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ABSTRACT 
In this paper, we describe an effort to identify generalizable 
metric classes to evaluate human-robot teams. We describe 
conceptual models for supervisory control of a single and multiple 
robots. Based on these models, we identify and discuss the main 
metric classes that must be taken into consideration to understand 
team performance. Finally, we discuss a case study of a search 
and rescue mission to illustrate the use of these metric classes to 
understand the different contributions of team performance  

Categories and Subject Descriptors 
J.7 [Computers in Other Systems]: Command and Control; 
H.5.2 [User Interfaces and Presentation]: Evaluation/ 
methodology 

General Terms 
Measurement, Performance, Experimentation, Human Factors 

Keywords 
Metrics, Human-Robot Teams, Performance, Supervisory Control 

1. INTRODUCTION 
Mission effectiveness is the most popular metric to evaluate the 
performance of human-robot teams. However, frequently this 
metric is not sufficient to understand team performance issues and 
to identify design improvements, and additional metrics are 
required. 

Despite the importance of selecting the right metrics, few general 
guidelines that apply to a wide range of human-robot applications 
are available in the literature. In many cases, researchers rely on 
their own experience, selecting metrics they have used previously. 
Alternatively, other experiments measure every system parameter 
to ensure that every aspect of system performance is covered. 
These approaches lead to ineffective metrics and excessive 
experimental and analysis costs. Moreover, existing metrics for 
evaluating human-robot teams are usually application-specific, 
which makes comparison across applications difficult.  

The goal of this research is to provide general guidelines for 
metric selection that are applicable to any human-robot team 
operating under a supervisory control paradigm. We believe that 
identifying generic metric classes that organize the different types 
of metrics available will help researchers select a robust set of 

metrics that provide the most value for their experiments and 
allow comparison with others. Metrics may still be mission-
specific, however metric classes are generalizable across different 
missions. In the context of this paper, a metric class is defined as 
the set of metrics that quantify a certain aspect or component of a 
system. 

The idea of developing a toolkit of metrics and identifying classes 
to facilitate comparison of research results has already been 
discussed by other authors. For example, Olsen and Goodrich 
proposed four metric classes to measure the effectiveness of 
robots: task efficiency, neglect tolerance, robot attention demand, 
and interaction effort [1]. This set of metrics measures the 
individual performance of a robot, however, a particular robot 
performance does not necessarily imply a level of human 
performance. Since human cognitive limitations often constitute a 
primary bottleneck for human-robot team performance, a metric 
framework that can be generalized should also include cognitive 
metrics to understand what drives human behavior and cognition.  

In line with this idea of integrating human and robot performance 
metrics, Steinfeld et al. suggested identifying common metrics for 
human-robot interaction in terms of three aspects: human, robot, 
and the system [2]. Regarding human performance, they discussed 
three main metric categories: situation awareness, workload, and 
accuracy of mental models of device operations. This work 
constitutes an initial step towards developing a metric toolkit, 
however it still presents some limitations. On the one hand, this 
framework suffers from a lack of metrics to evaluate collaboration 
effectiveness among humans and among robots. On the other 
hand, a more comprehensive discussion on human performance is 
still required. For example, the authors discuss trust as a task-
specific metric for social robots but it is not included as a 
common metric required to evaluate operator performance. We 
believe that operators’ trust in robot behavior is often a key factor 
in team performance. 

The research presented in this paper builds upon previous efforts 
conducted by Crandall and Cummings [3]. It refines, expands, and 
generalizes the set of metric classes already identified for human-
robot teams consisting of a single human and multiple robots. The 
paper builds a conceptual model for human supervisory control of 
multiple robots. Then metric classes are identified from this 
model. Finally, a case study on a search and rescue mission is 
discussed to illustrate some of the proposed metric classes. 
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2. CONCEPTUAL MODEL 
This section presents and discusses our conceptual models of 
human supervisory control of robots, including a single operator 
controlling a single robot, a single operator controlling multiple 
robots, and multiple operators controlling multiple robots. 

2.1 Supervisory Control of a Single Robot 
“Supervisory control means that one or more human operators are 
intermittently programming and continually receiving information 
from a computer that itself closes an autonomous control loop 
through artificial effectors and sensors to the controlled process or 
task environment [4].” Most human-robot teams operate under a 
human supervisory control paradigm where robots have a certain 
degree of autonomy and the human guides them, monitors their 
performance, and intervenes when needed. Examples of this are 
found across several domains and applications: surveillance and 
target identification for military operations, health care 
applications such as mobility assistance and therapy, rock 
sampling for geology research, or other logistic applications such 
as personnel or material delivery. 

All these examples can be conceptually represented by the model 
shown in Fig. 1. This model is composed of four interrelated main 
elements: robot behavior, human behavior, human behavior 
cognitive precursors, and human behavior physiological 
precursors. We believe that these four elements delineate the main 
metric classes for single operator-single robot teams. In addition 
to these four elements, two other concepts are represented in Fig. 
1: uncertainty, and the mission or the task. Uncertainty refers to 
the uncertainty associated with sensors (e.g., accuracy) and 
actuators (e.g., lag), displays (e.g., transforming 3D information 
into 2D information), and the real world. This uncertainty 
propagates through the system reaching one or more operators 
who adapt their behavior to the uncertainty level by applying 
different cognitive strategies.  

Regarding the mission or the task imposed on the operator, human 
behavior and system performance depend on the nature of the 
tasks. High structured tasks, those that can be planned in 
advanced and are procedurally-driven, are very different, from a 
human perspective, from those that have low structure levels, 
which are generally emergent tasks that require solving a new 
problem under time-pressure. Human-robot team performance can 
only be understood if considered in the context of the mission and 
the task. 

The goal of this paper is to develop a general framework for the 
analysis of human-robot team performance. However, our focus is 
on those metrics of human behavior efficiency and human 
behavior precursors, rather than metrics of robot behavior 
efficiency. The fact that many human-robot teams are remote 
makes it essential to measure the human component. Operators 
who remotely operate a robot do not physically perceive the 
interaction of the robot with the real world. This can have a 
negative impact on situation awareness and human trust, which in 
turn can affect performance. 

2.1.1 Robot & Human Behavior Efficiency 
Robot and human behavior are represented by the two control 
loops shown in Fig.1: the human control loop and the robot 
control loop. The operator receives feedback on robot and mission 
performance, and adjusts robot behavior through controls if 
required. The robot interacts with the real world through actuators 
and collects feedback on mission performance through sensors. 
The evaluation of team performance requires an understanding of 
both control loops. The rest of this section focuses on human 
behavior. 

Human behavior, in the context of Fig. 1, refers to the decisions 
made and actions taken by the human while controlling the robot. 
The model presented in Fig. 1 categorizes human behavior in 
terms of problem recognition, decision making, and action 

Figure 1. Conceptual Model of Human-Robot Interaction in Supervisory Control. 



implementation. These three categories are based on the four-
stage model of human information processing described by 
Parasuraman, Sheridan, and Wickens: 1) information acquisition, 
2) information analysis, 3) decision and action selection, and 4) 
action implementation [5]. Our model merges the stages of 
information acquisition and analysis into the problem recognition 
category. Acquisition and analysis of information are often hard 
to differentiate, and the human ability to recognize problems is a 
more valuable metric for our purposes. Thus, understanding 
human performance requires evaluating each one of the three 
categories defined by our model. 

Human-computer interactions (HCIs) are the observable outputs 
of human decisions, and they are commonly used to measure 
human behavior efficiency. Based on our model, these 
interactions should also be analyzed in terms of problem 
recognition (e.g., access to information about the environment 
dynamics), decision making (e.g., use of what-if functionalities to 
explore consequences of actions), and action implementation 
(e.g., entering new coordinates for a robot’s destination). Such 
decomposition enables a more comprehensive evaluation of team 
performance. However, disaggregating HCIs may not always be 
possible. 

In addition to human efficiency for problem recognition, decision 
making, and action implementation, human attention allocation is 
a key component of human behavior. The evaluation of attention 
resource allocation helps in the understanding of operators’ 
strategies and priorities. Operators have limited attention 
resources that need to be shared between multiple tasks [6]. 
Although as seen in Fig. 1, one single robot is controlled, the 
operator still performs multiple tasks such as monitoring the 
dynamics of the environment, identifying emergent events, 
monitoring robot health, or executing manual control of the robot. 
How humans sequence and prioritize these multiple tasks 
provides valuable insights into the system. 

2.1.2 Human Behavior Cognitive and Physiological 
Precursors 
Evaluating human observable behavior can still be insufficient 
since all mental processes do not have immediate and observable 
outcomes. The evaluation of human performance requires 
understanding what motivates the behavior and the cognitive 
processes behind it. Human behavior is driven by high level 
cognitive constructs and processes such as mental models1 and 
situation awareness2 (SA). For our discussion, mental models 
refer to long-term knowledge, whereas SA reflects dynamic 
knowledge. Understanding human mental models is important 

                                                                 
1 The phrase “mental models” refers to organized sets of 

knowledge about the system operated and the environment that 
are acquired with experience [7]. 

2 SA is defined as “the perception of the elements in the 
environment within a volume of time and space, the 
comprehension of their meaning and the projection of their 
status in the near future” [8]. In the context of human-robot 
teams, SA encompasses awareness of where each robot and 
team member is located and what they are all doing at each 
moment, plus all the environmental factors that affect 
operations [9]. 

because ideally, an interface design should be consistent with 
people’s natural mental models about computers and the 
environment [10]. Poor SA or lack of understanding of a dynamic 
environment, when performing complex cognitive tasks, can have 
dramatic consequences such as the incident at Three Mile Island 
[11].  

Mental models and SA are not the only human behavior cognitive 
precursors. In the context of this paper, human behavior cognitive 
precursors refer to cognitive constructs or processes that existed 
or occurred before a certain behavioral action was observed. 
Human trust in the robots, mental workload, and operator 
emotional state are other examples of cognitive constructs and 
processes that can also cause certain human behaviors.  

Furthermore, physiological processes can reflect physical states 
such as fatigue, or physical discomfort which can also motivate 
certain human attitudes. 

2.1.3 Conclusions 
Our model represents the need for evaluating four main elements 
to understand the performance of a single operator-single robot 
team: robot behavior, human behavior, human behavior cognitive 
precursors, and human behavior physiological precursors. These 
four elements are all interrelated. For example, events in the real 
world are captured by the robot sensors and presented to the 
human operator through the display. Modifications on the display 
can affect human attention allocation and SA, which in turn will 
result in changes in HCI patterns, which can ultimately affect 
robot performance. Understanding system performance implies 
understanding the relations among these elements. 

2.2 Supervisory Control of Multiple 
Independent or Collaborative Robots 
The previous section discusses a model for one operator-one robot 
team, but operators can simultaneously control multiple robots. In 
order to expand the model in Fig. 1, we consider two different 
scenarios: a) multiple robots performing independent tasks, and b) 
multiple robots performing collaborative tasks. In this paper 
collaboration between robots means two or more robots working 
together to accomplish a shared goal under human supervision.  

In the case of independent robots, servicing robot 1 and robot 2 
are two independent tasks. The operator monitors the environment 
and the robots, decides on which one to focus his/her attention, 
interacts with that robot, and returns to monitoring or decides to 
service another robot. While servicing one of the robots, the 
operator behaves similarly as if he/she supervised only one single 
robot. Our model assumes that the operator does not service 
multiple robots in parallel. This assumption is based on the 
limited human cognitive resources and the high task demands 
imposed by supervising complex and dynamic environments 
under time pressure. Figure 2 illustrates this model of human 
supervisory control of multiple independent robots. 
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Multiple robots working together to achieve a common goal can 
autonomously collaborate or be manually coordinated by the 
operator. In the case of autonomous collaboration among robots 
without the possibility for human intervention, collaboration only 
occurs at the level of the robot behavior loop and the model in 
Fig. 2 is still valid. However, in the case of active human 
coordination, the operator executes two dependent tasks (i.e., 
servicing robots 1 and 2) that cannot be decoupled. Figure 3 
illustrates the later model, where the control loops for robot 1 and 
robot 2 are not independent and separated entities. Controlling 
collaborative robots requires the operator to understand the 
consequences of an action across both control loops and to 
actively coordinate between them. For example, making a 
decision for robot 1 can involve acquiring and analyzing 
information related to robot 2, and implementing an action for 
robot 2 can require synchronizing it with another action for robot 
1. Interfaces for collaborative robots should aggregate data from 
each control loop and display it so that the operator can easily 
understand the interconnections and the consequences of these 
dependencies.  

In our previous example with independent robots, the three 
categories of human behavior (i.e., problem recognition, decision 
making, and action implementation) could be evaluated separately 
for robot 1 and robot 2. In the case of collaborative robots, these 
three categories have to be analyzed for both robots aggregately. 

2.3 Human Collaboration in Supervisory 
Control of Multiple Robots 
This section expands previous models to the case of multiple 
humans collaborating to control multiple robots. In these 
situations, system performance is directly linked to human 
collaboration. Our model considers two main dimensions of 
collaboration: team behavioral actions and team cognition. Figure 
4 illustrates this model. 

The evaluation of team behavioral actions consists of measuring 
both the efficiency of team coordination and the team efficiency 
in each of the three categories of human behavior (i.e., problem 

recognition, decision making, and action implementation). The 
team works together as a single entity to perform collaborative 
tasks so performance should be measured at the holistic level 
rather than aggregating team members’ individual performance 
[12]. Team coordination comprises of written, oral, and gestural 
interactions among team members.  

Team cognition refers to the thoughts and knowledge of the team. 
Measures of team cognition can be valuable in diagnosing team 
performance successes and failures, and identifying training and 
design interventions [12]. Moreover, efficient human 
collaboration is often shown to be related to the degree that team 
members agree on, or are aware of task, role, and problem 
characteristics [13]. Thus, team mental model and SA are two 
precursors of team performance. 

The efficiency of the team mental model includes assessing the 
similarity, overlap, and consistency of the individual mental 
models. For team SA, both environment and team dynamics need 
to be understood. However, each member does not have to be 
aware of every change; the common picture is shared by the team, 
not necessarily by all its members individually. As Gorman et al. 
discuss, better performance does not necessarily mean all team 
members sharing a common picture [14]. In addition, evaluating 
team cognitive precursors can also include evaluating workload 
distribution and social patterns and roles within the team. 

3. GENERALIZABLE METRIC CLASSES 
Based on the models presented in this paper, we can infer six 
generalizable metric classes relevant for human-robot team 
evaluation. Examples of sub-classes are included in brackets. 

• Mission Effectiveness (e.g., key mission performance 
parameters) 

• Human Behavior Efficiency (e.g., attention allocation 
efficiency, problem recognition efficiency, decision making 
efficiency, action implementation efficiency) 

• Robot Behavior Efficiency (e.g., error-proneness, robustness, 
autonomy, learnability, memorability) 

Figure 2. Supervisory Control of Independent Robots. Figure 3. Supervisory Control of Collaborative Robots. 
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• Human Behavior Cognitive Precursors (e.g., mental 
models, SA, mental workload, trust in automation, self-
confidence, emotional state) 

• Human Behavior Physiological Precursors (e.g., physical 
workload, physical comfort, physical fatigue) 

• Collaborative Metrics 
– Team Behavioral Action Efficiency (e.g., coordination 

efficiency, collaborative problem recognition efficiency, 
collaborative decision making efficiency, collaborative 
action implementation efficiency) 

– Team Cognition Efficiency (e.g., team mental models, 
team SA, workload distribution, social patterns and roles) 

– Robot Collaboration Efficiency 
Evaluating the performance of the whole human-robot team 
requires applying metrics from each of these classes, but 
including metrics of every sub-class for every experiment can 
be inefficient and costly. As a rule of thumb, in addition to the 
more popular mission effectiveness and robot behavior 
efficiency metrics, incorporating at least one metric from the 
classes of human behavior efficiency, human behavior cognitive 
and physiological precursors, and collaborative metrics enables 
better team performance evaluation.  
The next section discusses an experiment where a single human 
controlled multiple robots conducting a search and rescue 
mission. This study considered metrics for mission 
effectiveness, human behavior efficiency, and human behavior 
cognitive precursors. The value of incorporating metrics from 
each of these classes is discussed in the context of this 
experiment. 

4. A CASE STUDY: SEARCH AND 
RESCUE MISSION 
4.1 Experiment Description 
In this experiment, a human participant teamed with multiple 
simulated robots to perform a search and rescue mission: 

removing objects from a maze3 using different number of robots 
(2, 4, 6, or 8). The goal was a) to remove as many objects from 
the area as possible during an 8-minute session while b) 
ensuring that all robots were out of the maze when time expired. 
Collecting objects from the maze required the user to perform 
navigation and visual search tasks. First, the user assigned an 
object to the robot and the robot moved to that location. Second, 
the robot “picked up” the object, which in the experiment was 
simulated by the visual search of identifying a city on a map of 
the United States using Google Earth-style Software. Third, the 
user assigned one of the two maze exits to the robot and the 
robot carried the object out of the maze. The objects were 
randomly spread through the maze. 
The maze was initially unknown, but the robots created and 
shared a map of the maze as they moved around it. Each robot 
could choose its path, choosing to explore an unknown path if it 
thought that path could possibly be shorter than the shortest 
known path to its user-specified destination. In addition, the 
robot would automatically choose an object or an exit after it 
had been waiting for a user-command for longer than 15 
seconds. The user could at any moment redirect the robots to 
different locations by reassigning their destinations or rerouting 
them through a different path.  
Sixteen people between the ages of 19 and 49 years old 
participated in the study. After completing a training and a 
comprehensive practice session, each subject participated in 
four 8-minute sessions, each with a different robot team size. 
The conditions of the study were randomized and counter-
balanced. More details on the experimental setup can be found 
in [3]. 

4.2 Metrics Considered 
This study measured metrics for mission effectiveness, human 
behavior, and human behavior cognitive precursors in an 

                                                                 
3 In this experiment, the routes within the maze are unknown but 

the locations of objects to rescue are known. 

Figure 4. Human Collaboration in Supervisory Control of Robots. 



attempt to understand the final outcome of the mission, the 
decisions made and actions taken by the operator, and the 
causes driving those actions and decisions. 
We believe that at least one metric from each class is necessary 
to understand team performance. However, we recommend for 
the human behavior efficiency class, both attention allocation 
efficiency and human efficiency in conducting mission’s tasks 
should be measured because they represent different aspects of 
the system. In addition, if the mission is composed of tasks of 
different cognitive nature, one human behavior efficiency metric 
for each task is also recommended. For the human behavior 
cognitive precursor class, the number of metrics selected 
depends on the actual research question and experimental 
setting. For this experiment, we measured trust and mental 
workload because both factors can influence human use of 
automation (i.e., robots’ autonomy) [15]. Automation mistrust, 
which refers to over-reliance on automation, occurs in decision 
making because humans have a tendency to disregard or not 
search for contradictory information in light of a computer-
generated solution that is accepted as correct [16]. This effect is 
known as automation bias.  
We did not measure human behavioral actions separately for 
problem recognition, decision making, and action 
implementation because of the difficulty of distinguishing 
among these three categories in this particular testbed. No 
additional data that could support this analysis was recorded 
during the experiment. 
This experiment did not measure metrics for human behavioral 
physiological precursors because with the 8-minute session 
time, these could not provide any meaningful insight. 
Collaborative metrics were also not considered since the focus 
was on single operator control, and robot efficiency was also not 
considered since they were simulated. Table 1 summarizes the 
metrics considered in this experiment. 
Performance score, an indication of mission effectiveness, was 
defined as the total number of objects collected minus the 
number of robot lost (i.e., number of robots that did not get out 
of the maze when the 8-minute session expired).  
HCIs were categorized in terms of robot navigation planning, 
robot navigation replanning, and visual search. The metrics 
selected were the time to complete a visual search, the time to 
assign a robot’s destination, and the times to reroute a robot and 
reassign its destination. 
The metric selected for attention allocation efficiency was the 
time required to decide which robot to service next, also known 
as the switching time. This metric included both the time it took 
for the user to decide which robot required his/her intervention, 
and the time required to select that robot on the display. 
The frequency of overriding robot decisions was selected as an 
indication of operators’ trust in robots. Finally, a five-point 
Likert scale was used to subjectively measure mental workload. 
 
 
 
 
 

 

Metric Class Selected Metric 
Mission Effectiveness • Performance score 
Human Behavior 
Efficiency 

• Average time to complete a visual 
search (indication of human efficiency 
in visual search) 

• Average time to complete a robot 
destination assignment (indication of 
human efficiency in planning robot 
navigation) 

• Average time to reroute a robot or 
reassign its destination (indication of 
human efficiency in replanning robot 
navigation) 

• Switching Time (indication of attention 
allocation efficiency) 

Robot Behavior Efficiency None 

Human Behavior 
Cognitive Precursors 

• Frequency of overriding robot decisions 
(indication of over-reliance on robots’ 
autonomy) 

• Subjective rating of operator workload 
(indication of mental workload) 

Human Behavior 
Physiological Precursors 

None 

Collaborative Metrics None 

 

4.3 Mission Effectiveness 
Figure 5 shows the performance score as a function of the robot 
team size. A one-way ANOVA analysis showed that the robot 
team size significantly contributed to its variability (p-value = 
0.018, R2 = 15.31%). However, the R2 of this model implies that 
it explained little of the performance variability. The Tukey test 
showed only difference in workload for 2 robots as compared to 
8 robots.  
Thus, evaluating performance in terms of robot team size does 
not provide much information, which confirms that additional 
metrics are required to really understand what happened in this 
experiment. 

 
 

4.4 Human Behavior Efficiency 
Results suggest that the faster the subject completed a visual 
task, the higher the performance score (Pearson correlation = - 
0.594, p-value < 0.001). Results also suggest that subjects who 
were fast performing the visual search were also fast when 

Table 1. Metrics Measured in the Case Study. 

Figure 5. Performance Score vs. Size of the Robot Team. 



selecting robot destinations (Pearson correlation = 0.479, p-
value < 0.001).  
Regarding navigation tasks, the average time to complete a 
destination assignment and that required to complete a 
reassignment are not correlated (Pearson correlation = 0.163, p-
value =0.214). This result confirms that the task of goal 
assignment for initial planning and for replanning were distinct. 
Regarding replanning, robot destination reassignment ratio and 
rerouting ratio are strongly correlated (Pearson correlation = 
0.526. p-value < 0.001), suggesting that subjects performed both 
reassignments and rerouting with a similar frequency. Results 
also suggest that people who were faster in the visual search, 
conducted more rerouting and reassignments (Pearson 
correlation of reassignment frequency & time for the visual 
search = -0.388, p-value = 0.002; Pearson correlation of 
rerouting frequency & time for the visual search = -0.345. p-
value = 0.005).  
Using an ANOVA model with the number of robots as the main 
factor and the average time to complete a visual search as a 
covariate, we obtained statistical significance for both variables 
(p-values < 0.001). The R2 of this model was 59.38%, which 
means that 59.38% of the performance variability is explained 
with these two variables. The Tukey post hoc test showed only 
difference in performance for 2 robots as compared to the other 
robot levels. This result confirmed the trend seen in Fig.5 and 
additionally pointed that that there was also difference in 
performance for 2 robots as compared to 4 and 6 robots. 
Including in the ANOVA model other variables such as time to 
replan, or time to assign robot destinations did not improve the 
model. Thus, the average time to complete a visual search was 
the main factor driving the performance score. In this analysis, it 
was important to use these additional metrics to confirm our 
initial results and ensure consistency across metrics. 
Regarding attention allocation efficiency, results show a strong 
correlation between performance score and switching time 
(Pearson correlation = -0.533, p-value < 0.001). Thus, 
performance scores tended to be higher with low switching 
times. Interestingly, the switching time and the time to complete 
a visual search are not correlated, which indicates that these are 
two independent sources of performance variability (Pearson 
correlation = -0.098, p-value = 0.441). This result demonstrates 
that the two human behavior metric classes (attention allocation 
efficiency and human efficiency in the visual search) are 
measuring different aspects of the system that should be 
considered separately to understand team performance. 

4.5 Human Behavior Cognitive Precursors 
Figure 6 shows that as the robot team size increased, subjects 
overrode fewer robot autonomous decisions. A one-way 
ANOVA analysis of the overriding frequency showed that the 
robot team size significantly contributed to its variability (p-
value < 0.001, R2 = 50.86%). The Tukey post hoc test showed 
only difference in overriding frequency for 2 robots as 
compared to the other robot levels. As task load, which refers to 
the task demands imposed on an operator, increased, users 
decreasingly overrode robot decisions. This result suggests that 
workload was affecting subjects’ pattern for overriding 
automation. 

 
 

Additional investigation is needed to distinguish between 
subjects’ cognitive saturation and subjects’ over-reliance on 
robots. Subjective metrics for trust would allow further 
discussion. Since trust is a purely psychological state, subjective 
ratings are necessary to understand trust issues [17]. 
Figure 7 represents the perceived workload as reported by the 
subjects at the end of each scenario, 1 being nothing to do and 5 
being completely overwhelmed. A one-way ANOVA analysis 
of workload showed that the robot team size significantly 
contributed to its variability (p-value = 0.005, R2 = 18.86%). 
However, the R2 of this model implies that it explained little of 
the workload variability. The Tukey test showed only difference 
in workload for 2 robots as compared to 6 and 8 robots. 
Subjective metrics are inexpensive and easy to administer, 
however they should be used to complement rather than to 
replace other forms of metrics. 

 
 

4.6 Conclusions from the Case Study 
This case study illustrates the need to measure multiple metrics 
across different metric classes to understand human-robot team 
performance, its underlying drivers, and effective design 
interventions.  
In this experiment, analyzing human behavioral actions in the 
context of the tasks allowed us to identify that the visual search 
was the primary task driving the performance score. In addition, 
metrics of attention allocation efficiency pointed to an 
additional source of performance variability, switching time. 
Metrics of human behavior cognitive precursors allowed 
identifying that task load and over-reliance on robots’ autonomy 

Figure 7. Perceived Workload. 

Figure 6. Overriding Robot Autonomy. 



are interconnected. However, additional metrics for workload 
and trust that were not recorded during the experiment are 
necessary to distinguish between user cognitive overload and 
automation bias.  
One potential drawback to the selection of metrics was that we 
did not explicitly measure behavioral actions in terms of 
problem recognition, decision making, and action 
implementation. Without this information, it is hard to say 
whether additional user support for problem recognition (e.g. 
which robot should I service next?) or decision making (i.e. 
which is the optimal route for this robot if I want to replan?) 
would be a better intervention to improve team performance. 
For interface design, measuring separately these three categories 
is essential because it allows exploring and understanding which 
parts of the mission require additional support and which design 
improvements can be more effective to maximize team 
performance. Measuring the complexity of the decisions that 
compose the mission and its workload as well as collecting more 
in-depth user feedback would also provide valuable information 
about future improvements. 
However, problem recognition and decision making are highly 
interconnected and it can be difficult to measure them 
separately. As Klein and Klinger discuss, decision-making in 
complex environments under time pressure seems to be 
“induced by a starting point that involves recognitional matches 
that in turn evoke generation of the most likely action” [18]. 
Researchers should measure the observable outcomes of 
humans’ decisions, and analyze and understand the decision 
process with other techniques such as verbal retrospective 
protocols. 

5. CONCLUSIONS AND FUTURE WORK 
This paper proposes a set of generalizable metric classes to 
consider for the evaluation of human-robot team performance. A 
case study of a single operator controlling multiple robots 
conducting a search and rescue mission illustrates the usefulness 
of measuring multiple metrics across these different classes. 
Future work will populate these metric classes with the different 
types of metrics available and link them to actual research 
questions to help experimenters select the set of metrics that 
provide the most value for their experiments. 
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