
Human-Guided Management of Collaborating Unmanned
Vehicles in Degraded Communication Environments

by

Daniel Noel Southern

S.B., Massachusetts Institute of Technology (2009)

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

May 2010

c©2010 Massachusetts Institute of Technology
All rights reserved.

Author . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Department of Electrical Engineering and Computer Science

May 21, 2010

Certified by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Mary L. Cummings

Associate Professor of Aeronautics and Astronautics
Thesis Supervisor

Accepted by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Arthur C. Smith

Professor of Electrical Engineering
Chairman, Department Committee on Graduate Theses



2



Human-Guided Management of Collaborating Unmanned Vehicles in

Degraded Communication Environments

by

Daniel Noel Southern

Submitted to the
Department of Electrical Engineering and Computer Science

May 21, 2010

In partial fulfillment of the requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

Unmanned Aerial Systems (UASs) currently fulfill important roles in modern military operations.
Present commitments to research and development efforts for future UASs indicate that their ubiquity
and the scope of their applications will only continue to increase. For sophisticated UASs character-
ized by coordination of multiple vehicles, it is a formidable challenge to maintain an understanding of
the complexities arising from the interaction of human supervisory control, automated planning, and
network communication. This research investigates the robustness of UAS performance under degraded
communication conditions through simulation with a particular futuristic UAS, the On-board Planning
System for UxVs in Support of Expeditionary Reconnaissance and Surveillance (OPS-USERS) system.

The availability of reliable communications is vital to the success of current UASs. This dependence
is not likely to be diminished in future systems where increased inter-vehicle collaboration may actually
increase reliance on communications. Characterizing the effects of communications availability on the
performance of a simulated UAS provides crucial insight into the response of UASs to communication fail-
ure modes which may be encountered in real-world implementations. Additionally, defining a minimum
tolerable level of communication availability which will allow a UAS to operate with acceptable perfor-
mance represents the groundwork for designing engineering specifications for communications systems,
as well as for defining conditions under which such a system could be expected to operate effectively.

Experiments are designed and executed to investigate the impact of degraded communication con-
ditions on the performance of UASs by sampling the performance of a simulated UAS under a variety
of degraded communication conditions. These experimental conditions are based on a similar previous
experiment, which utilized the same simulation testbed and investigated the impact of operator workload
on system performance in experiments with human participants. However, this research seeks to collect
data over a wider range of communication conditions than experimentation with human participants
practically allows. Therefore, a human model is also developed to emulate the interaction of an average
human operator with the system.

After initial experiments validated that the human model produced results that were statistically in-
distinguishable from the results of the experimental data on which the model was based, it was employed
in repeated simulations to collect data across a large number of experimental conditions. Communica-
tion availability was modulated by imposing various network connectivity topologies on the agents in
the UAS, as well as by introducing artificial delays into message transmissions between agents. Analysis
of the simulation results suggests that the various functions of the system exhibit two main modes of
sensitivity to communication failures. In one mode, exhibited in searching the environment and discov-
ering targets, performance gains associated with a high level of communication availability are relatively
small. Performance did not continue to drop with the introduction of further communication failures,
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indicating a robustness to communication failures. The other mode, observed in target tracking and
hostile destruction performance, exhibits a negative correlation with increasing communication delays.
The magnitude of the effect of communication delays is also significantly impacted by the connectivity
of the network topology, with lower connectivity topologies amplifying the negative correlation.

Data collected through this experiment provided insight into the characteristics of an ideal minimum
level of communication. In addition, the trade-offs between performance in different aspects of the system
as well as the optimal allocation of communication resources were considered. This work also investigated
the potential for the operator to mitigate performance losses incurred due to communication degradation
through more frequent replanning. However, no evidence was found which supported this possibility.
Although these results represent preliminary research into the effect of degraded communication on a
complex autonomous system, they provide valuable principals to consider when designing future UASs.

Thesis Supervisor: Mary L. Cummings
Title: Associate Professor of Aeronautics and Astronautics
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Chapter 1

Introduction

1.1 Research Motivation

Unmanned Aerial Vehicles (UAVs) continue to play an increasingly important role in modern military

operations, with many countries either currently operating or developing Unmanned Aerial Systems

(UASs), a term denoting an entire system, including the UAV(s) as well as required infrastructure. The

well-known Predator system operated by the U.S. Air Force exemplifies the utility of unmanned systems.

Predator drones have been employed extensively in intelligence gathering and combat operations in the

past 16 years, logging over one million hours of flight time as of April 2010 since the first Predator was

delivered in 1994 [1]. Other examples of unmanned vehicles currently in use include the Global Hawk,

which is also operated by the U.S. Air Force, as well as the Shadow, operated by the U.S. Army. The U. S.

Navy operates the vertical takeoff and landing Firescout, and has committed significant resources to the

Broad Area Maritime Surveillance (BAMS) UAS which employs a maritime version of the Global Hawk

surveillance UAV. With the success of unmanned systems in U.S. military applications, the Department

of Defense has pledged an investment of $16 billion in UAS development funding from 2008 through

2013 [2].

Despite the limited autonomy of current UASs, their increasing use and the investment of resources

towards the development of future unmanned systems demonstrates the efficacy of unmanned aircraft

and emphasizes the importance of the role they will continue to play in future military and civilian

applications. Current implementations follow an operational paradigm requiring multiple dedicated hu-

man controllers to operate a single unmanned vehicle; for example, the Predator system requires the

full attention of a pilot and sensor operator for each aircraft in flight [3]. These unmanned systems

represent significant improvements in operational effectiveness over traditional manned aircraft in terms

of cost, pilot safety, and even mission capabilities. However, their limited autonomy continues to pre-
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clude more advanced mission capabilities, especially missions which call for coordination between many

vehicles operating simultaneously. To address these limitations and to develop the capability to apply

these systems in a growing array of situations, all branches of the US military continue to invest heavily

in new UASs, shifting the operational paradigm away from requiring multiple human operators for each

aircraft. Improving flight autonomy represents an active area of research, and advances in autonomy are

being applied to fly many UAVs simultaneously, allowing collaboration between the vehicles on a com-

mon mission. The applications of multiple UAV coordination are immediately apparent in new mission

capabilities, such as cooperative mapping, coordinated search and track, and even coordinated combat

operations. These abilities allow UASs to play an important role in network centric operations. A UAS

can both provide intelligence to other networked agents, such as soldiers on the ground, and simulta-

neously empower them with the control of aerial resources. Making the benefits of UASs available to

non-pilot operators through improved autonomy both augments the utility of the system and mitigates

the necessity of expertly trained operators working in dedicated control stations.

The new mission scenarios in which UASs are being applied call for coordination of a heterogeneous

fleet of vehicles with different capabilities, likely working on both disparate and closely related tasks to

accomplish higher level goals. Just as current remotely-piloted vehicles are dependent on communication

with a Ground Control Station (GCS), a distributed planning system for UAVs would require communi-

cations between vehicles to facilitate information sharing and message passing for collaboration, as well as

a link to a GCS for additional guidance from human operators. In a practical implementation of a UAS,

communication availability represents an integral factor in the system’s success; therefore, understand-

ing the impact of communication availability on system performance is a necessity. The performance

requirements on a UAS will dictate the level of communication failure that the system can tolerate, and

will have important implications in system design specification decisions, cost, and reliability. Commu-

nication availability has been shown to have serious theoretical performance implications in automated

planning [4], and otherwise represents a practical concern in unmanned vehicle network applications.

Improvements in the robustness of system performance to communication failures are valuable.

In real-world implementations, the challenge facing system architects will be to maximize the efficacy

of a UAS and the human operator under constraints on personnel, equipment availability, and mission

parameters. For example, design choices for forward deployed combat support UASs controlled by a

soldier on the ground will differ dramatically from long-range surveillance systems managed through a

sophisticated GCS. Understanding the impact of communication availability on system performance, as

well as how communication availability interacts with the role of the human supervisor, will be critical

to the design of a successful UAS.
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1.2 Decentralized Unmanned Vehicle Control

Managing more complex unmanned vehicle missions requires a combination of unmanned aircraft

containing significantly augmented autonomy and a human in a supervisory control role, known as

Human-In-The-Loop (HITL) control [5]. In such systems, human operators monitor the state of the

system and occasionally provide input critical to the completion of tasks within the system, although the

autonomy may be capable of acting on a subset of tasks without human intervention. As increases in

autonomy diminish the level of human intervention required to pilot each individual UAV, the paradigm

for unmanned vehicle control shifts towards each operator managing a system of multiple vehicles rather

than a single vehicle or a subset of the systems on a single vehicle. The supervisory role then evolves to

encompass higher level functions of the UAS as a whole.

This research focuses on characterizing the effects of communications availability on the performance of

UASs by working with one proposed decentralized control architecture for multiple unmanned vehicles, the

On-board Planning System for UxVs in Support of Expeditionary Reconnaissance and Surveillance (OPS-

USERS) system. OPS-USERS is a framework for coordinated search, track and destroy missions [6],

and the term “UxV” (Unmanned Vehicle) refers to an arbitrary type of vehicle, so this system is not

limited to aerial vehicles. However, the term UAV will be preferred over UxV in this work, with the

understanding that systems may have the capability to support ground- or sea-based vehicles. A more

detailed explanation of the OPS-USERS system implementation is provided in Section 3.1.

1.3 Research Questions

This research addresses how communication availability impacts the performance of a system of dis-

tributed, highly autonomous UAVs supervised by a human operator, and whether the parameters of HITL

control can be adjusted to mitigate the effects of communication failures. A more complete overview of

the system architecture under study is provided in Section 3.1, however for now it suffices to note that

the system consists of a set of heterogeneous unmanned vehicles and a Ground Control Station (GCS)

from which a human operator monitors the system and occasionally provides input. In such a system,

the set of vehicles and the GCS will be referred to as the agents in the system, and communication in the

system refers to communication between any pair of agents. To assess the performance of such a system,

the following research questions were posed.

1.3.1 Performance Response to Communication Failures

Communication availability between the agents in a UAS can be expected to significantly impact per-

formance. Specifically, the availability of communication between each pair of individual UAVs and also

between each UAV and the GCS will impact the system’s ability to generate efficient plans to complete
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high-level goals in different ways, leading to the following question:

Research Question #1: How does performance of the decentralized system with a human in a su-

pervisory control role degrade with increasing communication failures?

To investigate the relationship between communication availability and system performance, a baseline

performance level is first established with perfect communication. Next various regimes of communication

failure modes are simulated to estimate the impact of a set of specific communication failure modes. This

information provides insight into the amount of communication loss which can be tolerated in a given

mission before the performance of the system is significantly degraded.

Research Question #2: Is the system more or less tolerant to specific types of communications

failures?

Several modes of communication degradation are possible. Communication links can be completely

broken, requiring that information be passed through another route (if possible), or a partially degraded

link may introduce latency as messages are passed between agents. Furthermore, the location of the link

in the network (i.e. between two UAVs or between a UAV and the GCS) could affect the type of traffic

the link carries. Real world conditions could produce communication networks that experience several

failure modes simultaneously, and the various behaviors of the system will be impacted in different ways

for each failure mode. Characterization of the performance degradation in such failure modes will serve

as a basis for understanding the relative merits of various system architectures.

1.3.2 Impact of Human Supervisory Control on Performance

This research will also address the impact of human supervisory control on the tolerance of a UAS to

communication failures.

The human operator interacts with the system to monitor the state of the mission and to make deci-

sions to guide the automation. Specifically the operator may oversee prioritization of tasks assigned to the

UAVs, as well as target identification, weapon launch approval, and waypoint task creation. Throughout

the course of a mission, the operator may choose to or may be prompted by the automation to consider

the most recent plan suggested by the automated planner; during this process, called “replanning”, the

operator evaluates the plans, may make modifications to the plans, and finally approves an updated plan

for the vehicles’ behavior in the near future.
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Previous research with the OPS-USERS framework has shown that the frequency at which the op-

erator engages in the replanning task significantly impacts system performance, with high replanning

rates resulting in degraded system performance [6]. Choosing a replanning frequency therefore represents

a trade-off between the benefits of re-optimizing the plan more frequently against the cost in operator

situational awareness and cognitive capacity available to other tasks. Furthermore, it is not necessar-

ily beneficial to replan frequently aside from the effects of increased operator workload. Replanning on

short times scales with noisy information has been demonstrated to reduce system performance as the

difference between several near-optimal plans may be small, causing consecutive replanning events to

produce inconsistent results. This undesirable effect, referred to as “churning”, reduces the efficiency of

the system; it can be eliminated by actively filtering the data, but is also less prevalent when replanning

occurs less frequently [7]. The “replan interval” also influences the trade-off between vehicle time spent

on specific tasks and time spent searching over unmapped areas. This leads to the following question in

the context of degraded communication environments:

Research Question #3: To what extent does HITL control increase the robustness of autonomous

planners to communication failure?

This question deals primarily with whether the optimal replanning interval changes in degraded com-

munication environments, or more broadly, whether the parameters of the HITL control can be adjusted

in order to compensate for the negative effects of communication failures on performance. This research

will focus on the effects of the HITL control parameters through simulation due to the infeasibility of

performing a large enough set of live experiments.

1.3.3 Thesis Organization

This thesis is organized into the following chapters:

Chapter 1 Introduction: Describes the motivation and research questions for this thesis.

Chapter 2 Background: Reviews previous work in fields related to decentralized unmanned vehicle

control, including automated planning systems, the effect of network topologies on distributed

system performance, and human supervisory control.

Chapter 3 Experiment Design: Describes the methodology for gathering system performance data,

including the implementation of a discrete event model simulating human interaction with the

OPS-USERS system. Additional background on the OPS-USERS system implementation is also

provided.
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Chapter 4 Results: Demonstrates validity of the human model used in simulations, and details how

performance was affected by communication degradation and the parameters of HITL control.

Chapter 5 Conclusions and Future Work: Revisits research questions in the context of the results, and

suggests areas for further investigation.
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Chapter 2

Background

Development of sophisticated decentralized UASs draws together a diverse set of fields including human

supervisory control, automated planning for coordinating vehicle behavior, and network theory covering

communication between agents in the system. This chapter discusses research conducted on automated

planning algorithms for multi-agent systems, research in human supervisory control for operators in

decision support roles, and research on networks and the effect of degraded communications on the

performance of UASs or other distributed systems.

2.1 Automated Planning

The problem of coordinating multiple unmanned vehicles becomes more complex as the number of

vehicles is increased or systems are tasked with more sophisticated missions. Because a human operator

would be quickly overwhelmed in assigning tasks to individual vehicles throughout the course of a mission,

an automated planner must be included to assist in coordinating and assigning tasks. Much work has

been done to develop algorithms capable of efficient planning under sufficiently complex constraints to be

useful in real-world implementations. This section discusses the automated planning problem formulation

as well as a variety of planning algorithm implementations and their suitability for command and control

networks.

2.1.1 Automated Planning Problem Statement

A mission is defined as a high level goal, such as searching a region, to be completed by a heterogeneous

set of n UAVs as given by V = {v1, . . . , vn}, with guidance provided by a GCS, g. The set of agents in

the system is defined to be the vehicles and the GCS: A = V ∪ g. The high level goal is translated into

a set of active individual tasks, T = {t1, t2, . . .} dynamically maintained throughout the course of the

mission. New tasks are added to T as they arise or are created through human intervention, and tasks
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are removed as they are completed or expire. The goal of a task assignment algorithm is to distribute

the tasks currently in T between the UAVs in V, based on knowledge of the current state of the system

including the location of each vehicle, location of tasks, and task priorities to maximize an objective

function. This problem is complicated by the inherent uncertainty in any estimation of the system’s state

arising from sensor noise and imperfect communication. Each agent in the system may maintain its own

local version of an estimate of the system state, which could be inconsistent across agents. In this thesis,

an agent’s local version of an estimate of the system state will be referred to as that agent’s beliefs, similar

to the Bayesian concept of beliefs although not necessarily considered in a Bayesian context.

The automated planning problem of assigning the active tasks in T to the agents in V can be

decomposed into two distinct components:

(1) Data Fusion: Data fusion is a mechanism for agents to share information and update their own

beliefs based on the observations of the other agents [8].

(2) Task Assignment: The agents compute assignments of tasks to specific vehicles by maximizing an

objective function over possible assignments. During this process, a human supervisor may provide

input to further prioritize the available tasks, coaching the automation and influencing the resulting

task assignment. The task assignment step also involves communicating assignments to the specific

vehicles [4].

2.1.2 Data Fusion

Information about the state of the system represents the basis for planning decisions. This information

may include:

- Locations of the vehicles and known targets

- Known target priorities, estimated trajectories, and other information

- Environment map indicating the likelihood of undiscovered target locations

As the quality of the state estimate of the system directly impacts the quality of plans which can be

generated based on this information, it is desirable to achieve the best system state estimate possible

before computing task assignments [9]. Individual agents in the system make their own observations of

the environment and maintain their own beliefs about the state of the environment. Due to possible

heterogeneity of sensors per agent or dispersion of agents throughout the environment, one agent’s ob-

servations may cover a different portion of the environment or otherwise contain information not present

in any other agent’s observations. Even if two agents make observations of the same area, it remains

beneficial to share the information, as combining multiple noisy observations allows for a more accurate

estimate of the system’s state [10].
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In an ideal system with a strongly connected communication network (i.e. two-way communication

between all agents), unlimited bandwidth, and no latency, agents would not have trouble reaching aa-

greement over their beliefs by taking all available information into account. In real-world systems, the

costs of sharing information must be considered, including time and bandwidth utilization. Constraints

on the bandwidth of communication between vehicles, or on the amount of time afforded to data fusion

may make it infeasible for all vehicles to converge to an identical set of beliefs. Alternatively it may only

be possible for all agents to converge to the same set of beliefs if some vehicles’ information is not taken

into account; for example, if one vehicle can receive but cannot send information, then its beliefs cannot

be taken into account by the remaining vehicles. Agreement on beliefs can only be reached by ignoring

the observations of this vehicle. The performance of automated planning systems may depend closely on

both achieving the best possible estimate of the system’s state and converging to a single set of beliefs

across all agents. Several data fusion approaches are discussed below.

Data fusion can be accomplished through a variety of information-sharing schemes, and can be per-

formed either continuously or immediately preceding each task assignment computation. Furthermore,

different implementations of the task assignment step may benefit from a higher degree of convergence

such that all agents have similar beliefs about the system. Alternatively, an implementation might achieve

the best performance when a high quality estimate of the system state is built in just one or some of the

agents. For example, the Consensus Based Bundle Algorithm (CBBA) and Robust Decentralized Task

Assignment (RDTA) algorithms employ an auction framework which allows vehicles to bid on the tasks

that are easiest for them to complete. Any conflicts where two vehicles would prefer to perform the same

task are eliminated in an iterative process, resulting in a conflict-free assignment. In this setting, the ve-

hicles need not reach agreement on beliefs, but agents with higher-quality estimations of the system state

can continue to improve the systems’ performance [4, 11, 12]. Data fusion algorithms may be designed

either to spend more time reaching an agreement on beliefs before replanning, or to terminate after a

short time and more promptly initiate planning before agreement is reached.

Furthermore, the availability of communications directly impacts data fusion algorithm performance.

Algorithms can be optimized for one static network topology, or can be designed to tolerate dynamically

changing topologies. A consideration of the characteristics of the task assignment step along with the

availability of communication between agents and time constraints drive data-fusion algorithm selection

decisions.

Data Fusion Techniques

Although data fusion research is considered here only in the context of automated planning, data

fusion algorithms are applicable in a variety of other multi-agent coordination problems [13]. Surveys

of data fusion research provide an overview of simplified data fusion problems as the basis for more
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sophisticated data fusion schemes. Simplified problems may assume static and reliable communication

networks, infinite bandwidth for communication between agents, static final values over variables, or

systems with state-spaces on the order of a few variables [9,14]. These approaches can then be extended

to operate under conditions with degraded communications and dynamically evolving variables. This is

the case in the OPS-USERS system, where the data to be combined includes vehicle locations, target

locations, and target trajectories.

Simpler problems for multi-agent coordination include vehicle formation control [15, 16], coordinated

rendezvous of vehicles [17, 18], and coordinated task planning [19–21]. One specific application example

includes coordinating actions within a network of decision makers in Ref. [22]. The decision makers

represent buyers who attempt to set a threshold price based on the threshold prices of the other buyers

so that all buyers act optimally. The agents effectively collaborate on decision making problems using

a distributed data fusion protocol. This system requires only local communication, but is shown to

achieve performance equal to a less sophisticated centralized approach where all buyers communicate their

threshold strategy to a single agent who then performs a local optimization with complete information. A

separate application focuses on distributed noisy sensors observing a single event and later collaborating

to determine the maximum a posteriori (MAP) estimate about the event [10].

Another approach to data fusion building employs the ubiquitous Kalman filter [23]. Agents record

both observations and a relative measure of confidence (covariance matrix) about the information. Agents

communicate their best estimate of the system state and their confidence level to each other, and each

agent updates its local estimate based on the other agents’ estimates to improve agreement on beliefs.

Under perfect communication (no latency, unlimited bandwidth, strongly connected communication net-

work), this approach performs well; however, extensions to the Kalman filter are generally required to

increase robustness to unreliable communication [24,25].

Often, a simplification of the Kalman filter solution may be viable. One approach involves computing

the average belief over the system, and has been shown to achieve complete agreement on beliefs over

a variety of network topologies [26]. This particular procedure, referred to as consensus propagation,

represents a protocol for distributed averaging. Confidence levels associated with beliefs are not taken

into account explicitly, instead trading accuracy in state estimation for better agreement on beliefs. This

trade-off may be desirable because the algorithm affords several advantages: the system can operate in

certain degraded network topologies, the algorithm can be performed asynchronously, and each agent

needs only to be aware of its neighbors. In situations where communication is expensive or otherwise

limited, consensus propagation may be an appropriate choice. Another averaging technique is described

in [15], where vehicles attempt to maintain a specific formation by communicating their measurements

of relative vehicles positions to one another. This system has been shown to be robust to considerable

communication loss. The vehicles were able to consistently converge into formation with as much as
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two-thirds of all communication lost.

Building upon techniques discussed above, work has been done to develop extensions to handle the

complexities inherent in UASs. This includes relaxing the assumption that perfect communication is

available, and dealing with finite bandwidth and latency in communication. Theoretical research into

several Kalman-like linear and non-linear data fusion protocols has demonstrated that agreement on

beliefs is possible in the presence of communication latency or switching network topologies [27–29]. The

analysis in this research provides conditions on the types of networks which allow these protocols to

converge, for example, that a network be connected on average. In one example implementation of a

data fusion algorithm in a UAS, the algorithm described in [9] was implemented in simulation in [4, 30],

although the UAV mission considered represents a considerable simplification of the complex OPS-USERS

mission considered in this work.

2.1.3 Task Assignment

The specification for any task assignment algorithm simply requires generation of a list of tasks

assigned to each vehicle, and communication of assignments to corresponding vehicles. Implementations

of task assignment algorithms vary in that the required computation may take place on one specific

agent (for example, the GCS), distributed across several agents, or may occur simultaneously on all

agents. There are two primary categories of task assignment algorithm implementations: centralized

algorithms and decentralized algorithms. A third alternative, quasi-decentralized systems, is a variant

which combines elements of both centralized and decentralized systems.

In centralized architectures, each vehicle communicates its beliefs to a single agent, which acts as a

Centralized Controller (CC). This agent is presumably more capable of calculating optimized assign-

ments, either through augmented computational power, or by representing a central node in terms of

communication topology. In this case, the data fusion procedure is formulated such that the central

agent receives the best possible estimation of the system state. The central agent then computes an op-

timized task assignment based on this estimate, and sends the resulting assignment to each vehicle. This

architecture aggregates all available information together into the central agent, and considers the entire

optimization problem at once. A human supervisor may be given oversight of the system by interacting

with the central node, to provide external guidance to the centralized task assignment algorithm.

An alternative approach is a decentralized architecture where task assignment optimization takes

place across several or all of the agents using on-board computers. Each agent may be responsible

for computing their own task assignment, or a quasi-decentralized hierarchical approach may partition

agents into groups (for example, based on location) with one agent from each group selected to plan

for the entire group. Although decentralized systems do not rely on a CC for task assignment, some

decentralized systems such as the OPS-USERS system include a centralized element which facilitates
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human oversight of the decentralized planner. In this case the CC may never directly compute task

assignments for the vehicles, but it rather facilitates external guidance when communication availability

allows it. This will be discussed in greater detail in a subsequent section.

2.2 Network Topologies and Distributed System Performance

The communication networks present in current UASs contain just two or a few nodes, including

a centralized controller plus one or more vehicles. Small networks such as these receive little benefit

from the consideration of their network topologies, as routing of communications is of little practical

value when the vehicles are required to be in contact with the CC and inter-vehicle communication is

not emphasized. However, as UASs begin to incorporate more and more vehicles, and collaboration

between vehicles becomes standard behavior, synergistic routing strategies may begin to impact system

performance. For example, in networks with as few as 10 nodes, routing protocols between agents in a

dynamic environment were demonstrated to significantly affect network throughput and connectivity [31].

The number of vehicles in future UASs will grow large enough to introduce challenges in managing the

routing topology of the communication network in order to maintain acceptable performance. Current

and future UASs also face challenges in connectivity and bandwidth concerns, time constraints, and

dynamic link availabilities. Using techniques from network theory, the communication networks in UASs

can be characterized numerically, facilitating investigation into the effects of changing network conditions

on system performance.

UAV1

UAV2 UAV3

UAV4

UAV5 UAV6

Figure 2-1: Distinct subgroups of UAVs, decentralized architecture

Distributed planners respond to communication failures differently than centralized planners in ways

which enhance robustness to certain types of communication failures. For example, when communication

limitations partition UAVs into isolated groups with locally complete communications networks (Figure

2-1), vehicles continue to collaborate with their neighbors (i.e. vehicles 1, 2, and 3 will collaborate, and

vehicles 4, 5, and 6 will collaborate). This illustrates one of the main advantages of distributed systems:

if tasks are weakly coupled across long distances (as communications tend to be weaker across long

distances), then solving several local task assignment problems will tend to produce results more closely

matching results obtained by computing the entire task assignment in a central location [32]. In this sense,

distributed systems scale more easily relative to their centralized counterparts, as no new hardware is
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required beyond the hardware already present on each UAV, and the computational requirements on

each agent in the system are not increased, as would be the case in a centralized system [33]. The

computational requirements do not become burdensome as the size of the optimization performed in each

small group can remain relatively constant as the system size is increased.

Where centralized planners attempt to take advantage of all available information about the state of

the system in one large optimization problem, decentralized planners solve several smaller local optimiza-

tion problems. In situations where communication between UAVs is perfect, and without computational

limitations imposed by the computer platforms available on the vehicles themselves, we would expect

the performance of the centralized and decentralized approaches to be the most similar. Indeed, much

initial research on new task assignment algorithms is done under the assumption that communication

is always available and instantaneous between all agents [34–36]. However, in real world applications

the limitations of communication availability force the planners to operate under sub-optimal network

topologies, introducing latency and inefficiency into the system.

For example, a system which understands its communication topology can dynamically adjust its

behavior to maximize the usefulness of communication resources on hand. Given a specific network

topology, we may wish to predict the runtime or communication requirements of a data fusion algorithm

in order to manage the amount of time it will take to generate a task assignment [27]. With the ultimate

goal of balancing the quality of the task assignments generated and the latency with which new task

assignments can be computed, a runtime estimation could aid decisions for the type of data fusion

algorithm to employ or the number of iterations to perform given the current network topology. Work

has also been done to investigate convergence properties of data fusion algorithms; certain network

topologies may guarantee convergence or make convergence impossible [29, 37]. Analysis of what level

of agreement can be reached by data fusion algorithms and at what cost in time and communications

informs the system of an expectation of performance and whether adjustments to data-fusion algorithms

would be possible to increase performance (see Ref. [4]).

2.2.1 Measuring Communication Availability

In order to address the research questions outlined in Section 1.3.1, metrics must be calculated which

numerically quantify the level of communications available. For example, in RDTA research, the amount

of information communicated was limited during both the data fusion and task assignment phases sepa-

rately, yielding performance plots showing how performance was degraded relative to the case of unlimited

communication [30].

In another approach, artificial constraints on communication were defined in an otherwise realistic

simulation [38]. This experiment modulated the distance over which communication was allowed while

testing whether the robots were able to successfully traverse their environment. Results demonstrated that
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successful navigation was possible under several regimes of limited communications, and that sacrificing

optimality to simplify a planning problem leads to acceptable solutions in cases complex enough to be of

practical interest. However, the work lacked a quantifiable metric for measuring the relative performance

of the system at each level of communication, and therefore failed to characterize the relationship between

performance and communication availability.

Another approach to characterizing the performance of information-sharing algorithms over a variety

of network topologies applies probabilistic analysis of the possible network topologies which can arise

in a network [39]. Using this method, the network characteristics represent the “performance” and

the parameters of the underlying model for generating the networks (for example, the probability of a

specific communication link being present in a given time step), represent the independent variables. As

the networks generated by the model evolve through time, they may only periodically achieve a “useful”

state where information can be exchanged. The fraction of time spent in useful states is investigated

through simulation. The characteristics of each random network drawn are then evaluated and averaged

to gain insight into the levels of performance that can be expected from stochastic networks given link

failure probability characterizations.

2.2.2 Communication Topologies and Automated Planning

The network topology of a UAS will influence the preferred architecture for autonomous planning.

Centralized and decentralized architectures dictate dissimilar communication requirements in terms of

the type of information transmitted, which pairs of agents communicate, and the amount of information

transmitted. The theoretical performance characteristics of the centralized and decentralized approaches

will be considered in the following sections, accompanied by a consideration of several notable imple-

mentations from both algorithm classes. These characteristics have implications for each architecture’s

suitability in a command and control network setting, as they influence fragility to both intermittent

communication availability and inconsistencies in beliefs across agents.

Centralized Task Assignment Architecture

Centralized planning architectures rely on one or a small number of agents in the system to act as a

CC. Figure 2-2 represents a possible configuration of a centralized planning architecture. This example

demonstrates the benefits of designating one agent in the system specifically suited for calculating task

assignments. The central agent may trade mobility for augmented computational power, shifting com-

putational burdens away from the remainder of the agents. This allows cheaper and lighter construction

of the remaining agents, and further specialization for other purposes. Upon receiving the beliefs of each

vehicle, the central agent generates task assignments and communicates them back to the remaining

agents. An analysis of the types of network traffic generated by a centralized planning architecture, as

well as how this traffic would be affected by a specific network topology follows in the next section.
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Figure 2-2: Centralized architecture

Centralized Communication Requirements In centralized planning, the central agent receives ob-

servation information from each agent and performs the information update step locally, reconciling the

possibly conflicting beliefs from all other agents into a local best estimate of the system state. The con-

tent of the belief information received from agents determines the bandwidth and time requirements for

the information update step; however, each vehicle’s data needs to be sent across the network to the CC

only once per planning interval. In the task assignment stage, the CC calculates a task assignment and

transmits it to each vehicle; although this is a low-bandwidth communication, it must reach every agent.

One immediate advantage of a centralized architecture is that centralized data-fusion can be accom-

plished through a single transmission of belief information. This avoids latencies in the task assignment

process associated with most decentralized algorithms, where multiple iterations of communicating and

updating belief information across the network may be required [40]. However, the CC represents a single

point of failure in the sense that each vehicle must be in communication with the CC when the planning

algorithm executes so that its beliefs are taken into account and it can be assigned tasks. Although the

risk of failure or loss of the central node may be mitigated by either adding redundancy, allowing an-

other agent to step into the central agent role, or delegating some decision autonomy to the decentralized

system in the event of a communication failure, this still implies sensitivity to temporally intermittent

communication links. Asynchronous task assignment procedures that account for the characteristics of

communication availability (such that out-of-contact agents may receive delayed task assignments rather

than no task assignments at all) have also been proposed to mitigate this specific effect [26]. However,

such an approach carries significant operational risks in command and control settings, especially when

task assignments are time critical.

In a centralized setting, the characteristics of the communication channel between each vehicle and

the CC is the dominant communication factor in determining system performance. This includes whether

communication is available at all, and if so, the bandwidth, probability of data loss, and latency of the

communication channel. In a command and control context, centralized systems represent a conventional

hierarchy with decisions being made at a central location (in the CC) and handed down to the subor-

dinate vehicles. In terms of network connectivity, the degree of the central node is high (many agents
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communicating directly with central node), but each vehicle needs only to communicate with the CC and

little or no inter-vehicle communication is necessary. This translates into a low communication density

over the network of agents. However, the concentration of information at the centralized node imposes

high computation requirements on the CC.

Centralized Network Topologies The actual planning algorithm implemented inside the CC may vary,

but the characteristics of information flow in a centralized system will be similar across implementations.

Such an architecture places constraints on the types of network topologies required. For example, vehicles

experiencing communication failures may be unable to contribute their belief information to the CC or

may be unable to receive task assignments. Also, noisy communication links will increase the time required

to transmit belief data to the CC, especially for increasingly complex belief information including imagery

or other information requiring high bandwidth communication links. For the task assignment algorithm

to operate nominally, all agents must have access to a two-way communication link with the CC with

sufficient bandwidth.

In a centralized architecture, communication with the CC need not be direct, or equivalently, the

network of agents participating in the centralized task assignment must only be strongly connected;

communications may be routed through one or more intermediate agents [9]. An important note about

centralized architectures is that a subset of vehicles able to communicate locally but which are all unable

to communicate with the CC cannot take advantage of their locally connected network to collaborate

amongst themselves. For example, in Figure 2-3, vehicles 1, 2, and 3 will operate nominally with the CC,

while vehicles 4, 5, and 6 will fail to collaborate with the CC or amongst themselves.

CC

UAV1

UAV2 UAV3

UAV4

UAV5 UAV6

Figure 2-3: Distinct subgroups of UAVs, centralized architecture

There are three distinct types of directed communication links in a centralized system: UAV-to-UAV

links, UAV-to-CC links, and CC-to-UAV links. Permanently breaking any link will affect the system

differently depending on the type of link that is broken. Specification of a failure mode implies not only

that the two agents cannot communicate directly, but also that no route exists through the remaining

nodes. The implications of the failure of each type of communication link are outlined below.

• CC-to-UAV link broken: Vehicles that cannot receive messages from the CC cannot receive task

assignments. They may either continue their mission under the assumption that contact with the

CC will be restored eventually, or abort the mission and return to base. Assuming that the vehicles
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continue the mission during periods of communication failure, they may continue to act on the last

task assignment they received. Upon completion of assigned tasks, they may then carry out implicit

tasks which do not require specific assignment from the CC. This may include searching for targets

and attempting to send their own sensor data to the CC, as the directional link from the vehicle

to the CC may not be broken. Vehicles in this state can be required to attempt to restore contact

with the CC at regular intervals, for example by moving to a new location.

• UAV-to-CC link broken: Vehicles which cannot send messages to the CC will not be able to

send updated belief information, and as a consequence sensor data from these vehicles cannot be

taken into account in new task assignments. The CC has a choice in this case either to assume

that the vehicle can presently receive messages from the CC, or to exclude the vehicle (and possibly

vehicles with communications from the CC routed through it) from the set of available vehicles

when optimizing the task assignment.

• UAV-to-UAV link broken: This link failure does not necessarily affect performance, but based

on the assumption of network routing capability, this implies also that affected vehicles cannot have

a two-way communication link to the CC; therefore this mode must be accompanied by one of the

failure modes listed above.

Centralized Task Assignment Implementations Previous work includes several UAS simulation

implementations with centralized task assignment architectures. Assuming that the data fusion step has

already formed the best possible estimate of system state in the CC, the task assignment algorithm has

only to do a local optimization to calculate the task assignment. The optimization can be posed as a

network flow optimization [36], or a trajectory optimization using model predictive control [35]. Locally

simulated auctions [4,11,34] have also been employed, centralizing the inherently distributed behavior of

each vehicle bidding on tasks by fusing belief information at a single central location and then emulating

the behavior of each agent in the system at the central location; this could be considered tantamount to

assuming perfect information sharing.

A common simplification in theoretical work on task assignment algorithms is to assume perfect com-

munication between vehicles [34–36]. This effectively abstracts away the algorithm execution and the

model of the environment from the vehicles, and allows all information to be shared perfectly, minimizing

the burden that a data fusion procedure places on task assignment. In the context of algorithm architec-

ture, these approaches will be considered centralized, as the strong assumptions about communication

network connectivity would allow a centralized approach, and the complexity of the planning algorithm

often suggests the requirement of a powerful ground-based computer, as in [35]. However, in some cases

such as [34,36], the algorithm is simple enough to be run in on-board hardware; in this case the algorithm

could be implemented in either a centralized or decentralized manner with identical results under perfect
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communication.

One algorithm which applies the perfect information sharing simplification puts the Centralized Mis-

sion Manager (CMM) in the role of an auction mediator [34]. The vehicles first compute which task they

prefer by minimizing the value of a simple cost function over each available task, and these costs are

sent to the CC. The CC then processes these choices to resolve conflicts, preferring the vehicle which

incurs the lowest cost if a task is selected by more than one vehicle. This procedure is iterated until all

tasks have been assigned. Benefits of this approach include very light computational requirements, as

the vehicles need only to compute their cost function for each task, which can be structured to account

for UAVs with different capabilities and even varying levels of expertise in each capability. This algo-

rithm is straightforward to decentralize if agreement on beliefs is attainable. However the simplicity of

this approach renders the task assignments produced by this algorithm generally sub-optimal [34]. More

sophisticated truly decentralized auction algorithms will be discussed below.

The previous approach represents a greedy algorithm to minimize the cost of completing as many

tasks as possible; the vehicles consider only minimizing their own cost rather than the cost for the entire

system. This approach trades speed and simplicity against searching only a very small portion of the

possible task assignments. An improvement would be to allow the CC to consider the cost function for

all vehicles and tasks simultaneously in the context of a linear programming problem. Then known linear

programming techniques can be employed to optimize performance [36,41].

Another approach considers the entire problem as a vehicle trajectory optimization where the dynam-

ics of the vehicles are simplified in order to abstract them away from the high level planner [35]. In this

case, trajectories are computed for each vehicle for some planning horizon into the future, long enough

such that at least one vehicle will reach a target within the horizon. Rewards are given to trajectories

bringing UAVs near targets, or for maximizing the likelihood of discovering new targets. In this repre-

sentation, task assignments are implicit in the simplified trajectory planning rather than in an explicit

assignment of tasks to vehicles. This approach allows application of existing trajectory optimization

techniques, and another interesting feature of this method is direct consideration of the useful lifetime of

plans generated. Planning happens as infrequently as possible; for example, the algorithm replans only if

a new target is detected, or the system state deviates significantly from the expected state. If the current

plan contains only long-term goals, then replanning may not be necessary for a long interval, minimizing

communication requirements.

Decentralized Task Assignment Architecture

A decentralized planning solution relies on on-board computers to generate task assignments. Re-

moving the constraint that all information must be transmitted to a single agent in the system (i.e.

the role of the CC in centralized planning) requires a new strategy to account for each vehicle’s beliefs
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in computing task assignments. Figure 2-4 illustrates a simple decentralized architecture. Note that a

centralized component akin to the CC in a centralized system may still be present to provide a facility for

human oversight of the distributed system; this is the case in the OPS-USERS system. This centralized

component will be referred to as the Centralized Mission Manager (CMM). A decentralized system may
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Task Assignment

Negotiations

SA &
Task Assignment

Negotiations

Figure 2-4: Decentralized architecture

either implement a data fusion procedure to reach agreement on beliefs to be used to calculate task

assignments [23, 26, 42], or be allowed to tolerate some inconsistencies in beliefs in a scheme where the

vehicles interactively distribute tasks using an auction framework [4, 11, 40]. Auction frameworks may

require multiple iterations to allow each vehicle to bid on each task, but provide protection from incon-

sistencies in belief in some cases. Each implementation involves different communication requirements;

however, a major contrast to centralized architectures is that an increase in total communication required

can be traded off against network topology flexibility.

Decentralized Communication Requirements Decentralized systems offer more flexibility than cen-

tralized systems in their communication requirements, allowing trade-offs between toleration of limited

communication availability and support for increasingly sophisticated optimization algorithms. Decen-

tralized automated planning can still be considered as two components, data-fusion and task assignment.

In contrast to centralized systems, decentralized implementations for the task assignment component

exist which are optimized for a wide range of communication availabilities and levels of belief agreement.

A data fusion algorithm can be chosen to best match the data fusion requirements of the task assignment

algorithm, and both choices dictate communication requirements. Three possible approaches to choosing

appropriate data fusion and task assignment implementations for a decentralized planning algorithm are

outlined below.

One strategy is to require that the data fusion algorithm converges, such that all vehicles agree on the

system state before performing task assignment. This approach guarantees conflict-free task assignments

and allows implicit coordination, where each vehicle plans for itself; this is only possible when each

vehicle runs the same planning algorithm over the same set of beliefs. Requiring convergence can incur

significantly longer latencies, or may fail if an agreement on beliefs cannot be reached under current

communication conditions. This strategy is most suitable when communication is reliable.
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A second strategy could be developed that place a limit on the time or bandwidth committed to data

fusion can control latency in the data fusion procedure. This can be implemented through the use of

an anytime algorithm to perform data-fusion, where the algorithm can be terminated after a set time

interval or a fixed number of iterations even if complete agreement on beliefs has not been achieved.

This approach helps bound latency, while taking advantage of data-fusion convergence when the network

topology is favorable for efficient convergence. However, the planning algorithm used in conjunction with

this data fusion strategy must be capable of planning on inconsistent information across the vehicles.

Under constrained communications, it may be desirable to eliminate the data fusion component al-

together in order to reduce communication requirements. Communication will only be required for the

task assignment step, at the expense of the UAVs attempting to plan on conflicted beliefs. This strategy

is suitable when communication is constrained. A careful consideration of the trade-off between agreeing

on beliefs about the state of the system and the ability to plan rapidly dictates which approach is most

desirable for a particular application. To this end, a variety of distinct implementations exist to assign

tasks, outlined below.

Decentralized Network Topologies As for centralized planners, specifying a failure mode implies no

direct communication nor indirect communication through other nodes. In the decentralized case, there

is only a single type of link to consider, a UAV-to-UAV link. If a UAV-to-UAV link is broken, this failure

condition implies a partitioning of the vehicles into two or more groups. Each group will continue to

collaborate amongst themselves. Conflicting assignments may arise if two vehicles in different groups

attempt to complete the same task.

Decentralized Task Assignment Implementations Decentralized task assignment implementations

are diverse; implementations exist which are optimized to operate under a variety of communication

network topologies, and with varying levels of agreement across the vehicles. Decentralized task assign-

ment algorithms may be direct adaptations of centralized algorithms, where global belief agreement is

reached and each vehicle takes the role of the CMM to calculate their task assignments independently;

in this case, all vehicles arrive at the same task assignment since the algorithm is deterministic and in

each case was run using the same beliefs [34–36]. Auction-style algorithms represent the other principal

decentralized architecture, where plan optimality is sacrificed for reduced communication overhead and

increased planning speed.

Many decentralized approaches can be interpreted as decentralizations of centralized approaches. A

straightforward implementation utilizes a data fusion scheme to build global belief agreement such that

each node has identical beliefs. Then each node performs the centralized planning algorithm locally to

achieve the same result that a centralized planner would achieve. [34–36,41].

Another decentralized approach considers the data fusion and task assignment stages of the algorithm
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simultaneously using a probabilistic model for the system – a Partially Observable Markov Decision

Process (POMDP). Similar to the Kalman filter, the POMDP framework handles uncertainty directly in

the model of the environment. Since multi-UAV systems are highly dynamic and stochastic, it is natural

to capture the uncertainty of the problem directly. Furthermore, rather than basing task assignment

decisions on the most likely estimate of the system state calculated through a data fusion algorithm,

the POMDP model captures each possible system state along with its likelihood in planning decisions.

However, these characteristics come at a performance cost which causes POMDP algorithms to struggle

to handle even small problem sizes due to enormous computational requirements. Recent work using

decentralized POMDPs for task assignment includes the Multi-Agent A* algorithm (MAA*) [43]. As

solving an optimization of the full POMDP process is intractable, the algorithm takes into account each

agents’ probabilistic model of the system to act as a heuristic for a dynamic programming search for

solutions to the task assignment problem. Results have shown this approach to generate high-quality

task assignments. However, this algorithm still suffers from robustness problems in that tolerance to any

communication failures is not a feature of the algorithm, and perfect communication was assumed in

Ref. [43].

Distributed auction-style algorithms represent another decentralized approach which trade-off op-

timality for speed. Auction-style algorithms provide quick solutions at the expense of the quality of

task assignments generated. In certain implementations, no attempt to reach agreement on beliefs is

made [44, 45]. Rather, the vehicles act greedily to take the tasks which they believe are easiest for them

to complete. The vehicles iterate over the available tasks, with each vehicle bidding its estimated cost of

completing the task. The task is given to the vehicle with the lowest cost. Despite their simplicity, auction

algorithms offer competitive performance amongst available decentralized task assignment algorithms.

In one particular implementation, each UAV calculates the sets of tasks it could feasibly accomplish,

and the cost of accomplishing that set of tasks (in both distance, time, or another cost metric). Then

sets of tasks are chosen for each vehicle to maximize an objective function [46]. This is known as the

petal algorithm, and forms the basis of two notable extensions: CBBA [11] and RDTA [4]. The CBBA

algorithm is a light-weight version which minimizes computational and communication requirements,

making few assumptions about network connectivity; vehicles must only be able to communicate with

their neighbors, and information cannot be relayed between distant vehicles. The UAVs communicate

their situational awareness to each other along with a suggested task assignment for themselves until

an agreement on task assignment is reached. Agreement on beliefs is not necessary. CBBA provides

excellent run-times for even large problems; however, the optimization performed is not substantial, and

data fusion over vehicle beliefs is not a component of the CBBA algorithm. On the other hand, RDTA

does fuse belief information and conflicting beliefs are resolved through further iterations of information

sharing steps. After agreement is reached, the vehicles iterate on the auction of tasks, until a conflict-
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free assignment is found. The emphasis on data fusion in RDTA comes with heavier requirements

for communication between vehicles. This also results in longer times to convergence, but RDTA is

guaranteed to converge to a conflict-free task assignment for all vehicles connected to the network – a

guarantee CBBA doesn’t make when discrepancies between each vehicles’ beliefs are large. The task

assignments of the RDTA algorithm have been shown to offer performance enhancements over CBBA’s

task assignments, representing the trade-off between planning speed and planner performance which is

possible in auction algorithms.

Quasi-Decentralized Task Assignment Architecture

The quasi-decentralized task assignment architecture combines elements of both centralized and de-

centralized task assignment algorithms [47]. For example, a hierarchical approach instantiates the CMM

on a subset of the vehicles, effectively splitting the vehicles into teams. Then leaders of each team

collaborate among their peers and dictate to their subordinates, yielding a planning hierarchy [48].

Hierarchical methods reduce the dependency on data-fusion and consistent beliefs across vehicles

[49–51]. By partitioning the vehicles into groups, collaboration occurs across the system in terms of higher-

level goals between the groups. Within each group task-level optimization occurs across locally dense

communication networks. This approach decouples portions of the task assignment optimization problem

in order to reduce the communication requirements across the system and to reduce the complexity

of each task assignment optimization performed. Furthermore, splitting the vehicles into teams with

dense communication capabilities allows optimization across the subsets of vehicles best equipped to

collaborate. Hierarchical approaches represent some trade-off between communication requirements and

planner performance. In systems with larger numbers of vehicles, this trade-off is often desirable; many

aspects of the system can be decoupled without affecting the results of the algorithm.

Decentralized automated planning with a HITL component represents another quasi-decentralized

implementation. In such a system, task assignments are computed via any decentralized algorithm im-

plemented across the vehicles, although the resulting assignment must be evaluated and approved by a

human supervisor in a centralized location before it can be executed by the vehicles. From a command-

and-control perspective, this architecture emulates a centralized point of command while simultaneously

taking advantage of the robustness provided by distributed planning solutions in the case of communica-

tion failures.

2.3 Human Supervisory Control and Task Allocation

Human supervisory control of autonomous systems plays an important role in achieving high system

performance. In previous research, a commercial airline flight planning system with a supervisor, which

will also be referred to as an operator, interacting with an automated planner has demonstrated both
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possible benefits and pitfalls of such interaction [52]. Benefits of the automation included increasing the

probability that the best flight plan was selected in certain scenarios by assisting the user in searching the

large solution space. However, the automation also made poor suggestions under circumstances where the

automation’s model was not sufficiently sophisticated or did not consider all relevant factors. These poor

suggestions subsequently had a negative influence on the operator’s ability to select the best flight plan

as the operators relied too heavily on the automation. Furthermore, evidence suggested that presenting

a larger amount of data to the user caused critical data to be overlooked.

Previous work has also demonstrated that modes of human-automation collaboration can significantly

impact system performance [53]. The automation and the operator must communicate to achieve mutual

understanding of intentions towards solving shared goals. By framing interaction between a human

operator and the automation to minimize the disruption of the operator’s normal cognitive processes, the

requirements for this communication can be greatly reduced. Furthermore, in the context of supervisory

control in a UAS, a system which allows a single operator to control multiple UAVs demonstrates a need

both to develop systems with high levels of autonomy and simultaneously address the challenges multiple

vehicle control presents in supervisory control [54]. These challenges include developing vehicles with

a high level of autonomy, and addressing the cognitive abilities of a human operators interacting with

this autonomous system. The automation must be designed to reduce the operator’s workload, while

simultaneously maintaining operator situational awareness to minimize the danger of over-reliance on the

automation.

The majority of previous human-automation collaboration work addresses design considerations and

models of human-automation collaboration. There has only recently been progress towards quantifying

the extent to which humans can aid algorithms in a cooperative manner in the context of UASs [6].

Human Operators and Task Allocation When faced with a task assignment problem, human op-

erators and automated algorithms apply significantly different methodologies towards generating a so-

lution [55]. Acknowledging and understanding the strengths and deficiencies of automated algorithms

provides guidance for the development of decision support utilities for humans solving task assignment

problems. Specifically, controlling a system of multiple UAVs requires a method for assigning available

tasks to individual vehicles to maximize collaboration. HITL control, also known as human supervisory

control [5], represents one strategy for taking advantage of possible synergies between automation and a

human operator.

The primary advantage of automated algorithms lies in their ability to efficiently consider a large set

of possible solutions in a short period of time to provide task assignment solutions which are optimized

over some quantifiable objective function. However, the limitation of any automated task assignment

algorithm arises from the inability of the objective function to perfectly coincide with the operator’s
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goals in all cases. Furthermore, the automation can be brittle; it may make assumptions which do not

hold in every situation, possibly leading to important factors being accounted for incorrectly. In these

cases the automation’s decisions may degrade system performance or may even be dangerous [52].

These two issues – objective function mismatch and brittleness – may result from a failure to anticipate

specific situations and how the system would react to them, or even a deliberate oversimplification of

automation design. If the automated planner makes poor decisions in situations outside of the range

of possibilities accounted for in the automation’s design, due to either brittleness or objective function

mismatch, inclusion of a mechanism for oversight of the automation’s decisions is required to ensure safe

and reliable operation. HITL control is one method to introduce this oversight.

Humans approach task assignment problems from a more qualitative perspective, although they are

also capable of quantitative optimization (to a significantly lesser degree than computers). However, the

most valuable advantage human operators provide lies in the ability to adapt to any situation which may

arise, even completely unanticipated situations where goals vary significantly from the original purpose

of the system. In the case of multi-UAV systems, this may include adapting a system to unanticipated

environments or to novel enemy behavior. Working without automation assistance, however, a human

operator can quickly be overwhelmed by the requirement to manually specify the set of tasks for each

vehicle, degrading overall system performance.

An automated system collaborating with a human operator in the decision-making loop can generate

synergies such that the resulting task assignments benefit from the precise (yet possibly misguided) insight

of the automation, along with the qualitative and adaptive power of the human. When the situation

falls well within the domain of the automation’s model, the system benefits from the optimized plans

generated by the automation. Under extreme circumstances when the automation makes sub-optimal

decisions, the human may be able to mitigate this effect by investigating alternative plans with additional

input to the decision-making process by imposing additional constraints on the automation’s optimization

[6]. Of course, operator intervention does not necessarily yield an improvement in performance, and in

computationally constrained systems, adding constraints to the optimization problem can exacerbate

computational requirements to an extent that hinders planning performance.

Communication Between the Operator and Automation A human operator interacting with an

automated system faces many challenges. Operators must choose how to allocate their attention, they

must be able to communicate their intent to the automation in diverse situations, and they must be

able to maintain global situational awareness while focusing on specific tasks. Previous studies with the

OPS-USERS system has shown that the operator utilization rate significantly affects both situational

awareness and system performance [6]. High operator utilization rates tended to degrade performance

and reduce situational awareness as operators became overwhelmed with the level of interaction required

42



by the system. Operators performed better, and also reported feeling more confident, when working at a

moderate pace.

Translation of operator intent into an automated system is a crucial component in the success of

supervisory control systems. This can be accomplished by assigning priorities to objectives in the system

or through direct specification of certain behaviors. However, in order to facilitate efficient supervisory

control of complex systems, supervisors must be able to express intent at multiple levels of abstraction.

One method to address this issue is the playbook approach to supervisory control [56]. In the playbook

system, all entities understand a specific set of actions, or plays, which can be performed. The plays

provide a language for communication of intent between the operator and the system, and they may be

defined at various levels of abstraction. The operator is free to manage each aspect of the system at

varying degrees of detail.

Attention allocation represents another important factor in the performance of decision support sys-

tems [57]. As a supervisor monitors the overall state of the system, he or she will choose to periodically

address specific tasks. The tasks to which he or she chooses to allocate attention, as well as the amount of

attention allocated to each task directly impacts the operator’s effectiveness. Automated systems which

provide suggestions to operator for where his or her attention is most needed may be able to improve

system performance by applying the operator’s attention in the most effective way possible.

2.4 Summary

There is a large body of research which addresses the many interesting aspects of UASs, including

automated planning, network theory, and human supervisory control. Although each aspect has been

considered individually in previous research, there is a lack of understanding of how to optimally assign

communication resources in a complex UAS in order to maximize performance. In the next chapter, the

work outlined above is used as a basis to design an experiment which will provide insight into the research

questions posed in Section 1.3.
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Chapter 3

Experiment Design

This chapter outlines the development of a discrete event model simulating human interaction with the

On-board Planning System for UxVs in Support of Expeditionary Reconnaissance and Surveillance (OPS-

USERS) environment, with the goal of investigating the effect of communication degradation on system

performance. This model approximates “average” human interaction with the system and facilitates

the use of a Monte Carlo method by gathering data through repeated simulations on the OPS-USERS

system. The approach would not be feasible in an experiment with human participants due to the

number of repetitions required. Using this method, performance on a set of missions in the OPS-USERS

environment is sampled under several pre-determined static communication networks and communication

delays. A parameter which modulates operator workload and the frequency of replanning is also of

interest, especially to the extent that it affects the impact of communication delays.

By subjecting the distributed system to a variety of communication conditions, ranging from perfect

communication to communication degraded by both latency and network connectedness, this chapter

addresses the research questions set forth in Section 1.3. By measuring performance across scenarios

with communications degraded in multiple ways, the impact of overall degradation and the effects of

each individual type of failure are investigated. The effect of the OPS-USERS replan-interval is chosen

as another independent variable to investigate the interaction of HITL control with system performance

across each level of communication degradation.

Network topology and communication delay independent variables were chosen to provide a multi-

dimensional parameter space over communication parameters. This choice allows investigation of the

relative importance of each variable in determining system performance, a topic which was posed in

Research Question #2. Furthermore, both the communication delay and network topology independent

variables represent compelling aspects of communications in real-world multi-agent systems. The replan
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suggestion interval independent variable was included to maximize the extent to which results from this

experiment could be compared to previous experiments with the OPS-USERS testbed. Verifying results

between this experiment and the experiment performed in [6] serves as an important basis for validating

the human model proposed in this research.

Implementation details of the OPS-USERS system are first provided, followed by a description of the

specific experiments performed using the system.

3.1 OPS-USERS Implementation

The OPS-USERS system consists of a heterogeneous fleet of autonomous vehicles and a human op-

erator located in a GCS who oversees the behavior of the system. In contrast to contemporary UASs,

the system considered here requires no operator intervention for aircraft navigation, and furthermore, a

single human operator controls the entire fleet. In each mission, the team of UAVs cooperates to search

an environment for moving targets. When targets are found, they are classified by the human operator as

either friendly, hostile, or unknown. Figure 3-1 illustrates the operators’ map interface giving an overview

of the state of the system. The locations of the UAVs, targets, tasks, etc. are represented with symbols

corresponding to Military Standard 2525 [58]. Unknown and hostile targets are tracked by the UAVs,

and hostile targets are then tasked for destruction by a Weaponized Unmanned Aerial Vehicle (WUAV).

A WUAV is not allowed to engage a hostile target unless it is also being tracked by another UAV, and

the human operator must approve the weapon launch.

Figure 3-1: Map view in the OPS-USERS interface
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Figure 3-2 illustrates the HITL role of the human operator in the OPS-USERS system. The system

integrates a decentralized component, the distributed tactical planner, with a centralized planning system

inside the GCS. The centralized planner consists of a planning loop involving the CMM and human input

through the human interface. The CMM and the distributed tactical planner both maintain a list of tasks

which are currently active in the system, including tasks to search specific regions of the environment,

tasks to “track” known targets to monitor their location and trajectories, and tasks to destroy known

hostile targets. Tasks may arise dynamically as the vehicles interact with the environment or they may

be generated through human input.
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Figure 3-2: Human interaction in the OPS-USERS framework

3.1.1 Automated Planning

Based on observations of the environment made by the vehicles and transmitted to the GCS, the

CMM performs a centralized planning algorithm to generate suggested task assignments. It may not

be feasible for the vehicles to complete all of the current tasks, but as many tasks as possible will be

assigned to vehicles in the suggested plan. Suggested plans are then presented to the human operator

in the form of an approved task list, or schedule, which is comprised of all tasks which are assigned to a

vehicle. The operator receives only the abstracted approved task list rather than the entire plan because

the operator’s role is to oversee system behavior at a high level and not to micromanage the individual

vehicles’ behaviors.

The automation prompts the operator to review new suggested schedules at specified time intervals

or when an approved task list generated by the CMM differs dramatically from the current list. The

operator may also independently choose to review the most recent proposed schedule at any time. The

frequency of reviewing and approving proposed plans, or “re-planning”, helps to determine the trade-off

in the system of the amount of time the vehicles spend attending to individual tasks versus the amount

of time the vehicles spend searching unexplored areas of the environment. A short replanning interval
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will cause the vehicles to be assigned new tasks immediately following completion of old tasks, whereas

a longer interval may provide more time to perform automated searching of unmapped areas in between

task assignments. Searching can also be accomplished explicitly if the human operator provides waypoint

tasks to the vehicles. However, this method is not preferable to the automated search algorithm unless

the operator obtained exogenous intelligence indicating specific areas which should be given preference

in searching the environment, or the operator believed that he or she could implement a more efficient

search strategy by managing waypoint tasks.

Figure 3-3 shows the replanning mode of the OPS-USERS human interface, the Schedule Comparison

Tool (SCT). The approved task list is presented to the user by displaying the set of tasks which the

centralized planner could not feasibly assign to a vehicle. The SCT also graphically represents the

proportion of high, medium, and low priority tasks which are assigned in the current schedule, the

proposed schedule, and the working schedule, as well as the portion of the map which will be searched

given the vehicles’ trajectories in each schedule. The operator may attempt to coach the automation by

dragging one of the unassigned tasks into the “assign” drop area. This causes the centralized planning

algorithm to run again after introducing additional constraints to force the task selected by the operator

to be assigned if at all possible. This may cause other tasks to become unassigned, and any resulting

changes will be reflected in the working schedule. This process is called “what-if” planning and can be

repeated until the operator is satisfied with the working schedule, or the operator can choose to return

to either the current schedule or the schedule initially proposed by the automated planner. The operator

accepts the approved task list in the working schedule when he or she is satisfied and the CMM then sends

it to the vehicles, where the distributed tactical planner runs to optimize assignment of the approved

tasks to the vehicles. Ultimately, the vehicles sort out the task assignments between themselves, with the

centralized system providing guidance on the set of tasks to prioritize.

Figure 3-3: Replanning view in the OPS-USERS interface
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Although the primary impetus to replan is through prompting by the automation, replanning is also

somewhat event-driven in the OPS-USERS system. For example, when a search task is created by the

human operator, the operator is aware that he or she needs to replan in order for the new search task

to be assigned for a vehicle. The operator need not wait until the automation prompts them to replan.

Other events which warrant an unprompted replan are discovery of a new target, or upon changing an

unknown target identification to hostile.

3.1.2 Network Communication

In the OPS-USERS system, the individual communication links between two vehicles or between a

vehicle and the GCS form a communication network, such that two vehicles may communicate via a third

vehicle (or the GCS) if a direct communication link is unavailable. However, any indirect communication

increases the latency of these time-sensitive communications and may also strain the bandwidth of a

particular communication link if traffic from many vehicles is routed through a single link. To some

extent, the increased latency introduced by communication failures may also impact the trade-off between

the amount of time the vehicles spend attending to individual tasks, such as tracking a known target,

against the amount of time spent performing the background automated searching algorithm. Modulating

the interval at which the human operator is prompted to review approved task lists proposed by the

distributed tactical planner may somewhat compensate for the effects of degraded communications on

system performance.

3.1.3 Data Fusion

OPS-USERS employs Robust Decentralized Task Assignment (RDTA), which includes a linear update

filter as its information update step [4]. Each agent updates their beliefs about each variable using the

update rule given by:

ẋi =

N∑
j=1

σijGji(xj − xi)

where agent Ai updates its local belief about variable x given information from each agent Aj (including

it’s own observations where i = j). The indicator variable Gji takes the value 1 when a communication

link exists from agent Aj to agent Ai and is 0 otherwise. The relative confidence of each agent about its

information is accounted for in the update gain, σij [9,27]. Although the OPS-USERS system is capable

of performing data fusion, all experiments performed for the purposes of this research were simplified

such that all sensors did not introduce noise into measurements. Therefore, the data-fusion problem is

reduced to accepting the most recent observation of a variable in the system as the best estimate of that

variable. Note that the vehicles can still maintain inconsistent beliefs about the state of the system if

they are unable to communicate the most recent observations due to communication failures.
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3.1.4 Mission Definition

The basic goals in an OPS-USERS mission are to search for targets and identify each as either friendly,

unknown, or hostile. The unknown and hostile targets should be tracked, and the hostile targets should

be destroyed. A more complete explanation of the tracking process and the hostile destruction process

are provided below.

Target Tracking in the OPS-USERS System The purpose of the target tracking component of the

OPS-USERS mission is to maintain accurate information about the position and trajectory of all targets

with an unknown or hostile designation. The vehicles need not continuously observe a target in order

for the system to consider the target to be in a known location. Based on the target’s observed velocity

and the sensing capabilities of the vehicles, a revisit time, which specifies how long the vehicle may wait

before returning to the target’s last known location with a high probability of observing the target, can

be calculated for each vehicle. If the revisit times of all of the vehicles pass without any of the vehicles

observing the target again, the target is considered “lost”. The percentage of time targets are in the lost

state forms the basis of an important performance metric, the ratio of time targets tracked metric. If

a lost target is observed again, the human operator is prompted to re-confirm its designation as either

unknown or hostile.

Targets are maintained in a known state by the CMM generating revisit tasks for all targets, which are

scheduled to occur before the revisit time of a vehicle expires. Each time a vehicle observes a target, the

revisit times are updated (i.e. pushed further into the future) to allow other tasks to be scheduled before

the next revisit occurs. In order for the tracking task to be assigned again, it must also be re-approved

by the operator in a new schedule after the target has been revisited.

Hostile Destruction in the OPS-USERS System The OPS-USERS system will generate a task for

a WUAV to engage hostile targets when certain conditions are met. After a vehicle initially observes

a hostile target, the human operator must confirm the hostile designation of the target. Once this

confirmation is received, a destroy task is created if the target is not lost, otherwise a destroy task is

created when the target is next relocated. In order for the target destroy task to be assigned to the

WUAV, the human operator must approve a schedule which contains that task. Once assigned to a

WUAV, if the target becomes lost before the destroy task can be completed, then the destroy task is

canceled until the target can be located again. Furthermore, when the WUAV arrives at the hostile

target, confirmation is requested from the human operator to approve weapons launch. During this time,

there is no danger of the target becoming lost, as the WUAV is observing the target.

Target Identification in the OPS-USERS System As new targets are discovered by the vehicles,

the human operator is prompted to complete a visual search task before identifying the target as either

friendly, unknown or hostile based on an unambiguous image presented in the search task. The symbols
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for each target are drawn from the Military Standard 2525 [58]. The human operator is not permitted

to incorrectly identify a target upon completion of the visual search task. Therefore, it is primarily the

amount of time taken for the operator to initially identify the target which may affect system performance.

Additionally, information is provided to the human operator throughout the mission which specifies

the actual designation of unknown targets as either hostile or friendly in the form of messages which

appear in the chat box in one corner of the interface. Arrival of new chat messages is accompanied by

both a visual and an auditory cue. Experiments with the OPS-USERS system have shown that operators

failed to consistently act on information presented through the chat box, preventing some unknown targets

from being appropriately identified as either hostile or friendly [6]. These mistakes may drastically impact

system performance, as failure to identify a target as hostile prevents the system from destroying it; failure

to mark an unknown target as friendly causes the system to continue to expend resources to track the

target, which is time that could be spent servicing other tasks or search the environment for new targets.

3.1.5 Previous Research

This work builds upon a previous experiment with the OPS-USERS framework [6]. In the experiment,

30 human participants were presented with three test sessions on the OPS-USERS system with different

replan suggestion intervals. A replan suggestion included both an auditory and visual cue for the operator

to enter the SCT and approve an updated approved task list. Each scenario had a duration of 10

minutes, and the operators were prompted to replan at intervals of 30-, 45-, and 120-seconds. The

system performance was measured for each simulation in order to investigate the impact of the replan

interval. The results of the experiment consistently showed that operators performed worse at a 30-second

replan interval than at a 45- or 120-second replan interval. Further information about the OPS-USERS

system can be found in Reference [59].

3.2 Human Model

Performing enough trials to gather statistically strong evidence is challenging for missions requiring

HITL control. Thus, in order to explore the effects of communication degradation on system performance,

the human in this research effort is simulated based on information gathered in previous experiments with

actual human participants using the interface described previously in Section 3.1. Parameters describing

ways in which the human operator interacts with the OPS-USERS system were gathered for the five

modes of human interaction:

• Target Identification: When the vehicles first discover a new target, a visual search task is

presented to the user. The user interacts by scrolling around a map until the target appears in the

field of view. When the target is in the field of view, target identification buttons become active

and the operator selects the button corresponding to the image shown on the map.
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• Weapons Launch Confirmation: Targets identified as hostile generate a task for a WUAV

to complete. When the WUAV approaches the target, the user is prompted to confirm that the

target should be destroyed. This prompt consists of another visual search task as in the target

identification task. Completion of this task activates a button to confirm weapons launch.

• Replanning: The automation constantly searches for optimal task assignments as the scenario

progresses. Periodically, if an improved task assignment is found, the operator is prompted to

review and possibly approve the task assignment.

• Search Task Creation: In the case where nothing in the simulation environment has changed

since the last time the automation prompted the operator to replan, the automation instead prompts

the user to create a search task in a specific quadrant of the map.

• Incoming Chat Messages: Periodically throughout each mission, operators receive chat messages

with instructions to redesignate certain targets with unknown designations to either a friendly or

hostile designation.

Each cognitive task can be sequential steps. The human operator first requires some time to process

each cognitive task prior to providing an input to the system. Both the time delay and input of the

operator have been analyzed in the context of the mission and in accordance with previous observations

of human interaction in this system so that a model of human behavior can be built to interact with

the system in the same way an operator would [6]. The human model serves as a replacement for the

human operator in repeated simulations of mission scenarios. More detail about the specific methods for

emulating each type of human interaction with the OPS-USERS system is provided below.

3.2.1 Target Identification

The target identification task is modeled by the time taken to complete the visual search task and

to identify the target, drawing from data gathered in a previous experiment on operator utilization and

replanning intervals indicating when the target ID window opened and closed. Each data point was

defined as the duration that the target ID window remained open each time it appeared. A probability

distribution was fit to the experimental data, resulting in a log-normal distribution with parameters given

in Table 3.1. Figure 3-4 shows a histogram of the probability density function described by the data,

along with the best fit log-normal distribution.

In order to simulate the human operator processing the visual search task to identify targets, a time

delay is drawn from this best fit probability distribution, and the program simulates this input delay for

that time before correctly identifying the target. This impacts the performance of the system as the delay

before the target is identified can be significant. In some of the observed cases, this delay was greater

than 20 seconds, which is significant compared to the total mission duration of 10 minutes. Further action
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cannot be taken on the target until it is identified. For example, if the target is hostile, no destroy task

could be generated or assigned until the target ID process is completed. This delay directly impacts the

number of hostile targets destroyed during a mission. It is important to note that the emphasis during

this task is this delay and not the correctness of the target identification. In the HITL experiment, there

were no incorrect identifications as the task was presented with an unambiguous correct answer, and the

user was prompted to select another identification until the correct identification was chosen.

Table 3.1: Log-normal distribution parameters for target identification times

Log-normal parameter µ 1.67
Log-normal parameter σ 0.71

Mean = eµ+(σ2/2) (seconds) 6.79

Std. Dev. =
√

(eσ2 − 1)e2µ+σ2 (seconds) 5.47
K.S. Statistic 0.031
p-value 0.356
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Figure 3-4: Target identification times fit to log-normal distribution

3.2.2 Weapon Launch Confirmation

The weapon launch confirmation dialog is similar in nature to the target identification dialog. The

user is presented with a simpler version of the target identification visual search task which requires less

time to process. When the target appears in the field of view, a button to confirm weapon launch is

activated. The procedure for modeling this task is analogous to the model for the target identification

task. A data point is defined as the length of time that the weapon launch confirmation dialog remained

visible each time it appeared. Again a log-normal distribution was found to fit the data the best, with

parameters given in Table 3.2. Figure 3-5 shows a histogram of the data and the best fit distribution.

In this scenario there is never a situation which requires the operator to perform any action other than

confirming the weapon launch, so the response to the confirmation question does not need to be modeled,
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and will always be assumed to confirm the weapon launch.

Table 3.2: Log-normal distribution parameters for weapon use confirmation times

Log-normal parameter µ 1.15
Log-normal parameter σ 0.68

Mean = eµ+(σ2/2) (seconds) 3.97

Std. Dev. =
√

(eσ2 − 1)e2µ+σ2 (seconds) 3.03
K.S. Statistic 0.082
p-value 0.136
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Figure 3-5: Target destroy confirmation times fit to log-normal distribution

3.2.3 Replanning

The replanning task presents the user with a view of the SCT shown in Figure 3-3. Here the user

reviews the set of tasks which remain unassigned in the current schedule proposed by the automation. The

operator can choose to explore other possible task assignments by adding constraints to the optimization

requiring specific tasks to be assigned. Then the operator chooses to accept either the original task

assignment suggested by the automation, or a new task assignment found after adding constraints to the

optimization. This task is modeled using two independent components: the time taken to complete the

replanning task, and the changes made to the plan.

Table 3.3: Log-normal distribution parameters for replanning times

Log-normal parameter µ 1.40
Log-normal parameter σ 0.72

Mean = eµ+(σ2/2) (seconds) 5.24

Std. Dev. =
√

(eσ2 − 1)e2µ+σ2 (seconds) 4.29
K.S. Statistic 0.037
p-value 0.044
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Figure 3-6: Replan times fit to log-normal distribution

The model of the time taken to complete the replanning task was performed in much the same

way as the previous two tasks. Data was drawn from the previous human experiment measuring the

length of time that the replanning window was open, and a log-normal distribution was found to best

fit the data. However, replan data was only drawn from participants who were classified as conformist

operators [60], meaning that they collaborated effectively with the automation by consistently replanning

when prompted. The other classifications were mixed-conformist and non-conformist. Mixed-conformist

operators replanned when prompted to by the automation, but also engaged in significant unprompted

interaction with the automation. Non-conformist operators replanned on their own schedule, largely

ignoring prompts from the automation. This choice was made in order for the human model to best

reflect the behavior of an expert conformist operator. The parameters of this distribution are shown in

Table 3.3. A histogram of the probability density function for the data set along with the best fit model

are shown in Figure 3-6.

Another component specific to the replanning task is the operator’s modifications to the schedule

proposed by the automation. Conformist human operators modified the automation’s proposed schedule

approximately 32% of the time, with a standard deviation of 4.5% [60]. Modeling whether or not the

operator modifies the plan will be accomplished via a simple Bernoulli random variable with parameter

p = 0.32. However, modeling how the plan is modified is not so straightforward.

When the realization of the Bernoulli random variable indicates that the plan should be modified,

the model attempts to generate a new proposed schedule from the automation. This is accomplished

by requesting that the planner assign one of the unassigned tasks, with a preference for the unassigned

task closest to any of the vehicles. This process is repeated with tasks further from vehicles until a

modified plan is found. If no attempted changes result in a feasible task assignment, or if there are no

unassigned tasks, then the task assignment remains unchanged. This method is motivated by a heuristic
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which the human operator typically employs if he or she perceives the proposed plan to be suboptimal.

Assigning unassigned tasks to the closest vehicle has been exhibited in other single operator multiple-

UV control simulations [57]. Unassigned tasks located near a vehicle capable of completing the task

represent a reasonable candidate for modifying the plans proposed by the automation. It is important

to note that the algorithm design does not place the operator in a situation where the suggested plans

are intentionally suboptimal or that would otherwise necessitate human intervention in the replanning

process. The operators intervene based only on their perception of the utility of the possible plans given

the mission objectives [59].

3.2.4 Incoming Chat Messages

In the original human experiment, operators received chat messages via a chatbox in one corner of

the interface (see the lower right corner of Figures 3-1 and 3-3). Approximately half of the messages

prompted the operator to respond to a question regarding the state of the system (for example, to

indicate the number of hostile targets which had been destroyed so far). The answers to these questions

were recorded and the operators’ response times and response accuracies were taken as a measure of

their situational awareness. This aspect of chat message interaction was not modeled in the human

model developed for this research, as it does not directly impact performance of the system, but rather

measures the performance of the operator.

The rest of the chat messages prompted the operator to take actions to redesignate targets with

unknown designations to either friendly or hostile status. These message represent intelligence gathered

exogenously to the UAS, which is to be incorporated by the operator. Specifically, the message format

would indicate that all unknown targets in a specific quadrant of the environment are to be designated as

either friendly or hostile. The interesting aspect of this task is whether the operators took the appropriate

action, as well any delay incurred before the action was taken.

Based on the results of the human experiment, it was discovered that performance in the redesignation

task was significantly degraded at the 30-second replan suggestion interval, where operators instituted

correct changes in target designation less accurately than at a 45- or 120-second replan suggestion in-

terval [6]. To model the chatbox aspect of the OPS-USERS system in this model, the probability of

correctly responding to chatbox messages at the 30-second interval was set reduced relative to greater

replan suggestion intervals. This decision was justified as target redesignation performance at the 45-

second replan interval was not significantly different from the 120-second interval, although both were

significantly higher than the 30-second interval. In the model employed in this research, the simulated

operator correctly responded to target redesignation requests 70% of the time when the replan suggestion

interval was 45-seconds or more, and 40% of the time for the 30-second replan interval. These values were

based on the accuracy with which participants responded to chat prompts in the previous experiment.
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Figure 3-7: Network topologies for the fully connected network (left), groups network (center), and round-
robin network (right)

3.3 Independent Variables

Mission parameters and limitations on communication between the agents in the system are specified

for each experimental condition. Specifically, there are 3 independent variables: the set of communi-

cation links available between the vehicles and the GCS (also called the network topology), the level of

communication latency, and the replan suggestion interval.

Communication Limitations The network topology dictates the presence or absence of each individual

directed communication link in the system, and latency dictates a global time delay associated with

communication over a link between any two agents. Three specifications of the network topology were

tested: 1) a fully connected network where all possible communication links are present; 2) a groups

network which splits the vehicles into two groups, and 3) a round-robin network which represents the

minimal number of communication links possible while maintaining strong connectivity (i.e. two-way

communication is still possible between all pairs of vehicles). In the groups network, communication links

allow direct communication with the GCS for all vehicles, and direct communication between vehicles

within each group; vehicles in different groups must communicate via the GCS. The three network

topologies are shown in Figure 3-7. These networks were chosen to represent both ends of the spectrum

of strongly connected network topologies – both the best case (fully connected) and the worst case (round-

robin). The network characteristics are summarized in Table 3.4 to highlight the differences between the

networks. The metrics used to characterize networks include density, clustering coefficient, and diameter,

summarized below [61].

Table 3.4: Network characteristics

Feature Fully Connected Group Round Robin

Density 1.0 0.6 0.25
Clustering Coefficient 1.0 0.2 0.0
Diameter 0.25 0.5 1.0
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- Density refers to the portion of possible directed network links which are present in the network.

Density is calculated as:

D =
Number of active connections

Total possible connections

In the networks of 5 agents considered in this research, there are 2 ·
(
5
2

)
= 20 possible directed

connections. The round-robin network contains only 5 of these connections, giving it a density of

one quarter of the possible connections, or
5

20
= 0.25.

- Clustering Coefficient Provides a measure of the tendency for the neighbors of a node to be

neighbors themselves. Clustering coefficient is calculated as:

C =
Number of connected triangles in graph

Total sets of three nodes in graph

- Diameter is length of the longest shortest path between two nodes. Two agents communicating

indirectly always choose the shortest path through other vehicles to route their communications.

The longest such path determines the diameter, which is presented as a ratio of the length of this

path over the number of agents in the network.

Each of these topologies were further subjected to a set of induced latencies (where the latency is static

and equivalent for each link the in the network). The latencies tested were chosen relative to the duration

of the mission, as well as the time-frame of individual tasks the vehicles complete. The chosen latency

values were (in seconds): {0, 2, 4, 6, 8, 10}. Note that two vehicles which cannot communicate

directly, but must communicate via other vehicles, will incur multiple latencies before messages are

received. For example, in the round-robin network in Figure 3-7 with a latency of 2-seconds, a messages

from UAV1 to UAV4 will incur a 6-second total latency.

The set of latencies was chosen to span the spectrum of communication availability with unlimited

communication available at one-end of the spectrum to extremely limited communication at the other

end of the spectrum. At the 0-second latency, which was also included to correspond with the conditions

in the initial human experiment, the amount of communication is practically unlimited. A maximum

latency of 10-seconds was chosen based on the total round-trip communication time in the round-robin

network topology. All simulations in this research were performed with 5 agents, such that round trip

communication between any two will take 50 seconds when the latency is 10 seconds. This represents a

significant portion of the mission duration (just under 10%), and was considered extreme communication

degradation within the context of the simulated mission.

Mission Parameters The mission definition was held constant throughout all simulations with the

exception of initial target locations and the replan suggestion interval. The mission definition encompasses

the mission environment, the number of vehicles, the capabilities of each vehicle, mission duration, and
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the number and designation of targets. As with previous human experiments, the same three sets of

initial target locations were used, and an equal number of simulations were performed with each set of

initial target locations for each combination of independent variables. This strategy was deemed sufficient

to randomize target locations since each target moves along a predefined track, but has a random motion

as each mission progresses.

The replan suggestion interval controls the frequency with which the automation prompts the human

operator to review and possibly approve the automation’s current best proposed plan. This was the inde-

pendent variable in previous work with the OPS-USERS system [6]. As noted in Section 3.1, this variable

also modulates the trade-off between the two primary goals in the OPS-USERS system: 1) processing of

tasks, and 2) performing the background search task for new targets. This variable is interesting in the

context of its interaction with communication availability, specifically related to Research Question #3,

stated in Section 1.3.2. The merits of choosing a particular trade-off between searching for new targets

and completing tasks may change dramatically as communication in the system is degraded. The chosen

replan intervals were (in seconds): {30, 45, 60, 75, 90, 105, 120}. This range of replan intervals

spans the range of replan intervals tested in the original human experiments (which were 30-, 45-, and

120-seconds), but also includes extra resolution at intermediate replan intervals.

3.4 Dependent Variables

The dependent variables measure system performance as well as characteristics of the communication

network. A consistent set of metrics relevant to system performance over a range of both missions and

communication regimes is necessary to investigate the relationship between the communications available

to the system and the system’s performance. Data collected from the OPS-USERS system during each

simulation consists of the following mission performance metrics:

- Percent targets found

- Percent environment searched

- Percent hostile targets destroyed

- Ratio of time targets tracked

Values of the metrics were captured at the end of each mission simulation, which indicates an aggregate

measure of performance over the duration of the mission. However, the time-evolution of each variable

throughout the duration of each variable is also relevant to the interaction of the independent variables

and system performance. Therefore, the values of each variable were recorded at 10 second intervals

through each simulation. Exact times were also recorded for target discovery events or target destruction

events.
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3.5 Gathering System Performance Data

The independent variable choices are summarized here:

- Communication delay values (seconds): {0.0, 2.0, 4.0, 6.0, 8.0, 10.0}.

- Replan suggestion interval values (seconds): {30, 45, 60, 75, 90, 105, 120}.

- Network topologies: {Fully Connected Network, Groups Network, Round-Robin Network}

As described above, 6 levels of communication latency were tested, 3 network topologies were tested,

and 7 levels of the replan suggestion interval were tested. For each of the 126 combinations of the three

variables, the simulation was run 30 times, resulting in 3,780 total simulations. Each simulation had a

duration of 10 minutes, and simulations were run in real time. This represents over 26 days of processing

time, performed simultaneously across 7 computers.

3.6 Summary

This chapter identified the challenge of collecting large sets of system performance data in human

supervisory control settings. As collecting a data set of the size required for this research with human

operators would be prohibitively complex from a logistical standpoint, a human model was proposed to

simulate the behavior of the human operator during data collection. Using results from previous work

with the same OPS-USERS simulation testbed as a basis, the human model emulates both the time an

operator requires to process each task in the system as well as input from the operator. The next chapter

presents results from repeatedly sampling the system performance using the human model described

above.
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Chapter 4

Results

This work both builds upon previous research in developing an understanding of the performance of UASs

under human supervisory control and extends this understanding into the communication availability

domain. Previous experimental results demonstrated that the replan suggestion interval significantly

affected the performance of the OPS-USERS UAS [6]. The experimental results presented below provide

further insight into the relationship between system performance, communication availability, and human

supervisory control in the context of the research questions posed in Section 1.3.

In order to ensure that the substitution of the human model described in Section 3.2 for actual

participants does not significantly affect system performance, the model is first validated by comparing

experimental results from this research against the results from the research on which the model was

based. This ensures that the human model affects the results in simulation in the same way the human

operator affected results in experimental data. Specifically, the model determines how frequently to

replan, when and how to alter plans suggested by the automation, and how promptly to address other

tasks delegated to the human (identifying targets and approving weapons launch). Next, simulation

results are analyzed to investigate the relationship between the network topology, communication delay,

and replan suggestion interval on the four system performance dependent variables, percent area covered,

percent targets found, ratio of time targets tracked, and percent hostiles destroyed.

4.1 Human Model Validation

An important aspect of this research was the development of a simulated operator model to facilitate

generation of a large data set covering a variety of degraded communication conditions. The parameters

of the model are based on the results of previous HITL experimentation measuring the impact of replan

suggestion interval on human performance [6]. In order to ensure the validity of the data set generated
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from the model, the results are compared against results from the original experiment. The human model

is demonstrated to provide results consistent with the original experiment.

Communication Conditions Overview The original human-subject experiment did not introduce

communication failures into the simulation. This condition directly corresponds to the fully-connected

network with a 0-second communication delay (i.e. without lag). Furthermore, the original experiment

tested only 3 replanning intervals, 30-, 45-, and 120-seconds, selected to measure the performance of

the system when the operator experienced three different levels of utilization. Therefore, simulation

data gathered from the fully-connected network topology without lag and the 30-, 45-, and 120-second

replan interval will be compared with data from the original experiment. In both the original human

experiments and this research, 30 simulations were conducted for each condition. For statistical analysis,

the significance level, α, was set to 0.05. To test the null hypothesis that the data from human experiments

and simulations come from the same distribution, independent samples t-tests were performed.

4.1.1 Percent Area Covered

Figure 4-1 shows the area covered metric from both the previous human experiments and the simu-

lations. For each value of the replan interval, an independent samples t-test was performed to determine

whether the mean of percent area covered metric values was significantly different when the human oper-

ator was replaced with the model developed for this research. Levene’s test for equality of variances was

also performed. The results of the tests are summarized in Table 4.1. At all three replan intervals, there

was no significant difference in the mean or variance between the human experiment and the simulation

data. Overall, percent area covered performance with a simulated human operator was consistent with

the original OPS-USERS experimental results.
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Figure 4-1: Comparison of percent area covered metric in original human experimental results with sim-
ulation results
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Table 4.1: Independent samples t-test and Levene’s test results for the percent targets found metric
comparing performance with a real human operator vs. the simulated operator model

α = 0.05 ∗ Significant result † Marginally significant result

Independent Samples t-Test Levene’s Test for Equality of Variance

Replan Interval t value dfN dfD p F p

30s 0.359 1 58 0.721 0.025 0.876

45s 1.758 1 59 0.084 0.398 0.531

120s 0.116 1 58 0.908 0.272 0.604

4.1.2 Percent Targets Found

Figure 4-2 shows the percent targets found metric from both the previous human experiments and

the simulations. For each value of the replan interval, an independent samples t-test was performed to

determine whether the mean of percent targets found metric values was significantly different when the

human operator was replaced with the model developed for this research. Levene’s test for equality of

variance was also performed. The results of the tests are summarized in Table 4.2. At all three replan

intervals, there was no significant difference in the mean or variance between the human experiment

and the simulation data. The percent targets found performance with a simulated human operator was

consistent with the original OPS-USERS experimental results.
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Figure 4-2: Comparison of percent targets found metric in original human experimental results with
simulation results

4.1.3 Percent Hostiles Destroyed

Consistent with the original OPS-USERS human operator experiment, the percent hostiles destroyed

metric values will be treated as count data. Figure 4-3 shows the area covered metric from both the

previous human experiments and the simulations. As the hostiles destroyed metric was considered to

represent count-data, non-parametric tests were preferred for this variable. For each value of the replan
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Table 4.2: Independent samples t-test and Levene’s test results for the percent targets found metric
comparing performance with a real human operator vs. the simulated operator model

α = 0.05 ∗ Significant result † Marginally significant result

Independent Samples t-Test Levene’s Test for Equality of Variance

Replan Interval t value dfN dfD p F p

30s -0.875 1 58 0.385 0.786 0.379

45s 0.963 1 59 0.339 0.696 0.407

120s 1.293 1 59 0.201 1.332 0.253

interval, a non parametric Mann-Whitney U test was performed to determine whether the distribution of

percent hostiles destroyed metric values was significantly different when the human operator was replaced

with the model developed for this research. The results of the test are summarized in Table 4.3. There

was not a significant difference between the human experiment and the simulation data at any of the

three replan intervals. Overall, percent hostiles destroyed performance with a simulated human operator

was consistent with the original OPS-USERS experimental results.
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Figure 4-3: 95% confidence interval for mean comparison of the percent hostiles destroyed metric in
original human experimental results and simulation results

Table 4.3: Mann-Whitney U test results for the percent hostiles destroyed metric comparing performance
with a real human operator vs. the simulated operator model

α = 0.05 ∗ Significant result † Marginally significant result

Replan Interval Mann-Whitney U Z p
30s 416.0 -0.776 0.438
45s 377.0 -1.359 0.174
120s 427.0 -0.579 0.563
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4.1.4 Summary

The human model produces results which corresponded relatively well to the original human experi-

ments on which it was based. It has been demonstrated that the model produces values for the percent

area covered, percent targets found, and percent hostiles destroyed metric values which do not significantly

differ from the distributions recorded in the original experiment. Therefore, it is reasonable to assume

that the data gathered from the simulations performed using this human model can provide insight for

the performance of the OPS-USERS system with an actual human operator under degraded communica-

tion conditions. One important assumption made in this conclusion is that the model of human behavior

would be invariant under degraded communication conditions. If the human operators adjusted their

behavior in the face of large communication delays or limited network connectivity, the model developed

in this research will likely fail to capture such effects on system performance. It is recommended that fu-

ture work include experiments with participants interacting with the system under significantly degraded

communication conditions in order to better understand the validity of this assumption.

4.2 Extension of Human Model to Degraded Communication

Situations

Data gathered through simulation using the human model described in Section 3.2 is analyzed to

determine whether degraded communication conditions produced statistically significant differences in

system performance. For each performance metric dependent variable from Section 3.4, the final value

was recorded at the end of every simulation. The network topologies tested in this experiment are

reproduced below in Figure 4-4.

GCS

UAV1

UAV2UAV3

UAV4

GCS

UAV1

UAV2UAV3

UAV4 GCS

UAV1

UAV2

UAV3

UAV4

Figure 4-4: Network topologies for the fully connected network (left), groups network (center), and round-
robin network (right)

This experiment was designed with 3 independent variables, outlined in Section 3.5 as network topol-

ogy, communication delay, and replan suggestion interval, with 3, 6, and 7 factor levels respectively. The

experiment measured 4 dependent variables, outlined in Section 3.4. Analysis of the data was therefore

performed using a 3×6×7 Multivariate Analysis of Variance (MANOVA) test, detailed below. A MANOVA
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test was chosen to first investigate whether the independent variables had an overall effect on the set of

dependent variables, and whether any significant interactions occurred between independent variables.

The significance level for each test was set to α = 0.01 to account for family-wise error. Family-wise error

was further controlled by selecting the two extreme levels and one intermediate level for pairwise tests of

the communication delay and replan suggestion interval independent variables to reduce the number of

tests performed on the dataset. This results in 3 factor levels for each of the 3 independent variables in

pairwise testing.

4.2.1 MANOVA Results

A Multivariate Analysis of Variance (MANOVA) test was performed to determine whether any of

the independent variables had a significant effect on any of the performance metrics in the system. The

full table of results is provided in Appendix A. A summary of the main results are presented below in

Table 4.4.

Table 4.4: Summary of MANOVA results

α = 0.01 ∗ Significant result † Marginally significant result

Source
Wilk’s λ

F Statistic
df Sig.

Network Topology 65.984 8 0.000∗

Communication Delay 54.836 20 0.000∗

Replan Suggestion Interval 11.697 24 0.000∗

Each independent variable is shown to have a significant effect on at least one of the dependent

variables. In addition, the interaction term between the network topology and communication delay

independent variables in the MANOVA results was also significant. A summary of the interaction results

are presented in Table 4.5 below. The significant interaction will be investigated in the next Section.

Table 4.5: Summary of MANOVA interaction terms

α = 0.01 ∗ Significant result † Marginally significant result

Source
Wilk’s λ

F Statistic
df Sig.

Network Topology × Communication Delay 7.456 40 0.000∗

Network Topology ×
Replan Suggestion Interval

0.954 48 0.564

Communication Delay ×
Replan Suggestion Interval

1.026 120 0.404

Network Topology × Communication Delay ×
Replan Suggestion Interval

1.062 240 0.244
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4.2.2 Follow-up Univariate ANOVA Tests

All three independent variables were shown to have a significant main effect in the MANOVA test,

indicating they may have a significant impact on at least one dependent variable. This result justifies

performing univariate Analysis of Variance (ANOVA) tests on each dependent variable over all three

independent variables simultaneously to further investigate the effect. The results of the four univariate

ANOVA tests are summarized in Table 4.6 below.

Table 4.6: Summary of univariate ANOVA results

α = 0.01 ∗ Significant result † Marginally significant result

Source Dependent Variable df F Sig.

Network Topology

% Area Covered 2 0.715 0.489
% Targets Found 2 1.736 0.176
% Time Targets Tracked 2 107.686 0.000∗

% Hostiles Destroyed 2 190.782 0.000∗

Communication Delay

% Area Covered 5 11.649 0.000∗

% Targets Found 5 7.617 0.000∗

% Time Targets Tracked 5 77.140 0.000∗

% Hostiles Destroyed 5 163.518 0.000∗

Replan Suggestion Interval

% Area Covered 6 21.762 0.000∗

% Targets Found 6 9.004 0.000∗

% Time Targets Tracked 6 14.696 0.000∗

% Hostiles Destroyed 6 2.656 0.014†

Interaction Terms As mentioned above, the full MANOVA model also demonstrated a significant

interaction between the network topology and communication delay independent variables. Follow-up

univariate tests confirmed this interaction was significant in two of the four dependent variables outlined

in Table 4.7 below.

Table 4.7: Significant interaction terms in univariate ANOVA results

α = 0.01 ∗ Significant result † Marginally significant result

Source Dependent Variable df F Sig.

Network Topology ×
Communication Delay

% Area Covered 10 1.942 0.036
% Targets Found 10 1.942 0.157
% Time Targets Tracked 10 15.878 0.000∗

% Hostiles Destroyed 10 13.623 0.000∗

Summary These results demonstrate that all three independent variables significantly impacted some or

all measures of the UAS’s performance. Individual analysis of each dependent variable follows in the sub-

sequent subsections, where the results of univariate ANOVAs and post-hoc Tukey pairwise comparisons

are presented for each significant effect. Investigation of the significant interactions between independent

variables is also included for each dependent variable.
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4.2.3 Percent Area Covered

Response plane visual representations of the results are shown in Figure 4-5, where the percent

area covered within each network topology are presented across the communication delay and replan

suggestion interval axes. The lowest area coverage performance appears to occur at small values of

the replan suggestion interval. Consistent with these observations, the percent area covered dependent

variable showed significance in the ANOVA over the replan suggestion interval independent variable,

with p < 0.001. The communication delay was also demonstrated to significantly impact area coverage

performance, with p < 0.001, although the precise relationship is not immediately apparent in the response

plane visualization.

Examining the aggregate area coverage results across the three network topology plots show a consis-

tent range of values between 55% and 65% in each network topology. Despite the presence of several of

the lowest performance cases in the round-robin network for small replan intervals and moderate com-

munication delays, the univariate ANOVA did not show the network topology variable to be significant

and therefore pairwise comparisons were not performed for this independent variable.
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(c) Round-Robin Network

Figure 4-5: Percent area covered in fully connected betwork (left), groups network (center), and round-
robin network (right)

Based on the significant results in the ANOVA test, post-hoc Tukey pairwise comparisons were per-

formed for the communication delay and replan suggestion interval independent variables. Results are

outlined in the subsections below, and full post-hoc Tukey pairwise comparison results tables are included

in Appendix A.

Communication Delay Figure 4-6 shows a 95% confidence interval for the mean percent area covered

across levels of communication delay. The percent area covered at a 0-second delay was significantly

higher than at either a 4-second or a 10-second delay, with p < 0.001. There was not a significant

difference between the 4- and 10-second delay, with p = 0.601.

Replan Suggestion Interval Figure 4-7 shows a 95% confidence interval for the mean percent area

covered across levels of the replan suggestion interval. The percent area covered was shown to be sig-
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Figure 4-6: 95% confidence interval for the mean of percent area covered over levels of communication
delay

nificantly lower at the 30-second interval than at the 75-second or 120-second intervals with p < 0.001.

The difference in percent area covered between the 75- and 120-second intervals was not significant with

p = 0.993.
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Figure 4-7: 95% confidence interval for the mean of percent area covered over levels of the replan sugges-
tion interval

4.2.4 Percent Targets Found

Response plane visual representations of the percent targets found metric are shown in Figure 4-8,

where the results within each network topology are presented across the communication delay and replan

suggestion interval axes. The targets found results appear to have a higher variance relative to the other

variables, which makes identification of trends in the data across any of the independent variables difficult

to perceive visually.

Results are outlined in the subsections below, and full post-hoc Tukey pairwise comparison results

tables are included in Appendix A. The results from the univariate ANOVA performed (Table 4.6), show

that the network topology independent variable did not significantly affect the percent targets found
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(c) Round-Robin Network

Figure 4-8: Percent targets found in fully connected network (left), groups network (center), and round-
robin network (right)

metric, with p = 0.176. The communication delay and replan suggestion interval were both shown to

have a significant effect, with p < 0.001. Based on the significant results in the ANOVA test, post-hoc

Tukey pairwise comparisons were performed for the communication delay and replan suggestion interval

independent variables, which are outlined below.

Communication Delay Figure 4-9 shows a 95% confidence interval for the mean percent targets found

across levels of communication delay. The percent targets found at a 0-second delay was significantly

higher than at a 4- or 10-second delay, with p < 0.001. There was not a significant difference between

the performance with a 4-second delay and with a 10-second delay, with p = 0.997.
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Figure 4-9: 95% confidence interval for the mean of percent targets found over levels of communication
delay

Replan Suggestion Interval Figure 4-10 shows a 95% confidence interval for the mean percent targets

found across levels of the replan suggestion interval. The percent targets found was shown to be signifi-

cantly lower at the 30-second interval than at a 75-second interval or 120-second interval, with p = 0.005

and p < 0.001 respectively. There was not a significant difference between the 75- and 120-second

intervals, with p = 0.088.
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Figure 4-10: 95% confidence interval for the mean of percent targets found over levels of the replan
suggestion interval

4.2.5 Ratio of Time Targets Tracked

Response plane visual representations of the results for ratio of time targets tracked are shown in

Figure 4-5, where the ratio of time targets tracked results within each network topology are presented

across the communication delay and replan suggestion interval axes. The lowest target tracking per-

formance appears to occur in the round-robin network topology. There also appears to be a negative

correlation between the ratio of time targets tracked and increases in either communication delay or the

replan suggestion interval. The ratio of time targets tracked dependent variable showed significance in the

univariate ANOVA over all three independent variables at p < 0.001 (see Table 4.6), which is consistent

with these observations.
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(c) Round-Robin Network

Figure 4-11: Ratio of time targets tracked in fully connected network (left), groups network (center), and
round-robin network (right)

Based on the significant results in the ANOVA test, post-hoc Tukey pairwise comparisons were per-

formed for the network topology, communication delay, and replan suggestion interval independent vari-

ables. Results are outlined in the subsections below, and full post-hoc Tukey pairwise comparison results

tables are included in Appendix A.
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Network Topology Figure 4-12 shows a 95% confidence interval for the mean ratio of time targets

tracked across the three network topologies. The performance in the fully connected and groups networks

were both significantly higher than in the round-robin network, p < 0.001. The fully connected network

was not significantly different from the groups network, with p = 0.869.
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Figure 4-12: 95% confidence interval for the mean of ratio of time targets tracked over network topologies

Communication Delay Figure 4-13 shows a 95% confidence interval for the mean ratio of time targets

tracked across levels of communication delay. The results show a statistically significant decrease in the

ratio of time targets tracked metric at each increase in the communication delay. Performance with

a 4-second or 10-second delay was significantly lower than with a 0-second delay at p < 0.001, and

performance with at a 4-second delay was significantly lower than at a 10-second delay at p < 0.001 as

well.
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Figure 4-13: 95% confidence interval for the mean of ratio of time targets tracked over levels of commu-
nication delay

Replan Suggestion Interval Figure 4-14 shows a 95% confidence interval for the mean ratio of time

targets tracked across levels of the replan suggestion interval. Mean performance was highest at a 30-

second replan interval, but was not significantly higher than at 75-seconds with p = 0.392. However,
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the 30-second interval did produce significantly higher performance than the 120-second interval, with

p < 0.001. Performance at the 75-second interval was also significantly higher than at the 120-second

interval with p = 0.002. These results indicate a clear trend in decreasing performance in the target

tracking aspect of the system as the replan suggestion intervals is increased.
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Figure 4-14: 95% confidence interval for the mean of ratio of time targets tracked over levels of the replan
suggestion interval

Interaction Effects The MANOVA results in Table 4.7 demonstrated that a significant interaction

occurred between the network topology and communication delay independent variables. To investigate

this interaction, the ratio of time targest tracked was plotted across levels of the communication delay

for each network topology. This plot is shown in Figure 4-15.
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Figure 4-15: Estimated marginal means of ratio of time targets tracked vs. communication delay sepa-
rated by network topology

From the means plot we can infer that effect of the communication delay is again amplified in the

round-robin network, as the ratio of time targets tracked performance drops more rapidly in the round-

robin network than in either the fully connected or groups networks.
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(c) Round-Robin Network

Figure 4-16: Percent hostiles destroyed in fully connected network (left), groups network (center), and
round-robin network (right)

Network Topology

Round-RobinGroupsFully 
Connected

95
%

 C
I f

or
 %

 H
os

til
es

 D
es

tr
oy

ed
  30%

28%

26%

24%

22%

20%

18%

Figure 4-17: 95% confidence interval for the mean of percent hostiles destroyed over network topologies

4.2.6 Hostiles Destroyed

Response plane visual representations of the percent hostiles destroyed metric are shown in Figure 4-

16, where the results within each network topology are presented across the communication delay and

replan suggestion interval axes. Based on the response planes, the round-robin network appears to yield

worse performance in hostile destruction. Increasing lag also decreases performance in all three network

topologies, but especially in the round-robin network topology; this effect is consistent with the significant

interaction found between the network topology and communication delay variables in the MANOVA

analysis. Increasing the replan suggestion interval also appears to degrade performance, although to a

lesser degree than the other independent variables. These observations are consistent with the results of

the univariate ANOVA tests performed for the percent hostiles destroyed dependent variable. Both the

network topology and communication delay were shown to have a significant effect with p < 0.001, while

the replan suggestion interval was shown to have a marginally significant effect, with p = 0.014.

Based on the significant results in the ANOVA test, post-hoc Tukey pairwise comparisons were per-

formed for all three independent variables. Results are outlined in the subsections below, and full post-hoc

Tukey pairwise comparison results tables are included in Appendix A.
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Figure 4-18: 95% confidence interval for the mean of percent hostiles destroyed over levels of communi-
cation delay

Network Topology Figure 4-17 shows a 95% confidence interval for the mean percent hostiles destroyed

across the three network topologies. There was not a significant difference between the fully connected

network and the groups network, with p = 0.276; however, both the fully connected and groups networks

performed significantly higher than the round-robin network, with p < 0.001.

Communication Delay Figure 4-18 shows a 95% confidence interval for the mean percent hostiles

destroyed across levels of communication delay. Percent hostiles destroyed performance was similar to

the ratio of time targets tracked performance, with all factor levels producing performance in the metric

at a level significantly higher values than all greater communication delays and significantly lower than

all smaller communication delays, at p < 0.001.

Replan Suggestion Interval Figure 4-19 shows a 95% confidence interval for the mean percent hostiles

destroyed across levels of the replan suggestion interval. Although this independent variable was demon-

strated to have a marginally significant main effect in the univariate ANOVA performed (see Table 4.6),

the pairwise Tukey comparisons did not show any significant or marginally significant differences between

any of the factor levels. Although a significant effect was not observed, percent hostiles destroyed perfor-

mance visually appears to trend downwards as the replan suggestion interval is increased from 45-seconds

to 105-seconds. However, this trend is abruptly broken at a 120-second replan interval, where the percent

hostiles destroyed performance achieves the highest value at any of the factor levels. This aspect of the

results is discussed more closely in Section 5.2.2.

Interaction Effects

The MANOVA results in Table 4.7 demonstrated that a significant interaction occurred between the

network topology and communication delay independent variables. A marginally significant interaction

was also found between communication delay and the replan suggestion interval independent variables.

Both interactions are explored below.
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Figure 4-19: 95% confidence interval for the mean of percent hostiles destroyed over levels of the replan
suggestion interval

Network Topology and Communication Delay Interaction To investigate this interaction, the

percent hostiles destroyed metric was plotted across levels of the communication delay for each network

topology. This plot is shown in Figure 4-20.
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Figure 4-20: Estimated marginal means of percent hostiles destroyed vs. communication delay separated
by network topology

For the percent hostiles destroyed dependent variable, the means plot in Figure 4-20 demonstrates

that the effect of the communication delay is amplified in the round-robin network. Performance drops

more rapidly in the round-robin network than in either the fully connected or groups networks.

4.3 Summary

Tables 4.8, 4.9, and 4.10 summarize the effects of the three independent variables on each performance

metric. In Table 4.8, an increase in connectivity denotes moving from the fully connected network to

the groups network and then to the round-robin network. These tables illustrate the broad trends

observed in the data. Degrading the network topology resulted in the degradation of target tracking
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and hostiles destroyed performance of the system, but did not affect the area coverage or targets found

performance. The communication delay decreased performance in all functions of the system. However,

performance leveled off in the area covered and targets found metrics while it continued to decrease

in target tracking and hostile destruction. The replan suggestion interval increased performance in the

area covered and targets found functions, but decreased performance in the target tracking and hostile

destruction functions.

These results demonstrate that the communication availability in the system affected performance.

Furthermore, the various system functions were affected in different ways by each independent variable.

The next chapter will interpret these results in the context of the posed Research Questions to build an

understanding of why performance in the various functions of the system responded to the changes in

the independent variables in the manner observed in the data.

Table 4.8: Summary of significant results for network topology

∗ Significant result † Marginally significant result

Source Dependent Variable
Effect as

Connectivity Decreases

Network Topology

% Area Covered not significant
% Targets Found not significant
% Time Targets Tracked∗ ↓
% Hostiles Destroyed∗ ↓

Table 4.9: Summary of significant results for communication delay

∗ Significant result † Marginally significant result

Source Dependent Variable Effect as Delay Increases

Communication Delay

% Area Covered∗ ↓, plateaus
% Targets Found∗ ↓, plateaus
% Time Targets Tracked∗ ↓
% Hostiles Destroyed∗ ↓

Table 4.10: Summary of significant results for replan suggestion interval

∗ Significant result † Marginally significant result

Source Dependent Variable
Effect as

Interval Increases

Replan Suggestion Interval

% Area Covered∗ ↑, plateaus
% Targets Found∗ ↑
% Time Targets Tracked∗ ↓
% Hostiles Destroyed† ↓
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Chapter 5

Discussion and Future Work

The goal of this research was to investigate how degraded communications impact the performance of

UASs. Specifically, the effects of two types of communication failures, network topology and commu-

nication delays, were investigated along with the effect of the replan suggestion interval. The research

questions set forth in Section 1.3 were addressed through the following procedures:

- Research into the fields of data fusion algorithms, automated planning, human supervisory control,

and network theory aided the design of an appropriate numerical experiment to answer the research

questions (Chapter 2).

- A review of the results of a previous human experiment with the OPS-USERS system served as the

basis for the design and implementation of a human model to emulate the types of interaction that a

human operator would have with the interface (Chapter 3).

- Utilizing this model, data was gathered in simulation as a proxy for actual experiments with human

operators to investigate the performance of the OPS-USERS system for a variety of degraded commu-

nication conditions and with a variety of replan suggestion intervals (Chapter 4).

The information reported in Chapter 4 addresses each research question, including the effect of com-

munication failures on a decentralized system’s performance, the tolerance of system performance to two

types of communication failures, and finally the impact of HITL characteristics of the robustness of an

autonomous planner to communication failures.

5.1 Conclusions for Research Questions #1 and #2

The research questions from Section 1.3 are restated and then discussed in the context of the experi-

mental results.
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Research Question #1:

How does performance of the decentralized system with a human in a supervisory control role degrade

with increasing communication failures?

Section 4.2 demonstrated that both independent variables directly controlling the communication

characteristics of the system, communication delay and network topology, significantly affected system

performance. Furthermore, systematic trends appeared in the performance of the system as either the

communication delay or the network connectivity incrementally worsened. In order to address Research

Question #1, which asks how performance degrades with increasing communication failures, the trends in

performance are analyzed in the context of the communication delay and network topology independent

variables.

Research Question #2:

Is the system more or less tolerant to specific types of communications failures?

Research Question #2 addresses the relative effect of communication failures on the system’s per-

formance. The general trend in system performance across all metrics shows that the Fully-Connected

network and the Groups network performed similarly in almost all cases. This result is intriguing as it

implies that a significant fraction of the communication links in a system can be lost without a significant

impact on aspects of system performance. However, this does not imply that it would be better in all

cases to focus communication resources on minimizing delays.

5.1.1 Analysis of Area Coverage Performance

System performance in terms of percent area covered was affected by communication delays, with the

condition of no delay producing the highest system performance in percent area. Since there was not a

clear trend in the statistical significance of the results with higher levels of communication delay, it is

difficult to characterize precisely what influence the delay has on the area covered performance. The best

conclusion supported by the evidence provided in the experimental data suggests that there is a small

increase in area coverage efficiency available to the system when the vehicles can communicate without

delays. The introduction of any communication delay appears to quickly drop off area coverage perfor-

mance by about 2 - 4%, with further delays (up to 10 seconds) not reducing area coverage performance

any further.

This effect could be explained by the need for vehicles to collaborate on short time scales to optimize

their trajectories to maximize search performance when operating near one another. This situation

occurs, for example, when the weaponized UAV approaches a hostile target which another vehicle is

simultaneously tracking. If the two vehicles are able to communicate their positions and intentions
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promptly to one another, they may be able to more effectively minimize the overlap of the area they

observe as they carry out their tasks. This effect may also be significant when two vehicles are performing

the background search task in close proximity, where overlap of search effort can be reduced or eliminated

by prompt communication.

Although the effect of the network topology independent variable was not found to be significant in the

area covered context, it is interesting to note that this effect, where performance initially degrades slightly

with communication failures, but levels off with further failures, would be expected to be applicable to

the network topology as well. For example, vehicles in close proximity under a fully connected topology

may be able to collaborate more promptly than under a round-robin topology. However, just as the

maximum difference in area covered performance was less than 4% across levels of the communication

delay, the difference across network topologies may be even smaller when results are aggregated across

values of the replan suggestion interval and communication delay. The network topology could still affect

the area covered results despite the univariate ANOVA failing to produce a significant result.

Summary

These performance characteristics suggest that area covered performance is relatively robust to com-

munication degradation. When communication failure levels were pushed beyond a small threshold, the

area covered performance dropped into a slightly degraded regime, performing at about 2 - 4% lower than

with nominal communication levels, but then leveled off. Further degrading communication levels did not

further degrade performance, suggesting that the overall environment search functionality of the system

is relatively robust to communication failures. An analogous conclusion would be that the effect size of

collaboration in terms of the area covered performance of the system is relatively small and sensitive to

communication delays. The best performance was only achieved with very small communication delays,

and even then was only slightly higher than when the vehicles’ ability to collaborate over short time

scales was significantly impaired.

In terms of the percent area covered metric, it then makes sense to minimize the communication delay

between vehicles as much as possible, especially between vehicles which are operating in close proximity,

where the need to collaborate quickly to optimize search path generation is greatest. This conclusion

represents an argument for ensuring vehicles have short-range, low-latency connectivity to maximize their

ability to collaborate effectively on area coverage.

5.1.2 Analysis of Target Search Performance

Overall, the system’s performance in the target search task, as measured by the percent targets found

dependent variable, corresponds closely with performance in the percent area covered dependent variable.

As with area covered, the percent targets found metric did not show statistical significance across the
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three network topologies, but did show significance across levels of the communication delay. Figure 4-9

shows that the mean target found performances all fell between 53% and 57%. Consistent with what

was observed with the area covered metric, a 2 - 4% increase in the percent targets found was observed

when the communication delay was 0 seconds, and there was not a significant difference among any of

the factor levels with a delay greater than 0 seconds. This trend is identical to the trend observed in the

area covered metric across values of the communication delay variable. Furthermore, the magnitude of

the performance difference corresponds closely; in both variables, an approximate improvement of 2 - 4%

was observed with the delay set to 0 seconds.

This correspondence can be explained by reasoning about the probability of finding a target during

each mission scenario. Given that the vehicles assume that the targets will be distributed uniformly

throughout the environment, it would be reasonable to expect an x% increase in the area covered metric

to lead to the same x% increase in the targets found metric on average. In other words, the factors

influencing the differences in the area covered metrics may translate directly into changes in the percent

targets found metric as well; the best strategy to maximize the percent targets found metric is to search

the largest percentage of the environment as possible, simultaneously maximizing the percent area covered

metric.

Considered in this context, the similarity in the results for percent area covered and percent targets

found is not surprising. Consistency across the effect of the communication delay and network topology

independent variables reinforce this conclusion. One difference between the percent area covered perfor-

mance and the communication delay performance is that the marginally significant interaction observed

for the area covered metric was not present in the targets found performance. This difference is not too

troubling, as the range of means for the percent targets found across values of the communication delay

or network topology was less than 4%. This performance difference is much smaller than the performance

differences observed for the ratio of time targets tracked and hostiles destroyed metrics.

Summary

The percent targets found metric provides another argument for minimization of the communication

delay between agents in the system, as performance fell with the addition of any communication delay.

The network topology variable ultimately was not demonstrated to affect performance. When the com-

munication delay is near zero, it follows that the effects of the network topology would be minimized;

even if communication had to be routed through several agents, each would incur only a small delay and

the total delay would also ultimately be small. The results suggest that a delay of less than 2-seconds

must be achieved to maximize performance, although it is unclear what the exact tolerable delay would

be.
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5.1.3 Robustness of Area Coverage and Targets Search to Communication

Failures

Considering the large range of communication conditions tested throughout this experiment, it is rela-

tively surprising to find that the range of the mean area covered and targets found performance averaged

over multiple trials is relatively small. The range of values was less than 4% for the communication delay

variable, and less than 1% for the network topology variable. Considering also that the range of values

was observed to be almost twice as large across the replan suggestion interval independent variable, this

experiment has provided evidence supporting the conclusion that the system’s performance in percent

area covered and percent targets found is robust to communication failures.

In order to understand why this would be the case, the dynamics of the simulation must be considered.

For example, discovering a target in the OPS-USERS system represents an instantaneous increase in

performance in terms of the percent targets found metric. However, the new target will increase the task

load on the vehicles, making less time available for searching the environment as the target is tracked

and, if it is hostile, engaged by the WUAV. With less time available to search the environment, the

probability of finding more new targets is decreased.

In this sense, the system provides a negative feedback loop which may serve to regulate the number of

targets that were found throughout each mission. Even if the vehicles happened to discover many targets

near the beginning of a mission, they could be kept busy throughout the remainder of the simulation

servicing these targets. The operator could intervene to further encourage search behavior, but in the

mission specification used throughout these experiments, there was a relatively high number of targets

compared to the number of vehicles – in each mission the four vehicles were searching for 10 targets.

Therefore, if many targets were found, performing functions other than tracking the targets and engaging

hostile targets with the WUAV represents a trade-off between a pair of metrics in the system. For example,

attempting to increase the percent area searched would diminish the vehicles’ ability to track the known

targets, decreasing the ratio of time targets were tracked metric.

5.1.4 Analysis of Target Tracking Performance

The ratio of time targets tracked performance metric responded dramatically and consistently to

both communication independent variables. The ability of the vehicles to track targets was clearly

impaired by increasing communication delays, as every increase of 2 seconds in communication delay

represented a significant average decrease in the ratio of time targets tracked metric of approximately

1.5%. Furthermore, the target tracking performance was diminished overall by approximately 4% in the

round-robin network topology compared to the fully connected or groups topologies.

These results can be interpreted by considering the target tracking process in the OPS-USERS sys-
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tem. As described in Section 3.1.4, target tracking tasks are generated by the Centralized Mission

Manager (CMM) when the CMM’s estimate of the uncertainty associated with a target’s location reaches

a threshold limit. In order for the tracking task to be assigned to a vehicle, the task must be placed

on the approved task list by the human operator. This requires communication from the CMM to each

vehicle for the vehicles to become aware that the tracking task is available. Furthermore, the vehicles

must collaborate amongst themselves to decide which will perform the tracking task. Therefore, the delay

between a tracking task becoming available and the task being carried out by one of the vehicles will

include the amount of time taken for the CMM to communicate with each vehicle, and for the vehicles

to collaboratively generate a conflict-free task assignment.

These delays in the assignment of tracking tasks are manifested in the vehicles’ late arrival to target

tracking assignments, causing the targets to become lost for short periods of time and degrading the

ratio of time targets tracked performance. Inflicting further delays on the assignment of tracking tasks

to vehicles would then be expected to further degrade the ratio of time targets tracked performance,

and this is indeed the effect observed in the data across levels of the communication delay independent

variable. Similarly, reducing the connectivity of the network topology will further delay communication

between certain pairs of vehicles, which in turn lengthens the amount of time required for the vehicles to

generate task assignments.

Interaction Effects

The effect of the network topology variable can also be explained by considering communication

requirements of the target tracking process. The fully connected and groups topologies produced near-

identical performance, suggesting that the amount of delay before tracking tasks were assigned to vehicles

was similar in each network, or was not long enough to cause targets to become lost. This similarity

in performance is reasonable because all vehicles have a direct communication link to the Centralized

Mission Manager (CMM) in both the fully connected and groups networks. As these specific links have

been identified as directly impacting the delay in assigning track tasks to vehicles, the fact that the groups

network does not include failures in these links helps to explain the similarity in performance to the fully

connected network. The inter-vehicle links which are missing in the groups network topology may have

a smaller impact on the target tracking function of the system.

However, the degradation in performance is more prominent in the round-robin network. Given the

links available in this topology, the total delay before a message originating at the CMM reaches every

vehicle is 4 times longer than in either the fully connected or groups networks with the same level of

communication delay. This is caused by the round-robin network needing to route messages through

other agents, experiencing a communication delay at each agent and amplifying the total delay before a

message reaches it’s final destination agent. The total delay in communication between pairs of vehicles
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is similarly amplified in the round-robin network.

This effect is demonstrated quite clearly by the interaction between the communication delay and

network topology variables. Figure 4-15 clearly shows that the groups and fully connected networks

respond to the communication delay variable identically, but that the round-robin network causes the

ratio of time targets tracked performance to diminish more rapidly with increasing delays.

Summary

The experimental results suggest two important characteristics of the target tracking performance.

First, target tracking performance is increased when communication delays are minimized. Second,

the size of this effect is significantly affected by the network topology. The system appears capable of

tolerating delays up to a point between the creation of a target tracking by the CMM and its assignment to

a specific vehicle before performance is significantly impacted. For example, increasing the communication

delay from 0 to 10 seconds in the fully connected or groups networks diminished the target tracking

performance only slightly, by about 4%. However, when the network connectivity was more severely

impaired in the round-robin network, the same increase in communication delay from 0 to 10 seconds

caused a 15% drop in the ratio of time targets tracked performance.

In order to achieve the best possible target tracking performance, it seems clear that either a near-

zero level of communication delay or a threshold level of connectivity in the network topology must be

maintained. When the communication delay is low, less connectivity can be tolerated in the network

topology without a negative impact on performance. When the connectivity of the topology is above

some threshold, greater communication delays can be tolerated.

Unfortunately, in this research only three static communication network topologies were tested through

simulation, and it is not clear at what threshold level of network connectivity the performance in target

tracking would begin to drop significantly as it did in the round-robin network. We can only conclude that

the threshold level falls somewhere in between the connectivity of the groups network and the connectivity

of the round-robin network. Another factor mentioned above that would be of interest is the relative

importance of each specific directed communication link in the system. For example, the number of

communication links in a topology could be held constant, but the links could be shifted between various

pairs of vehicles. This is tantamount to maintaining the structure of the networks pictured in Figure 4-4

but rearranging the labels on each node.

As previously mentioned, the communication link between each vehicle and the CMM likely impacts

the performance of the target tracking significantly. If the rest of the specific communication links could

be similarly analyzed to determine their relative importance, the information would be instructive as to

where to focus communication resources in the system to achieve optimal performance.
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5.1.5 Analysis of Hostile Destruction Performance

System performance in terms of the hostiles destroyed metric responded to communication failures

in a manner similar to the ratio of time targets tracked metric. As both metrics represent attendance

to task-driven events, modulating system parameters which affect changes in the system’s ability to

promptly service tasks simultaneously impacts both hostiles destroyed and ratio of time targets tracked

performance. As there was not a significant difference in performance between the fully connected and

groups network, but the round-robin network incurred a large 8-9% performance degradation, we can

again conclude that system performance is robust to a threshold level of network topology connectivity.

As noted before, this threshold level of connectivity lies in between the groups and round-robin networks,

although the limitations of this experimental design preclude providing an estimate of the level.

Th effect of the communication delay proved consistent in the hostile destroyed metric, with increasing

delays degrading performance. As the difference in performance was drastic across communication delays,

with the system destroying 15% more of the available hostiles at a 0-second delay than at a 10-second

delay, the hostiles destroyed metric provides one of the most compelling arguments to show that optimizing

the communication system of a UAS must be a principal design consideration.

Analysis of the hostile destruction process provides insight into how a degraded communication envi-

ronment could be expected to affect performance. As outlined in Section 3.1.4, the process for destroying

a hostile target involves several steps, each of which may be affected differently by changes in the avail-

ability of communications. For example, a task to destroy a hostile target cannot be created unless the

target is currently being tracked by the vehicles, and communication degradation has already been shown

to affect the ability of the system to consistently track targets. The hostile destruction task cannot be

assigned to a vehicle until the operator approves a schedule which contains it, a process involving approval

of a new schedule which requires the task to be communicated from the CMM to all of the vehicles. In

the final step the vehicles perform the distributed planning algorithm to assign the hostile destruction

task to one of the WUAVs.

Given the reliance on communication among the vehicles or between the vehicles and the CMM, it

is not surprising that the hostile destruction performance metric proved to be the most sensitive to the

communication delay or network topology. Because of the increased complexity of the hostile destruction

function of the system, there are more opportunities for degraded communications to affect some aspect

of the process. For example, an increased communication delay may cause the messages indicating the

initial discovery of a hostile target not to reach the CMM for some time. In the worst case under the

round-robin network with a 10-second communication delay, the information could take up to 40 seconds

to reach the CMM. This represents a significant portion of the mission duration, almost 7%. The time

required for the vehicles to collaborate to generate a task assignment would also be increased under more
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degraded communications.

In the context of the OPS-USERS system’s ability to destroy hostile targets, the question of the

relative importance of each communication link in the system is again raised. One difference between the

hostiles destroyed and target tracking metrics is the explicit reliance on communication with a subset of

the vehicles (the WUAVs) with the ability to engage hostile targets. Testing several network topologies

which differed in the connectedness of the WUAV would provide more insight into this aspect of the

system performance.

Interaction Effects

As with the target tracking performance of the system, the effect of the communication delay was

significantly impacted by the network topology, with the round-robin topology amplifying the effects

of communication delays. This interaction between the communication delay and network topology is

demonstrated clearly in Figure 4-15. The groups and fully connected networks respond to the commu-

nication delay variable identically, but the round-robin network causes the ratio of time targets tracked

performance to diminish more rapidly with increasing delays.

Performance in the hostiles destroyed metric was affected most dramatically of all the performance

metrics under degraded communication conditions. The results further serve to reinforce the notion that,

in order to achieve satisfactory system performance, either communication delays must absolutely be

minimized or a threshold level of network connectivity must be maintained.

Summary

Two distinct modes of degraded performance were observed in the results. For the percent area covered

and percent targets found metric, any small level of communication disruption caused performance to drop

into a degraded regime. In this case, unless near-perfect communication with an emphasis on minimizing

delays was achieved, there was not a strong dependence on the communication characteristics. Therefore,

if communication degradation must be tolerated, it is reasonable to maximize performance in terms of the

ratio of time targets tracked and percent hostiles destroyed metrics. The results clearly show that when

network connectivity fell sufficiently low, as in the round-robin network, the marginal value of increasing

the network connectivity is higher than the value of minimizing delays.

Because of the interaction observed between the communication delay and network topology inde-

pendent variables, it is difficult to draw conclusions about the relative robustness of the system to either

type of communication failure. In future experiments, research question #2 could be better investigated

by choosing a different set of independent variables. For example, maintaining the same overall level of

network connectivity but modulating which specific links are available. This may provide insight into

which types of links (i.e. UAV-to-UAV or UAV-to-CMM) have a larger effect on system performance.
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5.2 Conclusions for Research Question #3

The final research question is restated and then discussed in the context of the experimental results.

Research Question #3:

To what extent does HITL control increase the robustness of autonomous planners to communication

failure?

Research Question #3 asks whether the characteristics of HITL control can be modulated to com-

pensate for communication failures in the system. In the experiment carried out for this research, the

replan suggestion interval independent variable represents the mechanism for influencing the human su-

pervisory control aspect of the system. Performance variances associated with this independent variable

are outlined below, along with an analysis of how this aspect of the supervisory control influenced the

robustness of the system performance to communication failures.

Univariate ANOVA results showed that the replan suggestion interval significantly affected perfor-

mance in terms of percent area covered, percent targets found, and the ratio of time targets tracked

metrics with p < 0.001. The percent hostiles destroyed metric also showed a marginally significant effect

with p = 0.014.

5.2.1 Area Covered and Targets Found Performance

The replan suggestion interval was found to significantly impact both percent area covered and percent

targets found performance. In all three network topologies, a general trend of increasing performance

was observed as the replan suggestion interval was increased. An explanation for this relationship is

that decreasing the frequency of the replanning task can result in an increase in the amount of time that

vehicles are not explicitly assigned a task. In this condition, the vehicles perform the “background” search

task. Replanning less frequently is likely to increase the amount of time that vehicles spend performing

the background search task, and can therefore be expected to increase performance in terms of the area

covered metric or targets found metric.

Area Covered Performance Although increasing the replan suggestion interval from 30-seconds to 75-

seconds results in an approximately 6% increase in performance, increasing the replan suggestion interval

beyond 75-seconds did not continue to improve performance. One possible explanation for the apparent

plateau in performance beyond a 75-second replan interval is that other events in the system may also

trigger replanning events. When the replan interval is set sufficiently high (i.e. a long interval between

replan suggestions), the frequency of event driven replanning may cause the effective replanning rate to

be higher than the replan suggestion interval.
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Targets Found Performance As postulated above in Section 5.1.2 when considering degraded commu-

nications, a close correspondence between the area cover and targets f18ound metrics would be expected

as increasing the area covered increases the percent targets found in expectation. This was supported by

decreases of the same magnitude across values of the communication delay independent variable.

This similarity in response applies to the replan suggestion interval as well, although the correspon-

dence was not as close. One marginal inconsistency is the behavior at larger values of the replan suggestion

interval. Where the performance in area coverage plateaus at the 75-second interval, with no significant

difference between increase between the 75- and 120-second intervals, performance in the percent targets

found metric may have continued to increase, and was marginally higher at the 120-second interval than

at the 75-second interval. The range of values observed across replan suggestion intervals was consis-

tent, however, with a 4-5% increase in performance in both metrics as the replan suggestion interval was

increased from 30 seconds to 120 seconds.

5.2.2 Target Tracking and Hostile Destruction Performance

The effect of the replan suggestion interval on both target tracking and hostile destruction performance

is discussed below. Although the response of these dependent variables to the overall communication

degradation corresponded somewhat, there is not a clear congruency in response across the target tracking

and hostile destruction metrics to the replan suggestion interval.

Target Tracking Performance Target tracking performance was clearly diminished by increasing the

replan suggestion interval. As target tracking requires reassignment of the tracking task to a vehicle

after each time a target is revisited, waiting longer before replanning would be expected to afford the

vehicles less flexibility in accomplishing the tracking task as well as other tasks. In some cases where a

sufficiently long interval has passed before replanning, it may not be feasible to complete a tracking task

before a target becomes lost. In this way, a lower replan suggestion interval can be expected to increase

performance in the ratio of time targets tracked metric.

Hostile Destruction Performance Although replanning remains an integral component of the hostile

destruction process in the OPS-USERS system, replanning to complete hostile destruction tasks is not

driven solely by the replan suggestion interval. As the addition of novel tasks into the system represent a

situation where the operator is aware that replanning is necessary for the additional task to be taken into

account, the replan suggestion interval will not affect the first attempt to assign the hostile destruction

task to a vehicle. However, it’s possible that the task will not be placed on the approved task list during

replanning, or that the WUAV which is assigned the task may later decide that it cannot complete the

task. Either situation will require further replanning before the hostile destruction task can be carried

out. In these cases, the replan suggestion interval would significantly impact performance.
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Although the replan suggestion interval was shown to have a marginally significant effect on the

percent hostiles destroyed metric, there is no clear trend of either increasing or decreasing performance

across the range of replan intervals tested. Across all values, the average performance varied by less than

3%, with no significant difference appearing between performance at the 30-second, 75-second, or 120-

second intervals. One anomaly which appeared in the otherwise relatively continuous response is a sharp

increase in hostile destruction performance at the 120-second interval after several small but consistent

decreases in performance between the 45-second interval and 105-second interval. In fact, performance

at the 105- and 120-second intervals represent that minimum and maximum mean performance values

respectively observed across all values of the replan interval.

There is no reason to expect that increasing the replan suggestion interval from 105-seconds to 120-

seconds would elicit such profoundly different performance results. This artifact in the data may be

related to the specific configuration of missions utilized in this experiment. For example, it’s possible that

waiting slightly longer to replan near the beginning of a mission may significantly change the probability

of finding a specific target, which happens to be hostile, early on in one of the three mission scenarios

tested. There is no evidence to support a theory other than that this apparent pattern emerged by

chance. Furthermore, the results observed at the 120-second replan interval are not inconsistent with

observations made in previous experiments. For example, Section 4.1.3 demonstrated that performance

at the 45- and 120-second intervals was similar.

5.2.3 Conclusion

Evidence to support any interaction between the replan suggestion interval and robustness to com-

munication failures would have been expected to appear as an interaction effect between the replan

suggestion interval and either the network topology or communication delay independent variables. As

these interaction effects were not significant, there is no evidence to conclude that the parameters of the

HITL control in the OPS-USERS system can be modulated to compensate for communication failures.

This suggests that the OPS-USERS system provides a robust platform for human supervisory control of

multiple UAVs under a variety of communication failures, and isolates the operators from the effects of

communication failures.

5.3 Future Work

5.3.1 Further Human Model Validation Experiments

The relevance of the results generated from this work hinge on the validity of the human model utilized

to generate the data set. Although the model was examined in some detail in Section 4.1 and found to

match the original experimental results reasonably well, this does not speak to the ability of the model to
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remain consistent with the performance of human operators under degraded communication conditions.

Therefore a natural follow-on experiment to this work would be to validate the results of the human

model with similar human experiments. A small subset of the experimental conditions investigated in

simulation could be chosen, for example at each extreme value of the lag and replan interval. Observing

similar trends in performance in actual human subject data would serve to increase confidence in the

human model and strengthen the evidence supporting conclusions made in this thesis.

5.3.2 Further Characterization of Area Coverage Performance

An important extension of this work would be to introduce incremental network topologies to char-

acterize performance under communication failures with a greater resolution. This may be useful as

the number of communication delays tested was twice that of the number of network topologies tested.

Ultimately it would be ideal to prescribe a specific threshold of communication availability which, if

maintained, would guarantee area coverage performance did not drop into the degraded regime. Another

intriguing aspect of this extension would be to investigate the relative importance of each communication

link the network topology to characterize where the important communication channels are in the context

of each system function.

5.3.3 The Impact of the Replan Suggestion Interval on Performance

Experimental results demonstrated that increasing the replan suggesting interval improved perfor-

mance in area coverage and targets found. However, target tracking and hostile destruction performance

were adversely affected. These results suggest that the replan suggestion interval influences a trade-off

between performance in these two sets of system functions. In the operation of the OPS-USERS sys-

tem, replanning serves as a mechanism for shifting the vehicles’ attention to either specific task-driven

functions such as target tracking or hostile destruction or the background environment search task which

influences area covered and targets found performance. More research is needed to characterize such

trade-offs and to determine the optimal balance between the interrelated functions of a UAS.

5.4 Summary

This work has demonstrated that communication availability in UASs represents an important factor

in determining system performance. Through the analysis of the effect of communication failures on

several types of functions of a UAS including environment search, target search, target tracking, and

hostile destruction, this thesis provides a basis for understanding the implications of communication

availability on a diverse set of collaborative tasks. This research may serve as a guide to instruct future

UAS system designers on the best way to allocate communication resources for UASs with a variety of

mission objectives.
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Appendix A

Statistical results

Table A.1: MANOVA Results over all experimental data

α=0.01 * Significant result † Marginally significant result

Source
Dependent 
Variable

Type III Sum of 
Squares df

Mean 
Square F Sig.

AC .023 2 .011 .715 0.489

TF .045 2 .023 1.736 0.176

RT 1.586 2 .793 107.686 0.000

HD 5.703 2 2.851 190.782 0.000

AC .930 5 .186 11.649 0.000*

TF .498 5 .100 7.617 0.000*

RT 2.840 5 .568 77.140 0.000*

HD 12.220 5 2.444 163.518 0.000*

AC 2.085 6 .347 21.762 0.000*

TF .706 6 .118 9.004 0.000*

RT .649 6 .108 14.696 0.000*

HD .238 6 .040 2.656 0.014†

AC .310 10 .031 1.942 0.036

TF .188 10 .019 1.439 0.157

RT 1.169 10 .117 15.878 0.000*

HD 2.036 10 .204 13.623 0.000*

AC .192 12 .016 1.000 0.446

TF .166 12 .014 1.058 0.392

RT .094 12 .008 1.062 0.388

HD .105 12 .009 .588 0.854

AC .498 30 .017 1.041 0.406

TF .306 30 .010 .781 0.797

RT .183 30 .006 .830 0.730

HD .676 30 .023 1.509 0.037

Network * Lag

Network * Interval

Lag * Interval

Network

Lag

Interval

93



Table A.2: Percent area covered over communication delay Tukey pairwise comparisons

∗ Significant result † Marginally significant result

Source Mean Difference Sig.

0-seconds vs. 4-seconds 0.0320 0.011†

0-seconds vs. 10-seconds 0.0433 0.000∗

4-seconds vs. 10-seconds 0.0114 0.601

Table A.3: Percent area covered over replan suggestion interval Tukey pairwise comparisons

∗ Significant result † Marginally significant result

Source Mean Difference Sig.

30-seconds vs. 75-seconds -0.0590 0.000∗

30-seconds vs. 120-seconds -0.0643 0.000∗

75-seconds vs. 120-seconds -0.0053 0.993

Table A.4: Percent targets found over communication delay Tukey pairwise comparisons

∗ Significant result † Marginally significant result

Source Mean Difference Sig.

0-seconds vs. 4-seconds 0.033 0.004∗

0-seconds vs. 10-seconds 0.030 0.000∗

4-seconds vs. 10-seconds -0.003 0.997

Table A.5: Percent targets found over replan suggestion interval Tukey pairwise comparisons

∗ Significant result † Marginally significant result

Source Mean Difference Sig.

30-seconds vs. 75-seconds -0.025 0.005∗

30-seconds vs. 120-seconds -0.044 0.000∗

75-seconds vs. 120-seconds -0.019 0.088

Table A.6: Ratio of time targets tracked over network topology Tukey pairwise comparisons

∗ Significant result † Marginally significant result

Source Mean Difference Sig.

Fully Connected vs. Groups -0.0017 0.869
Fully Connected vs. Round-Robin 0.0426 0.000∗

Groups vs. Round-Robin 0.0443 0.000∗

Table A.7: Ratio of time targets tracked over communication delay Tukey pairwise comparisons

∗ Significant result † Marginally significant result

Source Mean Difference Sig.

0-seconds vs. 4-seconds 0.0142 0.039†

0-seconds vs. 10-seconds 0.0298 0.000∗

4-seconds vs. 10-seconds 0.0506 0.000∗
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Table A.8: Ratio of time targets tracked over replan suggestion interval Tukey pairwise comparisons

∗ Significant result † Marginally significant result

Source Mean Difference Sig.

30-seconds vs. 75-seconds 0.0106 0.392
30-seconds vs. 120-seconds 0.0308 0.000∗

75-seconds vs. 120-seconds 0.0201 0.002∗

Table A.9: Percent hostiles destroyed over network topology Tukey pairwise comparisons

∗ Significant result † Marginally significant result

Source Mean Difference Sig.

Fully Connected vs. Groups -0.007 0.276
Fully Connected vs. Round-Robin 0.86 0.000∗

Groups vs. Round-Robin 0.78 0.000∗

Table A.10: Percent hostiles destroyed over communication delay Tukey pairwise comparisons

∗ Significant result † Marginally significant result

Source Mean Difference Sig.

0-seconds vs. 4-seconds 0.097 0.000∗

0-seconds vs. 10-seconds 0.173 0.000∗

4-seconds vs. 10-seconds 0.076 0.000∗

Table A.11: Percent hostiles destroyed over replan suggestion interval Tukey pairwise comparisons

∗ Significant result † Marginally significant result

Source Mean Difference Sig.

30-seconds vs. 75-seconds -0.001 1.000
30-seconds vs. 120-seconds -0.011 0.749
75-seconds vs. 120-seconds -0.010 0.995
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Appendix B

Descriptive statistics

Table B.1: Descriptive statistics, all data

% Dependent Variable N Min. Max. Mean Median Std. Dev.

630 1890 3150 % Area Covered 3780 0.232 0.996 0.610 0.597 0.129

% Targets Found 3780 0.0 1.0 0.544 0.5 0.116

% Time Targets Tracked 3780 0.0 1.0 0.910 0.937 0.094

% Hostiles Destroyed 3780 0.0 0.8 0.250 0.2 0.143

Table B.2: Descriptive statistics, fully connected network

% Dependent Variable N Min. Max. Mean Median Std. Dev.

% Area Covered 1260 0.294 0.979 0.612 0.630 0.128

% Targets Found 1260 0.0 1.0 0.542 0.5 0.113

% Time Targets Tracked 1260 0.0 1.0 0.924 0.945 0.081

% Hostiles Destroyed 1260 0.0 0.8 0.281 0.2 0.132

Table B.3: Descriptive statistics, groups network

% Dependent Variable N Min. Max. Mean Median Std. Dev.

% Area Covered 1260 0.232 0.978 0.612 0.602 0.129

% Targets Found 1260 0.2 0.9 0.549 0.5 0.115

% Time Targets Tracked 1260 0.534 1.0 0.926 0.949 0.078

% Hostiles Destroyed 1260 0.0 0.8 0.273 0.2 0.129
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Table B.4: Descriptive statistics, round-robin network

% Dependent Variable N Min. Max. Mean Median Std. Dev.

% Area Covered 1260 0.312 0.996 0.607 0.589 0.131

% Targets Found 1260 0.0 0.9 0.541 0.5 0.119

% Time Targets Tracked 1260 0.0 1.0 0.882 0.907 0.114

% Hostiles Destroyed 1260 0.0 0.8 0.195 0.2 0.150
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