
Human-Automation Collaborative RRT for UAV
Mission Path Planning

by

Americo De Jesus Caves

S.B. in Mathematics,
Massachusetts Institute of Technology (2009)
S.B. in Computer Science and Engineering,

Massachusetts Institute of Technology (2009)

Submitted to the Department of Electrical Engineering and Computer
Science

in partial fulfillment of the requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

June 2010

c©2010 Massachusetts Institute of Technology
All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

May 21, 2010

Certified by .
Mary L. Cummings

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by. .
Arthur C. Smith

Professor of Electrical Engineering
Chairman, Department Committee on Graduate Theses

2

Human-Automation Collaborative RRT for UAV Mission Path

Planning

by

Americo De Jesus Caves

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2010

In partial fulfillment of the requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract
Future envisioned Unmanned Aerial Vehicle (UAV) missions will be carried out in dynamic
and complex environments. Human-automation collaboration will be required in order to
distribute the increased mission workload that will naturally arise from these interactions.
One of the areas of interest in these missions is the supervision of multiple UAVs by a
single operator, and it is critical to understand how individual operators will be able to
supervise a team of vehicles performing semi-autonomous path planning while avoiding
no-fly zones and replanning on the fly. Unfortunately, real time planning and replanning
can be a computationally burdensome task, particularly in the high density obstacle
environments that are envisioned in future urban applications. Recent work has proposed
the use of a randomized algorithm known as the Rapidly exploring Random Tree (RRT)
algorithm for path planning. While capable of finding feasible solutions quickly, it is
unclear how well a human operator will be able to supervise a team of UAVs that are
planning based on such a randomized algorithm, particularly due to the unpredictable
nature of the generated paths. This thesis presents the results of an experiment that
tested a modification of the RRT algorithm for use in human supervisory control of UAV
missions. The experiment tested how human operators behaved and performed when given
different ways of interacting with an RRT to supervise UAV missions in environments with
dynamic obstacle fields of different densities. The experimental results demonstrated that
some variants of the RRT increase subjective workload, but did not provide conclusive
evidence for whether using an RRT algorithm for path planning is better than manual
path planning in terms of overall mission times. Analysis of the data and behavioral
observations hint at directions for possible future work.

Thesis Supervisor: Mary L. Cummings
Title: Associate Professor of Aeronautics and Astronautics

3

4

Acknowledgments

First of all, I would like to thank my thesis advisor, Missy Cummings, for giving me the

opportunity to be in her lab and guiding me through my thesis. Next, I would like to

thank Luca Bertuccelli for all of his help with not only my thesis, but with all my work

as a graduate student in the lab. Thanks for your patience, putting up with my poor

English and writing, and all your guidance. This whole process would have been much

more painful without it.

I would also like to thank the Office of Naval Research for funding this research.

También quiero agradecerle a mi madre, Gloria, mi hermana, Glorianna, mi padre,

mis abuelitos, y mis tios por todo el amor y apoyo que me han dado toda mi vida para

llegar a donde estoy.

Last but not least, I would like to thank all the participants and pilots in my experi-

ment, John Yazbek for helping me run the experiments, my lab mates, and everyone else

that helped me in any way.

5

6

Contents

1 Introduction 13

1.1 Background . 14

1.1.1 Path Planning for UAVs . 16

1.1.2 Human Supervision . 20

1.2 Research Questions . 21

2 Background and Previous Work 25

2.1 Background on Planning Algorithms . 25

2.1.1 Discrete Space Motion Planning . 27

2.1.2 Continuous Space Motion Planning 29

2.2 Human Supervisory Control . 37

3 Experimental Design 41

3.1 Collaborative Human-Automation RRT (c-RRT) 41

3.1.1 State Space . 42

3.1.2 c-RRT Generated Paths . 43

3.1.3 Guiding the Search with Subgoals 45

3.1.4 Waypoint-Defined Paths . 47

3.2 The Experiment . 48

3.2.1 Mission Planner Modes of Operation and Obstacle Densities 49

3.2.2 Simulating UAV Missions . 51

3.2.3 Operating the Interface . 51

3.2.4 Experimental Protocol . 55

7

3.2.5 Variables and Measurements . 56

3.3 Relation to Research Questions . 57

4 Experimental Results 59

4.1 Experiment Design and Analysis . 59

4.2 Answering the Research Questions . 60

4.2.1 Human’s Impact on Algorithm . 60

4.2.2 Algorithm’s Impact on Human . 62

4.2.3 Subjective Assessment of Collaborative RRT Planner 68

4.3 Discussion . 69

4.3.1 Common Behaviors . 70

4.4 Summary . 75

5 Conclusions and Future Work 77

5.1 Conclusions . 77

5.2 Future Work . 78

A Consent Form 81

B Demographic Questionaire 85

C Training Slides 87

D Post-Mission Survey 97

E Supportive Statistics 99

References 111

8

List of Figures

1-1 Simple UAV mission . 16

1-2 Progression of RRT . 19

1-3 Path Finding Map . 21

1-4 Human Automation Collaboration Taxonomy (HACT) 22

2-1 2D search graph for A∗ . 28

2-2 Dubins Shortest Paths . 36

3-1 Growing the Tree . 45

3-2 UAV in Simple Environment . 47

3-3 Human-Only (HO) Mode with High Density (HD) Obstacles 52

3-4 Human-Guided 1 (HG1) Mode with Low Density (LD) Obstacles 53

3-5 Human-Constrained (HC) Mode with High Density (HD) Obstacles 54

3-6 Human-Guided 2 (HG2) Mode with Low Density (LD) Obstacles 55

4-1 Interaction Plot for Average c-RRT Runtimes 61

4-2 Box Plot of Average Mission Times . 63

4-3 Box Plot of Number of Collisions . 65

4-4 Interaction Plot for Human Interaction Count 66

4-5 Box Plot of Replan Count . 67

4-6 Experiment Screenshot - Human Only Mode Delay 70

4-7 Experiment Screenshot - Using the c-RRT 71

4-8 Experiment Screenshot - Sequence of c-RRT Replans 72

4-9 Experiment Screenshot - Poor Subgoal Sequence 73

9

4-10 Experiment Screenshot - Taking Advantage of Subgoals 74

E-1 Histogram - Performance . 102

E-2 Histogram - Frustration . 103

E-3 Histogram - Workload . 104

10

List of Tables

2.1 High level pseudocode for RRT algorithm 31

3.1 c-RRT Algorithm Pseudocode for Growing Tree 42

4.1 Repeated Measures ANOVA - Average c-RRT Runtime 61

4.2 Repeated Measures ANOVA - Average c-RRT Path Length Ratio 62

4.3 Repeated Measures ANOVA - Average Mission Time 63

4.4 Repeated Measures ANOVA - Number of Collisions 64

4.5 Tukey HSD Tests - Number of Collisions 64

4.6 Repeated Measures ANOVA - Number of Human Interactions 64

4.7 Tukey HSD Tests - Number of Human Interactions 65

4.8 Repeated Measures ANOVA - Number of Replans 66

4.9 Tukey HSD Tests - Number of Replans . 67

4.10 Non-Parametric Test Results of Survey Responses 68

E.1 Descriptive Statistics: Average RRT Runtime (sec) 99

E.2 Descriptive Statistics: Average RRT Path Length Ratio 99

E.3 Descriptive Statistics: Average Mission Time (sec) 100

E.4 Descriptive Statistics: Number of Collisions 100

E.5 Descriptive Statistics: Number of Human Interactions 100

E.6 Descriptive Statistics: Number of Replans 100

E.7 Descriptive Statistics: Performance . 101

E.8 Descriptive Statistics: Frustration . 101

E.9 Descriptive Statistics: Workload . 101

11

12

Chapter 1

Introduction

Unmanned Aerial Vehicles (UAVs) are versatile systems that are being used for an increas-

ing number of applications, and in the future, it is envisioned that many of these UAVs

could be operated by a single human operator with the aid of supportive automation

algorithms [1]. In order to make this vision a reality, humans and automated algorithms

onboard the UAVs will need to collaborate effectively. In recent years, Rapidly exploring

Random Tree (RRT) algorithms have been a popular choice for path planning, but if

RRTs, or similar randomized planners, are to be used for collaborative planning of UAV

missions, their suitability for supporting human supervisors must first be explored. This

thesis presents some of the first experimental results in human supervision of multiple

simulated UAVs planning with an RRT algorithm.

This first chapter is divided into two parts. The first part discusses the need for

increased automation for UAVs navigating uncertain and dynamic environments, and the

need for a Human In the Loop (HITL) to supervise these complex missions. Justification

is then provided for the selection of the RRT algorithm as the path planning algorithm of

choice for UAV navigation. The second part discusses the research hypotheses addressed

in this thesis and presents an overview of the methods that are used to answer these

questions through a HITL experiment.

13

1.1 Background

UAVs are aircraft that fly without the need for a human crew on board, and are prevalent

in many different applications, such as homeland security and search and rescue. UAVs

come in a variety of shapes and sizes, are built for different purposes, and can be equipped

to carry out a variety of different tasks. One way to categorize UAVs is by placing them

into six functional classes [2]:

• Target and Decoy - providing ground and aerial gunnery units with a target that

simulates an enemy aircraft or missile.

• Reconnaissance - provide battlefield intelligence.

• Combat - provide attack capability for high-risk missions.

• Logistics - carry out cargo and other logistics operations

• Research and Development - further develop UAV technologies.

• Civil and Commercial - used for civil and commercial applications, such as fight-

ing fires, and applying fertilizer and pesticides to crops.

These categorizations are not rigid, and the same UAV could fall into several of these

classes since that the same UAV could be equipped to perform very different tasks due to

the diversity of sensing packages and capabilities.

The roles that the UAV plays drives the need for complex mission planning. For

example, in the future vision of firefighting roles, multiple UAVs will perform persistent

surveillance missions in search for wildfires, will have to identify the fires, relay the position

of those wildfires back to base, all the time ensuring that sufficient fuel is maintained to

complete the mission. In addition to all of the navigation constraints typical in airspace

management, these UAVs will have to comply with altitude and velocity restrictions, .

Planning UAV missions is a difficult problem due a host of real-world complexities, in-

cluding the presence of vehicle constraints, poorly known obstacle locations, and dynamic

information updates that require replanning. In addition, these sophisticated optimiza-

tion problems must be solved efficiently for them to be of any use in real-time planning.

14

With the purpose of reducing problem complexity, hierarchical decompositions of the UAV

mission planning problem have been proposed and utilized by numerous authors [3–6].

For example, Russo et al. [6], decompose the UAV mission planning problem into solving

instances of several well known fundamental problems in computer science, such as the

Traveling Salesman Problem (TSP), the assignment problem, clustering, and minimum-

cost path finding [7]. While a human may not necessarily think of planning a UAV mission

in this way, an automation-centric decomposition is convenient in explaining the role of

the RRT within a human-machine collaborative setting.

The decomposition of the UAV mission planning problem considered for this thesis

uses the same components that are used by Russo et al. [6], but groups some of the

components of the decomposition into three hierarchical layers. Starting from the lower

level, a three-layer decomposition can be described as follows: (1) path planning, (2)

resource allocation, and (3) high-level policy generation. The path planning problem is

the problem of finding a minimum-cost collision-free traversable path through a sequence

of goals, while the resource allocation problem is the problem of clustering, ordering,

and assigning tasks to UAVs. Finally the policy generation layer requires reasoning for

developing the high level strategy required for carrying out the mission.

Figure 1-1 illustrates a simple abstract UAV mission. In this mission, the gray polyhe-

dra are obstacles, icons 1 and 2 represent two UAVs, and points A through E are targets.

In this simple example, the high level policy is simply to minimize the sum of the dis-

tances traveled by the two UAVs. A possible solution to the resource allocation problem

could be to allocate UAV 1 to visit targets F, A, B, then D, while allocating UAV 2 to

visit G, C, then E. The path planning problem is simply the task of finding a minimum

length collision free path for each UAV that traverses the targets in the order given as a

solution to the resource allocation problem. The decomposition of the problem into hier-

archical layers has the potential of resulting in sub-optimal solutions, but the reduction

in complexity is frequently a justifiable trade off for real-time mission planning [3, 6].

15

A

D

C

F

B

G

E

1

2

Figure 1-1: Simple UAV mission

1.1.1 Path Planning for UAVs

The path planning problem is still an active area of research, and as previously men-

tioned, it entails finding collision-free paths for one or multiple UAVs from their current

position to their goals in a dynamic environment. Paths that are flyable by UAVs are

those that satisfy the kinodynamic constraints of the vehicles.1 To ensure that the path

planning algorithms generate paths that are flyable by the vehicles, it is key that the

path planning algorithms incorporate a representative vehicle motion model. For exam-

ple, a forward-flying UAV in mid-flight cannot instantly reverse its heading due to its

kinodynamic constraints; a solution to the path planning problem should therefore not

permit a forward-flying UAV to do so. A path that requires a UAV to perform such

a maneuver, or any maneuver that is not possible due to the kinodynamic constraints

on a UAV is therefore considered infeasible. At any point in time, the UAV position is

1The kinodynamic constraints of a UAV combine both the constraints from the laws of physics, such
as constraints on velocity and acceleration, and the dynamic constraints that take into account the forces
acting on the UAV.

16

limited by the forces exerted on the vehicle. Due to these constraints, a UAV is defined

to be a nonholonomic vehicle, where a nonholonomic system is one in which the state of

the system depends on the path taken to reach that state. Examples of nonholonomic

constraints are bounds on velocities, accelerations or curvatures [8]. This thesis abstracts

UAV kinodynamic constraints into curvature constraints on the feasible paths which will

be discussed in greater detail in Chapter 2.

In UAV mission planning there is generally a significant amount of uncertainty in

what is known about the environment. For example, targets and obstacles may be mov-

ing and/or their exact position may be unknown. In general, finding a solution to the

path planning problem with curvature constraints in a large dynamic environment with

obstacles is computationally difficult, and doing so under the time pressures of a mission

generally increases the computational burden of finding feasible paths in real time [9–11].

An algorithm that finds solutions quickly is therefore desirable, and, for real-time planning

considerations, is often required. Real-time planning considerations generally imply that

an algorithm must be able to compute a solution fast enough to avoid collisions while gen-

erating a plan that is long enough to account for the overall mission performance. Since

the rate at which a UAV will need to replan varies depending on the environment, the

exact time that the automation has to compute a solution varies as well. Nonetheless, the

planner should be flexible enough so that it can deal with highly dynamic environments,

requiring that solutions be computed in at most a few seconds.

In order to find a collision free path in such an environment, a representation of the

environment is first required. This leads to the consideration of two popular represen-

tations: continuous and discrete. In a continuous representation, we simply represent

the environment as the Euclidean space Rn (where R is the field of real numbers and

n indicates the dimensionality of the space), while in the discrete case we must divide

the environment into a lattice of points, or equivalently, a collection of cells. A discrete

space algorithm cannot be easily adapted to find a path for a nonholonomic vehicle since

additional states must be introduced into each discrete point in the environment in order

to keep track of the path taken to get to that point in real time.

While there are algorithms, such as Mixed Integer Linear Programming (MILP) solvers,

17

that can solve the path planning problem for nonholonomic vehicles exactly in a continu-

ous space [12], they are not fast enough to handle the complexity of the environments in

which UAV missions are carried out. There are also many other algorithms that can be

used to solve the path planning problem, but they too have issues, such as long running

times and other limitations that arise from their representation of the search space that

make them unattractive candidates for UAV mission planning. Some of these algorithms

will be discussed in Chapter 2.

An alternative is to consider randomized planners, since they can quickly find feasible

solutions in a continuous space [13–15]. The random nature of the solution could prove

useful in other ways such as making it difficult for adversaries to know the intended goal of

the UAV, adding an element of stealth. While there are several types of randomized path

planners, similar to the discrete space planners, many of them do not naturally extend

to planning for nonholonomic vehicles [16]. The one exception is the Rapidly exploring

Random Tree (RRT) algorithm which will be pursued in this thesis [15–25].

In their simplest form, RRTs search for a path from a starting point to a known goal

by randomly sampling the space and growing a tree until the goal becomes part of the

tree. Each iteration of the basic RRT algorithm can be broken up into three phases: (1)

sampling, (2) finding a candidate node in the tree to extend from, and (3) extending the

tree. In the sampling phase, the algorithm randomly chooses a node v to sample from

the continuous search space. Next in the second phase, the algorithm selects the point u

from the tree which it will extend toward the sample v. In the extend phase, the tree is

extended by connecting u to v and adding v to the tree. Four snapshots showing a tree

being grown by an RRT algorithm are shown in Figure 1-2.

The algorithm just described is the most basic form of the RRT algorithm and can be

modified in order to improve its computational efficiency and solve planning problems for

many different systems. For example, the sampling of points (phase 1) could be biased to

obtain better results, the selection of a tree point in (phase 2) could be altered to produce

smoother solutions, and the extend phase (phase 3) of the RRT can be modified to take

the kinodynamic constraints of a vehicle into account.

18

a b

c d
Goal

Start

Figure 1-2: Progression of RRT
The tree when the RRT algorithm has gone through (a) 20, (b) 40, (c) 80, and (d) 200

iterations.

19

1.1.2 Human Supervision

While automation is essential in UAV mission planning for reducing human workload,

human operators are nonetheless envisioned to play fundamental roles in the supervision

of these sophisticated systems. Since the UAV mission planning problem is very complex,

too complex to fully automate, having a HITL to supervise the planning of the mission can

prevent a variety of inappropriate automated solutions. For example, a human supervisor

could decide how the UAV should approach a target for taking the best possible image, or

decide what is the best ordering of the targets based on some mission prioritization scheme

that is not well encoded in the algorithms. In addition, there are many high level decisions

which should be left to a human, ranging from choosing a high level policy for the mission

to firing a weapon. Due to the difference in problem solving abilities between humans and

computers, humans are also able to solve perceptually-based problems or problems that

computers cannot currently solve at all [26,27]. However, having a single human operator

supervise more than one UAV without the aid of automation is an extremely difficult

task due to the potentially large workload that arises with operating a UAV [1]. As a

result, it is important to find algorithms that allow humans and automation to effectively

collaborate in order to reduce the workload on the human operator.

Humans’ abilities to think abstractly and qualitatively makes humans much better

than computers at solving certain types of path finding problems. In these cases, humans

are able to find solutions by simply looking at the representation of the environment. An

example of such a path planning problem is shown in Figure 1-3, where the objective is

to draw a line from point A to point B without touching any of the black walls. This

is a trivial problem for most people, but there are numerous path planning algorithms,

including RRTs, that tend to perform poorly in environments such as this one. In fact,

RRTs (as well as many other algorithms) exhibit poor performance in maps that have

bottlenecks and long narrow corridors [17]. While finding a feasible path from A to B may

be trivial for a human, additional real-world complexities may limit the humans’ ability

to generate feasible plans. What happens, for example, when a vehicle is constrained

to fly at a minimum velocity, or to be limited in the turn rate that it can sustain?

20

A

B

Figure 1-3: Path Finding Map
Connecting Points A and B is more difficult for algorithms than humans.

For a human, these additional vehicle restrictions could transform a trivial problem into

a difficult one that could nonetheless be solved by a path planning algorithm. These

observations reinforce the ideas introduced in the previous paragraphs that a good UAV

mission planner needs to exploit the strengths of both the human operator and the path

planning algorithm. Determining the degree to which RRTs are useful for planning with

HITL can be an asset to both algorithm development, as well as using the algorithm for

real-life missions.

1.2 Research Questions

The overarching goal of this thesis is to validate the use of RRTs for the path planning

component of a UAV mission planner. To assess the value of the RRT algorithm for such

a planner, a user interface was developed that allows a human operator to collaborate

with the automation in order to guide a set of UAVs to their targets through a dynamic

21

Figure 1-4: Human Automation Collaboration Taxonomy (HACT)
Collaborative Decision-Making Process Roles of moderator (dashed box), generator (gray box),

and decider [28]

obstacle field. The Human-Automaton Collaboration Taxonomy (HACT) was introduced

by Cummings and Bruni [28] as a model for human operator and automation collaboration,

and is a useful representation for explaining the role of the human supervisor in this thesis.

Figure 1-4 shows a diagram of the subdivision of the HACT into the three roles also defined

by Cummings and Bruni in Ref. [28]: moderator, generator, and decider. The moderator

is responsible for keeping the decision making process moving forward, the generator

creates feasible solutions from the data, and decider makes the final decision. Note that

the human, the automation, or both can take part in any of these roles.

In the planner developed for this thesis, the human takes on the role of moderator.

The human prompts the planner for a new path by either adding, moving, or deleting

waypoints or asking the RRT algorithm to find a path. The role of generator is fulfilled

by the automation as the RRT generates entire paths. The human is the decider and

either accepts the solution that is being displayed, or prompts the automation to either

modify the path or generate a new one.

It was hypothesized that, on average, the guidance of the human operator would

improve both the RRT algorithm’s solution quality and runtime. Since RRTs are random,

it is difficult to predict the behavior of the algorithm, and there could be cases where

human input can produce seemingly strange and unexpected solutions. This observation

led to the hypothesis that frustration could arise from a lack of understanding of the RRT

22

solutions, mission time pressures, and UAV kinodynamic constraints. Based on these

predictions, an experiment was designed to answer the following research questions:

Research Question # 1: In what ways does having a HITL impact

RRT performance?

The RRT is selected as a candidate algorithm for its ability to produce solutions

quickly. While it is conjectured that a HITL should improve the performance of the

algorithm to account for unforeseen conditions in the environment, it is still useful to

determine to what degree the algorithm is capable of dealing with the demands of human

input into path planning for a UAV mission. To complement this first research question,

the following question is then addressed:

Research Question # 2: How does the RRT algorithm impact the

human operator’s performance?

Having established that a HITL is essential for supervising UAV missions, it is of

paramount importance to understand how the RRT impacts the supervisor’s overall per-

formance. If it is determined that RRTs, and other randomized planners, are not suitable

for human-automation collaboration, then another approach may be required for increas-

ing the level of automation for path planning.

In addition to any objective HITL performance impacts, it is also important to evaluate

subjective assessments of the RRT use since operator acceptance is a critical consideration

for successful implementation. This leads to the following research question:

Research Question # 3: What is a human operator’s subjective

assessment of using a randomized algorithm?

By answering these three research questions, an experiment was designed with the

ultimate goal of obtaining a better understanding of the performance of a collaborative

and integrated randomized path planning algorithm, and demonstrating the feasibility of

using these fast, but typically suboptimal algorithms, with a human in the loop.

The remainder of this thesis is outlined as follows:

23

• Chapter 2 presents previous relevant work in planning algorithms and human su-

pervisory control to further motivate the research in this thesis,

• Chapter 3 describes the path planning algorithm, the planner, and the experiment

that was developed for this thesis,

• Chapter 4 analyzes and discusses the results of the experiment,

• Chapter 5 summarizes the work of this thesis and presents directions for future

research.

24

Chapter 2

Background and Previous Work

This chapter presents a detailed discussion of the previous existing work for path planning

problems as it relates to UAVs. The first part of this chapter provides a background on

the complexities associated with solving UAV path planning problems, and discusses some

common solution approaches. The second part of the chapter provides a more detailed

background on the Rapidly exploring Random Tree (RRT) algorithm. Finally, the third

part of the chapter introduces relevant background on human supervisory control.

2.1 Background on Planning Algorithms

There are many different formulations of the path planning problem. In one such formu-

lation, known as the mover’s problem [9], the objective is to move an agent a, represented

by a convex polygon P , from a point s to a point g while avoiding a set of obstacles. By

applying a sequence of rotations and translations, a must get from s to g. The generalized

mover’s problem allows the agent a to be represented by any set of connected polygons.1

The generalized mover’s problem is provably PSPACE-complete [9], where PSPACE

is the complexity class of problems that can be solved in an amount of space that is poly-

nomial in the input size. This complexity result means that the path planning problem,

even without the presence of any kinodynamic constraints, can be very difficult to solve.

1The terminology agent is commonplace in the computer science literature to mean an autonomous
or semi-autonomous system such as a robot, and will be used interchangeably for UAV in this thesis.

25

PSPACE-complete problems are at least as hard to solve as the the more well known

NP-complete problems. However, for many path planning applications, including the one

addressed in this thesis, the generalized mover’s problem can be relaxed to problems where

the agent a is a point [29,30]. This relaxation reduces the complexity of the problem since

the agent’s orientation does not have to be considered.

Since this thesis is specific to the control of UAVs, the path planning problem has to

consider the generation of paths that relocate the UAV from one location to another while

avoiding obstacles, as well as ensuring that the generated paths are flyable by the UAV. A

common method for ensuring that the paths are flyable abstracts the vehicle constraints

with a minimum turning radius (or maximum average curvature). This approach of

abstracting a UAV’s constraints to curvature constraints on the path is used in this thesis.

Unfortunately, even in considering the 2-D path planning problem for a point agent, it has

been shown that finding a curvature constrained path in an environment with obstacles

is NP-complete [10].

The complexity of the curvature constrained path planning problem is described in

terms of its computational complexity, which expresses the problem’s asymptotic runtime

in terms of the problem size. It is believed, but not proven, that the runtime for solving

any NP-complete problem is exponential in the problem size, and therefore finding the

shortest curvature constrained path in an environment with obstacles is expected to take

time exponential in the number of obstacles [31]. For example, such an algorithm could

find the shortest curvature constrained path quickly for 3 UAVs and 20 obstacles, but take

an unacceptable amount of time for 3 UAVs and 25 obstacles. Furthermore, for a path

planning algorithm to be useful for the future of UAV mission planning, the algorithm

must be able to plan for a sufficiently large time horizon. The time horizon for a UAVs

path needs to be large enough so that human supervisors can focus their attention on

the supervision of other UAVs or on other tasks. Even in dynamic environments, a

sufficiently large time horizon is desired since an operator needs to know which, if not all,

UAVs require the operator’s attention. Having an algorithm that can quickly plan and

replan for large time horizons will prove crucial in reducing a human operator’s cognitive

workload.

26

Algorithms that find solutions to the curvature constrained path planning problem

are essential, despite the problem’s complexity, since this problem is present in countless

autonomy tasks. The next sections investigate the various approaches to solving the prob-

lem, discussing the multiple methods for solving the curvature constrained path planning

problem and assessing possible candidates for UAV mission planning with a HITL.

2.1.1 Discrete Space Motion Planning

One way of approaching the minimum cost path planning problem is to search a discretized

space. By discretizing the space, a graph G = (V,E) can be defined, where the set of

vertices V represents the set of discrete points in the space, and the set of edges E connects

adjacent vertices in V . By defining a cost function c : E −→ R on the edges of G, the

graph G becomes a weighted graph. On such a weighted graph, the problem of finding the

minimum cost (or min-cost) path from a start vertex to a goal vertex can be defined as

follows: find the set of vertices {vi} that minimizes
∑n

i=1 c(vi) such that (vi, vi+1) ∈ E ∀i.

If we restrict the range of the cost function c to be the non-negative reals, R+
0 , then

Dijkstra’s algorithm can be invoked for solving the single source min-cost path problem

in G [7]. Dijkstra’s algorithm greedily selects the vertex with the smallest cost path to

the start vertex, and attempts to perform a relaxation of its neighbors. Relaxation is

the process of setting the cost associated with a vertex v to the cost of its predecessor u

plus the cost of traveling from u to v if this value is less than the current cost associated

with v. Once all nodes have been selected, the cost associated with the goal is the cost

of the min-cost path from the start to the goal. Dijkstra’s algorithm can be implemented

using dynamic programming since a minimum cost path exhibits the optimal substructure

property [7, 32]. Dijkstra’s algorithm has been used in different ways as a discrete path

finding subroutine for planning for UAVs [33,34].

Another algorithm that exhibits even better performance in practice is A∗ [35–37].

The standard version of the A∗ algorithm is very similar to Dijkstra’s algorithm except

that when greedily selecting the next vertex to relax, it takes a heuristic function into

account. Using an admissible heuristic (where an admissible heuristic is one that lower

bounds the actual cost) A∗ is guaranteed to solve the min-cost path problem [37]. While

27

1 45°

UAV

Goal

Figure 2-1: 2D search graph for A∗

Search graph where the points represent physical locations, while the lines represent graph
edges connecting points that are adjacent in the search graph.

A∗ performs well in practice, there are two principal disadvantages associated with it due

to the discretization of the state space.

Finer discretization increases computation time: By discretizing the space,

there are several issues that that limit the usefulness of the representation. First, discrete

path planning algorithms are efficient in terms of the total number of states in the search

space. The degree to which a solution approximates the continuous space min-cost path

depends on how finely the space is discretized. Thus, the better the approximation, the

higher the computation times. Even if solution quality is sacrificed in order to improve

running time, there is still the issue of generating a UAV traversable path, leading to the

second limitation.

Discretization may not reflect the continuous path constraints: The paths

obtained by the A∗ algorithm are limited to those that can be represented by a sequence

of neighboring points in the search graph. If a traversable path is to adhere to a minimum

turning radius, then the representation of the environment needs to allow for A∗ to find

such paths. For example, consider the UAV in the 2D world in Figure 2-1. The UAV

is only allowed to be on the points, and can only move between two points if they are

connected by a line. Now suppose that the UAV is not allowed to have a change in heading

28

greater than 20 degrees and is initially heading upward. In order for the UAV to move to

any of the points that lie to the right, it would have to change its heading by at least 45

degrees. Since this violates the turning constraints on the UAV, A∗ will not be able find

a UAV-traversable path to the goal.

2.1.2 Continuous Space Motion Planning

Given the potential limitation of the discrete space motion algorithms, it is advantageous

to analyze continuous space motion planning algorithms. For a given objective function,

there are algorithms that can find optimal solutions to the path planning problem with

kinodynamic constraints in a continuous state space representation of the environment.

A Mixed Integer Linear Program (MILP) provides a framework for formulating and solv-

ing the path planning problem exactly for a finite time horizon [12, 38]. A MILP is a

mathematical method for determining the optimal value of an objective function given a

mathematical model of the system in terms of linear equalities/inequalities and constraints

on the variable values. One of the advantages of a MILP approach is that a planner that

solves a MILP to find a solution is a complete planner, meaning that it returns a solution

when one exists, otherwise, the planner indicates that a solution does not exist. Despite

this advantage, solving MILPs is computationally difficult since MILPs are NP-hard [39].

One method for handling the computational difficulties associated with MILPs is with

the use of receding horizon approaches [40–42], where a solution is optimized over a smaller

horizon, and a re-plan is performed. Caution must be exercised since this might result

in plan infeasibilities or optimality gaps later on in the mission [41]. Nonetheless, the

objective is to find an algorithm for path planning with HITL, and a fairly long horizon

is essential. Since the difficulty of solving a MILP increases very quickly by increasing

the horizon, this formulation may have practical drawbacks, leading to the investigation

of other continuous space planners.

Due to the complexity of the path planning problem, it is likely that any complete

planner will have an exponential running time [13]. Thus, we consider planners that

are probabilistically complete, where a probabilistically complete planner is a planner that

becomes complete as the running time of the algorithm increases. In other words, if a

29

solution exists, as the running time goes to infinity, the probability that the the path

planner returns the solution is 1. While probabilistic completeness says virtually nothing

about the rate of convergence, the probabilistically complete algorithms that will be

discussed in this chapter search for a solution by randomly sampling the state space,

and these algorithms have been shown to have a convergence rate exponential in the

number of samples [13–15]. This exponential convergence rate means that the algorithms

are expected to find solutions quickly, which is why such algorithms are considered.

This section has thus far demonstrated that solving the path planning problem is

provably difficult. The additional specification of meeting the real-time requirements has

justified the use of a probabilistically complete algorithm for path finding with curvature

constraints. One of these algorithms is the RRT, which can be described as follows: let

T = (V,E) be a tree with nodes V and undirected edges (vi, vj) ∈ E connecting pairs of

nodes in V . A path in T is a sequence of nodes {v1, v2, ..., vn} such that (vi, vi+1) ∈ E for

1 ≤ i ≤ n − 1. T is a valid tree if and only if there exists a single unique path between

every two nodes in T [7]. In their simplest form, RRTs search for a path from a starting

point to a goal by randomly sampling states in the space and growing a tree until the

goal state becomes a node in the tree. The unique path from the root to the goal state is

a solution to the path planning problem.

The RRT algorithm is not the only randomized planner that is used for planning for

curvature constrained systems. The probabilistic road map algorithm constructs a graph

in the state space by randomly sampling states, attempting to connect nearby states, and

searching for a path from the start state to the goal state [43, 44]. The main problem

with utilizing a probabilistic road map algorithm for planning for constrained systems lies

in creating the road map and connecting nearby states as it may require connecting of

thousands of states, which is impractical for complex curvature constrained systems [16].

Other randomized planners randomly select a state in the tree and apply control functions

to obtain a new state to add to the tree [13]. These algorithms seem very similar to RRTs,

but when searching the state space, these algorithms have a strong bias toward previously

visited regions, while RRTs are biased toward places not yet visited, thereby encouraging

exploration [16].

30

Table 2.1: High level pseudocode for RRT algorithm

RRT(qstart,qgoal)
1 T ← initialize(qstart);
2 while (¬ T.contains(qgoal)):
3 qa ← randomState();
4 qb ← bestNode(qa,T);
5 T ← extend(qa,qb,T);

Pseudocode for the main method of the most basic form of the RRT algorithm is shown

in Table 2.1. Each iteration of the algorithm can be broken down into three phases, which

are shown in the algorithm as the methods in lines 3, 4, and 5. In the first phase, the

randomState() method returns a random sample from the search space. In the next

phase, the bestNode(qa,T) method searches the tree for the node in T that is the closest

to the random sample qa according to some metric. In the third and final phase, the

extend(qa,qb,T) method extends the tree T by growing from node qb toward state qa.

The RRT algorithm nonetheless may exhibit some pitfalls in that there classes of sce-

narios in which finding a solution may take an unacceptably long time. In particular,

these instances include environments where a solution must go through long narrow corri-

dors or any other bottleneck; the large number of samples required to find a feasible plan

may be detrimental to the running time of the algorithm [17]. It turns out, however, that

the RRT algorithm as presented in Table 2.1 is very flexible, and each of the methods

(lines 3, 4, and 5) can be implemented in many different ways in order to improve the

algorithm. Possible modifications to the standard versions of these methods are discussed

below.

The first phase, the sampling phase (line 3 in Table 2.1), of the standard RRT al-

gorithm allows for improvements by biasing the sampling of the state space. Using the

Euclidean distance as the metric for the nearest neighbor search for a random sample in

the RRT algorithm, the nodes of the current RRT define a Voronoi partition of the search

space into Voronoi regions. For a set of points P in the space, where P in this case is the

points in the current RRT, the Voronoi region that corresponds to a point pi ∈ P is the

region such that any point q /∈ P that lies in this region is closer to pi than any point in

31

P \ {pi}. The dynamic domain RRT of Yershova et al. [21] reduces the sampling domain

by restricting the Voronoi region of boundary points to the intersection of the Voronoi

region of these points and a circle of radius R. A boundary point is a point that is at

most a distance ε from any obstacle2. For a boundary point b and its Voronoi region Vb

and a sample s that lies in Vb but is a distance greater than R from b, no attempt will

be made to extend the tree from b to s since it is likely that there is an obstacle between

s and b. The fact that the extension from b to s is not made without performing the

computationally expensive check for a collision is the primary motivation behind the this

method of reducing the Voronoi region for boundary points.

If something about the structure of the environment is known or assumed to be known,

then this can be taken advantage of in the sampling strategy to obtain samples that will

lead to the RRT growing toward a feasible solution. Variants of the RRT algorithm can

bias the sampling by excluding points that cannot be a part of a solution due to a priori

knowledge of the environment such as intraversable terrain or an upper bound on path

length [19, 20]. For example, one could use the RRT algorithm for driving a car in an

urban environment and bias the sampling away from states that are unlikely to produce

solutions that would be allowable for a car driving on a street, as demonstrated in the

DARPA Urban Challenge [18].

The second and third phase of the RRT algorithm (lines 4 and 5 in Table 2.1) consists

of choosing a good node in the tree to expand toward the sample and actually expanding

the selected node in the tree. It has been empirically shown that choosing the expansion

node based on a system’s constraints, such as curvature constraints, resulted in a tree

that better explores the state space [45]. For this thesis, the kinodynamic constraints are

abstracted to curvature constraints on the path of the UAV, and the curvature constrained

path generated by the planner in this thesis are Dubins curves [46]. The following sub-

section discusses the selection and use of Dubins curves for approximating a UAVs path.

2The value of ε is chosen dynamically during the extend() method of the algorithm, and R is set to
a multiple of ε.

32

Curvature Constrained Path Modification for RRT

Once the decision is made to abstract the kinodynamic constraints of the UAV, or any

agent, to curvature constraints on the path, the next step is to choose a type of curve that

represents the curvature-constrained path. There are a number of different curves that

have been used for planning for agents that require curvature-constrained paths. These

curves include Dubins curves [46], clothoids and anticlothoids [47], Bezier curves [24],

Cartesian polynomials [48], cubic spirals [49], and sinusoidal series [49], each with its own

drawback. Dubins curves do not have a continuous second derivative; hence constraints

on the acceleration of the agent are ignored, while the remaining curves are also limited

in that they cannot be computed quickly and accurately. Bezier curves and Cartesian

polynomials, for example, do not have a closed form expression for curvature, the quality

of a sinusoidal series curve depends on the number of terms, and clothoids, anticlothoids,

and cubic spirals do not even have a closed form expression for position [24, 49]. These

other curves are already approximations to the kinodynamic constraints on an agent and

further inaccuracies only result in further deviation from realistic paths for these agents.

The fact that Dubins curves are well characterized, can be closely followed by real

vehicles, and have a closed form expression make them an attractive candidate for gen-

erating curvature constrained paths [18, 46]. Let (x, y) be the position of a UAV, θ its

current heading, and φ the steering direction. Using Dubins paths to approximate a UAVs

path, the velocity ~u = (ux, uy) is assumed to be constant, and the vehicles kinematic

constraints are given by the following equations [17]:

ẋ = ux cos θ

ẏ = uy sin θ (2.1)

θ̇ = uθ

Here uθ ∈ [− tanφmax, tanφmax] and φmax ∈ (0, π/2).

Dubins curves can be analyzed as follows: Let p0 be an initial point with velocity

~P , and q be a terminal point with velocity ~Q. In n-dimensional Euclidean space, Rn,

Dubins proved the existence of and characterized the minimum length paths from u to

33

v with average curvature less than κ [46]. Dubins curves can be broken up into two

types of segments: (1) circle segments of radius 1
κ
, which will be designated by C, and

and (2) straight line segments, which will be designated by S. Dubins determined that

these minimum length curvature constrained paths in R2 are of the form CCC (meaning

three sequential circles), CSC (circle, followed by a straight line segment, followed by

a circle), or any subsequence of these two. In other words, Dubins characterized the

minimum length curvature-constrained paths in 2 dimensions which will be discussed for

the remainder of this section.

Dubins characterized the minimum length curvature constrained paths with a given

initial velocity ~P and terminal velocity ~Q, but for an RRT algorithm, when extending the

tree, the vector ~Q is unknown because during the search, it is unknown which ~Q for the

sampled state will produce the best path to the goal. Instead ~Q is left unspecified, and

the shortest curvature constrained path to the sampled state is computed. These Dubins

paths in which ~Q is unspecified are be characterized by two types of paths, each with a

closed form expression for the distance [18].

These paths are of the form CS, CC, or subsequences of one of the two, and can be

described as follows: Let the current position of the UAV be described by the point p0 =

(0, 0, 0) ∈ SE(2), which has an angle of 0, meaning that the UAV is facing along the +x

axis. Since the length of the Dubins path for a sample in the half-plane y ≥ 0 is equivalent

to the length of a Dubins path for a sample in the half-plane y ≤ 0, then for a sample

q = (x, y) ∈ R2 we will only consider q̃ = (x, |y|) ∈ R × R+
0 . Now let ρ be the minimum

turning radius of the UAV, where ρ = 1
κ
. If we define D+

ρ = {z ∈ R2 : ‖z − (0, ρ)‖ < ρ}

then the minimum length Dubins path from p0 to q̃, Lρ(q̃), is given by [18]:

Lρ(q̃) =

f(q̃) for q̃ /∈ D+
ρ

g(q̃) otherwise.

34

where

f(q̃) =
√
d2
c(q̃)− ρ2 + ρ

(
θc(q̃)− arccos

ρ

dc(q̃)

)
g(q̃) = ρ

(
2π − α(q̃) + arcsin

x

df (q̃)
+ arcsin

ρ sinα(q̃)

df (q̃)

)

In the equations above, dc(q̃) =
√
x2 + (|y| − ρ)2 is the distance from q̃ to (0, ρ). The

angle θc(q̃) = atan2 (x
ρ−|y|) is the angle of q̃ from the point (0, ρ), measured counter-

clockwise from the negative y-axis; df (q̃) =
√
x2 + (|y|+ ρ)2 is the distance of q̃ from

the point (0,−p), and α(q̃) = arccos
(

5ρ2−df (q̃)2

4ρ2

)
. Note that the atan2 function in the

definition of θc(q̃) is the four quadrant function with the range [0,2π) [18].

To gain an understanding of where f(q̃) and g(q̃) come from, we will look at the paths

that these two functions correspond to. With a UAV, we associate a pair of turning circles

of radius ρ which can be seen as the dashed circles in Figure 2-2. Next, consider a sample

v. If v ∈ Dρ then this means that v lies outside both of the UAV’s two turning circles of

radius ρ, and corresponds to the function f(q̃). Otherwise v lies inside one of the turning

circles of the UAV, and corresponds to the function g(q̃). Figure 2-2 shows the two paths.

In (a) we see the path for the case where the sample v /∈ Dρ, while in (b) v ∈ Dρ.

The Dubins curves and the corresponding distance function can be easily incorporated

into the RRT algorithm. The Dubins distance, Lρ(q), can be used as the metric for

selecting a node in the tree to expand toward the sample. Once a node is selected, the

corresponding Dubins curve can be generated from this node in the tree to the sampled

state.

This section has discussed optimal curvature constrained paths for the 2D case, but

the results that were discussed in this section have been extended to the three dimensional

case [50]. Similar to the 2D case, the Dubins curves for the 3D case are also well defined

and classified. Since the interface for the experiment run for this thesis displays a 2D

representation of the environment, the 3D case will not be discussed any further but left

as an area for future work.

35

1 1r r

(a) (b)

v

v

Figure 2-2: Dubins Shortest Paths
Shortest length Dubins path for UAV 1 from its current position and heading to the sampled

point v. (a) v /∈ Dρ (b) v ∈ Dρ.

Improving solution quality in the RRT

The use of the Dubins distance Lρ(q̃) for the selection of the expansion point is a method

for smoothing out a solution [45]. In attempt to increase the smoothness and decrease the

length of the solution, Kuwata et al. in [18] make use of a heuristic function mapping a

point in the tree to its distance to the root. Using the sum of this heuristic and the Dubins

distance, the algorithm attempts to minimize the distance from the sample to the start,

and not just the distance to the expansion node in the tree. Using the heuristic tends to

create trees that are very dense near the root, which can increase the time it takes to find

a path to the goal. When searching for an expansion node, the RRT algorithm of Kuwata

et al. only uses the heuristic 30% of the time, where the value of 30% was selected from

empirical observation.

An approach that attempts to incorporate a notion of a global solution quality in the

RRT is one that associates a cost map with the search space. Lee et al. [20] makes use

of such a cost map along with a heuristic to attempt to minimize the total cost of the

path from the root of the tree, to the sample node, to the goal. The cost function is the

cost of the path from the root to the sample, and the heuristic is the distance from the

sample to the goal, weighted by a factor h. The use of the heuristic also results in a slow

36

down of the algorithm for the same reason as in the method used in Kuwata et al. [18]:

an increased branching factor. Hence, these heuristics must be used with caution for time

sensitive applications.

In conclusion, the RRT seems to be a promising candidate for path planning UAV

missions due to its ability to quickly generate solutions in complex environments for long

time horizons. Due to the flexibility of the RRT algorithm, there are actually methods for

the human supervisor to collaborate with the RRT by guiding the search and restricting

the search space. More importantly, since the future of UAV mission planning lies in the

collaboration of humans and automation, it is crucial that the RRT algorithm be able to

easily collaborate with the human supervisor. This next section will overview previous

relevant work in human supervisory control and provide motivation for the need for such

human planner collaboration.

2.2 Human Supervisory Control

UAV operators in the near future will be expected to be high level managers of the

overall mission [1]. Before human operators can take on a supervisory role3 in UAV

mission planning, many components of the UAV mission planning process and human-

automation interaction must be studied and understood.

Since workload is a major factor in determining the number of UAVs a single human

operator can effectively control, the effect of workload on UAV path planning is an im-

portant relation to study. Cummings and Mitchell [52] investigate the relation between

workload and performance in UAV task scheduling, and proposed an upper limit formula-

tion for predicting the number of agents a human can effectively control. This number of

agents a single human can control is given in terms of the time an agent can be neglected

and the time it takes to interact with the agent to raise its performance to an acceptable

level.

In the taxonomy of UAV missions proposed by Nehme et al. [53], navigation is a

3A supervisory role is defined as the role an operator takes when intermittently interacting with a
computer to close an autonomous control loop [51].

37

common cognitive function across all types of UAV missions. Cummings et al. [1] argue

that path planning for UAV missions is part of a lower level loop in the planning system,

and in order for a single human to control multiple UAVs, complex automation is needed.

This is due to the fact that human operators must divide their cognitive capacity amongst

the various tasks the UAVs are performing. If for each UAV, the human operator is forced

to dedicate excessive cognitive capacity to navigation, then the operator will be unable

to properly deal with high level mission management.

UAV navigation cannot be fully automated with current technology, so to reduce

the workload on the human operator, human-automation collaboration can be utilized to

combine the strengths of humans and computers to navigate UAVs. A variety of work has

been done in studying human-automation collaboration for path planning and in reducing

problem complexity. Hwang et al. [54] developed an interface that allows a human to

control multiple robot paths by drawing lines on a touchscreen. The automation was

only responsible for taking the human operator’s input, and converting it into a curvature

constrained path by generating Bezier curves with filtered human input. While the system

allows a single human to navigate multiple agents by generating curvature constrained

paths, a large portion of the navigation workload was still left to the human operator.

In studying human-automation collaboration for systems that include path planning,

tools have been developed that were designed to integrate path planning with other aspects

of the planning environment. For example, Carrigan developed and tested the Mobile

Situational Awareness Tool (MSAT) for assisting users in dealing with health and status

monitoring and path planning in a maritime environment [55]. MSAT incorporated MAPP

(Maritime Automated Path Planning tool), and human-in-the-loop studies showed that

humans could effectively and quickly use this A*-based path planner, as well as develop

appropriate levels of trust for such an automated tool [56].

The degree to which the level of automation in path planning affects other factors of

high level mission planning has been studied as well. Marquez [57] studied the effect of

different levels of automation and visualization in path planning in the domain of human

planetary surface exploration. The results indicate that an increased level of automation

can leads to a decreased level of situational awareness, and vice versa. Both trust and

38

loss of situational awareness should be considered carefully in work that integrates both

high level and low level tasks for UAV mission planning.

One example of using the strengths of humans and computers to reduce problem

complexity is to use human input to make an typically intractable problem tractable. For

the plan recognition problem,4 Lesh et. al. [59] implemented an algorithm such that when

an ambiguity arises, the automation was designed to ask the human user for clarification

in an attempt to guide the search and reduce the size of the state space. For the domains

in which the algorithm was tested, the collaborative algorithm was successful at making

the plan recognition problem tractable. The same strategy of using human input to guide

the search and reduce the state space is adopted by the work in this thesis.

In order for human operators to become high level supervisors of UAV missions, addi-

tional layers of automation are needed. Navigation is a common, high workload, cognitive

task in UAV mission planning, but due to mission environment complexities, current tech-

nology cannot fully automate UAV path planning. The RRT path planning algorithm is

an attractive candidate for its ability to quickly generate solutions and its adaptability

for human-automation collaboration. As such, the human-automation collaborative RRT

(c-RRT) developed for the work in this thesis will be described, analyzed, and discussed

in the the remaining chapters.

4The problem of plan recognition is to take in as input a sequence of actions performed by an actor, and
to infer the goal pursued by the actor and also organize the action sequence in terms of plan structure [58].
In general, this problem is intractable.

39

40

Chapter 3

Experimental Design

This chapter discusses the experimental design used for the assessment of a Rapidly

exploring Random Tree (RRT) algorithm for collaborative UAV mission planning. The

first section in this chapter reviews the human-automation collaborative RRT algorithm

(c-RRT) that was implemented for this experiment, the second section describes the

planner, experiment, and measurements that were made during the experiment, while the

third section addresses how the choice of variables addresses the research questions of this

thesis.

3.1 Collaborative Human-Automation RRT (c-RRT)

The c-RRT algorithm differs from the standard RRT algorithm originally introduced by

LaValle [17] in three main ways: (1) the algorithm generates curvature-constrained paths,

(2) the human operator can constrain the solution space by providing as input a sequence

of points to the algorithm, and (3) the human operator can modify paths by moving

points of interaction, referred to as waypoints, that are along the UAV paths.

In order to permit the human operator to plan/replan the UAV paths, the interface

must allow the operator to obtain UAV flyable paths, where a flyable path is one that

satisfies the curvature constraints on a path. To do so, the mission planner was designed

to allow for two types of paths: waypoint-defined and c-RRT generated paths. The c-

RRT generated paths are simply the paths generated from growing the tree in the c-RRT

41

Table 3.1: c-RRT Algorithm Pseudocode for Growing Tree

RRT(qstart,qgoal)
1 T ← initialize(qstart);
2 while (¬ T.contains(qgoal)):
3 qa ← randomState();
4 qb ← bestNode(qa,T);
5 T ← extend(qa,qb,T);

algorithm while waypoint-defined paths are computed from Dubins curves. Before the

c-RRT algorithm is described in more detail, the state space in which the algorithm

performs its search is described first.

3.1.1 State Space

For this thesis, the state space C that the algorithm searches is a mathematical repre-

sentation of a 2D environment. For an unbounded, obstacle-free environment, C = R2.

Obstacles can be represented as arbitrary closed connected subsets of R2. For the set

of obstacles O, the unbounded 2D search space is then the set difference C = R2 \ O.

For practical purposes for the experiment that will be described in more detail in a later

section, restrictions were applied to the state space just described. These restrictions

include constraints on the obstacle-free state space due to representational limitations of

the Graphical User Interface (GUI), as well as constraints on the allowable obstacle sets

due to limited computational resources.

The entire UAV mission environment is contained on a single screen, thus it is desirable

for the obstacle-free state space to be limited to a bounded subset of R2. In order to achieve

computational efficiency both while sampling and extending the RRT, it is necessary to

quickly determine whether a point p ∈ R2 lies in an obstacle. Arbitrary obstacle shapes

are admissible, but without loss of generality, all of the obstacles that were used for the

experiment in this thesis were selected to be regular octagons.

42

3.1.2 c-RRT Generated Paths

To grow a tree, the c-RRT algorithm takes a start state and a goal state as input, initializes

a tree with the start state as its only node, then grows a tree until the the tree contains the

goal state. The non-trivial part of the algorithm, the growing of the tree, occurs during

the three methods shown in lines 3, 4, and 5 of Table 3.1 and it is sufficient to describe the

randomState(), bestNode(qa, T), and extend(qa, qb, T) methods in order to obtain

an understanding of what the algorithm does.

For simplicity and generality, the sampling strategy used by the randomState()

method in the c-RRT algorithm is the straightforward, unbiased sampling strategy used by

the basic RRT algorithm presented in LaValle [17]. With probability r, the randomState()

method simply returns a point from the space R2 at random, and with probability (1−r),

randomState() returns the goal state. The value of r needs to be selected so that a suffi-

cient portion of the state space is explored by the tree. This in turn allows a collision-free

extension of the tree to the goal to be made when the goal is selected as the sample state

by the randomState() method. With this in mind, the probability r was chosen empiri-

cally by setting the value of r close enough to 1 such that the algorithm found paths to

the goal most of the time, but not so close that the interface would freeze or lag often

due to high memory consumption caused by a large tree. After tuning this parameter

through extensive numerical experiments, the value of r was set to r=0.95.

The second method, the bestNode(qa, T) method, takes as input the sample state

that was returned by the randomState() method and finds the best node in the current

tree for extending to the sampled state qa. There are different notions of what it means

to be the best node, and in the standard form of the RRT algorithm [17], the best node is

defined as the nearest neighbor (in terms of Euclidean distance) in the tree T to qa. While

there are efficient data structures, such as KD-Trees [7], that can be exploited for finding

the nearest neighbor with the Euclidean distance metric, using a metric based on system

constraints, such as curvature constraints, results in an RRT search that better explores

the state space [45]. In addition, using system constraints as the metric for selecting the

nearest neighbor tends to produce smoother solutions [18].

43

This thesis abstracts UAV kinodynamic constraints as curvature constraints on the

paths, which are represented as Dubins paths [46]. Thus, the metric used for finding

the nearest neighbor is the Dubins distance Lρ(q̃) described in Section 2.1.2. In order to

make use of the function Lρ(q̃) in the algorithm, two transformations need to be applied

to both the sample state qa and each tree node pi ∈ T . Two assumptions are made in

the expressions that are in the definition of the function Lρ(q̃): (1) pi = (0, 0, 0) ∈ SE(2),

where SE(2) is the special Euclidean space of rotations and translations in 2 dimensions,

and (2) q̃ ∈ R × R+
0 . Since a node in the tree T will usually not be at the origin

(0, 0, 0), then for pi = (xi, yi, φi), both pi and qa are and translated by (−xi,−yi) to the

origin then rotated by −φi . In addition, the translated and rotated qa, q
′
a = (x′a, y

′
a), is

transformed into q̃′a by setting q̃′a = (x′a, ‖y′a‖). After applying these transformations, the

function Lρ(q̃′a) can be computed and used as the metric in a linear search for the nearest

neighbor.

In an attempt to obtain smoother and possibly shorter paths, with probability α, a

heuristic value, h(qb), is added to the Dubins distance. For a tree node qb, the heuristic

function h(qb) maps the tree node qb to the distance from qb to the root of the tree, where

this distance is computed by following qb’s ancestors in the tree back to the root. By

using the sum h(qb) +Lρ(q̃′a) as the metric for determining the nearest neighbor, the best

node is the node in the current tree that will minimize the distance from the root to the

sampled state. Since the use of this heuristic results in trees with a smaller depth (thus

impeding the exploration of the space), the value of α should not be set too high, and is

therefore set at α = 0.3. This is the same value that was empirically selected by Kuwata

et al. [18].

The last of the three methods, the extend(qa, qb, T) method, extends the tree by

generating a Dubins path from qb = (xb, yb, φb) ∈ SE(2) to qa = (xa, ya). Similar to

the transformations that are done for the bestNode(qa, T) method, both qb and qa are

translated by (−xb,−yb), then rotated by −φb. The Dubins path that corresponds to the

transformed points qb and qa is then computed. If the tree were continuous, then it would

be possible for the best node to lie somewhere on a Dubins path between some qb and

qa. Due to computational limitations, the tree is not continuous, but instead defined by

44

Figure 3-1: Growing the Tree
The tree is defined by nodes (black circles) sampled from Dubins paths. Samples from a

Dubins path that has collided are not included (white squares).

a set of nodes. Since qb and qa may be far apart, many potential best nodes may be lost;

thus it is desirable to include some of the points along the Dubins path between every

qb-qa pair. The c-RRT algorithm samples points equidistantly along the Dubins paths

and adds them to the tree. Once added to the tree, points become nodes in the tree. Tree

nodes belong to the space SE(2) since in addition to a node’s location in Euclidean space,

each node is assigned a heading which is determined by the spatial relation between the

node and its parent. To prevent the tree from growing into an obstacle, the sample points

are added sequentially along the Dubins path. When a sample point is determined to be

inside an obstacle, the extension of the tree toward the sample state qa halts, and the

method terminates. This is shown for a few iterations of the algorithm in Figure 3-1.

3.1.3 Guiding the Search with Subgoals

From the algorithm’s perspective, having human-automation collaboration has two main

purposes: using the human operator’s input for (1) reducing the amount of computation

45

required by the algorithm and (2) guiding the algorithm to find a solution that is in the

neighborhood of what the human wants or expects.

It is well known that RRTs tend to perform poorly in scenarios where there are bot-

tlenecks and/or long narrow corridors [17], and one way that these problems can be

circumvented is by growing multiple trees then connecting them to form a single solution.

One version of the RRT that uses more than one tree is the bi-directional RRT with

kinodynamic constraints [15]. The bi-directional RRT simultaneously grows a tree from

both the start and the goal states by alternating which tree is expanded at each iteration.

The algorithm looks for a path by attempting to grow the two trees until they merge.

This approach comes with the drawback that in general, a discontinuity of the curvature

constraint in the path will exist at the point where the two trees meet [15]. There are

methods for trying to correct the discontinuity in the curvature, but this thesis avoids

that problem altogether by using a different approach from the bi-directional RRT.

Instead of growing two trees from opposite ends, the c-RRT algorithm grows a sequence

of trees rooted at a given sequence of points referred to as subgoals. The c-RRT algorithm

allows a sequence of subgoals to be set by the human operator by clicking on the map

interface with the mouse. The heading of the root of each tree is set to be the heading of

the goal in the previous tree. Within each tree, the curvature constraints are guaranteed

to hold, and by growing the trees sequentially and giving each tree root an initial heading,

the curvature constraints are guaranteed to hold from start to final goal. This method of

growing multiple trees from a sequence of subgoals provides the human operator with a

method for mitigating the complete randomness of the generated path, since the solution

must go through all the specified subgoals. In the mission planner, the goals, or targets,

are red squares, while subgoals are solid black squares. An example of a target and a

subgoal is shown in the environment in Figure 3-2. The difference between subgoals and

waypoints, shown in Figure 3-2, is that subgoals are points that act as waypoints for the

algorithm, while waypoints are points on the UAV paths that are displayed for human

interaction.

46

1

Waypoints

UAV

Target

Subgoal

Obstacle

Obstacle

Figure 3-2: UAV in Simple Environment

3.1.4 Waypoint-Defined Paths

A UAV’s waypoint-defined curvature constrained path is defined by the UAV’s current

heading and the following sequence of points: the UAV’s current position, a sequence of

waypoints, and a target. For every pair of consecutive points in this sequence of points,

the path from the first point in the pair to its successor in the path is generated in the

same way that the extend(qa, qb, T) method generates a Dubins path from points qb to

qa. Note that in order to generate such a Dubins path, the heading of the first point must

be known, while the heading of the second point should not be initially specified, but

instead set after the path is computed. When computing the path, the only point that

has a heading already assigned to it is the point at the UAV’s current location. Thus, the

path from the UAV to the target is computed by first generating the path from the UAV

to the first waypoint, then from the first waypoint to the second waypoint, and eventually,

the last waypoint to the target.

47

The Dubins paths generated between pairs of points are the shortest possible curva-

ture constrained paths. However, it is important to note that the overall path generated

from a UAV, through a sequence of waypoints, to the UAV’s next target is not guaran-

teed to be the shortest possible. The sub-optimality of this policy for constructing paths

can be shown using the fact that the heading of any point in the path only depends on

its predecessors [46]. Determining which heading for each of the waypoints produces the

shortest Dubins path is a combinatorial optimization problem. Therefore, trying to deter-

mine the optimal curvature constrained path through the waypoints can quickly become

computationally intensive and is not suitable for the real-time computations carried out

in experiment for this thesis. Instead, the heading of a waypoint is determined completely

by the location of the waypoint and its predecessor’s location and heading. A waypoint’s

heading is computed by finding the tangent to the Dubins path at the point where the

Dubins path reaches the waypoint.

3.2 The Experiment

The mission planner was designed to support a simulation of a simple UAV mission

while allowing different levels of interaction between the human operator and the c- RRT

algorithm. For the purpose of the experiment for this thesis, the mission planner was

designed to operate in four modes of operation: Human-Only (HO), Human-Guided 1

(HG1), Human-Guided 2 (HG2), and Human-Constrained (HC). These four modes of

operation differ in the level of automation presented to the user. The HO mode requires

human operator to manually guide the UAVs by manipulating waypoints, while the HG1

mode gives the human operator the choice of using the c-RRT algorithm without the

ability to set subgoals for generating paths. The HG2 mode forces the operator to ask

the c-RRT algorithm, without the use of subgoals, to find a collision-free path, and the

HC mode gives the human operator full access to the c-RRT algorithm.

The c-RRT algorithm allows human operators to interact with the RRT algorithm

both before and after the algorithm searches for a solution. Interactions prior to the

search are in the form of specifying subgoals, while interactions after the search are in the

48

form of waypoint modification. In the HG1 and HG2 modes, operators interact with the

c-RRT algorithm only after the search, while in the HC mode, operators interact with

the algorithm both before and after the search.

3.2.1 Mission Planner Modes of Operation and Obstacle Den-

sities

These modes were designed to give the human operators in the experiment three levels of

interaction with the c-RRT algorithm: (1) no interaction in the HO mode, (2) the ability

to use the algorithm to obtain solutions and modify them after they are presented in the

HG1 and the HG2 modes, and (3) the ability to use the algorithm by both constraining

the solution space with subgoals and modifying the solutions after they are presented in

the HC mode. The HG2 and the HC mode were designed such that participants are

forced to use the c-RRT algorithm without and with specified subgoals, respectfully. This

was done for purposes of the data analysis. Forcing participants to use the algorithm and

specify subgoals enables measurement of the algorithm’s performance to be made during

the mission for every participant. Both the HG1 and the HG2 modes were included in

the mission planner design in order to compare the performance and behavior of human

operators when given the choice of whether or not to use the c-RRT for planning.

In all four of the modes of operation, for each UAV-target pair, the path is initially

set to the Dubins curve generated by the UAV’s location and heading and the target’s

location. In other words, ignoring obstacles, the initial path is the shortest curvature-

constrained path to the next target. To avoid collisions with obstacles, the human operator

has different abilities, which vary between the modes of operation, to guide the three

UAVs.

The simplest of the four modes in which the missions are carried out is the HO mode

of operation. In this mode, the human operator has to guide the UAVs to their next

target while avoiding the obstacle field by manually generating waypoint-defined paths,

which are generated manually by adding, deleting, or moving waypoints.

In the HG1 mode, human operators are still able to manipulate the UAV paths

49

manually, except that they no longer have the ability to add waypoints. Instead, waypoints

are given on the UAV paths so that users have the ability to modify the current paths by

moving or deleting the waypoints. In addition, operators have the option of having the

c-RRT algorithm generate a collision-free path to the next target. Every time the c-RRT

algorithm is called, it attempts to look for a collision-free path for the selected UAV from

its current location to its next target. If a path is not found, then the UAV’s current

path is not modified. In this mode of operation, waypoints are always present on all of

the UAV paths, giving operators the option of using the algorithm or manually guiding

the UAVs.

The HG2 mode is similar to the HG1 mode, but was designed to force operators to

use the algorithm. Unlike the HG1 mode, waypoints are not always present on the UAV

paths. Waypoints only appear on the selected UAV’s path after the c-RRT algorithm

searches for a solution, and they disappear once the selected UAV is no longer selected.

Since operators have no way of interacting with the UAV paths to make modifications,

they are essentially forced to use the algorithm to guide the UAVs around obstacles.

The most complex of the four modes, the HC, is similar to the HG2 mode, except

that it requires the human operator to specify at least one subgoal in order for the c-RRT

algorithm to run. The HC mode forces operators to guide the c-RRT algorithm’s search

by specifying a sequence of subgoals which the algorithm must include, in order, on the

path it generates to the goal. It is the only mode that allows this additional interaction of

specifying subgoals to the c-RRT. Once the subgoals are set, the mechanics of this mode

of operation are identical to the HG2 mode.

Obstacles are present in the the UAV mission environment, and while the obstacles

do not move, they do appear and disappear. For the purposes of the experiment for

this thesis, two different levels of obstacle density were used to represent environment

complexity: Low Density (LD) and High Density (HD). The obstacle density refers to

the constant number of obstacles present on the map at any time. There were two different

obstacle density environments that were incorporated to the experiment: LD and HD.

The obstacle density refers to the constant number of obstacles that are present at any

given time during the mission. The HD obstacle fields maintained 20 obstacles, while the

50

LD obstacle fields maintained 12 obstacles.

For the experiment, a total of eight maps were generated; four for each of the two

obstacle densities. For each map, a fixed grid of obstacles was generated, and the obstacles

were randomly scheduled to alternatingly appear and disappear at five second intervals

to maintain a constant number of obstacles on the map.

3.2.2 Simulating UAV Missions

For each UAV mission and each UAV, the same starting location and sequence of four

targets was assigned to each UAV. Once the mission began, the UAVs started moving

at a constant speed along their paths toward their next target. Once a UAV reached

its target, the UAV’s next target in the sequence appeared and the UAV continued to

move toward it at the same constant speed. To simulate time, the computer was asked

to execute a “timer task” periodically a couple of times per second. Every time the the

timer task was executed, two crucial events took place: (1) UAVs updated their position

by moving along their corresponding path, and (2) a check was performed to see whether

any obstacles needed to be added or removed. Unknown to the user, obstacles were added

or removed based on a predefined schedule assigned to each obstacle.

3.2.3 Operating the Interface

In the mission planner interface shown in Figure 3-3, we see three UAVs and three targets,

with one target per UAV. The UAVs are connected to their target by a path. On each on

these paths there can be a sequence of waypoints, which are the yellow diamond shapes

on the paths. Waypoints are the points of interaction for the human operators and can

be added only in the HO mode, and deleted and moved in all modes. A waypoint can

be added to the selected UAV’s path by left-clicking on the map at the desired location,

while a waypoint can be deleted by right-clicking the desired waypoint on the selected

UAV’s path. A waypoint can be moved by pressing the left mouse button over the

desired waypoint on the selected UAV’s path, dragging the mouse, then releasing the

mouse button when the waypoint is at the desired location. While a waypoint is being

51

Figure 3-3: Human-Only (HO) Mode with High Density (HD) Obstacles

dragged, the UAV’s path is constantly recomputed and displayed to the operator.

An unselected UAV is dark red and its path is black, and when a UAV is selected, it

becomes yellow-orange while its path becomes red. Only one UAV can be selected at a

time. The selected/unselected UAVs are labeled in Figure 3-4. In the mission planner,

a UAV can be selected by pressing the number on the keyboard that corresponds to the

desired UAV’s ID. For example, UAV 2 in Figure 3-4 was selected by pressing the number

“2” on the keyboard.

In the HG1, HG2, and HC modes of operation, the human operator has the ability

to use the c-RRT algorithm to look for a collision-free path for the selected UAV. In the

HG1 and HG2 modes, the human operator can ask the c-RRT algorithm to compute a

path by pressing the “g” key. If the algorithm finds a collision-free path for the selected

UAV to its next target, the computed path is set as the UAV’s path. This feature was not

included as a selectable button in the interface since the users were trained to choose the

desired UAV by selecting the numeric keys on the keyboard to avoid confusion between

selecting a UAV or adding/selecting waypoint when clicking on the map.

In the HC mode of operation, before asking the c-RRT algorithm to search for a

52

Figure 3-4: Human-Guided 1 (HG1) Mode with Low Density (LD) Obstacles

collision-free path for the selected UAV, the operator must select a sequence of at least

one subgoal on the map. To do so, the human operator must first go into subgoal mode

by pressing “s”, then add the desired subgoals by left-clicking on the map at the desired

locations , and finally press “g” to ask the c-RRT algorithm to search for a collision-free

path that goes through the specified subgoals. By pressing “s”, the interface toggles

in and out of subgoal mode. When in subgoal mode, a black straight-line path from

the selected UAV, through any subgoals, to the UAV’s next target appears. Subgoals

can be added, deleted, and moved in the same way that waypoints can be manipulated.

Once the algorithm completes its search, the planner automatically toggles out of subgoal

mode: participants were trained that this was the modus operandi of the subgoal mode.

A screenshot of the interface in HC mode is shown in Figure 3-5.

For the experiment, the human was not allowed to add waypoints in the HG1, HG2,

and HC modes with the idea that the human operator should have the ability to modify

the c-RRT solution, but not manually generate completely new paths. Thus, regardless of

whether a path is found by the c-RRT algorithm, waypoints with which the operator can

interact by moving or deleting are embedded at periodic intervals in the selected UAV’s

53

Figure 3-5: Human-Constrained (HC) Mode with High Density (HD) Obstacles

path. The separation between the points was chosen empirically such that they were close

enough to give the operator enough freedom to change the path, but not so close that

minor tweaks create paths with many loops due to the nature of the Dubins curves.

While the use of keystrokes, such as “g” and “s” for interfacing with the c-RRT

algorithm is not appropriate for a final interface, the interface designed for this experiment

is an engineering interface that acts as a proof of concept. Future work will address the

improvements to be made in this display.

The c-RRT-generated paths are the paths that are returned as solutions by the c-

RRT algorithm and are presented to the operators with embedded waypoints that can be

modified. When a waypoint is modified manually, the part of the path that is recomputed

becomes a waypoint-defined path, while the part closest to the UAV is still the c-RRT

generated solution.

This is shown in Figure 3-6, where the first part of the path for UAV 3 was generated

by the c-RRT and the second part is a waypoint-defined path. The distinction between the

two types of paths is slight, but can be made by comparing the path segment between the

first and second waypoint, and the path segment between the fourth and fifth waypoint

54

Figure 3-6: Human-Guided 2 (HG2) Mode with Low Density (LD) Obstacles

(denoted as segments a and b, respectively). The heading at the first and fourth waypoint

is about the same, but while segment b is an almost straight line to the fifth waypoint,

segment a is more of an “S” shape. Since waypoint-defined paths are created by connecting

the waypoints using the shortest Dubins path, this indicates that a was generated by the

c-RRT algorithm, while b is a waypoint-defined segment of the UAV’s path.

3.2.4 Experimental Protocol

The experiment was designed to last at most an hour, with an expected duration of 45

minutes. Participants signed an informed consent form, and filled out a demographic

form requesting information such as age, job experience, and previous video game expe-

rience (Appendix A and B). Next, a two-part training session was completed. The first

portion, approximately 10 minutes, consisted of participants reviewing training slides

(Appendix C). These slides include a brief introduction to the UAV mission planning

problem to provide context for the experiment, and information on how to supervise

the UAV mission planning using the GUI in the four different modes of operation: (i)

human-only (HO), (ii) human-guided 1 (HG1), (iii) human-guided 2 (HG2), and (iv)

human-constrained (HC).

55

Participants were given ten minutes for practice. The participants were given an

opportunity to become accustomed to the controls by completing the task of guiding

two UAVs from a starting position, each to two pre-assigned targets, through a simple,

medium-density obstacle field in each of the four modes of operation. The experiment

began once the ten minutes of practice were over.

Every participant was asked to complete four missions, one in each mode of opera-

tion, with the objective of avoiding as many collisions as possible while reaching all the

targets as fast as possible. The four missions were carried out in either an HD or an LD

obstacle field. To avoid confounding among variables, the obstacle density given to the

participants and the order in which the different modes were presented to the participants

was randomized and counter-balanced. After each mission, the participants were given

a survey in which they were asked several subjective questions including an assessment

of their performance, the workload the participant felt, and the level of frustration felt

while completing the mission (Appendix D). Final interviews were completed to debrief

the participant.

3.2.5 Variables and Measurements

From the experimental protocol, the independent variables in this experiment are the

planner’s mode of operation, and the obstacle density. The experiment was a 4 (HO,

HG1, HG2, HC) × 2 (HD, LD) repeated measures analysis of variance (ANOVA) with

one within (mode of operation) and one between (obstacle density) factor. The dependent

variables that were examined in order to asses the usefulness of the c-RRT algorithm for

UAV mission planning included the algorithm runtime, algorithm solution length, average

mission completion time, operator interaction count, obstacle collision count, algorithm

replan count, self-assessed performance, operator frustration, and operator workload.

The dependent variables were observed from recorded data during the experiment. The

algorithm runtimes and solution length were recorded during the mission, while average

mission completion times were recorded as the mean time it took for each of the three

UAVs to travel from its starting position to its final target. Operator interaction count

was measured by counting the number of times a participant added, moved, or deleted a

56

waypoint or subgoal, while obstacle collision count is simply the sum of number of times

the three UAVs collided into an obstacle during a mission. The algorithm replan count was

taken as the number of times participants asked the c-RRT algorithm to find a path to the

next target. The remaining three dependent variables are all subjective measures and were

recorded by having the participants fill out a survey after every mission (Appendix D).

3.3 Relation to Research Questions

Chapter 1 introduced the three research questions addressed in this thesis.

• Research Question #1: In what ways does having a HITL impact the

algorithm’s performance? This first question looks at the effect of a human

operator input on the runtime and quality of the algorithm, and can be answered

by comparing the algorithm runtime and length dependent variables in the different

planner modes and obstacle densities. The research question is addressed by com-

paring the two modes of operation that require the use of the RRT, the HG2 and

the HC modes, since one mode requires the operator to specify subgoals while the

other mode does not allow the operator to specify any.

• Research Question # 2: How does the RRT algorithm impact the human

operator’s performance? The second research question asks how the algorithm

affects the performance of the human operator in supervising UAV missions. This

second research question can be answered by looking at the interaction between

mission completion time, interaction count, collision count, and replan count against

mode of operation and obstacle density.

• Research Question # 3: What is a human operator’s subjective assess-

ment of using a randomized algorithm? The third research question looks

at the human operator’s subjective assessment of the use of the c-RRT algorithm

for collaborative UAV mission planning. This third question can be answered by

looking at the relation between the participant’s responses to the subjective ques-

tions and mode of operation and obstacle density. Observing these relations can

57

lead to conclusions whether the algorithm’s random nature, obstacle density, or a

combination of these are causing human operators problems during UAV mission

planning.

This chapter introduced the experiment and briefly discussed the approach for ad-

dressing the research questions. The approach will be discussed in greater detail along

with the results of the experiment in the following chapter.

58

Chapter 4

Experimental Results

This chapter presents the analysis of the data collected from the experiment. The first

section outlines the experimental design and the methods used for the data analysis. The

second section then revisits the primary research questions of this thesis, and several as-

pects of each of the research questions are analyzed using the data from the experiment.

Finally, the third section discusses the results of the data analysis and some common

behaviors observed during the experiment.All descriptive statistics for all dependent vari-

ables can be found in Appendix E.

4.1 Experiment Design and Analysis

A total of 48 participants were recruited for the experiment: 32 males and 16 females. The

participants first signed a consent form to participate in the experiment (Appendix A)

and filled out a demographic survey (Appendix B). This was followed by a 10-minute

self-guided training presentation (Appendix C). Following the presentation, the partic-

ipants proceeded to train for 10 minutes in steering the UAVs using the 4 modes of

operation: human-only (HO), human-guided 1 (HG1), human-guided 2 (HG2), and

human-constrained (HC).

Each participant completed four UAV missions, each mission in one of the four modes

of operation. The participants were asked to complete all four of the missions in either

a high density (HD) or low density (LD) obstacle environment. This experiment was

59

designed as a repeated measures experiment where the mode of operation is the within

subject factor, and obstacle density is the between subject factor of the experiment.

The data analysis was systematically completed using the statistical package R [60].

First an omnibus test was conducted to see if there was an additive effect from either of

the individual factors or from the interaction of the two factors. If the ANOVA/MANOVA

showed significant effects, then multiple pairwise comparisons were performed using Tukey

Honest Significant Difference (HSD) tests to see which pairs of levels of a factor have means

that are significantly different. In addition to these pairwise comparisons, interaction plots

were generated to visualize interaction effects and box plots were generated to visualize

the distribution of the data. Since the assumptions of the ANOVA/MANOVA are not met

by the discrete scale used by the survey questions, the analysis of the subjective data was

conducted using the Wilcoxon Signed Rank and the Wilcoxon Rank Sum non-parametric

tests. All tests were performed at the α = 0.05 level.

4.2 Answering the Research Questions

The differing levels of interactions with the c-RRT algorithm are represented in the ex-

periment analysis as the four modes of operation, while the environment complexity is

associated with obstacle density and is represented in the experiment analysis as either a

HD or LD obstacle environment.

4.2.1 Human’s Impact on Algorithm

To address the first research question regarding the human’s impact on the performance

of the c-RRT algorithm, two measures were considered: (1) average of the c-RRT run

times (averaged over all the missions), and (2) the average of the path length ratio for

each mission.1

Since participants were not allowed to use the c-RRT algorithm in HO mode and

were not required to use the algorithm in the HG1 mode, the analysis was conducted

1For a c-RRT solution, the path length ratio is the length of the c-RRT solution divided by the straight
line distance from the start to the goal.

60

Table 4.1: Repeated Measures ANOVA - Average c-RRT Runtime

num df den df F p
Mode of Operation 1 46 0.596 .4441
Obstacle Density 1 46 34.531 0+

Interaction 1 46 5.699 .0211

0.
00

0.
05

0.
10

0.
15

0.
20

Mode of Operation

A
ve

ra
ge

 c
−

R
R

T
 R

un
tim

e
(s

ec
)

HG2 HC

 Obs Den

HD
LD

Figure 4-1: Interaction Plot for Average c-RRT Runtimes

only considering the HG2 and HC modes. For the HG1 mode, where participants were

given the option of not using the c-RRT algorithm to replan, 28.3% of the participants

chose not to use the algorithm at all. They instead chose to guide the UAVs by modifying

the existing waypoints.

The results of the two-way repeated measures ANOVA, shown in Table 4.1, demon-

strates a significant effect of obstacle density on the average runtime of the c-RRT

(F(1,46)=34.531, p<0.001), and a significant interaction effect (F(1,46)=5.699, p=.02).

However there was no significant effect for the mode of operation.

From Figure 4-1 it can be seen that the the average c-RRT run times for the HD

missions tend to be higher than the average run times for the LD case. Since the c-RRT’s

performance was expected to suffer in higher complexity environments, this increase in

the average c-RRT runtimes in the more complex high density obstacle environments is

not a surprising result. However, the significant interaction effect is an interesting result.

61

Table 4.2: Repeated Measures ANOVA - Average c-RRT Path Length Ratio

num df den df F p
Mode of Operation 1 46 1.769 .1900
Obstacle Density 1 46 1.152 .2887
Interaction Effect 1 46 0.350 .5571

The interaction plot shown in Figure 4-1 suggests that guiding the c-RRT algorithm’s

search in a high density obstacle environment by specifying subgoals (as is done in the HC

mode) reduces the runtime of the algorithm. For the scenarios chosen in this experiment,

the reduction in the average c-RRT algorithm’s runtime between the two modes for the

HD environment is on the order of hundredths of a second, which may be of limited

practical significance for these scenarios. However, these results are promising and hint

at the fact that this trend could be more apparent in more complex environments. The

increase in runtime between the HG2 and the HC mode for LD obstacle environments

is interesting and suggests that specifying subgoals is detrimental to runtime in low-

complexity environments.

Table 4.2 shows that the repeated measures ANOVA indicates no statistically signifi-

cant effect from any of the factors for path length ratio. Furthermore, Pearson’s product-

moment correlation test was performed on the average algorithm runtime and path length

ratio to determine whether there was a correlation between algorithm runtime and path

length ratio. Pearson’s test returned r=.126 and p=.2201, thus the null hypothesis of r=0

cannot be rejected.

4.2.2 Algorithm’s Impact on Human

To address the second research question (the c-RRT algorithm’s impact on a human

operator’s performance), four aspects of the experiment were investigated: (1) average

mission completion time, (2) collision count, (3) human interaction count, and (4) replan

count. The average mission completion time was measured by taking the average of the

completion times for each of the three UAVs, while the collision count is simply the total

number of times the three UAVs collided with no-fly zones during a mission. The human

interaction count is the sum of the number of times the human operator added, moved,

62

Table 4.3: Repeated Measures ANOVA - Average Mission Time

num df den df F p
Mode of Operation 3 138 1.872 .1371
Obstacle Density 1 46 10.16 .0026
Interaction Effect 3 138 0.255 .8580

●

●

●

●

●

●

●
●

HO HG1 HG2 HC

24
0

26
0

28
0

30
0

Mode v Avg Mission Time

T
im

e
(s

ec
)

Figure 4-2: Box Plot of Average Mission Times

or deleted a waypoint or subgoal, and the replan count is the number of times that the

human operator ran the c-RRT algorithm during a mission. Pearson’s correlation test

returned r=-.028 and p=.7483. Both metrics are further analyzed in the next sections.

The two-way repeated measures ANOVA results for the average mission completion

time are shown in Table 4.3. The repeated measures ANOVA demonstrates that there is

a highly significant main effect of obstacle density on the average mission completion time

(F(1,46)=10.16, p=.003). This result is consistent with intuition since the UAVs have to

go between and around more obstacles in the HD than the LD obstacle environments.

A box plot of the data separated by mode of operation is presented in Figure 4-2. From

the box plot, it can be concluded that the effect is not practically significant since the

difference between the average mission completion times is on the order of a few seconds.

For the collision count data, the repeated measures ANOVA, shown in Table 4.4,

demonstrates a highly significant main effect from mode of operation (F(3,138)=7.648,

63

Table 4.4: Repeated Measures ANOVA - Number of Collisions

num df den df F p
Mode of Operation 3 138 7.648 0+

Obstacle Density 1 46 0.621 .4348
Interaction Effect 3 138 0.507 .6779

Table 4.5: Tukey HSD Tests - Number of Collisions

HO v HG1 HO v HG2 HO v HC HG1 v HG2 HG1 v HC HG2 v HC
num df 4 4 4 4 4 4
den df 141 141 141 141 141 141
q 2.106 1.248 4.135 0.858 6.242 5.384
p .4464 .8138 .0208 .9297 .0001 .0012

p<.0001). Posthoc Tukey HSD Tests (shown in Table 4.5) indicate that the number of

collisions were higher in the HC mode than in any other mode, while the null hypothesis

could not be rejected for pairwise comparisons between the HO, HG1, and HG2 modes.

To replan a path for a UAV in order to prevent collisions, in the HC mode, participants

were not only forced to use the c-RRT algorithm, but they were given the additional task

of specifying subgoals. Observation and the subjective data from the survey suggests that

the increased workload and participant’s placement of the subgoals resulted in the higher

collision count. Figure 4-3 shows the total number of collisions across the four different

modes of operation.

Table 4.6: Repeated Measures ANOVA - Number of Human Interactions

num df den df F p
Mode of Operation 3 138 3.014 .0322
Obstacle Density 3 138 0.148 .7022
Interaction Effect 3 138 2.529 .0598

The two-way repeated measures ANOVA results for the number of human interactions

are shown in Table 4.6. For the interaction effect and the main effect from mode of

operation, the null hypothesis could not be rejected. The interaction plot from the human

interaction count in presented in Figure 4-4.

The interaction plot indicates that there was an interaction effect present between the

HO and HG1 modes of operation, where the plot shows that the number of human in-

teractions is higher for the HD obstacle environments in the HO mode of operation, but

64

●

●●

●●

●

●

●

●●●

●

●

●

HO HG1 HG2 HC

0
2

4
6

8
10

12

Mode v Collision Count

N
um

be
r

of
 C

ol
lis

io
ns

Figure 4-3: Box Plot of Number of Collisions

then switches and becomes higher for the LD obstacle environments in the HG1 mode

of operation. One possible explanation for this result is that participants required fewer

interactions to move waypoints in the HG1 mode rather than having to add waypoints

in the HO mode in the HD obstacle environment. The increased number of interactions

in the HO mode may be attributed to the inherent complexity of satisfying the Dubins

path constraints, while for the LD obstacle environments, participants were inclined to

interact with the interface due to lower environment complexity and remove the unnec-

essary waypoints that were automatically placed on the UAV paths in the HG1 mode

of operation. These observations were made from the video recordings of the interface

during the experiments.

Table 4.7: Tukey HSD Tests - Number of Human Interactions

HO v HG1 HO v HG2 HO v HC HG1 v HG2 HG1 v HC HG2 v HC
num df 4 4 4 4 4 4
den df 141 141 141 141 141 141
q 0.366 3.428 1.634 3.794 2.000 1.794
p .9939 .0772 .6559 .0403 .4927 .5842

The results of Posthoc Tukey HSD tests, shown in Table 4.7, indicate that there is a

significant difference in the number of human interactions between the HG1 and HG2

65

30
35

40
45

50

Mode of Operation

A
ve

ra
ge

 H
um

an
 In

te
ra

ct
io

n
C

ou
nt

HO HG1 HG2 HC

 Obs Den

LD
HD

Figure 4-4: Interaction Plot for Human Interaction Count

Table 4.8: Repeated Measures ANOVA - Number of Replans

num df den df F p
Mode of Operation 2 92 43.90 0+

Obstacle Density 2 92 2.237 .1416
Interaction Effect 2 92 0.021 .9792

modes and a marginally significant difference between the HO and HG2 modes, where

the number of interactions is higher for the HG1 and HO modes. These differences can be

explained by the fact that participants were not forced to use the c-RRT algorithm in the

HO and HG1 modes, hence choosing to manually steer the UAVs around the obstacles.

The average number of human interactions for the HC mode was between the number

of human interactions for the HG2 mode and the HO and HG1 modes (Appendix E).

One possible explanation for this is that like the HG2 mode, participants were forced

to use the c-RRT algorithm to change a UAV’s path, but each time the algorithm was

called, participants had to specify at least one subgoal, thus increasing the number of

interactions.

Since the HO mode does not allow the human operator to utilize the c-RRT algorithm

to replan, there are only three levels to the mode of operation factor for the analysis of

the replan count: HG1, HG2, and HC. The two-way repeated measures ANOVA results

in Table 4.8 show a significant main effect from the mode of operation (F(2,92)=43.90,

p<.001). The posthoc Tukey HSD tests, shown in Table 4.9, indicate a high level of

66

Table 4.9: Tukey HSD Tests - Number of Replans

HG1 v HG2 HG1 v HC HG2 v HC
num df 3 3 3
den df 94 94 94
q 13.138 5.077 8.062
p 0+ .0015 0+

●

HG1 HG2 HC

0
10

20
30

40
Mode v Replan Count

N
um

be
r

of
 R

ep
la

ns

Figure 4-5: Box Plot of Replan Count

significance between all three pairs of modes (HG1 v HG2, HG1 v HC, and HG2 v

HC).

The box plot in Figure 4-5 reveals that the HG1 mode has the lowest replan count,

with HC next, and HG2 trailing with the highest replan count. This is consistent with

intuition that HG1 has the lowest replan count since the HG1 mode does not force

the human operator to use the algorithm and almost one third of participants chose to

not even replan once using the algorithm. Participants were forced to call the c-RRT

algorithm to replan in both the HG2 and the HC modes. First hand observation and

subjective feedback suggest that the lower replan count for the HC mode as compared

to the HG2 mode can be attributed to the increased effort required to use the c-RRT

in the HC mode. This increased effort means that participants can physically call the

c-RRT algorithm a smaller number of times in the HC mode than in the HG2 mode. The

67

additional workload may have even discouraged participants from using the algorithm and

either fixing the path manually or diverting their attention elsewhere and allowing UAVs

to collide. This additional effort in using the c-RRT in the HC mode comes from the

fact that human operators have to go through the additional trouble of going into subgoal

mode and deciding where and how many subgoals to set before calling the algorithm.

4.2.3 Subjective Assessment of Collaborative RRT Planner

The responses given to three survey questions during the experiment were analyzed to

address the research question regarding the subjective assessment of the c-RRT planner.

The first question asked the participants to evaluate their level of performance during the

mission, the second to rate their level of frustration, and the last asked the participants

to assess the workload during the previous mission.

For performance, level of frustration, and self-assessed workload, the results of the

Wilcoxon Signed Rank Tests, shown in Tables 4.10(a-c), indicate significant differences

between the HC mode and the other three modes of operation. The responses to the

survey questions suggest that participants did not prefer the HC mode of operation

because of the increased workload from forcing participants to place subgoals before every

replan, the increased number of collisions (which was likely a combined result of increased

workload and subgoal placement), and frustration from the increased workload and the

behavior of the c-RRT path planner.

Table 4.10: Non-Parametric Test Results of Survey Responses

(a) Performance

Wilcoxon Signed Rank Test
W p

HO v HG1 186 .466
HO v HG2 159 .669
HO v HC 461 .003
HG1 v HG2 197 .847
HG1 v HC 465 .001
HG2 v HC 343 .001
Wilcoxon Rank Sum Test

U p
LD v HD 4366 .503

(b) Frustration

Wilcoxon Signed Rank Test
W p

HO v HG1 116.5 .310
HO v HG2 120 .127
HO v HC 91.5 0+

HG1 v HG2 105 .713
HG1 v HC 93.5 .002
HG2 v HC 125.5 .006
Wilcoxon Rank Sum Test

U p
LD v HD 5355.5 .041

(c) Workload

Wilcoxon Signed Rank Test
W p

HO v HG1 54 .074
HO v HG2 54 .236
HO v HC 37.5 0+

HG1 v HG2 124.5 .436
HG1 v HC 44 .002
HG2 v HC 56 0+

Wilcoxon Rank Sum Test
U p

LD v HD 4409 .562

68

The only other significant result shown in the analysis of the three survey questions is

demonstrated by the result of the LD v HD Wilcoxon Rank Sum Test on the frustration

level data, the results of which are also shown in Table 4.10. Higher density obstacle envi-

ronments generally caused higher frustration, but curiously, did not cause any noticeable

increase in subjective workload.

4.3 Discussion

The results addressing the first research question (dealing with the humans impact on the

algorithm) showed that in the more complex HD environment, constraining the solution

space of the c-RRT algorithm by specifying subgoals reduced the algorithm’s runtime,

while neither human input or obstacle density had a significant effect of the quality of the

c-RRT solution. The data indicates that constraining the solution space of the c-RRT

algorithm may result in detrimental performance and negative subjective feedback. How-

ever, the improvement in the runtime and reduction in replan count may have applications

in other domains.

The results addressing the second research question (dealing with the algorithm’s

impact on the human operator’s performance) do not provide evidence to conclusively

answer the research question. The average mission runtime data does not demonstrate

a statistical or practical difference between the different modes of operation. Since the

missions were about five minutes each, some difference in the mission times between the

HO mode and the c-RRT modes was expected due to the sub-optimality of the c-RRT

solutions. It is unclear why this difference was not present, but one possibility is that

the presence of down time during the missions allowed operators to manipulate solutions

to the point that they were similar enough to the manually generated solutions. The

collision count data indicates that there is no significant difference across the modes, save

for the HC mode. This is probably a result of the experiment design since the use of the

c-RRT algorithm is still a fairly hands-on manual task requiring the human operator to

recognize upcoming collisions, then replan by invoking the c-RRT algorithm.

While the data obtained from the experiment provides a significant amount of in-

69

Figure 4-6: Experiment Screenshot - Human Only Mode Delay
(a) UAV 1 on course to reach its next target (on top of the figure), (b) human moves waypoint

and no longer has collision-free trajectory due to curvature constraints, (c) human moves
waypoint again to obtain collision-free path to target, (d) human tries adding another

waypoint and further delays UAV 1’s arrival at target.

formation for assessing the usefulness of an RRT-based planner for UAV mission path

planning, there are several aspects of the human-automation interaction that the data

cannot express. To address these aspects that are not captured by the data, the following

section discusses a few common behaviors that were observed during the experiment.

4.3.1 Common Behaviors

Several common behaviors were observed in the experiment, and are shown in this section.

The UAV that is being referred to in each of the following figures is the selected UAV in

each of the screenshots, and is depicted in yellow.

It was hypothesized that humans would have difficulty in planning with the curvature

constraints since they may be difficult to conceptualize. In real life, curvature constraints

70

Figure 4-7: Experiment Screenshot - Using the c-RRT
(a) Obstacle appears on UAV 1’s current path, (b) participant has trouble manually

replanning, (c) participant uses c-RRT algorithm to find a path for UAV 1 that goes around
the obstacles to the goal.

limit how quickly a UAV can turn, and present non-trivial difficulties when trying to avoid

obstacles under time constraints. An example of such behavior is shown in Figure 4-6,

which shows a participant in the HO mode having trouble adding waypoints due to

curvature constraints. In frame (a), the participant seems to have set UAV 1 on a path

that will lead it to the target soon, but in an apparent attempt to get UAV 1 to its target

faster, the participant moves the waypoint. In frame (b), at the waypoint’s new position,

UAV 1 can no longer go to the target due to curvature constraints, and the new path goes

through an obstacle. To avoid a collision, the participant again moves the waypoint, but

can only obtain a path that requires the UAV to loop before reaching the target. Still

unsatisfied, the participant adds a waypoint in frame (d), causing UAV 1 to now be on the

strange “S”-shaped trajectory. Note that the participant could have avoided the whole

problem by simply removing the waypoint around the 0:58 second point (after frame (b)).

71

Figure 4-8: Experiment Screenshot - Sequence of c-RRT Replans
(a) Participant is unhappy with UAV 1’s current path, and (b),(c),(d) replans with the c-RRT

algorithm three times.

While we see that a lack of consideration of the curvature constraints when adding

waypoints led to a dramatic increase in mission time for UAV 1, Figure 4-7 tells a very

different story. In frame (a) of Figure 4-7, an obstacle appears on UAV 1’s current path,

then in frame (b), the participant tries to modify the path by moving a waypoint and runs

into trouble due to curvature constraints. Finally, in frame (c), the participant gives up

on fixing the path manually and asks the c-RRT to find a solution. The c-RRT solution

shown in frame (c) could have been more direct by going between the obstacles as opposed

to around.

When participants were unsatisfied with c-RRT generated paths, it was common to see

the participant ask the algorithm to generate several paths, one right after the other. An

example of this is demonstrated in the sequence of screenshots in Figure 4-8. This mission

was carried out in HG2 mode, so no subgoals were specified in each of the replans. In

frame (a) of Figure 4-8, UAV 1 has a path that goes through an obstacle so the participant

72

Figure 4-9: Experiment Screenshot - Poor Subgoal Sequence
(a) Participant sets subgoals for UAV 3 too close to each other, and (b)obtains strange c-RRT

due to curvature constraints.

decides to use the c-RRT algorithm to replan. The first replan is shown in frame (b). The

participant is not satisfied with the solution and asks the c-RRT algorithm to replan twice,

shown in frame (c) and (d). Note that the solution shown in frame (c) is actually shorter

than the solution in (d). This illustrates one of the problems of the c-RRT in which a

solution may be good, but a participant decides to use the c-RRT to replan, obtaining a

less desirable solution. When participants were unsatisfied with a c-RRT solution, they

would either keep calling the c-RRT algorithm or would replan manually. For the modes

in which participants were allowed to use the c-RRT algorithm, an average of 30% of the

interactions were replans, as opposed to waypoint modifications and subgoal interactions.

Detrimental behavior due to a lack of consideration of the curvature constraints was

most apparent in the HC mode when participants specified sequences of subgoals that

had no feasible solution or produced bad solutions. An example of such a behavior can be

observed in Figure 4-9. Notice that in frame (a), the participant places two subgoals for

UAV 3 and that one is right below the other. In frame (b), the consequences of placing

the two subgoals too close to each other becomes apparent as the c-RRT algorithm finds

a path that goes through the two subgoals, but curvature constraints force the feasible

path to have a loop in the path between the first and the second subgoal.

Even when subgoals do not cause the c-RRT algorithm to produce strange solutions,

certain sequences of subgoals produce better solutions. An example of different sequences

producing different length paths is shown in the comparison made in Figure 4-10. The two

73

Figure 4-10: Experiment Screenshot - Taking Advantage of Subgoals
(a),(b) Participant sets a subgoal close to target and gets c-RRT solution that takes UAV 2 the
long way around the obstacles. (c),(d) Another participant sets subgoals for UAV 2 in between

obstacles and c-RRT returns a path that takes the shorter path to the target between the
obstacles.

examples are carried out in the same HD obstacle map in HC mode. Frame (a) shows

a single subgoal for UAV 1 placed the target, while frame (c) shows the subgoals for

UAV 1 placed between obstacles. The solution the c-RRT algorithm produced given the

subgoal shown in frame (a) is shown in frame (b), while the solution the c-RRT algorithm

produced given the subgoals in frame (c) is shown in frame (d). The solution in frame

(d) goes between the obstacles, and is therefore shorter than the solution shown in frame

(b) which goes around the obstacles. While the subgoal shown in frame (a) could have

produced a path that goes between the obstacles, the subgoals from frame (c) force the

solution to go between the obstacles. Frames (c) and (d) demonstrate the use of subgoals

to guide the algorithm and produce a shorter path.

There is one other behavior worth discussing that was evident across the HG1, HG2,

and HC modes. Regardless of whether the c-RRT solutions were good or not, many

participants would move and delete as many waypoints as possible without creating a

74

path that went through an obstacle.2 This behavior seems to be a product of the fact

that participants were given only one task, and there were times where there was nothing

productive to do, so they would try and make the paths look better (i.e., shorter) by

deleting and moving waypoints. This behavior could explain the similarity in the average

mission time across the modes.

The behaviors just described illustrate some of the behaviors that were commonly

observed. As expected, there were cases when participants struggled with curvature con-

straints, and in many cases, in the modes where the algorithm was available, participants

used the c-RRT algorithm to help them navigate through the obstacle fields. These behav-

iors were expected and observed, but due to the design of the experiment, the data does

not reflect the beneficial and/or detrimental behavior of using an RRT-based path planner.

The examples pertaining the the HC mode of operation support the data demonstrating

the subjective dislike of the mode by showing that specifying subgoals takes time and

can produce results that are not necessarily better than the algorithm running without

subgoals or with different subgoals specified.

4.4 Summary

This chapter revisited the three primary research questions of this thesis by looking at

the relevant data from the experiment. The data regarding the first research question

addressing the human operator’s impact on the c-RRT algorithm showed that the c-RRT

algorithm runtime is affected by high complexity environments, and that setting subgoals,

as was done in the HC mode of operation, reduces the average runtime. For the second

research question regarding the algorithm’s impact on the human operator, the data

showed that the HC mode of operation was detrimental to performance, while there was

no significant difference between the remaining three modes of operation. The absence of

a significant difference in performance between the HO, HG1, and HG2 modes means

that the second research question could not be conclusively answered. The analysis of the

2Statistics on the number of waypoint and subgoals added, deleted, and moved are shown in Ap-
pendix E for human interaction count.

75

subjective responses did not show a significant difference between the HO, HG1, and

HG2 modes, but did show a dislike for the HC mode of operation. In other words, the

subjective responses did not indicate a preference for using the c-RRT algorithm, but did

indicate a dislike for the setting of subgoals required in the HC mode. The next chapter

draws final conclusions and discusses directions for future work.

76

Chapter 5

Conclusions and Future Work

5.1 Conclusions

This thesis has presented the collaborative Rapidly exploring Random Tree (c-RRT) algo-

rithm to analyze how a human operator interacts with an RRT path planning algorithm

in complex dynamic environments. An experiment was designed to test how participants

behaved and performed in four different modes of operation and in one of two different

obstacle densities. The four modes of operation varied in the level of automation and type

of interaction with the automation. Participant behavior and the data obtained from the

experiment was analyzed to investigate the human operator’s impact on the algorithm’s

performance, the effect of the algorithm on the human, and the human’s subjective eval-

uation of planning with the c-RRT algorithm.

While the results of the experiment did not conclusively answer the primary research

questions of this thesis, a number of observations were made from carrying out the ex-

periment and analyzing the data. While allowing human operators to guide the c-RRT

algorithm’s search by giving the algorithm subgoals did show some benefits, such as re-

duced replan count and decreased runtime in high density obstacle environments, the

experiment conclusively showed that having humans constrain the algorithm’s solution

space by specifying subgoals requires improvements as it resulted in a lower actual and

self-assessed performance, increased self-assessed workload, and increased level of frustra-

tion.

77

5.2 Future Work

The work done for this thesis is only the beginning in research in the use of RRTs for

human-automation collaborative path planning, and the lack of a significant difference

across a number of different metrics suggest more work is needed to understand the

benefits of using an RRT algorithm in the UAV path planning domain. Two possible

confounds in this experiment are that (1) participants had to manually instantiate the

c-RRT algorithm for each UAV for which the participant desired algorithm to replan, and

(2) participants only had one task to which they had to dedicate their attention (steering

the UAVs).

Requiring participants to manually call the c-RRT algorithm seems to have detracted

from one of the main benefits of automation: giving a human operator the luxury of not

having to supervise and micro-manage each UAV all the time. The eventual goal is to use

an RRT algorithm to make UAV path planning more autonomous, and it would therefore

be beneficial to test the usefulness of the RRT for UAV path planning when the UAVs

automatically replan using the RRT algorithm. In addition, participants had the sole

task of supervising the path planning for three UAVs, which resulted in some down time

during the mission, giving participants plenty of time to modify UAV paths regardless

of whether the modifications were necessary. With this in mind, it would be interesting

direction for future work to investigate how this result changes when human supervisors

are asked to carry out one or more tasks (in addition to path planning), via the addition

of secondary tasks.

The experiment showed that having human operations guide the c-RRT algorithm’s

search by specifying subgoals negatively impacted performance, self-assessed workload,

and frustration level. Several of the factors that are likely to have caused decreases in

performance and increased frustration can be addressed by better training the human

operator or providing easier interface interactions. In a planner that utilizes an RRT in a

more autonomous fashion, giving the human operator the option to constrain the solution

space of the path planner in low workload can be beneficial and is one area of possible

future research. Furthermore, any extensions to this work wishing to address the issue

78

of human operators’ subjective assessment of the RRT algorithm for UAV path planning

should design more detailed survey questions pertaining to specific aspects of the mission

planning.

This thesis fixed the number of UAVs a human operator was simultaneously responsible

for supervising to 3. Thus, another possible direction for future work involves comparing

the number of UAVs a human operator can successfully manually guide to the number of

UAVs an RRT-based path planner can successfully guide through an obstacle field.

Once an RRT-based path planner is shown to be suitable for human-automation col-

laboration, extensions to the planner need to be made and studied before such a planner

is put to practical use. The c-RRT algorithm was developed to find paths for UAVs in a

two dimensional space, but it will be useful to eventually extend the algorithm for path

planning for UAVs in three dimensions. The c-RRT algorithm uses two dimensional Du-

bins paths to generate solution, and the algorithm can extended to three dimensions by

using the three dimensional Dubins paths for the Dubins airplane described in [50]. In

addition, it may be useful to study and take advantage of other aspects of the RRT, for

example, the random nature of the algorithm for stealth applications.

79

80

Appendix A

Consent Form
CONSENT TO PARTICIPATE IN
NON-BIOMEDICAL RESEARCH

Human Interaction with RRTs for UAV Mission Path Planning

You are asked to participate in a research study conducted by Professor M. L. Cummings,
Ph.D., from the Aeronautics and Astronautics Department at the Massachusetts Institute
of Technology (M.I.T.). You were selected as a possible participant in this study because
the population this research will influence is expected to contain researchers who have
experience with human interaction with path planners. You should read the information
below, and ask questions about anything you do not understand, before deciding whether
or not to participate.

• PARTICIPATION AND WITHDRAWAL

Your participation in this study is completely voluntary and you are free to choose
whether to be in it or not. If you choose to be in this study, you may subsequently
withdraw from it at any time without penalty or consequences of any kind. The
investigator may withdraw you from this research if circumstances arise which warrant
doing so.

• PURPOSE OF THE STUDY

The objective of this experiment is to investigate the effect of human interaction with
randomized planners in path planning applications.

• PROCEDURES

If you volunteer to participate in this study, we would ask you to do the following things:

• Fill out a demographic survey.
• Perform an experiment lasting approximately 1 hour.
• Total time: 1 hour.

• POTENTIAL RISKS AND DISCOMFORTS

There are no anticipated physical or psychological risks in this study.

81

• POTENTIAL BENEFITS

While there is no immediate foreseeable benefit to you as a participant in this study, your
efforts will provide critical insight into the development of a methodology that can help
researchers select a set of human-automation performance metrics.

• PAYMENT FOR PARTICIPATION

You will be paid $10/hr to participate in this study. This will be paid upon completion of
your debrief. Should you elect to withdraw in the middle of the study, you will be
compensated for the hours you spent in the study. Additionally, a $100 gift certificate to
Best Buy will be awarded to the top scorer of all participants of the study (averaged
across trials).

• CONFIDENTIALITY

Any information that is obtained in connection with this study and that can be identified
with you will remain confidential and will be disclosed only with your permission or as
required by law.

You will be assigned a subject number which will be used on all related documents to
include databases, summaries of results, etc. Only one master list of subject names and
numbers will exist that will remain only in the custody of Professor Cummings.

• IDENTIFICATION OF INVESTIGATORS

If you have any questions or concerns about the research, please feel free to contact the
Principal Investigator, Mary L. Cummings, at (617) 252-1512, e-mail, missyc@mit.edu,
and her address is 77 Massachusetts Avenue, Room 33-311, Cambridge, MA 02139.
The graduate student investigator is Americo Caves at (617) 258-5046, email,
americo@mit.edu.

• EMERGENCY CARE AND COMPENSATION FOR INJURY

If you feel you have suffered an injury, which may include emotional trauma, as a result
of participating in this study, please contact the person in charge of the study as soon as
possible.

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the
provision of, emergency transport or medical treatment, including emergency treatment

82

f

and follow-up care, as needed, or reimbursement for such medical services. M.I.T. does
not provide any other form of compensation for injury. In any case, neither the offer to
provide medical assistance, nor the actual provision of medical services shall be
considered an admission of fault or acceptance of liability. Questions regarding this
policy may be directed to MIT’s Insurance Office, (617) 253-2823. Your insurance
carrier may be billed for the cost of emergency transport or medical treatment, if such
services are determined not to be directly related to your participation in this study.

• RIGHTS OF RESEARCH SUBJECTS

You are not waiving any legal claims, rights or remedies because of your participation in
this research study. If you feel you have been treated unfairly, or you have questions
regarding your rights as a research subject, you may contact the Chairman of the
Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E25-143B, 77
Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787.

83

SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE

I understand the procedures described above. My questions have been answered to my
satisfaction, and I agree to participate in this study. I have been given a copy of this
form.

__
Name of Subject

__
Name of Legal Representative (if applicable)

__ ______________
Signature of Subject or Legal Representative Date

SIGNATURE OF INVESTIGATOR

In my judgment the subject is voluntarily and knowingly giving informed consent and
possesses the legal capacity to give informed consent to participate in this research study.

__ ______________
Signature of Investigator Date

84

Appendix B

Demographic Questionaire

Demographic Questionnaire for
“Human Interaction with RRTs for UAV Mission Path Planning”

Please indicate your sex:
o Male
o Female

Please indicate your age: ___________

Please indicate your occupation (if student, indicate your year and degree)?

Are you currently or have you ever served in the armed forces of any country?

If yes,
o Country: ____________
o Service: __Army __Navy __Air Force
o Years of service:______________

Do you have any experience with remotely piloted vehicles (land, sea, subsea, air)?
o NO
o YES
If yes, please state what vehicle types and number of hours:
Vehicle types: __Land __Sea __SubSea __Air
Number of hours? ________

Have you participated in a controlled experiment with unmanned vehicle simulators before?
o Yes
o No

Do you currently have or do you have a history of color blindness?
o Yes
o No

How much experience do you have playing video games? _______ hr per week (on average)

Have you ever interacted with a randomized path planning algorithm?
o Yes
o No

85

86

Appendix C

Training Slides

Human Interaction with RRTs for
UAV Mission Path Planning

Americo Caves
Humans and Automation Laboratory

MIT, Dept of Aeronautics and Astronautics

Joint work with Prof Missy Cummings (MIT),
Luca F. Bertuccelli (MIT)

1

87

Outline

• Context
• Experiment
• Environment
• RRT – The planning algorithm
• Four Modes of Operation

– Human Only
– Human Guided RRT 1
– Human Guided RRT 2
– Human Constrained RRT

• The Training Interface
• Transitions

Context

• Unmanned Aerial Vehicles (UAVs) are used for carrying
out a variety of tasks.
– Combat, Surveillance, Firefighting

• Pathplanning is required for carrying out any of these
tasks.

• Will be focusing on pathplanning for these UAV missions

• Pathplanning: give the UAV a collision free path to follow
from its current position to its target

88

Context

• You, the participant, will be supervising UAV in a
simulation of a mission

• Objectives:
– Guide Unmanned Aerieal Vehicles (UAVs) to sequence of

targets.

– Get UAVs to targets as quick as possible

– Avoid obstacles as best as possible

11

Experiment Outline

• Training (10 min)
• Demographic Survey
• Mission (5 min)
• Feedback Survey
• Mission (5 min)
• Feedback Survey
• Mission (5 min)
• Feedback Survey
• Mission (5 min)
• Feedback Survey

89

90

91

92

93

Human Constrained RRT Mode

• Toggle subgoal mode by pressing “s” on the keyboard

• When in subgoal mode, a black line will appear from the
selected UAV to its next target

• To go back to changing waypoints, toggle out of subgoal mode

• Subgoals are added sequentially by left clicking w/ mouse

– To insert a subgoal, hold the “ctrl” key

• Subgoals can be deleted and moved in the same manner
waypoints are deleted and moved

• Once desired subgoals are set, ask RRT to generate solution
with the “g” key

• Must be in subgoal mode and set at least one subgoal
for RRT algorithm to search for solution

• After the RRT algorithm is called, subgoal mode is exited.

94

Transitions

• Before every mission, will get a screen like the on shown below
to the left denoting what mode of operation the next mission
will be in

• After every mission (not including training) will get a survey
window (below to the right). Select response, then click submit.

• After the electronic survey, you will be given a paper survey to
fill out before proceeding to the next mission.

Questions??

If not then proceed to training

95

96

Appendix D

Post-Mission Survey

Feedback Survey

1. What did you like (if any) about the system (interface, UV behaviors, etc.)?

2. What did you NOT like (if any) about the system (interface, UV behaviors, etc.)?

3. What other capabilities would you like (if any) the system to have to assist you?

4. On the scale 1 to 5 (with 5 being the highest), how did you feel you understood what was happening in

the game, what you were doing and what you needed to do next?

1 2 3 4 5

Comments (if any):

5. How did you feel you performed?

 Very Poor Poor Satisfactory Good Excellent

6. How busy did you feel during the mission?

 Extremely Busy Busy Not Busy Idle

7. Any other comments you might have

97

98

Appendix E

Supportive Statistics

This appendix contains tables showing the descriptive statistics for the data. The statistics

are shown for the data when it is divided by the modes of operation, then the obstacle

densities, then all of the data.

Table E.1: Descriptive Statistics: Average RRT Runtime (sec)

mean median mode st. dev. max min
Mode of Op. HG2 .12512 .10665 .03395 .06822 .33123 .03395

(N=48) HC .11760 .10407 .04109 .05100 .25509 .04109
Obs. Density HD .15294 .14421 .07327 .05996 .33123 .07327

(N=48) LD .08978 .08548 .03395 .04064 .25510 .03395
Overall (N=96) .12136 .10665 .03395 .06003 .33123 .03395

Table E.2: Descriptive Statistics: Average RRT Path Length Ratio

mean median mode st. dev. max min
Mode of Op. HG2 1.3582 1.3539 1.1488 .1200 1.7081 1.1488

(N=48) HC 1.4742 1.3223 1.0724 .5680 4.6688 1.0724
Obs. Density HD 1.4595 1.3396 1.0724 .5574 4.6688 1.0724

(N=48) LD 1.3728 1.3388 1.1073 .1711 2.0362 1.1074
Overall (N=96) 1.4162 1.3388 1.0724 .4125 4.6688 1.0724

99

Table E.3: Descriptive Statistics: Average Mission Time (sec)

mean median mode st. dev. max min
Mode HO 255.68 251.19 239.54 17.25 313.44 239.54

of HG1 257.17 255.09 240.94 12.54 302.24 240.94
Operation HG2 261.19 256.20 243.34 15.34 308.09 243.35

(N=48) HC 259.31 253.55 241.46 16.62 313.60 241.46
Obs. Density HD 263.15 257.52 239.55 17.93 313.60 239.55

(N=96) LD 253.53 251.03 239.54 10.91 305.91 239.54
Overall (N=192) 258.34 253.67 239.54 15.57 313.60 239.54

Table E.4: Descriptive Statistics: Number of Collisions

mean median mode st. dev. max min
Mode HO 3.146 3 3 1.856 9 0

of HG1 2.583 2 2 1.582 8 0
Operation HG2 2.812 2 2 2.515 11 0
(N = 48) HC 4.250 3 3 2.531 12 0

Obs. Density HD 3.365 3 2 2.616 12 0
(N=96) LD 3.031 3 3 1.780 8 0

Overall (N=192) 3.198 3 2 2.238 12 0

Table E.5: Descriptive Statistics: Number of Human Interactions

mean median mode st. dev. max min
Mode HO 41.708 34.5 22 23.009 133 15

of HG1 42.562 45.0 27 20.735 117 8
Operation HG2 33.708 32.0 15 18.007 73 3

(N=48) HC 37.896 35.0 35 15.566 79 11
Obs. Density HD 39.719 37.5 27 20.290 133 3

(N=96) LD 38.219 35.0 25 19.157 117 4
Overall (N=192) 38.969 35.5 25 19.694 133 3

Table E.6: Descriptive Statistics: Number of Replans

mean median mode st. dev. max min
Mode of HG1 9.354 6.0 0 9.506 36 0

Operation HG2 21.917 20.5 15 8.274 40 8
(N=48) HC 14.208 14.0 14 4.740 27 6

Obs. Density HD 16.361 16.0 14 9.356 38 0
(N=96) LD 13.958 14.5 0 9.155 40 0

Overall (N=192) 15.160 15.0 0 9.302 40 0

100

Table E.7: Descriptive Statistics: Performance

mean median mode st. dev. max min
Mode HO 3.500 3 3 0.9225 5 2

of HG1 3.583 4 3 0.7390 5 2
Operation HG2 3.562 3 3 0.8482 5 2

(N=48) HC 3.021 3 3 0.7852 5 2
Obs. Density HD 3.458 3 3 0.8574 5 2

(N=96) LD 3.375 3 3 0.8491 5 2
Overall (N=192) 3.417 3 3 0.8521 5 2

Table E.8: Descriptive Statistics: Frustration

mean median mode st. dev. max min
Mode HO 2.292 2.0 3 0.8241 4 1

of HG1 2.438 3.0 3 0.9204 4 1
Operation HG2 2.500 2.5 2 0.7718 4 1

(N=48) HC 2.917 3.0 3 1.0071 5 1
Obs. Density HD 2.406 2.0 2 0.9578 5 1

(N=96) LD 2.667 3.0 3 0.8419 4 1
Overall (N=192) 2.536 3.0 3 0.9088 5 1

Table E.9: Descriptive Statistics: Workload

mean median mode st. dev. max min
Mode HO 2.395 2 2 0.5739 3 1

of HG1 2.583 3 3 0.6790 4 1
Operation HG2 2.500 2 2 0.5458 4 2

(N=48) HC 2.938 3 3 0.5614 4 2
Obs. Density HD 2.635 3 3 0.6508 4 1

(N=96) LD 2.573 3 3 0.5937 4 1
Overall (N=192) 2.604 3 3 0.6221 4 1

101

HO

Performance Level (1 −> 5, poor −> good)

F
re

qu
en

cy

1 2 3 4 5

0
10

20

HG1

Performance Level (1 −> 5, poor −> good)

F
re

qu
en

cy

1 2 3 4 5

0
10

20

HG2

Performance Level (1 −> 5, poor −> good)

F
re

qu
en

cy

1 2 3 4 5

0
10

HC

Performance Level (1 −> 5, poor −> good)

F
re

qu
en

cy

1 2 3 4 5

0
10

20

Figure E-1: Histogram - Performance

102

HO

Frustration Level (1 −> 5, low −> high)

F
re

qu
en

cy

1 2 3 4 5

0
10

HG1

Frustration Level (1 −> 5, low −> high)

F
re

qu
en

cy

1 2 3 4 5

0
10

20

HG2

Frustration Level (1 −> 5, low −> high)

F
re

qu
en

cy

1 2 3 4 5

0
10

20

HC

Frustration Level (1 −> 5, low −> high)

F
re

qu
en

cy

1 2 3 4 5

0
5

15

Figure E-2: Histogram - Frustration

103

HO

Workload (1 −> 4, low −> high)

F
re

qu
en

cy

1 2 3 4

0
10

25

HG1

Workload (1 −> 4, low −> high)

F
re

qu
en

cy

1 2 3 4

0
10

HG2

Workload (1 −> 4, low −> high)

F
re

qu
en

cy

1 2 3 4

0
10

25

HC

Workload (1 −> 4, low −> high)

F
re

qu
en

cy

1 2 3 4

0
15

30

Figure E-3: Histogram - Workload

104

Bibliography

[1] M. Cummings, S. Bruni, S. Mercier, and P. Mitchell, “Automation architecture for

single operator, multiple UAV command and control,” International Command and

Control Journal, vol. 1, no. 2, pp. 1–24, 2007.

[2] Simba Aviation (2009), Unmanned Aerial-System [Online]. Available:

http://www.unmanned-aerial-system.com/.

[3] G. Sirigineedi, A. Tsourdos, R. Zbikowski, and B. White, “Modeling and verification

of multiple UAV mission using SMV,” Electronic Proceedings in Theoretical Computer

Science, vol. 20, pp. 22–33, 2010.

[4] Y. Yang, M. M. Polycarpou, and A. A. Minai, “Multi-UAV cooperative search using

an opportunistic learning method,” Journal of Dynamic Systems, Measurement, and

Control, vol. 129, no. 5, pp. 716–728, 2007.

[5] Y. Yang, A. Minai, and M. Polycarpou, “Cooperative real-time search and task

allocation in UAV teams,” in Proceeding of IEEE conference on Decision and Control,

(Maui, Hawaii, USA), pp. 7–12, Dec 2003.

[6] J. C. Russo, M. Amduka, B. Gelfand, K. Pedersen, R. Lethin, J. Springer,

R. Manohar, and R. Melhem, “Enabling cognitive architectures for UAV mission

planning,” in Proceedings of the Tenth Annual High Performance Embedded Com-

puting Workshop, (Cambridge, Massachusetts, USA), Sept 2006.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to Algorithms. MIT

Press and McGraw Hill, 1990.

105

[8] J. Reif and H. Wang, “Non-uniform discretization approximations for kinodynamic

motion planning and its applications,” SIAM Journal on Computing, vol. 30, pp. 161–

190, 2000.

[9] J. Reif, “Complexity of the mover’s problem and generalizations,” in Proceedings

from IEEE Symposium on Foundations of Computer Science, (San Juan, Puerto

Rico, USA), pp. 421–427, Oct 1979.

[10] S. Lazard, J. Reif, and H. Wang, “The complexity of the two dimensional curvature-

constrained shortest-path problem,” in Proceedings of the Third International Work-

shop on the Algorithmic Foundations of Robotics, (Houston, Texas, USA), pp. 49–57,

March 1998.

[11] J. Reif and M. Sharir, “Motion planning in the presence of moving obstacles,” Journal

of the Association for Computing Machinery, vol. 41, no. 4, pp. 764–790, 1994.

[12] A. Richards, T. Shouwenaars, J. How, and E. Feron, “Spacecraft trajectory planning

with avoidance constraints using mixed integer linear programming,” AIAA Journal

of Guidance, Control and Dynamics, vol. 25, no. 4, pp. 755–764, 2002.

[13] D. Hsu, R. Kindel, J. Latombe, and S. Rock, “Randomized kinodynamic motion

planning with moving obstacles,” The International Journal of Robotics Research,

vol. 21, no. 3, pp. 233–235, 2002.

[14] D. Hsu, J. Latombe, and R. Motwani, “Path planning in expansive configuration

spaces,” in Proceedings from IEEE International Conference on Robotics and Au-

tomation, (Albuquerque, New Mexico, USA), pp. 2719–2726, April 1997.

[15] S. LaValle and J. Kuffner, J.J., “Randomized kinodynamic planning,” in Proceedings

from IEEE International Conference on Robotics and Automation, vol. 1, (Detroit,

Michigan, USA), pp. 473–479, May 1999.

[16] S. M. Lavalle, “Rapidly-exploring random trees: A new tool for path planning,” Tech.

Rep. TR: 98-11, Computer Science Department, Iowa State University, Oct 1998.

106

[17] S. LaValle, Planning Algorithms. Cambridge University Press, 2006.

[18] Y. Kuwata, G. Fiore, J. Teo, E. Frazzoli, and J. How, “Motion planning for urban

driving using RRT,” in IEEE/RSJ International Conference on Intelligent Robots

and Systems, (Nice, France), pp. 1681–1686, Sept 2008.

[19] D. Ferguson and A. Stentz, “Anytime RRTs,” in IEEE/RSJ International Conference

on Intelligent Robots and Systems, (Beijing, China), pp. 5369–5375, Oct 2006.

[20] J. Lee, C. Pippin, and T. Balch, “Cost based planning with RRT in outdoor environ-

ments,” in IEEE/RSJ International Conference on Intelligent Robots and Systems,

(Nice, France), pp. 684–689, Sept 2008.

[21] A. Yershova, L. Jaillet, T. Simeon, and S. LaValle, “Dynamic-domain RRTs: Efficient

exploration by controlling the sampling domain,” in Proceedings of the 2005 IEEE

International Conference on Robotics and Automation, (Barcelona, Spain), pp. 3856–

3861, April 2005.

[22] M. Strandberg, “Augmenting RRT-planners with local trees,” in Proceedings of the

2004 IEEE International Conference on Robotics and Automation, vol. 4, (New Or-

leans, Louisiana, USA), pp. 3258–3262, May 2004.

[23] M. Zucker, J. Kuffner, and M. Branicky, “Multipartite RRTs for rapid replanning in

dynamic environments,” in Proceedings of the 2007 IEEE International Conference

on Robotics and Automation, (Roma, Italy), pp. 1603–1609, April 2007.

[24] A. Alves Neto, D. Macharet, and M. Campos, “On the generation of trajectories for

multiple UAVs in environments with obstacles,” Journal of Intelligent and Robotic

Systems, vol. 57, no. 1-4, pp. 123–141, 2010.

[25] K. Yang and S. Sukkarieh, “Real-time continuous curvature path planning of UAVs

in cluttered environments,” in Proceedings of the 5th International Symposium on

Mechatronics and Its Applications, (Amman, Jordan), pp. 1–6, May 2008.

107

[26] A. P.-B. Issco and A. Popescu-belis, “An experiment in comparative evaluation:

Humans vs. computers,” in Proceedings of Machine Translation Summit IX, (New

Orleans, Louisiana, USA), pp. 307–314, Sept 2003.

[27] K. Chellapilla, K. Larson, P. Simard, and M. Czerwinski, “Building segmentation

based human-friendly human interaction proofs (HIPs),” in Proceedings of the Second

International Workshop on Human Interactive Proofs, (Bethlehem, Pennsylvania,

USA), May 2005.

[28] M. L. Cummings and S. Bruni, “Collaborative human-automation decision making,”

in Handbook of Automation (S. Y. Nof, ed.), pp. 437–447, Springer, 2009.

[29] V. J. Lumelsky and A. A. Stepanov, “Path-planning strategies for a point mobile

automaton moving amidst unknown obstacles of arbitrary shape,” in Autonomous

robot vehicles, pp. 363–390, Springer-Verlag New York, Inc., 1990.

[30] A. Datta and K. Krithivasan, “Path planning with local information,” in Proceedings

of the Conference on the Foundations of Software Technology in Theoretical Computer

Science, vol. 338, (Pune, India), pp. 108–121, Dec 1988.

[31] M. Sipser, Introduction to the Theory of Computation. International Thomson Pub-

lishing, 1996.

[32] K. G. Shin and N. D. McKay, “Robot path planning using dynamic programming,”

in The 23rd IEEE Conference on Decision and Control, vol. 23, (Las Vegas, Nevada,

USA), pp. 1629–1635, Dec 1984.

[33] M. Peot, T. Altshuler, A. Breiholz, R. Bueker, K. Fertig, A. Hawkins, and S. Reddy,

“Planning sensing actions for uavs in urban domains,” in The International Society

of Optical Engineering (SPIE) Unmanned/Unattended Sensors and Sensor Networks

II, (Bruges, Belgium), Sept 2005.

[34] M. Alighanbari, Y. Kuwata, and J. How, “Coordination and control of multiple uavs

with timing constraints and loitering,” in Proceedings of the 2003 American Control

Conference, vol. 6, (Denver, Colorado, USA), pp. 5311–5316, June 2003.

108

[35] P. E. Hart, N. J. Nilsson, and B. Raphael, “A formal basis for the heuristic de-

termination of minimum cost paths,” IEEE Transactions on Systems Science and

Cybernetics, vol. 4, no. 2, pp. 100–107, 1968.

[36] R. Dechter and J. Pearl, “Generalized best-first search strategies and the optimality

of A*,” Journal of the Association for Computing Machinery (ACM), vol. 32, no. 3,

pp. 505–536, 1985.

[37] M. Likhachev, D. Ferguson, G. Gordon, A. Stentz, and S. Thrun, “Anytime search

in dynamic graphs,” Artificial Intelligence, vol. 172, pp. 1613–1643, 2008.

[38] G. Nemhouser and L. Wolsey, Integer and Combinatorial Optimization. New York:

John Wiley and Sons, 1988.

[39] M. Garey and D. Johnson, Computers and Intractability: A Guide to the Theory of

NP-Completeness. San Francisco: Freeman, 1972.

[40] Y. Kuwata and J. How, “Receding horizon implementation of MILP for vehicle guid-

ance,” in Proceedings of the 2005 American Control Conference, vol. 4, (Denver,

Colorado, USA), June 2005.

[41] J. Bellingham, A. Richards, and J. P. How, “Receding horizon control of autonomous

aerial vehicles,” in Proceedings of the American Control Conference, (Anchorage,

Alaska, USA), pp. 3741–3746, May 2002.

[42] T. Schouwenaars, J. How, and E. Feron, “Receding horizon path planning with im-

plicit safety guarantees,” in Proceedings of the 2004 American Control Conference,

vol. 6, (Boston, Massachusetts, USA), pp. 5576–5581, June 2004.

[43] N. Amato and Y. Wu, “A randomized roadmap method for path and manipulation

planning,” in IEEE International Conference on Robotics and Automation, (Min-

neapolis, Minnesota, USA), pp. 113–120, May 1996.

[44] L. Kavraki, F. Svetska, J. Latombe, and M. Overmars, “Probabilistic roadmaps

for path planning in high-dimensional configuration spaces,” IEEE Transaction of

Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

109

[45] A. Shkolnik, M. Walter, and R. Tedrake, “Reachability-guided sampling for planning

under differential constraints,” in Proceedings of the International Conference on

Robotics and Automation, (Kobe, Japan), May 2009.

[46] L. E. Dubins, “On curves of minimal length with a constraint on average curvature,

and with prescribed initial and terminal positions and tangents,” American Journal

of Mathematics, vol. 79, no. 3, pp. 497–516, 1957.

[47] M. Shanmugavel, A. Tsourdos, B. White, and R. Zbikowski, “Co-operative path plan-

ning of multiple UAVs using Dubins paths with clothoid arcs,” Control Engineering

Practice, 2009.

[48] C. Froissart and P. Mechler, “Online polynomial path planning in cartesian space for

robot manipulators,” Robotica, vol. 11, pp. 245–251, 1993.

[49] P. Gallina and A. Gasparetto, “A technique to analytically formulate and to solve

the 2-D constrained trajectory planning problem for a mobile robot,” Journal of

Intelligent and Robotic Systems, vol. 27, pp. 237–262, 2000.

[50] H. Chitsaz and S. LaValle, “Time-optimal paths for a dubins airplane,” in Proceedings

of 46th IEEE Conference on Decision and Control, pp. 2379–2384, Dec 2007.

[51] T. Sheridan, Telerobotics, Automation, and Human Supervisory Control. Cambridge,

MA: MIT Press, 1992.

[52] M. Cummings and P. Mitchell, “Predicting controller capacity in remote supervi-

sion of multiple unmanned vehicles,” IEEE Systems, Man, and Cybernetics, Part A

Systems and Humans, vol. 38, no. 2, pp. 451–460, 2008.

[53] C. Nehme, J. Crandall, and M. Cummings, “An operator function taxonomy for

unmanned aerial vehicle missions,” in 12th International Command and Control Re-

search and Technology Symposium, (Newport, Rhode Island, USA), June 2007.

[54] J.-H. Hwang, R. Arkin, and D.-S. Kwon, “Mobile robots at your fingertip: Bezier

curve on-line trajectory generation for supervisory control,” in Proceedings of the

110

IEEE/ RSJ International Conference on Intelligent Robots and Systems, (Las Vegas,

Nevada, USA), Oct 2003.

[55] G. Carrigan, “The design of an intelligent decision support tool for submarine com-

mander,” Master’s thesis, Massachusetts Institute of Technology Engineering Sys-

tems Division, June 2009.

[56] M. Cummings, M. Buchin, G. Carrigan, and B. Donmez, “Supporting intelligent

and trustworthy maritime path planning decisions,” International Journal of Human

Computer Studies. in press.

[57] J. Marquez, Human-Automation Collaboration: Decision Support for Lunar and

Planetary Exploration. PhD thesis, Massachusetts Institute of Technology Depart-

ment of Aeronautics and Astronautics, June 2007.

[58] H. Kautz and J. Allen, “Generalized plan recognition,” in Proceedings of 5th National

Conference on Artificial Intelligence, (Philadelphia, Pennsylvania, USA), pp. 32–37,

Aug 1986.

[59] N. Lesh, C. Rich, and C. Sidner, “Using plan recognition in human-computer col-

laboration,” in Proceedings of the 7th International Conference on User Modeling,

(Banff, Canada), pp. 23–32, June 1999.

[60] R Development Core Team (2008), R: A Language and Environment for Statistical

Computing [Online]. Available: http://www.R-project.org.

111

