3-2: Root Mean Squared Error 



 

35 

The resolution of the monitor is another important factor in scoring. The display area 
horizontal dimension, DH, is about 41 cm (1280 pixels) and the vertical dimension, DV, is 
about 31 cm (1024 pixels).  When performance is scored, the difference between results 
and truth is calculated in meters. However, the difference between human results and 
truth is ultimately limited by the ability of the human to resolve points on the screen. It 
has been estimated that the human eye can resolve points to about a minute of arc [6]. 
At a nominal distance from a monitor of 50 cm, this is a point separation of about 0.015 
cm or 0.15 mm. On the other hand, the extent of a pixel on the screen can be 
approximated as DV/1024 = 0.03 cm or 0.3 mm. Clearly the pixel extent and not the 
resolution of the eye dominates the observer’s power of resolution. Thus it is assumed 
that, if a human performance is within one pixel of the truth, that is the best that can be 
achieved, and the human should be given credit for a “perfect” performance when this 
occurs.  

Confidence Density 

The last dependent variable is the measurement of operator confidence. Confidence 
density was calculated as shown in Equation 3-3. 

               Equation 3-3  Confidence Density 

N represents the number of total plotted trajectories and M represents the number of 
iterations that the color was evenly sampled along each trajectory. M = 500 was used as 
a limit to be consistent in the measurement bounds used in the Trajectory Fit variable. 
At each iteration the confidence was recorded (Appendix C). The value 1 corresponded 
to a high confidence level, 2 a medium level and 3 a low confidence level. The 
confidence was thus polled by the algorithm at each iteration, and therefore the average 
confidence per scenario (see Section 3.5.3) could be calculated, providing an overall 
confidence measure.  

3.5. Testing 

Testing involved pre-experiment activities, a training session, and a test session. 

3.5.1. Pre-Experiment Activities 

Each participant was first introduced to the experimental setup. Next, each participant 
read and signed the Consent to Participate Form (Appendix C) which discussed the 
purpose of the experiment, the compensation policy, and the experimental aspects that 
the participants would be asked to complete. Then the participants filled out a pre-
experiment survey. 

3.5.2. Training Session 

After filling out the required information, a tutorial instructing participants on the 
intricacies of the interface was presented. The tutorial started with an overview of the 
BMDS scenario and the motivation for the trajectory smoothing task (Appendix B). 
Then the interface was presented in detail. The participants were given instructions on 
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how to smooth the trajectories and manipulate the interface to indicate their desired 
confidence. After the tutorial, Camtasia® software was turned on to record all interface 
activity during each experiment. 

Three practice scenarios were given to each user. The three practice scenarios were 
chosen to familiarize the user with both the interface and the interpolation task they 
were asked to perform. The first scenario had 4 trajectories to interpolate, and the 
scenarios became progressively harder until the last practice scenario, which was as 
difficult as any data set the participants would be asked to interpolate.  

3.5.3. Test Sessions 

After the three practice sessions, all participants were asked to complete six scenarios, 
which were derived from crossing the three data spans and two degrees of difficulty. 
All the test scenarios given to each subject are presented in Table 3-2. While the practice 
scenarios were given in a specific order, all test scenarios were randomized such that 
there was no specific order or presentation. All users were allowed to ask questions 
throughout the entire experiment regarding the interface and its capabilities. 
 

Table 3-2: 
Scenarios Seen by Participants 

3.6. Summary 

Experiment One, the initial track smoothing experiment, was designed to answer the 
primary research question of which decision source (human or automation) could best 
smooth trajectories. Independent and dependent variables were created to measure the 
necessary information to determine which decision source was better and why. The 
Track Smoothing Interface was designed to best capture the operator’s interpolation of 
the occluded contours of the radar plot. Subjects received background and training 
prior to the experiment and each subject completed six text scenarios. All information 
was gathered in real time and recorded for analysis, which will be detailed in the next 
chapter. 
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4. Experiment One Results and Discussion 
This chapter addresses the results of the first track smoothing experiment and discusses 
their implications. The chapter then addresses the two hypotheses outlined in Section 
3.1 of this thesis. 

4.1. Results 

The results are addressed in four categories: 1) Missed or false trajectories, 2) Accuracy 
of correct trajectories, 3) Total performance tables, and 4) Confidence. 

4.1.1. Missed or False Trajectories 

In Experiment One, each of the 29 tested participants tried to plot 77 trajectories. There 
were actually 78 true trajectories but, due to noise in the data, one trajectory could not 
be seen by the participants. Combining all participant data, there were a total of 2,233 
possible trajectories to plot. Human participants missed a total of 144 trajectories and 
predicted 12 false trajectories. This averages to 3.97 (1.40 std. dev.) missed and 0.41 (0.73 
std. dev.) false trajectories predicted per participant. The algorithm missed a total of 2 
trajectories and predicted 5 false trajectories. The number of missed and false 
trajectories for all participants is listed in Appendix E. 

4.1.1.1. Algorithm-Missed Trajectories 

Table 4-1 shows the first step in the analysis, which was to research the 2 trajectories the 
algorithm missed and determine if any human participants detected those trajectories. 
The algorithm only missed trajectories in the hard degree of difficulty, 30% data span 
case, which was Scenario 4. The specific trajectories the algorithm missed are 
designated by the dashed arrows in Figure 4-1. 

Table 4-1: 
The Number of the Human Correctly Plotted Trajectories vs. the Number of Missed 

Trajectories for the 2 Trajectories Missed by the Algorithm 

Scenario, Track, Factor Level Scenario 4, 
Trajectory 1,  

Hard 30% 

Scenario 4, 
Trajectory 6,  

Hard 30% 

Human-Correct Trajectories 4 6 

Human-Missed Trajectories 25 23 
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Figure 4-1: The 12 possible trajectories for Scenario 4 (Hard, 30%) that could have been identified by 

either decision source. 

 

Figure 4-2 shows the two cases where some humans managed to form trajectories when 
the algorithm could not. In the area designated by the dashed green lines in Figure 4-2a, 
each decision source should have plotted four trajectories. However, both the majority 
of human participants and the algorithm only plotted two. The green dashed 
trajectories are the two trajectories that the majority of the participants and the 
algorithm missed (Trajectories 1 and 6). It is easy to see that these trajectories are 
difficult to plot. They have been magnified in Figure 4-2b to highlight the difference 
between the two. While the number of humans who managed to accurately identify 
those trajectories is relatively small, 14% for trajectory 1 and 21% for trajectory 6, it still 
demonstrates that there were at least 14% of the participants who were able to identify 
trajectories when the algorithm could not. 

The two trajectories (6 and 1) 
that the algorithm missed  



 

39 

                                                                 
 (a)                                                            (b) 

Figure 4-2: Test data (for Scenario 4) as seen by both decision sources prior to processing. The location 
where both trajectories 1 and 6 should be plotted is shown by the green dashed trajectories, which are 

magnified in (b). 

4.1.1.2. Human-Missed Trajectories 

The next step in the analysis was to investigate the cases in which the human missed 
trajectories. All participants missed at least 2 trajectories during the course of the 
experiment. The 4 trajectories that approximately half or more of the humans missed 
are listed in Table 4-2. A full list of these results is given in Appendix E. 

Table 4-2: 
The 4 Most Missed Trajectories by Humans 

Scenario,  
Trajectory, 

 Factor Level 

Scenario 3, 
Trajectory 1, 
Easy 100% 

Scenario 3, 
Trajectory 7, 
Easy 100% 

Scenario 4, 
Trajectory 1 

Hard 30% 

Scenario 4, 
Trajectory 6 

Hard 30% 

Human-Correct 
Trajectories 

3 13 4 6 

Human-Missed 
Trajectories 

26 17 25 23 

Algorithm 
Missed            

(Yes or No) 

No No* Yes Yes 

Human-Missed 
Trajectory %  

90% 59% 86% 79% 

       * LMTS was only able to smooth a small portion (30%) of this trajectory 

Table 4-2 shows that the two trajectories which the algorithm did not detect (Scenario 4, 
Trajectories 1 and 6) were also difficult for the human. However, as discussed next, the 
algorithm was able to identify some trajectories with which humans had trouble. 

Figure 4-3 shows the missed trajectories as a function of the degree of difficulty and 
data span. The family-wise alpha for these tests was set to α = .02. Overall, the algorithm 
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and the human are significantly different (Wilcoxon, Z = -6.814, p = 0.000+). There is 
also a difference between decision sources in the easy degree of difficulty case 
(Wilcoxon, Z = -4.88, p = 0.00+), showing algorithm superiority in this area. Figure 4-3 
shows that for the easy crossing degree of difficulty factor, the algorithm correctly 
identifies all trajectories, while the human performance starts to degrade for the 100% 
data span case (where human participants only match 87% of trajectories).  

However, there is no difference between decision sources in the hard degree of 
difficulty factor (Wilcoxon, Z = -1.507, p = .132). This suggests that the human 
participants may be able to best assist the trajectory smoothing task in this area. The two 
trajectories the algorithm missed (Scenario 4, Trajectories 1 and 6) are in the hard degree 
of difficulty factor, and at least 14% of human participants correctly predicted those 
trajectories, which demonstrates the potential for human improvement over the 
algorithm. 

 

 
Figure 4-3: Fraction of correctly detected trajectories by both algorithm (first bar, blue) and humans 

(yellow) separated by Scenario. 

Of the human-missed trajectories, Scenario 3, Trajectory 7, presents the most interesting 
case. Only a slight minority (13) of the participants were able to accurately detect it. 
Figure 4-4 shows the truth Trajectory 7 as the dashed, green trajectory. Since the human 
participants were instructed to plot from start to finish of the data span presented to 
them, in order to detect this trajectory, each participant had to connect partial 
trajectories spanning an information gap that was 66% of the data span. Perceiving a 
connected trajectory over this gap was extremely difficult.  
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Figure 4-4: Scenario 3 in which Trajectory 7, demarcated by the green, dashed line, can only be correctly 

detected if the user connects partial trajectories over a span of 66%. 
 

On the other hand, the algorithm lacked the ability to extrapolate, and therefore 
detected only the first 30% of Trajectory 7. So while LMTS detected a partial trajectory, 
it was unable to associate it over the large gap to any other partial trajectory. That large 
information gap is suspected to be the cause of the failure to connect the trajectory by 
both the algorithm and the majority of the participants.  However, 13 participants were 
able to smooth Trajectory 7 and all 13 of those participants were able to complete the 
trajectory over the information gap of 66%. It is important to realize that that failure of 
LMTS to detect a full trajectory over large gaps could limit its effectiveness while it is 
equally important to realize that some human participants have detection ability, in the 
form of extrapolation, which could be exploited. This result is revisited in the accuracy 
section of this chapter. 

4.1.1.3. False Trajectories 

Unlike missed trajectories, there is a major difference between the decision sources in 
the prediction of false trajectories. Out of the 174 possible scenarios, human participants 
predicted 12 false trajectories. However, out of the 6 possible scenarios the algorithm 
processed, it predicted 5 false trajectories. Broken down by individual test scenario, the 
algorithm predicted 0.83 false trajectories per test scenario while the aggregate human 
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participant predicted 0.069 false trajectories per test scenario. Averaging over all 
independent variables, there was a significant difference between the algorithm and the 
average human participant in predicting false trajectories (Wilcoxon, Z = 7.819, p = 
0.00+, α = .05).   

The number of false tracks predicted by both decision sources as well as the percentage 
of false tracks predicted by human participants is listed by independent variables in 
Table 4-3. The two numbers that should be compared are the ratio of human false tracks 
(averaged per participant) vs. the number of false tracks predicted by LMTS.  
Comparison of these two numbers demonstrates the ability for the average human to 
outperform the algorithm in all cases except for the two shortest data spans, easy degree 
of difficulty scenarios. However, even in those cases the vast majority of participants 
did not predict a false trajectory. A table of all participants and the false trajectories 
predicted for each is given in Appendix E. 

Table 4-3: 
The Ratio of False Tracks Predicted Per Scenario. 

(Decision Source, Scenario) Easy, 
30% 

Easy, 
60% 

Easy, 
100% 

Hard, 
30% 

Hard, 
60% 

Hard, 
100% 

(# Human false tracks/ 
# total participants) 

.103 .035 0 0 .172 .103 

LMTS # 0 0 1 0 1 3 
 
The bold lines in Figure 4-5 show an example of how the algorithm could predict false 
trajectories. First, the algorithm incorrectly connected a trajectory, which is shown by 
the complete bold trajectory with the discontinuity. Because the algorithm plotted the 
incorrect trajectory first, the two bold partial trajectories that are designated by the 
double arrow were calculated to be their own separate trajectories by the algorithm, 
which were false representations.  
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Figure 4-5: Hard, 100% (Scenario 6) Factor-Level crossing as plotted by LMTS 

 

4.1.2. Accuracy of Correctly Plotted Trajectories 

The next step in the analysis was to measure the accuracy of each decision source. For 
all the trajectories correctly detected (i.e. not missed or falsely identified), Equation 3-2 
was used to calculate the RMSE. Figure 4-6 shows the respective RMSE averages for 
both decision sources in each scenario. 

 

The algorithm failed here because it 
plotted an incorrect trajectory first 
and then failed to connect the two 
bold partial trajectories 
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Figure 4-6: Error plot for both decision sources 

The results in Figure 4-6  depict varying accuracy for both decision sources. The family 
wise error was set to α = 0.01. Using the RMSE of all trajectories plotted, there is a 
significant difference between decision sources (t = 6.704, p=0+), between degrees of 
difficulty (15.167, p=0+) and between the 30%-100% (t = 5.526, p=0+) and 60%-100% (t = 
4.564, p=0+) data spans. There was no significant between the 30%-60% (t = 1.02, 
p=0.303) data span crossing, which provides evidence that something may be 
happening in the 100% data span case that would alter accuracy. Figure 4-6 depicts that 
the human and automation exhibited differences in ability to accurately plot trajectories. 
The algorithm (mean 1.06 m, std dev 3.09) clearly outperformed the human (mean 14.87 
m, std. dev 37.5) in the easier degree of difficulty cases. However, the algorithm (mean 
23.44 m, std dev 49.05) and human (mean 23.17 m, std dev 26.63) were a closer match in 
the harder degree of difficulty cases.  The humans also seemed to have a relatively 
constant ability to accurately plot trajectories for the last four scenarios, while the 
algorithm has a definite decrease in ability with increasing data span in the hard degree 
of difficulty factor scenarios.  

Scenario 3 (Easy, 100%) presents an interesting case as it has the largest difference in 
RMSE between algorithm and human participants. In Section 4.1.1.2 it was shown that 
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Trajectory 7 of this scenario was smoothed by 13 participants while the algorithm could 
detect, but not smooth, the same trajectory. Those 13 participants plotted Trajectory 7 
with an average RMSE of 97m, which in relation to the averages shown in Figure 4-6 is 
extremely large (about 80m greater than average RMSE for the Easy degree of 
difficulty). While trajectory smoothing is possible over the large information gap in this 
scenario, the smoothing requires extrapolation rather than interpolation. Therefore, 
since LMTS cannot extrapolate, future experiments should take this into consideration 
when comparing accuracy between human participants and automation. 

The most interesting case is Scenario 6 (Hard, 100%), circled in red on Figure 4-5, where 
the human (mean 20.02 m, std. div. 16.02), on average, was superior to the algorithm 
(mean 37.13 m, std. div. 57.96). This is due to the fact that the algorithm missed a 
trajectory crossing (i.e. connected two trajectories erroneously) and thus predicted false 
trajectories as shown in Figure 4-5. Therefore, it had a large error over a long data span.  

Analyzing the RMSE results for the hard degree of difficulty factor level, it was found 
that errors occurred due to missed crossings, and all missed crossings occurred over 
information gaps. Similarly, those information gaps were all large compared to the gaps 
over which the trajectories where correctly smoothed. In Scenario 6 that gap was ~34% 
of the data span. The average gap for missed crossings was 29% while the average gap 
for correct connection was ~7%. On the other hand, the humans’ ability to perform with 
relatively constant accuracy allowed them to be more accurate, in comparison with the 
algorithm, as difficulty increased.   

Demographically, only the age group proved to be correlated with the data (Spearman 
ρ = .104, p=0+). While this is a significant correlation, it is weak, and therefore any 
future research would have to address this question in more detail.  

4.1.3. Factored Performance Tables 

In comparing decision sources, it is necessary to compare performance on the 
individual trajectories.  Out of 77 possible trajectories, the average human outperformed 
the algorithm 10 times and did equally well 3 times. This means that 17% of the time, 
the average human participant did better than or the same as the algorithm. 
Furthermore, at least one person did better than or the same as the algorithm for a total 
of 45 trajectories (Table E-4, Appendix E). That means the algorithm did better than all 
participants only 42% of the time 

Additional analysis was conducted to determine when to best rely on algorithm or 
human input. First for each trajectory the difference between the human and algorithm 
RMSE was calculated. Then differences were tallied for superior performance by either 
decision source or a tie, which occurred when the difference in trajectories was within 
one standard error for that trajectory. In addition, if both decision sources missed a 
trajectory, that score was tallied as a tie. All of the result tables are in Appendix E. The 
tables show trends in how performance varied, i.e. which decision source was better as 
a function of the dependent variables. The tables also show the effects of mutually 
missed tracks on overall performance. Table 4-4, which shows the number of superior 
trajectories by dependent variable, illustrates that the automation outperforms humans 
by a wide margin. The dark gray boxes show the LMTS’s best performance with respect 
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to the humans, in which the ratio of algorithm to human performance shows that the 
algorithm was superior in 92% of the easy, longer (60%, 100%) data span cases.  

However, humans showed an increase in performance in the harder degree of difficulty 
cases. The light gray boxes in Table 4-4 depict the best human performance in which the 
algorithm was superior to the human in only 57% of the cases. Table 4-4 also shows 
humans performing much better in comparison with the algorithm in the Easy, 30% 
case and the Hard 60% and 100% cases as compared to those in the dark gray boxes. 
This implies that humans have the opportunity to contribute the most when the 
algorithm has the least amount of information and/or the crossing angles are difficult. 
 

Table 4-4: 
Performance Results as a Function of Decision Source 

Superior Decision Source Degree of Difficulty Total 
Data Span Easy Hard  
30% 90 144 263 
60% 26 69 95 

Human and Tie 
 
 

100% 21 118 139 
30% 270 188 458 
60% 261 284 545 Algorithm 
100% 308 213 521 

 

To analyze the effect of jointly missed trajectories had on performance, Table 4-5 was 
tabulated, removing the jointly missed trajectories from consideration. Figure 4-7 was 
created in order to compare the results from both tables. The Hard, 30% data span case 
was significantly different in both cases, (χ2 = 5.381, p=0.016, α = 0.05) before and (χ2 = 
26.472, p=0+, α = 0.05) after, even though approximately 30% of the cases in this factor-
level crossing were jointly missed trajectories. The difference in the Hard, 30% factor 
level shows that the interpretation of missed trajectories as ties could change how to 
interpret human performance. While both trajectory detection and trajectory accuracy 
play a significant role in determining overall performance, it is important to show that 
they should be analyzed separately.  

Table 4-5: 
Performance Results Without Including Joint Missed Trajectories as a “Tie” 

Superior Decision Source Degree of Difficulty Total 
Data Span Easy Hard  
30% 89 86 175 
60% 26 69 95 Human and Tie 
100% 21 118 139 
30% 263 168 431 
60% 257 276 533 Algorithm 
100% 255 206 461 
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Figure 4-7: Ratio of trajectories which humans are superior to algorithm  

It is instructive to also consider the superior participant’s performance. Out of 29 
participants, participant 8 was more than 2 standard deviations above the average of 
the number of superior human tracks per participant. She was superior to the algorithm 
23 times and tied it 6 times out of the 77 possible trajectories. The next best user only 
outperformed the algorithm in 14 of the trajectories, and the average of all users was 
approximately 7. This participant’s performance, broken down by the dependent 
variables, is shown in Table 4-6. Just as with the aggregate human performance, the 
ratio of human to algorithm superiority increases for the hard degree of difficulty and 
short time span cases. Figure 4-8 shows participant 8’s performance with respect to the 
aggregate score from the previous figure. It highlights that the best performer 
outperforms the aggregate user in four of the six cases. 
 

Table 4-6: 
Performance table for Participant 8 

Superior Decision Source Degree of Difficulty Total 
Data  Easy Hard  
30% 5 3 8 
60% 1 6 7 

Human and Tie 

100% 3 7 10 
30% 7 6 13 
60% 11 7 18 Algorithm 
100% 9 6 15 
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Figure 4-8:  Ratio of trajectories, by factor level crossing, of the best participant (the red bars) as 
compared to the aggregate. 

 
4.1.4. Confidence Measurement 

To address the second hypothesis, which stated, “Human participants will be less 
confident at the short data span and narrower crossing angles, as there is less 
information and trajectories are harder to interpolate,” participants were asked to color 
code the trajectories with a confidence level. Confidence levels were coded with a score, 
where a score of “1” corresponds to a “High” confidence, a “2” represents a “Medium” 
confidence, and a “3” represents a “Low” confidence. The results of averaging those 
values are shown in Figure 4-9. 
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Figure 4-9: Averages of confidence measurements 

It should be noted that while all participants were instructed to update their confidence 
levels depending upon perceived ability, the confidence measurement tool was 
sometimes ignored. Since the default confidence level was “High”, all of the confidence 
levels in Figure 4-9 may be biased towards a higher confidence level than may have 
existed.  

Pairwise tests (dependent Mann-Whitney U) were run for 9 factor-level crossings. A full 
table of those results can be found in Appendix E. Results from these tests show 
significant differences for the following comparisons (degree of difficulty by data span): 
Easy 30% - Easy 60%, Easy 30% - Easy 100%, Hard 30% - Hard 60%, Hard 30% - Hard 
100%. There is also a significant difference between the 30%-60%, 30%-100% data spans. 
There is no significant difference between the 60% and 100% data spans or between 
degrees of difficulty (Figure 4-10). From the human perspective, it appears that only the 
data span played a role in determining the confidence of the participant, as there was 
no difference between easy and hard factor levels. Interestingly, the scenarios where the 
participants lacked confidence were those ones that they provided the most benefit in 
terms of correcting the automation. 
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Figure 4-10: Confidence per data span box plots. 

4.2. Discussion 

This section discusses the results of Experiment One as they relate to the hypotheses 
listed in Chapter 3. The second and third research objectives, which aim to discover 
decision source performance and human confidence, are addressed through discussion 
of the hypotheses. The first hypothesis states: 

Human and algorithm performance will deteriorate with the shorter data span 
and narrower crossing angle cases, as there is less information and the trajectories 
are harder to interpolate.  

In support of this hypothesis, the following findings are offered. Overall, human users 
missed more trajectories, while the algorithm predicted more false trajectories. Based on 
average RMSE, both human and LMTS performance deteriorated with the narrower 
crossing angle (hard degree of difficulty) cases. Human performance increased as 
compared with the algorithm for shorter data spans and harder degrees of difficulty.  

Comparison of decision source factor levels showed where there may be opportunities 
for improvement through collaboration. Using the trajectory performance tables, the 
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algorithm is the strongest at the easy, 60% and 100% data span factor level crossings 
and significantly outperformed the human in those scenarios. Human input became 
important at the easy, 30% and hard, 30%, 60%, and 100% factor level crossings where 
20%-40% of the trajectories smoothed by the participants were superior. Therefore, 
there is a higher likelihood of collaboration being beneficial in the shorter data span and 
hard degree of difficulty where the human could best assist the algorithm. This suggests 
updating the first hypothesis to state: 

Collaboration between the human and algorithm will produce the greatest benefit 
with the shorter data span and narrower crossing angle cases.  

It was also shown that missed and falsely predicted trajectories and overall accuracy 
should be analyzed separately. This is important because it means that increasing 
accuracy may not decrease the amount of missed or falsely predicted trajectories, and 
both should therefore be studied. Furthermore, the best participant did substantially 
better than the aggregate user, which shows that individual performance matters. 

The second hypothesis from this experiment states: 

Human participants will be less confident at the short data span and narrower 
crossing angle cases, as there is less information and the trajectories are harder to 
interpolate. 

The confidence results show that the only significant differences lie between the 30%, 
60% and 30%, 100% factor level crossings.  The most important inference gained from 
this is that the human user is significantly less confident in cases that it can best assist 
the algorithm. While there is less confidence at the short data span scenarios, there is no 
difference in confidence between degrees of difficulty, so the hypothesis was not 
accurate. The updated second hypothesis states: 

Human participants will be less confident at the short data span cases as there is 
less information to interpolate. 

While it was not hypothesized, it has been shown that the size of information gap plays 
an important role in the correct connection of partial trajectories. This is important, 
especially for the hard degree of difficulty factor, as it creates an increase in missed and 
false trajectories and in RMSE. However, it has also been shown that both LMTS and 
the human participants respond to this gap differently, which will need further study to 
understand. 

4.3. Summary 

An experiment was conducted to address the second and third research objectives listed 
in Chapter 1. Two hypotheses were created to address those objectives. The first 
hypothesis was supported as algorithm and human accuracy decreased in the short 
data span and hard degree of difficulty scenarios. These results indicated that humans 
could possibly add value for the short data spans, especially with narrow crossing 
angles and in extrapolation. It was concluded that both humans and automated 
algorithms can contribute to the track smoothing task. The second hypothesis was not 
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accurate as results showed that confidence is dependent solely on data span. The 
second hypothesis was restated to express the results that humans will be less confident 
when their input is most important. The next step in this investigation was to use these 
results to predict cases of algorithm failure and exploit human augmentation of those 
cases for a better result. 

 

 

 

 

 

 

 

 

 

5. Experiment Two Design 
The second experiment was designed to address the fourth research objective, to study 
a collaborative effort between human participants and the LMTS algorithm. It was 
motivated by the results of Experiment One, which suggest the creation of human-
augmented system to achieve superior system performance. The subsequent sections of 
this chapter will describe how the information regarding that collaborative effort was 
collected and analyzed. The hypothesis, participants, apparatus, experimental design, 
and testing will be discussed. 

5.1. Hypothesis  

The results of Experiment One showed that for four distinct factor level crossings, a 
collaborative effort is possible.  In order to exploit areas of possible improvement, the 
algorithm results from Experiment One were analyzed to find the areas with the highest 
probability of algorithm error. Experiment One showed that the algorithm had the 
worst accuracy when it incorrectly connected partial trajectories. Generally the 
incorrectly connected trajectories occurred when LMTS connected partial trajectories 
over visually large occlusions. This was shown in the Section 4.1.2, where the 
information gap was shown to limit the ability of LMTS to correctly connect trajectories. 
This is logical as the algorithm would be expected to function less well if information to 
be connected was more greatly separated. Also shown in Section 4.1.2 was that the 
information gap over which the algorithm failed was, on average, 29% of the trajectory 
on the Time After Launch axis, or X-axis.  
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In order to create a human-augmented effort that allows the human participant to input 
information into the cases of most likely algorithmic failure, a criterion was created for 
the invocation of human performance. As was shown, the algorithm functioned the 
worst over large occlusions. While the average of these cases was 29% of the trajectory, 
the smallest gap was 22%. Since the exact percentage of the range over which the 
algorithm is more likely to fail could not be quantified statistically, a gap of 20% will be 
used as a conservative criterion for invoking the human in the smoothing task.  

The process by which trajectories were identified for human assistance is as follows: 

 

 

 

1. LMTS first solves the entire scenario and saves the results. An example of its 
performance is shown in Figure 5-1. 

                
Figure 5-1: Algorithm solution (right) of a test scenario (left) 

2. Any smoothed trajectory in the results that meets the conditions previously 
described (crosses over an information gap of greater than or equal to 20%) is 
considered an “incorrect trajectory”. Such a trajectory is shown as the dashed 
trajectory in Figure 5-2 . 
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Figure 5-2: In the algorithm solution, the bolded, dashed line highlights the trajectory that connected 

segments which were greater than 20% of the data span apart from each other 

3. All smoothed trajectories that cross the incorrect trajectory at any point are also 
considered possibly incorrect trajectories. While they might be correct, there is no 
way of knowing during the experiment, and since these trajectories have been 
shown to be incorrect in the past, they will be assumed to be incorrect for the 
human-augmented case. These trajectories are shown in bold in Figure 5-3. 
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Figure 5-3 - All bolded lines meet the criterion in step 3 

 
4. Since the track that met the 20% criterion connected multiple track segments, any 

(or all) of those segments could actually be parts of different trajectories. 
Therefore, any crossing trajectory (which may or may not have met the standards 
listed above) has some probability of containing the correct segments of the track 
(and vice versa). All segments are then considered to be possibly incorrectly 
connected and require operator attention.  

5. Track segments used in the incorrect trajectories are then presented to the human 
operator to smooth 

In summary, the criterion of a 20% gap acts as a flag for invoking the human review of 
the trajectories that were most prone for algorithm error. On the basis of this 
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observation the following hypothesis was made to address the fourth research 
objective: 

5.1.1. Hypothesis Three 

The human-augmented decision source will produce a superior solution to the automation acting 
alone.  

5.2. Participants 

The participants were selected insofar as possible from the best participants in 
Experiment One – 12 in all. Best is defined as anyone who performed average or better 
(Appendix E). The 12 participants chosen, 6 male and 6 female, were all Lincoln 
Laboratory employees. The age group percentages were similarly spread as compared 
to Experiment One, 25% over 50, 33% were ages 35-50, 33% were ages 25-35, and 8% 18-
25.  Only 7 of the participants had computer-based drawing experience, which is similar 
to the first experiment. The complete subject demographic information is listed in 
Appendix F.    

5.3. Apparatus 

The apparatus and test bed used by the participants in Experiment Two was the same 
interface as used in Experiment One and described in Chapter 3, with one minor 
alteration. The hypothesis previously stated does not require a confidence 
measurement, so the confidence panel was removed. The interface used in this 
experiment is shown in Figure 5-4.  
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Figure 5-4: Experiment Two Interface 

5.4. Experimental Design 

The independent and dependent variables will be outlined in this section. 

5.4.1. Independent Variables 

The independent variables used in this experiment were the same as the variables used 
in Experiment One. The decision source for this experiment was either the LMTS 
algorithm or the augmented human decision source detailed in Section 5.1. Degree of 
Difficulty (Hard or Easy) and Data Span (30%, 60% 100%) were reused in this 
experiment. The factor level crossings that were examined, however, were limited only 
to the cases in which a collaborative effort had the best opportunity to be successful 
(Figure 4-7). Therefore, only the Easy 30%, Hard 30%, Hard 60%, and Hard 100% 
scenarios were examined. 

5.4.2. Dependent Variables 

Trajectory detection and trajectory fit were the primary dependent variables used to 
score performance. They are the same variables as used in Experiment One. The scoring 
of trajectory fit did not consider the trajectories that the algorithm could not extrapolate. 
The issues with these trajectories were discussed in Section 4.1.2. Since Experiment Two 
contains more difficult scenarios, it is expected to have a number of trajectories the 
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algorithm cannot extrapolate. Therefore, to fairly compare trajectory accuracy between 
decision sources, only interpolated (i.e. completely plotted by LMTS) trajectories were 
evaluated for trajectory fit. However, if the augmented human decision source is forced 
to extrapolate, those trajectories will be individually evaluated to see how well they did 
as compared to the other interpolated trajectories. 

5.5. Testing 

The testing was altered from Experiment One because it only tested the 12 best 
performers from Experiment One, and each user smoothed eight scenarios. There were 
13 initial trajectories per scenario. The following section will detail the pre-experiment 
activities, a training session, and a test session. 

5.5.1. Pre-Experiment Activities 

Each participant was first introduced to the experimental setup. Next, each participant 
read and signed the Consent to Participate Form (Appendix G). 

5.5.2. Training Session 

After filling out the required information, a tutorial instructing them on the intricacies 
of the interface was presented. As a refresher from the previous experiment, the tutorial 
started with an overview of the BMDS scenario and the motivation for the trajectory 
smoothing task (Appendix B). The same tutorial was used for both Experiment One and 
Two, however the participants were told to ignore all information regarding the 
confidence measurement in the second experiment. After the tutorial, Camtasia® 

software, which recorded all interface activity during each experiment, was turned on. 
Finally the interface was started. 

Next, to provide initial training, three practice scenarios were given to each user. The 
three practice scenarios were chosen to familiarize the user with both the interface and 
the interpolation task they were asked to perform. The practice scenarios were given in 
a fashion that would best facilitate training. The first scenario had only 4 trajectories to 
interpolate, and the scenarios became progressively harder until the last practice 
scenario, which was as difficult as any data set the participants would be asked to 
interpolate in the test sessions. 

5.5.3. Test Session 

After the three practice sessions, all participants were asked to plot eight scenarios, 
which were derived from 2 scenarios of each of the studied factor level crossings 
previously mentioned (Table 3-2). While the practice scenarios were given in a specific 
order, all test scenarios were randomized such that there was no specific order or 
presentation. All users were allowed to ask questions throughout the entire experiment 
regarding the interface and its capabilities.  
 

Table 5-1: Scenarios Seen by Participants 

Scenario Crossing Angle Data Span 
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Practice Scenario Easy 30% 
Practice Scenario Easy 60% 
Practice Scenario Hard 100% 
Scenario 1 Easy 30% 
Scenario 2 Easy 30% 
Scenario 3 Hard 30% 
Scenario 4 Hard 30% 
Scenario 5 Hard 60% 
Scenario 6 Hard 60% 
Scenario 7 Hard 100% 
Scenario 8 Hard 100% 

 
5.6. Summary 

The second track smoothing experiment was designed to evaluate the third hypothesis 
developed from Experiment One, which was that a collaborative decision source could 
better smooth trajectories than the LMTS algorithm alone. Independent and dependent 
variables were created to accurately measure the necessary information to determine 
which was better and why. Subjects received background and training prior to the 
experiment and each subject completed eight test scenarios. All information was 
gathered in real time and recorded for analysis. The results will be presented in the next 
chapter. 
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6. Experiment Two Results and Discussion 
This chapter addresses the results of the second track smoothing experiment and their 
implications. The summary addresses the third hypothesis which was presented in 
Section 5.1.1 of this thesis. 

6.1. Results and Implications 

The results are addressed in three categories: 1) Missed or false trajectories, 2) Accuracy 
of correct trajectories, and 3) Total performance tables. 

6.1.1. Missed or False Trajectories 

In Experiment Two, there were a total of 104 true trajectories. Thirty-two trajectories 
were found to be accurately plotted by the algorithm on the basis of the previously 
defined 20% criterion, and therefore all data associated with them were removed from 
further consideration. The 12 tested participants were then presented with 72 
trajectories each (which was relatively close to the 77 trajectories plotted in the first 
experiment). Of these, LMTS missed a total of 2 trajectories and predicted 13 false 
trajectories. The combined augmented users missed a total of 42 trajectories and 
predicted 31 false trajectories. This averages to 3.5 (1.17 std dev) missed and 2.58 (2.31 
std dev) false trajectories predicted per augmented decision source. The means and 
standard deviations for all participants are listed in Appendix I.  The implications of 
these results for the third hypothesis will now be considered in detail. 

6.1.1.1. Algorithm-Missed Trajectories 

The first step in the analysis was to research the 2 trajectories the algorithm missed and 
determine if any human participants detected those trajectories. The algorithm only 
missed trajectories in the 30% time span case, one in both Scenario 1 (Easy, 30%) and 
Scenario 3 (Hard, 30%). The specific trajectories the algorithm missed are designated by 
the arrows in Figure 6-1 and Figure 6-2. The areas designated in Figure 6-1 and Figure 
6-2 show that the algorithm missed trajectories due to a lack of information. Table 6-1 
shows that there were two cases where some humans managed to form trajectories 
when the algorithm could not. These cases were similar to those found in Experiment 
One where two trajectories should have been formed in the location where only one 
was plotted. The results in Table 6-1 show that some participants were able to detect 
these trajectories, however in no instance was the augmented decision source able to 
detect the existence of two side-by-side trajectories.  

Table 6-1: 
The Number of the Augmented User Correctly Plotted Trajectories vs. the Number of 

Missed Trajectories for the 2 Trajectories Missed by the Algorithm 

Scenario, Track, Factor Level Scenario 1, Trajectory 5, 
Easy 30% 

Scenario 3, Trajectory 5, 
Hard 30% 

Augmented-Correct Trajectories 2 2 
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Augmented-Missed Trajectories 10 10 

 
 

 
Figure 6-1: The raw data for Scenario 1 (Easy, 30%). 

The arrow points to the area where two 
tracks existed, but only one was plotted by 
the algorithm (and only one human 
participant plotted both trajectories). 
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Figure 6-2: The data for Scenario 3 (Hard, 30%). 
 

6.1.1.2. Augmented Decision Source-Missed Trajectories 

The next step in the analysis was to look into the cases in which the human-augmented 
decision source missed trajectories. There were three trajectories (4.2%) that the majority 
(10) of the augmented participants missed. All participants missed at least 2 trajectories 
during the course of the experiment. The 3 trajectories that approximately half or more 
of the humans missed are listed in Table 6-2, which is an expansion of Table 6-1. The 
misses correlate well with the 2 trajectories missed by LMTS. A full list of these results 
is given in Appendix I. 

 

 

 

Table 6-2: 
The 3 Most Missed Trajectories by the Augmented Decision Source and the 

Percentage of Augmented Participants Who Missed These Trajectories 

Scenario, Trajectory Factor Level Scenario 1, (Scenario 3, (Scenario 3, 

 

The solid arrow points to the area where two 
trajectories were supposed to be detected. The 
dashed arrow points to an abnormal curvature in one 
radar-detected trajectory that was actually part of the 
trajectory missed by both the algorithm and the 
majority of the human participants. 
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Trajectory 5, 
Easy  30%) 

Trajectory 1, 
Hard 30%) 

Trajectory 5, 
Hard 30%) 

Augmented-Correct Trajectories 2 2 1 
Augmented-Missed Trajectories 10 10 11 
Algorithm-Missed (Yes or No) Yes No Yes 
Missed Trajectory % 83% 83% 92% 

 

Table 6-2 shows that both LMTS and the augmented user missed trajectories in the 30% 
data span case, and the augmented user missed the most trajectories in the Hard, 30% 
case (which is the same as in the first experiment). Figure 6-3 shows the missed 
trajectories as a function of the four factor levels. The family wise error was set at α = 
.01. Overall, the algorithm and the augmented decision source are significantly different 
(Wilcoxon, Z = -3.84, p = 0.000+). However, testing all factor levels, the only significant 
difference is at the Hard, 30% case (Wilcoxon, Z = -2.71, p=0.007). The Wilcoxon scores 
for all factor levels can be found in Table 6-3.   

  
Figure 6-3: Fraction of correctly detected trajectories for both algorithm and the human-augmented 

decision source. 

 

Table 6-3: Wilcoxon Scores for all Factor Levels 
Factor Level Easy, 

30% 
Hard, 
30% 

Hard, 
60% 

Hard, 
100% 

Wilcoxon Z -1.41 -2.71 -1.63 -1.73 

P .157 .007 .102 .083 
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6.1.1.3. False Trajectories 

Experiment Two showed similar false trajectory performance as the first experiment. 
The 13 trajectories the algorithm falsely predicted greatly outnumber the augmented 
decision source average of 2.58. Out of the 8 possible scenarios, the algorithm on 
average predicted 1.65 false trajectories per scenario, and the comparison between 
LMTS and the augmented decision source is shown in Table 6-4. The two numbers that 
should be compared are the ratio of average collaborative false tracks per participant vs. 
the number of false tracks predicted by LMTS. Comparison of these two numbers 
demonstrates the augmented user outperforms the algorithm in all cases. The 
augmented user clearly outperforms LMTS and does not predict nearly as many false 
trajectories. Averaging over all dependent variables, there was a significant difference 
between the collaborative participant and LMTS (Wilcoxon Z = 6.219, p = 0+, α = .05).  

Table 6-4: 
The Ratio of False Tracks Predicted Per Factor Level 

(Decision  
Source, Factor Level) 

Easy, 
30% 

Hard, 
30% 

Hard, 
60% 

Hard, 
100% 

(# Collaborative false tracks/ 
# total participants) 

.66 .5 .76 .7 

LMTS # 4 3 4 2 

 
There are two reasons for such large number of false trajectories from the algorithm.  
First, performance is similar to LMTS results from the first experiment, in which the 
algorithm took information from two trajectories and created three. The augmented 
user minimized this behavior by allowing the human to connect trajectories over areas 
in which the algorithm had the highest probability of failure. Second, the partial 
trajectories were often not connected. If two partial trajectories were not connected on 
either side of a large gap, they would both qualify as detected trajectories. These false 
hits would increase the number of “objects” detected by the algorithm above the 
number that actually existed.  

It can also be seen that the numbers differ slightly from the first experiment. Table 6-5 
represents the two false trajectory tables normalized by scenario for LMTS. It can be 
seen that there is an overall increase of 2.5 trajectories (38%), however, there was a 
decrease in the Hard, 100% crossing angle case.. This overall increase is believed due to 
the increase in difficulty of overall difficulty in Experiment Two. 

Table 6-5: 
Number of False Trajectories by LMTS Normalized by Scenario 

(Experiment, Scenario) Easy, 
30% 

Hard, 
30% 

Hard, 
60% 

Hard, 
100% 

Experiment One 0 0 1 3 
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Experiment Two 2 1.5 2 1 

 

When looking at the same comparison for the individual human user in the first 
experiment to the augmented decision source in Experiment Two, there is still a similar 
increase. Table 6-6 presents the two false trajectory tables normalized by scenario for the 
augmented decision source. It shows an overall increase of .932 trajectories for the four 
factor levels in Experiment Two. This is a 72% increase in false hits, which is about 30% 
larger than the 42% increase by LMTS.  

Table 6-6:  
Number of False Trajectories by the Augmented Human Normalized by Scenario 

(Experiment, Scenario) Easy, 
30% 

Hard, 
30% 

Hard, 
60% 

Hard, 
100% 

Experiment One .103 0 .172 .103 

Experiment Two .33 .25 .38 .35 

 

The most likely reason for the increase in the number of overall false trajectories is that 
the second experiment is only testing cases in which the algorithm and the human user 
were most likely to predict false trajectories. The subsequent increase in overall 
difficulty between the two experiments would contribute, in part, to the overall increase 
in the number of false tracks predicted by both the algorithm and the human. However, 
the human still significantly outperforms LMTS predicting less false trajectories, 5 to .41 
in the first experiment and 13 to 2.58 in the second.  

6.1.2. Accuracy of Correctly Plotted Trajectories 

In addition to missed or false trajectories, the accuracy of each decision source is an 
important measure of performance. For all the trajectories correctly detected (i.e. not 
missed or falsely identified), Equation 3-2 was used to calculate the RMSE. This section 
first compares the RMSE from each decision source, not including extrapolated 
trajectories. It then compares the accuracy of the extrapolated trajectories by the human 
to the average accuracy in those scenarios. 

6.1.2.1. Accuracy Comparison 

Figure 6-4 shows the RMSE averages for both decision sources at each factor level. This 
figure shows that the collaborative effort significantly increases the ability for humans 
to contribute, especially at the 30% data span levels.  In order to fairly compare the 
RMSE for both LMTS and the augmented decision source, this information does not 
include any trajectories that the algorithm failed to extrapolate. 
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Figure 6-4: Error plot (w/o extrapolated trajectories) for both decision sources 

To find how effective the algorithm was in comparison to the collaborative effort, 
the data were first broken down to individual scenarios, as shown in Figure 6-5. This 
provides a more in-depth view of the individual effort per scenario. 
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Figure 6-5: Error plot (w/o extrapolated trajectories) for both decision sources broken down by scenario 

Figure 6-5 shows some interesting results. The family-wise error was set to α = .005. 
First, there was no overall significant difference between the algorithm and augmented 
user (t= -1.427, p=0.154). Further analysis showed that the augmented user significantly 
outperforms the algorithm in Scenario 2 (t= 4.482, p=0+). However, the algorithm 
outperforms the augmented decision source in Scenario 5 (t= -2.844, p=0.005). In both of 
those cases, the average mean difference was greater than 20 meters. However, the 
other cases (6 out 0f 8 scenarios) show no significant differences between algorithm and 
augmented user (Appendix I). The average difference between both decision sources in 
those cases is 3.41 m, an order of magnitude less than the two scenarios that showed 
significant differences. This information shows a difference from Experiment One 
where the average accuracy of the algorithm was significantly better, overall, than the 
human user. In this experiment, accuracy is significantly closer, and statistically there is 
no difference between algorithm and augmented user.  
 
Figure 6-6 depicts RMSE error plots from both experiments. The red line shows the 20m 
accuracy level. Comparison of these charts shows that the average RMSE stays 
relatively constant between both experiments, 16m in Experiment One and 19m in 
Experiment 2. When comparing the error for the same factor levels, the average RMSE 
increases to 19m for Experiment One.  So while there were more false trajectories 
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predicted by each decision source in Experiment Two, the missed trajectories and 
accuracy stayed relatively constant.  

 
Figure 6-6: Comparison of error plots from Experiments One (left) and Two (right) 

6.1.2.2. Extrapolated Trajectories 

There were 14 trajectories that could not be extrapolated by the LMTS algorithm. On 
average 7.9 human participants (std dev 4.9) detected these extrapolations. In order to 
see if human contributions would be beneficial in this task, the average RMSE of those 
trajectories was calculated and found to be 95m, std. dev. 165m. This is approximately 
80m more than the average RMSE of all other trajectories smoothed by the human 
augmented decision source. This shows a general lack of ability of the human to 
accurately extrapolate the trajectories over long distances. However, the large standard 
deviation is an indication that some participants may be able to accurately extrapolate.  
So while there is not enough information to do a full statistical analysis, it suggests that 
the lack of the capability to extrapolate by LMTS creates a void that can be somewhat 
filled by the human augmented user. However, extrapolation seems to be a problem for 
both decision sources and, therefore, should be a focus of future research. 

6.1.3. Factored Performance Tables 

In comparing decision sources, it is also necessary to compare accuracy of performance 
on the individual trajectories. Since the comparison is now strictly comparing human to 
algorithm results, only the trajectories that the algorithm and the human both smoothed 
were examined. Out of the 72 possible trajectories, the average human outperformed 
the algorithm 15 times and did equally well 4 times. Thus in 26% of the trajectories, the 
average human participant did better than or the same as the algorithm. The algorithm 
only outperformed every human participant in 20 trajectories, meaning that at least one 
human user did better than or the same as the algorithm in 72% of the trajectories. 

Further analysis was directed to determining if the collaborative effort was the best 
place to exploit human input. Using the same factor performance tables found in 
Chapter 4, and using only the interpolated trajectories (recall the algorithm cannot 
extrapolate), all ties and superior human trajectories were summed as were all superior 
algorithm trajectories as shown in Table 6-7. 
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Table 6-7: 
Number of Superior Trajectories as a Function of Decision Source Including Ties 

 

To analyze if the humans outperformed the algorithm, strictly superior performance, 
not including ties, was examined in Table 6-8.  It was important to see if there were any 
cases for which both human and LMTS plotted with the same accuracy. It is shown in 
Figure 6-7 that there are similar results to Experiment One, in which there were a large 
number of trajectories that are ties for which both decision sources plotted accurately. 
Furthermore, the figure shows that the collaborative effort performed as expected. The 
criterion for invoking human performance was set to allow the human sufficient 
opportunities to alter the algorithm’s results. In this experiment the human user was 
asked to plot 70% of the trajectories, which averages to 9 out of every 13 in each 
scenario.  

Decision Source Factor Level Total 
 Easy 30% Hard 30% Hard 60% Hard 100%  

Human (Tie or Better) 53 57 105 83 298 
Algorithm 45 119 88 107 359 
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Table 6-8: 

Performance Results Without Including Ties 
 Decision Source Factor Level Total 

 Easy 30% Hard 30% Hard 60% Hard 100%  
Human 39 25 47 54 165 

Algorithm 45 119 88 107 359 
 
 

 
Figure 6-7: Ratio of trajectories the human either tied or was more accurate than the algorithm with and 

without including ties. 

The performance increase between experts can be seen in Figure 6-8 which shows the 
difference in superior trajectories by the human in Experiment One and Experiment 
Two. There is an increase in superior trajectories in Experiment Two. The only factor 
level that does not experience an increase is the Hard, 30% Scenario, which is interesting 
as this was one of the best cases for the human in Experiment One. These show that 
overall the participants in Experiment Two did better than those of Experiment One, 
even with more difficult scenarios. 
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Figure 6-8: Ratio of trajectories the human either tied or was more accurate than the algorithm with out 
jointly missed trajectories 

It is instructive to also consider superior participant performance. Participant 11 bested 
the algorithm 17 times and tied it 9 times. Participants 11’s performance for superior 
trajectories is broken down by factor level in Figure 6-9. The resultant graph is similar to 
Figure 6-7, which is different from Experiment One. While one participant was 
numerically the best, there was no clearly superior participant. The average number of 
superior trajectories was 14 per participant, with a standard deviation of 3. While 
participant 11 did the best with 17, 4 other participants were superior in 16 trajectories, 
with 8 participants scoring better than average (Appendix I). The evidence shows that 
the superior performer is now not that much different from the aggregate, which 
suggests that the user pool is beginning to converge to the best possible performers. 
This further supports the evidence that the participants in Experiment Two 
outperformed those in Experiment One and validates that an expert user pool can really 
increase overall performance. 

Table 6-9: 
Performance Table for Participant 11 

Superior Decision 
Source 

Factor Level Total 

 Easy 30% Hard 30% Hard 60% Hard 100%  
Human (Tie or Better) 6 5 8 7 26 

Algorithm 3 11 9 6 29 
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Figure 6-9:  Ratio of trajectories, by factor level, comparing aggregate vs. best participant superior 

trajectories 

Figure 6-10 depicts the best performer in both experiments. This provides similar 
evidence to Figure 6-9, which shows that the best performers in both experiments have 
similar performance in comparison with the algorithm. The only large difference is in 
the Easy, 30% case which is most likely due to the increase in overall performance by 
the human decision source in this factor level in Experiment Two. This data also 
suggests that as the expert user pool becomes narrower, the superior performance 
charts will begin to converge.  

 
Figure 6-10: Ratio of trajectories, by factor level, comparing best users from Experiment One and 

Experiment Two. 
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6.2. Summary 

An experiment was conducted to address the fourth research objectives as listed in 
Chapter 1. A hypothesis was created to address that objective. That hypothesis was: 

Human and algorithm collaboration will produce a superior solution to the automation acting 
alone.  

That hypothesis was shown to be partially correct. While the human augmented 
solution did not produce a superior solution overall, it produced a solution that in 
terms of accuracy was no different than the algorithm working alone. However, it was 
far superior in terms of fewer false trajectories and slightly worse in failed detection of 
actual trajectories. The hypothesis is amended to state: 

Human and algorithm collaboration will produce a superior solution to the automation acting 
alone, depending upon the resources of the system and the needs of the operator. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7. Conclusions and Future Work 
This thesis has presented the results of two experiments that investigated potential 
human contributions to a track smoothing task that had previously been done only by 
the LMTS algorithm. The results from both experiments demonstrate ways in which 
humans can contribute to the task. This chapter will first summarize how human 
augmentation of the LMTS algorithm can generate solutions superior to those generated 
by either the human or algorithm acting alone. It will then discuss potential tradeoffs in 



 

75 

implementing that augmentation. Some results are then generalized to a wider domain 
of human-automation collaboration.  Finally, possible future work is discussed. 
 

7.1. Augmentation to Automation 
  

Experiment One showed that both humans and automation have distinct areas of 
superior performance. On average, the algorithm missed fewer trajectories and was 
more accurate in making connections. However, the humans predicted significantly 
fewer false trajectories and were more accurate in one factor level crossing (Scenario 6, 
Hard 100%). Experiment Two revisited four factor level crossings from Experiment One 
using 12 of the best participants from the previous experiment. In Experiment Two, the 
participants were asked to smooth only those cases where the results of Experiment 
One suggested that the LMTS algorithm would have difficulty. The results showed that 
the human-augmented system matched the algorithm in terms of accuracy with no 
significant difference for six of the scenarios. The results further showed that the 
humans missed, on average, one more trajectory than the algorithm alone but predicted 
significantly less false trajectories than the algorithm alone. The Fitt’s List from Chapter 
2 has been slightly updated as shown in Table 7-1 to highlight these differences. 
 

Table 7-1:  
Fitts’ List [28] for the Track Smoothing Task 

Humans Are Better At LMTS Is Better At 
Resolving uncertainty to improvise fits to 
trajectories 

Using strict rules to evaluate likelihood of a 
match 

Extrapolating trajectories  
Consistently producing results, such that each 
application of the algorithm to the same data 
will provide the same output 

Not adding false trajectories Detecting all partial trajectory information so 
less trajectories are missed 

Recalling previous similar pattern-matching 
experiences Quick and efficient computation 
The differences in results from Experiment One to Experiment Two show that 
augmented automated systems can mitigate missed or false outcomes without 
decreasing system accuracy. While accuracy was constant between LMTS and the 
human-augmented system, human participation dramatically decreased the number of 
false trajectories as compared to LMTS alone. LMTS, on the other hand, significantly 
decreased the number of missed trajectories compared to the human acting alone. These 
benefits came about because LMTS was not forced to choose trajectories when there was 
a small probability of fit, and likewise, potentially confusing trajectories were not 
presented to the human.  
 

7.2. Possible Role Allocations 
 
The criterion for invoking augmentation in Experiment Two was to remove the data for 
any trajectory that was connected over a gap that was smaller than 20% of the data 
span, provided that trajectory did not connect with any other trajectory whose gap was 
greater than 20%. This resulted in a human-dominated augmented system, since the 
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20% criterion resulted in the human addressing 70% of the true trajectories. The 
accuracy of the trajectories processed by humans was found to be equivalent in 
accuracy to LMTS. This section considers the costs and benefits that changing the 20% 
gap criterion would have on performance in the trajectory smoothing task. The 
discussion will focus on missed trajectories, false trajectories, and accuracy of smoothed 
trajectories. 
 
The humans averaged 1-2 more missed trajectories than the algorithm. While the 
algorithm was clearly superior in not missing trajectories, the 20% gap criterion and use 
of the best performers from the previous experiment clearly resulted in better system 
performance than the humans acting alone. False trajectories, on the other hand, were a 
problem for LMTS.  LMTS’s inability to extrapolate resulted in having many partial 
trajectories remaining, which were not complete predictions and thus labeled as false in 
these experiments. The algorithm predicted 5 false trajectories in the first experiment 
and 13 in the second experiment while the average human predicted 0.41 and 2.58 
trajectories, respectively. This demonstrates that the 4 factor level crossings (Easy 30%, 
Hard 30%, Hard 60%, Hard 100%) are indeed much harder since both decision sources 
predicted more false trajectories. It also shows that the human and human-augmented 
system were superior to the algorithm in mitigating false trajectories. 
 
As discussed above, accuracy increased in the human-augmented system to the point 
that there was no statistical difference between the augmented system and LMTS. 
Further adjustment of the criterion will likely result in a trade-off between missed/false 
trajectories and accuracy of the solution, similar to the tradeoff that occurred from 
Experiment One to Experiment Two. This is further discussed in Section 7.4. 
 

7.3. Generalization of Results 
 
While the results of this thesis are specific to the track smoothing application, 
extrapolation difficulties, failure to predict trajectories that actually exist, and the results 
of using an expert pool of users suggest generalization to other applications in human-
augmented automated systems.  
 
Extrapolation, as previously stated, can be thought of as prediction of future states. The 
fact that the algorithm was not programmed to extrapolate forced the human 
participant to have to do so, and in most cases the human performed poorly with low 
accuracy. The result shows that automated system designers must consider human 
limitations in extrapolation if it is necessary for successful system operation. 
 
Previous research into interpolation shows that there are factors that limit the human’s 
ability to perceive whole contours. In addition, the results of Experiments One and Two 
showed that both the human and LMTS had difficulties connecting correct segments 
due to the constraints  data span and degree of difficulty of the trajectories. Thus, 
human and automation error may not be so different in these types of tasks, which 
should be a consideration in evaluating future automation of techniques that also 
involve human perception. 
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There are clear benefits of using experts. Experts, in this experiment, were identified 
only after an hour of operation. After the second experiment, the field had narrowed 
even further, but the variation was significantly less than the first experiment. After two 
full hours of experience, the expert users were a distinct twelve individuals. Their 
expertise resulted in increased mean accuracy, in comparison to the first experiment.  
 

7.4. Future Work 
 
This thesis suggests two topics in particular for further work: better extrapolation of 
trajectories and adjustable cost-benefit criterion. Extrapolation, which is essentially 
prediction, is needed in these track smoothing tasks to understand the past, not just the 
future. Understanding the past cannot only assist in prediction, but more importantly 
increase the likelihood of determining correct trajectories. LMTS had no ability to 
extrapolate. Human extrapolation, which sometimes was useful, showed poor accuracy 
and therefore future work should look into better techniques that may help in 
extrapolation. 
 
As discussed earlier, adjusting criterion for collaboration could alter the type of 
smoothed trajectories. While it cannot be determined from these experiments, the 
alteration of the 20% criterion could also affect missed and false trajectories. For 
example, a criterion that would invoke smoothing on trajectories with a 10% gap might 
decrease the augmented missed trajectory average to approach the algorithm’s 
performance. Future experiments may be able to establish a relationship between the 
number of predicted trajectories and the accuracy of the truth trajectories, which could 
be crucial to maximizing the cost-benefit analysis of future augmented track smoothing 
systems. 
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Appendix A: Demographic Information 
 

Participant Gender Age Career Served 
in  

Military 

Country 
Served 

Service Years 
of 

Service 

Drawing 
Experience 

How 
Often 

1 Male 25-35 Engineer No       Yes Weekly 
2 Male >50 Scientist No       Yes Monthly 
3 Male 25-35 Engineer No       Yes Yearly 
4 Male >50 Scientist No       No   
5 Female 25-35 Engineer No       Yes Yearly 
6 Male 25-35 Engineer No       No   
7 Male 35-50 Engineer No       No   
8 Female 25-35 Staff No       No   
9 Male 35-50 Engineer No       No   

10 Male >50 Staff Yes USA Army 22 Yes Yearly 
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11 Female >50 Librarian No       Yes Yearly 
12 Male 25-35 Engineer No       Yes Yearly 
13 Female 35-50 Exec. 

Assistant 
No       No   

14 Female 35-50 Secretary No       No   
15 Male >50 Engineer No       Yes Monthly 
16 Male >50 Staff Yes Taiwan Air Force 1 No   
17 Male 18-25 Engineer No       Yes Yearly 
18 Male >50 Librarian Yes USA Air Force 4 No   
19 Male 25-35 Engineer No       Yes Monthly 
20 Male >50 Engineer No       Yes Weekly 
21 Female >50 Editor No       Yes Monthly 
22 Male 25-35 Electrical 

Engineer 
No       Yes Weekly 

23 Male >50 Mathema
tician 

Yes USA Navy 3 No   

24 Male 35-50 Engineer No       Yes Yearly 
25 Female 35-50 Radar 

Analyst 
No       Yes Weekly 

26 Female >50 Secretary No       No   
27 Male 35-50 Research 

Staff 
No       No   

28 Female 35-50 AE 
Engineer 

No       Yes Monthly 

29 Male 35-50 Engineer No       Yes Weekly 
 
 
 
 
 
 
 
 
 
Pre-Experiment Survey 

 
 

o Please indicate your sex: 

o Male 

o Female 

 

o Please indicate your age: 

o 18 – 25 

o 25 – 35 

o 35 – 50 

o >50 

 

o Please indicate your occupation 
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         ___________________ 
 

o Are you currently or have you ever served in the armed forces of any country?  

o Yes 

o No  

If yes, 

o Country: ____________ 

o Service:   __Army    __Navy       __Air Force    

o Years of service:______________ 

 

o Do you have any experience with drawing on a computer? 

o Yes 

o No  

If so, how often? 

o Weekly 

o Monthly  

o Yearly 
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Appendix B: Tutorial 
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Appendix C: Experiment One Consent to Participate Form 
 

CONSENT TO PARTICIPATE IN 
NON-BIOMEDICAL RESEARCH 

 
Human Performance in Ballistic Missile Discrimination Scenarios 
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You are asked to participate in a research study conducted by Lee Spence, Ph.D., from 
the MIT Lincoln Laboratory Advanced Concepts and Technology Group. You were 
selected as a possible participant in this study because of your interest in improving 
human performance in ballistic missile defense scenarios. You should read the 
information below, and ask questions about anything you do not understand, before 
deciding whether or not to participate. 
 
 
•  PARTICIPATION AND WITHDRAWAL 
 
Your participation in this study is completely voluntary and you are free to choose 
whether to be in it or not. If you choose to be in this study, you may subsequently 
withdraw from it at any time without penalty or consequences of any kind.  The 
investigator may withdraw you from this research if circumstances arise which warrant 
doing so.   
 
 
•  PURPOSE OF THE STUDY 
 
Ballistic Missile Decision Support involves a number of very broad and complex issues. 
The system is very large, it has many interconnected elements, and it is physically 
spread over an area that is a significant fraction of the Earth. In addition the information 
on which to make decisions is often incomplete and/or inconclusive, and, given the 
enormity of the decision making task, the timelines are extremely short. Thus, the 
allocation of tasks automation and humans requires careful consideration of the areas 
where each can best perform. The general purpose of this research program is to 
investigate automation and human operator performance. To this end, this experiment 
will investigate how well humans and computers can assess missile crossing tracks.   
 
 
 
 
•  PROCEDURES 
 
If you volunteer to participate in this study, we would ask you to do the following 
things: 

 Participate in a 15 minute training session to familiarize yourself with the display 
and test conditions. 

 Assess automated track identification post track crossings in up to 10 test 
scenarios, each about 5 minute in length. 

 All of these steps will occur in the Lincoln Laboratory S-Building (South 
Laboratory), Room S1-346 and in laboratories in Building 33 on campus. 

 
 
•  POTENTIAL RISKS AND DISCOMFORTS 
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There are no foreseeable risks, discomforts, inconveniences in participating in this 
experiment. 
 
 
•  POTENTIAL BENEFITS  
 
Your benefit in participation in this study is developing a better understanding of 
human and computer strengths and weaknesses in the track estimation task. In terms of 
benefit to society, this research will provide for better understanding of human versus 
computer capabilities in track estimation, which is applicable not only to ballistic 
missile defense but also the air traffic control and other domains. 
 
 
•  PAYMENT FOR PARTICIPATION 
 
Participation in this experiment is strictly voluntary with no payment. 
 
 
•  CONFIDENTIALITY 
 
Any information that is obtained in connection with this study and that can be 
identified with you will remain confidential and will be disclosed only with your 
permission or as required by law.  Your performance in this study will only be coded by 
your subject number, which will not be linked to your name so your participation in 
this research is essentially anonymous. 
 
 
•  IDENTIFICATION OF INVESTIGATORS 
 
If you have any questions or concerns about the research, please feel free to contact Lee 
Spence at Group 32 – Advanced Concepts and Technology, MIT Lincoln Laboratory, 
244 Wood St, Lexington MA 02240-9185 (781) 981-5043 or Professor Cummings at 77 
Massachusetts Ave., 33-305, Cambridge, MA 02139 (617) 252-1512.  
 
 
•  EMERGENCY CARE AND COMPENSATION FOR INJURY 
 
If you feel you have suffered an injury, which may include emotional trauma, as a result 
of participating in this study, please contact the person in charge of the study as soon as 
possible. 
 
In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the 
provision of, emergency transport or medical treatment, including emergency treatment 
and follow-up care, as needed, or reimbursement for such medical services.  M.I.T. does 
not provide any other form of compensation for injury. In any case, neither the offer to 
provide medical assistance, nor the actual provision of medical services shall be 
considered an admission of fault or acceptance of liability. Questions regarding this 
policy may be directed to MIT’s Insurance Office, (617) 253-2823. Your insurance carrier 
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may be billed for the cost of emergency transport or medical treatment, if such services 
are determined not to be directly related to your participation in this study. 
 
 
•  RIGHTS OF RESEARCH SUBJECTS 
 
You are not waiving any legal claims, rights or remedies because of your participation 
in this research study.  If you feel you have been treated unfairly, or you have questions 
regarding your rights as a research subject, you may contact the Chairman of the 
Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E25-143B, 77 
Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787. 
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SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE 

 
I understand the procedures described above.  My questions have been answered to my 
satisfaction, and I agree to participate in this study.  I have been given a copy of this 
form. 
 
________________________________________ 
Name of Subject 
 
________________________________________ 
Name of Legal Representative (if applicable) 
 
________________________________________  ______________ 
Signature of Subject or Legal Representative   Date 
 
 
 

SIGNATURE OF INVESTIGATOR  
 
In my judgment the subject is voluntarily and knowingly giving informed consent and 
possesses the legal capacity to give informed consent to participate in this research 
study. 
 
 
________________________________________  ______________ 
Signature of Investigator     Date 
 

 
 
 
 
 

Appendix D: Experiment One Radar Data 
The following data are broken into individual scenarios. The first figure represents the 
pre-processed radar data given to both decision sources. The second figure represents 
truth. The figures are listed in order of scenarios, one through six. 
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Figure D-1: Scenario 1 (Easy, 30%) 

 

 
 

Figure D-2: Truth trajectories for Scenario 1 (Easy, 30%) 
 
 

 
 

Figure D-3: Scenario 2 (Easy, 60%) 
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Figure D-4: Truth trajectories for Scenario 2 (Easy, 60%) 
 

 

 
 

Figure D-5: Scenario 3 (Easy, 100%) 
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Figure D-6: Truth trajectories for Scenario 3 (Easy, 100%) 
 
 

 

 
 

Figure D-7: Scenario 4 (Hard, 30%) 
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Figure D-8: Truth trajectories for Scenario 4 (Hard, 30%) 
 
 

 
 

Figure D-9: Scenario 5 (Hard, 60%) 
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Figure D-10: Truth trajectories for Scenario 5 (Hard, 60%) 
 
 

 
 

 
 

Figure D-11: Scenario 6 (Hard, 100%) 
 



 

98 

 

 
 

Figure D-12: Truth trajectories for Scenario 6 (Hard, 100%) 
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Appendix E: Experiment One Statistics 

 
Figure E-1: Histogram of the RMSE for both decision sources. It’s heavily weighted towards a “0” score 

which represents a perfect match 

 
Missed and False Trajectories 

Table E-1: 
The Number Participants Who Missed Each of the Trajectories 

Scenario/Trajectory  1  2  3  4  5  6 
1  0  0  1  0  0  1 
2  0  0  1  0  0  0 
3  26  0  0  0  0  4 
4  25  2  1  1  0  23 
5  0  3  1  0  0  0 
6  1  2  1  0  0  0 

 
Scenario/Trajectory  7  8  9  10  11  12  13 

1  2  1  0  0  0  2  1 
2  1  1  0  0  1  0  0 
3  17  0  0  2  2  1  1 
4  13  0  0  0  1  2  N/A 
5  1  0  0  2  1  0  0 
6  0  0  1  1  0  0  1 
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Table E-2: 
The Percentage of Missed Trajectories Per Scenario, Per Track.  

 
 
Please refer to Appendix D for the Actual Trajectories 
 

Table E-3: 
The Number of False Trajectories per Participant 

Participant  1  2  3  4  5  6  7  8  9  10 
# False Trajectories  0  0  1  2  0  0  0  0  0  0 

                     
Participant  11  12  13  14  15  16  17  18  19  20 

# False Trajectories  1  0  0  0  1  0  0  1  0  0 
                     

Participant  21  22  23  24  25  26  27  28  29   
# False Trajectories  1  0  1  0  1  2  0  0  0   

 
 
Accuracy 
The following family wise error correction was used to correct for Type-I error. 
 

 

Equation E-1: Family wise error correction. C = # of comparisons 

 
 
 
 
 
 
 
Performance Tables 
 

Table E-4: 
Number of Superior and Tied Trajectories by the Human Decision Source  
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Scenario/Trajectory  1  2  3  4  5  6 
1  4  2  1  4  10  3 
2  0  1  1  1  0  1 
3  2  0  0  0  1  0 
4  29  2  1  24  24  29 
5  1  16  0  1  0  0 
6  1  24  0  1  1  0 

 
Scenario/Trajectory  7  8  9  10  11  12  13 

1  20  1  1  5  12  20  7 
2  0  0  0  2  2  14  4 
3  1  1  0  0  1  15  0 
4  1  0  26  0  1  7  0 
5  1  0  2  25  5  13  5 
6  26  0  25  25  1  14  0 

 
 

Table E-5: 
Performance Table Including Joint-Missed Trajectories as Ties. 

Superior Decision Source Degree of Difficulty Total 

Data Span Easy Hard  

30% 24 81 105 
60% 2 37 39 

Human 

100% 0 100 100 
30% 66 63 158 
60% 24 32 56 Tie 

100% 21 18 39 
30% 270 188 458 
60% 261 284 545 Algorithm 

100% 308 213 521 
 
 
 

Table E-6: 
Performance Table Not Including Joint-Missed Trajectories 

Superior Decision Source Degree of Difficulty Total 

Data Span Easy Hard  

30% 24 71 95 
60% 2 37 39 

Human 

100% 0 100 100 
Tie 30% 65 15 80 
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60% 24 32 56  
100% 21 18 39 
30% 263 168 431 
60% 257 276 533 Algorithm 

100% 255 206 461 
 

 
 

Table E-7: Number of More Accurate Trajectories and Number of Standard 
Deviations From Mean For All Participants 

Overall Mean Number = 6.758, Standard Deviation = 4.556 

 
 
 
 
 
 
 
 
Confidence 
Table E-8 lists the results for the 13 pairwise comparison tests, in which the significant 
differences are depicted with an asterisk. 
 

Table E-8: Pairwise Comparisons (Mann-Whitney U) 
Variables Two-Tailed Significance 

(α = .004) 

Easy, 30%-60% Z = -4.986, p = .000* 
Easy, 60%-100% Z = -2.007, p = .045 
Easy, 30%-100% Z = -4.286, p = .000* 
Hard, 30%-60% Z = -4.286 p = .000* 
Hard, 60%-100% Z = -.955, p = .339 
Hard, 30%-100% Z = -3.969, p = .000* 
30%, Easy-Hard Z = -1.978, p = .048 
60%, Easy-Hard Z = -1.682, p = .093 
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100%, Easy-Hard Z = -1.286, p = .199 
30%-60% Z = -4.625, p = .000* 
60%-100% Z = -1.141, p = .254 
30%-100% Z = -4.398, p = .000* 
Easy-Hard Z = -1.459, p = .145 
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Appendix F: Experiment Two Demographic Information 
Participant Participant 

(from Exp 1) 
Gender Age Career Served 

in 
Military 

Drawing 
Experience 

How 
Often 

1 20 Male >50 Engineer No Yes Weekly 

2 22 Male 25-35 Electrical 
Engineer 

No Yes Weekly 

3 19 Male 25-35 Engineer No Yes Monthly 

4 14 Female 35-50 Secretary No No   

5 4 Male >50 Scientist No No   

6 21 Female >50 Editor No Yes Monthly 

7 25 Female 35-50 Radar 
Analyst 

No Yes Weekly 

8 8 Female 25-35 Staff No No   

9 17 Male 18-25 Engineer No Yes Yearly 

10 13 Female 35-50 Exec. 
Assistant 

No No   

11 27 Male 35-50 Research 
Staff 

No No   

12 12 Male 25-35 Engineer No Yes Yearly 
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Appendix G: Experiment Two Consent to Participate Form 
 

CONSENT TO PARTICIPATE IN 
NON-BIOMEDICAL RESEARCH 

 
Human Performance in Ballistic Missile Discrimination Scenarios 

 
You are asked to participate in a research study conducted by Lee Spence, Ph.D. from the MIT 
Lincoln Laboratory Advanced Concepts and Technology Group and Jason Rathje from the MIT 
Humans and Automation Laboratory. You were selected as a possible participant in this study 
because of your interest in improving human performance in ballistic missile defense scenarios. 
You should read the information below, and ask questions about anything you do not understand, 
before deciding whether or not to participate. 
 
 
•  PARTICIPATION AND WITHDRAWAL 
 
Your participation in this study is completely voluntary and you are free to choose whether to be 
in it or not. If you choose to be in this study, you may subsequently withdraw from it at any time 
without penalty or consequences of any kind.  The investigator may withdraw you from this 
research if circumstances arise which warrant doing so.   
 
 
•  PURPOSE OF THE STUDY 
 
Ballistic Missile Decision Support involves a number of very broad and complex issues. The 
system is very large, it has many interconnected elements, and it is physically spread over an 
area that is a significant fraction of the Earth. In addition the information on which to make 
decisions is often incomplete and/or inconclusive, and, given the enormity of the decision 
making task, the timelines are extremely short. Thus, the allocation of tasks automation and 
humans requires careful consideration of the areas where each can best perform. The general 
purpose of this research program is to investigate automation and human operator performance. 
To this end, this experiment will investigate how well humans and computers can assess missile 
crossing tracks.   
 
 
•  PROCEDURES 
 
If you volunteer to participate in this study, we would ask you to do the following things: 

 Participate in a 15 minute training session to familiarize yourself with the display and test 
conditions. 

 Assess automated track identification post track crossings in up to 7 test scenarios, each 
about 10 minutes in length. Total time will be no longer than 1 hr 10 minutes. 
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 All of these steps will occur in the Lincoln Laboratory S-Building (South Laboratory), 
Room S1-425. 

•  POTENTIAL RISKS AND DISCOMFORTS 
 
There are no foreseeable risks, discomforts, inconveniences in participating in this experiment. 
 
 
•  POTENTIAL BENEFITS  
 
Your benefit in participation in this study is developing a better understanding of human and 
computer strengths and weaknesses in the track estimation task. In terms of benefit to society, 
this research will provide for better understanding of human versus computer capabilities in track 
estimation, which is applicable not only to ballistic missile defense but also the air traffic control 
and other domains. 
 
 
•  PAYMENT FOR PARTICIPATION 
 
Participation in this experiment is strictly voluntary with no payment. 
 
 
•  CONFIDENTIALITY 
 
Any information that is obtained in connection with this study and that can be identified with you 
will remain confidential and will be disclosed only with your permission or as required by law.  
Your performance in this study will only be coded by your subject number, which will not be 
linked to your name so your participation in this research is essentially anonymous. 
 
 
•  IDENTIFICATION OF INVESTIGATORS 
 
If you have any questions or concerns about the research, please feel free to contact Lee Spence 
at Group 32 – Advanced Concepts and Technology, MIT Lincoln Laboratory, 244 Wood St, 
Lexington MA 02240-9185 (781) 981-5043 or Professor Cummings at 77 Massachusetts Ave., 
33-305, Cambridge, MA 02139 (617) 252-1512.  
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•  EMERGENCY CARE AND COMPENSATION FOR INJURY 
 
If you feel you have suffered an injury, which may include emotional trauma, as a result of 
participating in this study, please contact the person in charge of the study as soon as possible. 
 
In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the provision of, 
emergency transport or medical treatment, including emergency treatment and follow-up care, as 
needed, or reimbursement for such medical services.  M.I.T. does not provide any other form of 
compensation for injury. In any case, neither the offer to provide medical assistance, nor the 
actual provision of medical services shall be considered an admission of fault or acceptance of 
liability. Questions regarding this policy may be directed to MIT’s Insurance Office, (617) 253-
2823. Your insurance carrier may be billed for the cost of emergency transport or medical 
treatment, if such services are determined not to be directly related to your participation in this 
study. 
 
 
•  RIGHTS OF RESEARCH SUBJECTS 
 
You are not waiving any legal claims, rights or remedies because of your participation in this 
research study.  If you feel you have been treated unfairly, or you have questions regarding your 
rights as a research subject, you may contact the Chairman of the Committee on the Use of 
Humans as Experimental Subjects, M.I.T., Room E25-143B, 77 Massachusetts Ave, Cambridge, 
MA 02139, phone 1-617-253 6787. 
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SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE 

 
I understand the procedures described above.  My questions have been answered to my 
satisfaction, and I agree to participate in this study.  I have been given a copy of this form. 
 
________________________________________ 
Name of Subject 
 
________________________________________ 
Name of Legal Representative (if applicable) 
 
________________________________________  ______________ 
Signature of Subject or Legal Representative   Date 
 
 
 

SIGNATURE OF INVESTIGATOR  
 
In my judgment the subject is voluntarily and knowingly giving informed consent and possesses 
the legal capacity to give informed consent to participate in this research study. 
 
 
________________________________________  ______________ 
Signature of Investigator     Date 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix H: Experiment Two Radar Data 
The following data are broken into individual scenarios. The first figure represents the 
pre-processed radar data given to both decision sources. The second figure represents 
truth. The figures are listed in order of scenarios, one through six. 
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Figure H-1: Scenario 1 (Easy, 30%) 
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Figure H-2: Truth trajectories for Scenario 1 (Easy, 30%) 

 

 
 

Figure H-3: Scenario 2 (Easy, 30%) 
 

 
 

Figure H-4: Truth trajectories for Scenario 2 (Easy, 30%) 
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Figure H-5: Scenario 3 (Hard, 30%) 
 

 
 

Figure H-6: Truth trajectories for Scenario 3 (Hard, 30%) 
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Figure H-7: Scenario 4 (Hard, 30%) 
 
 

 
 

Figure H-8: Truth trajectories for Scenario 4 (Hard, 30%) 
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Figure H-9: Scenario 5 (Hard, 60%) 
 

 
 

Figure H-10: Truth trajectories for Scenario 5 (Hard, 60%) 
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Figure H-11: Scenario 6 (Hard, 60%) 
 
 
 

 
 

Figure H-12: Truth trajectories for Scenario 6 (Hard, 60%) 
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Figure H-13: Scenario 7 (Hard, 100%) 
 

 
 

Figure H-14: Truth trajectories for Scenario 7 (Hard, 100%) 
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Figure H-15: Scenario 8 (Hard, 100%) 
 
 

 
  

Figure H-16: Truth trajectories for Scenario 8 (Hard, 100%) 
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Appendix I: Experiment Two Statistics 

 
Figure I-1: Histogram of the RMSE for both decision sources. It’s heavily weighted towards a “0” score 

which represents a perfect match 

Missed and False Trajectories 
Table I-1: 

The Number Participants Who Missed Each of the Trajectories 
Scenario/Trajectory  1  2  3  4  5  6 

1  3  0  0  0  10  0 
2  0  0  0  0  0  0 
3  10  0  0  0  11  0 
4  0  1  0  0  0  0 
5  2  0  0  0  1  0 
6  0  0  0  0  0  0 
7  0  0  0  0  0  0 
8  0  0  0  0  1  1 

 
Scenario/Trajectory  7  8  9  10  11  12  13 

1  0  0  0  0  0  0  0 
2  0  0  0  0  0  0  0 
3  0  0  0  0  0  0  0 
4  0  0  0  0  0  0  0 
5  0  0  0  0  0  0  0 
6  0  0  0  0  0  0  0 
7  0  0  0  0  0  0  1 
8  0  0  0  0  0  0  0 
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Table I-2: 
The Percentage of Missed Trajectories Per Scenario, Per Track. 

 
 
Please refer to Appendix H for the Actual Trajectories 
 
 

Table I-3: Number of More Accurate Trajectories and Number of Standard 
Deviations From Mean For All Participants 

Overall Mean Number = 13.75, Standard Deviation = 2.987 
 

 
 
 

Table I-4: 
The Number of False Trajectories per Participant 
Participant  1  2  3  4  5  6  7  8  9  10  11  12 

# False Trajectories  2  0  1  3  9  3  2  1  3  2  4  1 
 
 
 
 
 
 
 
 
 
 
 
Mean Comparisons 
Mean comparison t tests for all scenarios for between decision source comparisons, in 
which the significant differences are depicted with an asterisk. 
Table I-5: Pairwise Comparisons (Wilcoxon) Based on RMSE Decision Source Scores 

Scenario #, Factor Level Two-Tailed Significance 
(α = .005) 
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Combined t= -1.427, p=0.154 
Scenario 1 t = 0.502, p = 0.616 
Scenario 2 t = 4.482, p = 0.000* 
Scenario 3 t = -0.672, p = 0.502 
Scenario 4 t = -1.802, p =0.073 
Scenario 5 t = -2.844, p =0.005* 
Scenario 6 t = -1.334, p =0.183 
Scenario 7 t = -0.712, p =0.477 
Scenario 8 t = -0.554, p =0.580 
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