
Objective: We examined the impact of prim-
ing on operator trust and system performance when 
supervising a decentralized network of heterogeneous 
unmanned vehicles (UVs).

Background: Advances in autonomy have enabled a 
future vision of single-operator control of multiple het-
erogeneous UVs. Real-time scheduling for multiple UVs in 
uncertain environments requires the computational ability 
of optimization algorithms combined with the judgment 
and adaptability of human supervisors. Because of system 
and environmental uncertainty, appropriate operator 
trust will be instrumental to maintain high system perfor-
mance and prevent cognitive overload.

Method: Three groups of operators experienced 
different levels of trust priming prior to conducting 
simulated missions in an existing, multiple-UV simula-
tion environment.

Results: Participants who play computer and video 
games frequently were found to have a higher propen-
sity to overtrust automation. By priming gamers to 
lower their initial trust to a more appropriate level, 
system performance was improved by 10% as com-
pared to gamers who were primed to have higher trust 
in the automation.

Conclusion: Priming was successful at adjusting 
the operator’s initial and dynamic trust in the auto-
mated scheduling algorithm, which had a substantial 
impact on system performance.

Application: These results have important implica-
tions for personnel selection and training for futuristic 
multi-UV systems under human supervision. Although 
gamers may bring valuable skills, they may also be 
potentially prone to automation bias. Priming during 
training and regular priming throughout missions may 
be one potential method for overcoming this propen-
sity to overtrust automation.

Keywords: human supervisory control, unmanned 
vehicles, mixed-initiative planning, priming, gaming

Introduction
The use of unmanned vehicles (UVs) has 

grown dramatically over the past decade. Com-
mon uses for UVs will soon include agriculture, 
wildlife monitoring, firefighting, search and 
rescue, border patrol, atmospheric research, 
entertainment, and cargo delivery (Jenkins, 
2013). Current UVs typically require multiple 
human operators, often more than a compa-
rable manned vehicle would require (Haddal & 
Gertler, 2010).

A potential future method for a single human 
operator to control multiple heterogeneous (air, 
land, sea) UVs involves the operator guiding an 
automated scheduler (AS) in a collaborative pro-
cess to create, modify, and approve schedules for 
the team of UVs, which are then carried out by 
the semiautonomous UVs. Although this con-
cept is known by many names, including 
“human–automation collaboration” (Miller & 
Parasuraman, 2003), “human–computer collabo-
ration” (Silverman, 1992), “human guided algo-
rithms” (Klau, Lesh, Marks, & Mitzenmacher, 
2003; Thorner, 2007), and “mixed-initiative plan-
ning” (Carbonnell & Collins, 1970; Riley, 1989), 
all such systems involve a human working collab-
oratively with an optimization algorithm to solve a 
complex problem or make a decision.

Because of the interaction component, human 
trust in the AS will be a crucial driver of perfor-
mance in such futuristic human–automation col-
laborative systems. Although there are some simi-
larities to the concept of trust between two humans, 
there are also some significant differences between 
human–human trust and human–automation trust 
(Muir, 1987). Human trust in an AS can be defined 
as the “attitude that an agent will help achieve an 
individual’s goals in a situation characterized by 
uncertainty and vulnerability” (Lee & See, 2004, 
p. 51). This paper distinguishes trust in a schedul-
ing algorithm for remotely controlling UVs from 
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recent research on human trust in embodied agents 
(de Visser et al., 2012) or robots (Hancock et al., 
2011), as the operator is not colocated with the 
vehicle and there is no physical embodiment of 
the algorithm. Operator trust in the AS can fluctu-
ate due both to the operator’s initial trust level in 
the AS and to the behavior of the AS throughout a 
mission. This phenomenon has been observed in 
data analysis from a previous human-in-the-loop 
experiment and has been linked to changes in per-
formance (Gao, Clare, Macbeth, & Cummings, 
2013).

Trust calibration is essential in such systems, as 
either overtrust or undertrust in automation can be 
detrimental to system performance. Low human 
trust in the AS can be caused by automation “brit-
tleness,” in that the AS can take into account only 
those quantifiable variables, parameters, objec-
tives, and constraints identified in the design 
stages that were deemed to be critical (Scott, Lesh, 
& Klau, 2002; Silverman, 1992; Smith, McCoy, 
& Layton, 1997). Looking to future scenarios 
of multi-UV supervision—where unanticipated 
events, such as weather changes, vehicle failures, 
unexpected target movements, and new mission 
objectives, will often occur—the AS may have 
difficulty accounting for and responding to unfore-
seen changes in the environment. Operators with 
low trust may spend an excessive amount of time 
replanning or adjusting the schedule (Clare, Mac-
beth, & Cummings, 2012; Cummings, Clare, & 
Hart, 2010), which can lead to cognitive overload.

Also, overtrust in automation has been cited 
in a number of costly and deadly accidents in a 
variety of domains (Cummings, 2004; Parasura-
man & Riley, 1997). Overtrust in the AS can 
lead to the phenomenon of automation bias 
(Mosier, Skitka, Heers, & Burdick, 1998), where 
operators disregard or do not search for contra-
dictory information in light of an AS-generated 
solution that is accepted as correct. A number of 
empirical studies have shown that when work-
ing with imperfect automation, automation bias 
occurs (Chen & Terrence, 2009; Lee & Moray, 
1994; Muir & Moray, 1996; See, 2002).

Given the need to design systems to achieve the 
“appropriate” level of human trust (Lee & See, 
2004), calibrating operators to the reliability of the 
AS under different situations is essential to achiev-
ing high performance in a human–automation  

collaborative scheduling system. To this end, we 
investigate the impact of operator trust on human–
automation collaboration given a fast but subopti-
mal AS. The results of a human-in-the-loop exper-
iment are presented in which we evaluated the use 
of priming to influence operators’ initial trust in 
the AS and the resulting system performance.

Trust and Priming
An operator’s initial trust level in an auto-

mated system can vary widely based on the 
operator’s prior knowledge, past experiences, 
and training (Lee & Moray, 1994; Moray, 
Inagaki, & Itoh, 2000). Trust is dynamic, how-
ever, and can fluctuate throughout a mission 
based on the operator’s perception of how well 
the AS is performing (Lee & Moray, 1992; Muir 
& Moray, 1996). A number of studies have 
shown that human trust has inertia, whereby 
automation errors do not necessarily cause 
instantaneous loss in trust, but recovery in trust 
from severe failures can also be slow (Hoffman, 
Johnson, Bradshaw, & Underbrink, 2013; Lee 
& Moray, 1992, 1994; Lewandowsky, Mundy, 
& Tan, 2000; Parasuraman, 1993; See, 2002).

Priming, which is one way to experimentally 
influence this initial trust in a system, has been 
studied extensively in the psychology and neu-
roscience domains (Cave, 1997; Henson, 2003; 
Kosslyn & Rosenberg, 2011; Schacter, 1987; 
Schacter & Buckner, 1998), and it is known that 
humans are susceptible to anchoring biases in 
decision making and judgments under uncer-
tainty (Dzindolet, Pierce, Beck, & Dawe, 2002; 
Tversky & Kahneman, 1974). However, there 
has been little research on the impact of priming 
on operators controlling multiple UVs.

In addition, a few studies have involved the 
impact of framing on human decision making 
and reliance on an automated decision aid 
(Dzindolet et al., 2002; Lacson, Wiegmann, & 
Madhavan, 2005). In these experiments, partici-
pants were provided with information about pre-
vious automation performance with either posi-
tive framing (“the aid usually made about half as 
many errors as most participants”) or negative 
framing (“the aid usually made about 10 errors 
in 200 trials”). These studies found that the man-
ner in which information about the reliability of 
the automation was presented to operators could 
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subtly influence reliance on the automation, but all 
experiments focused on signal detection rather 
than the more complex decision making required 
for controlling multiple UVs.

In another study, Rice, Clayton, Wells, and 
Keller (2008) primed test participants with 
images of automation with either positive or 
negative affect. They found that operators 
primed with positive images had faster reaction 
times and higher accuracy in a visual identifica-
tion task with the assistance of an automated 
identification aid. However, this was the only 
task that the operators were conducting, as 
opposed to the test bed described in this paper 
where operators were multitasking. Also, the 
automation was for target identification and had 
100% reliability, as opposed to the automated 
scheduling algorithm used in this test bed, which 
has been found to be provably good but subopti-
mal (Choi, Brunet, & How, 2009; Whitten, 
2010).

In this experiment, described in more detail 
in the next section, we elected to use three levels 
of priming as the main independent variable: 
“positive priming,” “negative priming,” and “no 
priming.” The priming verbiage consisted of 
actual written quotes from operators in a previ-
ous experiment using the same test bed (Clare, 
Cummings, How, Whitten, & Toupet, 2012). For 
the positive-priming level, the quotes reflected 
positive naturalistic impressions of the AS, for 
example, “The system is easy to use and intui-
tive to work with” and “The automated sched-
uler was very fast.” For the negative-priming 
level, the quotes reflected dissatisfaction with 
the AS, for example, “I did not always under-
stand decisions made by the automated scheduler 
. . . namely, it would not assign tasks . . . while 
some vehicles were seemingly idle.” The no-prim-
ing level served as a control group, whereby oper-
ators did not receive a passage to read after train-
ing. This was a between-participants factor, in 
that a particular participant experienced only 
one priming level to avoid training biases and 
confusion.

The Experiment
This section describes an experiment to 

evaluate the validity of using priming to influ-
ence operator trust and system performance in 

a human–automation collaborative system for 
controlling multiple UVs.

Apparatus
This study utilized a collaborative, multiple-

UV system called Onboard Planning System 
for UVs Supporting Expeditionary Reconnais-
sance and Surveillance (OPS-USERS), which 
leverages decentralized algorithms for vehicle 
routing and task allocation (Cummings, How, 
Whitten, & Toupet, 2012). This system functions 
as a computer simulation but also supports actual 
flight and ground capabilities (How et al., 2009); 
all the decision support displays described here 
have operated actual small air and ground UVs 
in real time (Kopeikin, Clare, Toupet, How, & 
Cummings, 2012).

The operator is assisted by an AS in schedul-
ing tasks for the UVs called the consensus-
based bundle algorithm, which is a decentral-
ized, polynomial-time, market-based protocol 
(Choi et al., 2009). A goal-based architecture was 
implemented whereby the human operator guides 
the high-level goals of the team of UVs (as 
opposed to guiding each individual vehicle) and 
the AS assumes the bulk of computation for opti-
mization of task assignments. The AS is responsi-
ble for decisions requiring rapid calculations or 
optimization, and the human operator supervises 
the AS for high-level goal achievement, including 
where to search, which tasks get included in the 
overall plan, and approval of weapons release. 
More details on the AS can be found in Whitten 
(2010), with details of the OPS-USERS automa-
tion architecture in Cummings et al. (2012).

The primary interface used by the operator is 
a map display (Figure 1).

Operators had two exclusive tasks that could 
not be performed by automation: target identifica-
tion and approval of weapons launch to destroy a 
hostile target. Operators could also create search 
tasks, which dictated on the map those areas that 
the operator wanted the UVs to specifically search. 
An instant messaging “chat” communication tool 
provided high-level direction and intelligence to 
the operator. A primary assumption was that oper-
ators had minimal time to interact with the dis-
plays due to other mission-related tasks. In order 
to aid the operator in understanding UV progress 
toward mission goals, a decision support interface, 

 at Duke University Libraries on October 27, 2015hfs.sagepub.comDownloaded from 

http://hfs.sagepub.com/


Influencing Human Trust in Automation	 1211

called the Schedule Comparison Tool (SCT), was 
developed (Figure 2). Here the operator could 
conduct a “what-if” query, which forced the auto-
mation to generate a new plan if possible. Opera-
tors could also modify the objective function that 
the AS uses to evaluate schedules for the UVs. 
Further details of the OPS-USERS interface 
design and usability testing can be found in previ-
ous publications (Clare, Cummings, et al., 2012; 
Cummings et al., 2010).

Participants
The concept of multiple-UV supervisory con-

trol through a decentralized network is a futuristic 

concept without current subject matter experts. 
Thus 48 participants were recruited from a north-
eastern university setting that consisted of 35 
men and 13 women, ranging in age from 18 to 32 
years with an average age of 23.1 and a standard 
deviation of 3.8. Each participant filled out a 
demographic survey prior to the experiment that 
included age, gender, occupation, military experi-
ence, average hours of television viewing, video 
gaming experience, and perception of UVs.

Experimental Design
Previously, during the development of a 

computational system dynamics model of 

Figure 1. Map display.

Figure 2. Schedule Comparison Tool (SCT).
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human–automation collaborative scheduling 
(Clare, 2013), it was found that factors such as 
trust, expectations of performance, perceptions 
of performance, and cognitive workload were 
all potentially important in determining opera-
tor behavior and overall system performance. 
Thus, the main dependent variables for this 
experiment were mission performance, primary 
workload, and subjective ratings, taken both 
during the missions and postmission.

Overall mission performance was measured 
through percentage of area coverage, percentage 
of targets found, percentage of time that targets 
were tracked, number of correct hostile targets 
destroyed, and number of mistaken targets 
destroyed. The primary workload measure was a 
utilization metric calculating the ratio of the 
total operator “busy time” to the total mission 
time. Operators were considered “busy” when 
performing any task that required direct manual 
interaction, such as creating search tasks or typ-
ing in the chat box. All interface interactions 
were via a mouse with the exception of the chat 
messages, which required keyboard input.

Throughout the mission, a pop-up survey 
window (Figure 3) appeared in the lower left 
corner of the map display to ask the operator to 
provide three ratings.

This survey was used to gather near-real-time 
data on the operator’s perception of performance, 
expectations of how well the system should be 
performing, and trust in the AS. A Likert rating 
scale of 1 to 7 (low to high) was used because that 
scale is used in an empirically validated and com-
monly used trust-in-automation questionnaire 
(Jian, Bisantz, & Drury, 2000). These questions 
were asked every 2 min, starting at 60 s into the 
mission. The goal was to sample the operator’s 
perceptions, expectations, and trust level as fre-
quently as possible without distracting the opera-
tor from his or her primary tasks. Online probes to 
gather subjective ratings are commonly used in 

experiments such as these to measure workload 
and situation awareness (Endsley, Sollenberger, & 
Stein, 2000) and have been proposed as a method 
to measure trust (Miller & Perkins, 2010).

A survey was provided at the end of each mis-
sion asking the participant for a subjective rating 
of his or her confidence, workload, and satisfac-
tion with the plans generated by the AS on a Lik-
ert scale from 1 to 5 (low to high). At the end of 
the experiment, participants filled out a 12-ques-
tion survey that is commonly used to measure 
trust in automation and has been empirically 
validated (Jian et al., 2000).

In order to familiarize each participant with 
the interface, a self-paced, slide-based tutorial 
was provided. Participants then conducted a 
15-min practice session during which the exper-
imenter walked the participant through all the 
necessary functions. Each participant was given 
the opportunity to ask the experimenter ques-
tions during the tutorial and practice session. 
Each participant also had to pass a proficiency 
test, which was a five-question slide-based test.

The actual experiment for each participant 
consisted of two 20-min sessions. During test-
ing, the participant was not able to ask the exper-
imenter questions about the interface and mis-
sion. All data and operator actions were recorded, 
and Camtasia© was used to record the operator’s 
actions on the screen. Participants were paid $10 
per hour for the experiment, and a performance 
bonus of a $100 gift card was given to the indi-
vidual who obtained the highest mission perfor-
mance metrics (to encourage maximum effort).

Trust Priming Results
As expected, results showed that participants 

who experienced the positive-priming level had 
higher ratings of trust in the AS just prior to 
the actual experiment. Pairwise Mann-Whitney 
comparisons showed that the positive-priming 
group had 13.8% higher trust ratings (M = 6.19, 
SD = 0.66) compared to the no-priming control 
group (M = 5.44, SD = 0.81; Z = −2.570, p = 
.010) and 20.7% higher trust ratings compared 
to the negative priming group (M = 5.13, SD = 
0.92; Z = −3.186, p = .002. There were no sig-
nificant differences in pre-experiment trust rat-
ings between the negative-priming group and the 
no-priming control group (Z = −0.807, p = .420).

Figure 3. Pop-up survey window.
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More importantly, similar results were found 
for the average real-time rating of trust during 
the missions, whereby the positive-priming 
group had 14.9% higher trust ratings (M = 5.54, 
SD = 1.17) compared to the no-priming control 
group (M = 4.82, SD = 1.04; Z = −2.614, p = 
.009) and 24.2% higher trust ratings compared 
to the negative-priming group (M = 4.46, SD = 
1.01; Z = −3.741, p < .001). Again, there were no 
significant differences in average real-time trust 
ratings between the negative-priming group and 
the no-priming control group (Z = −1.036, p = 
.300). These results are shown in Figure 4.

It appears that positive a priori priming had 
the desired effect of raising initial trust in the 
automation. This higher trust level among the 
positive-priming group was maintained on 
average throughout the experiment, although 
trust across all groups during the mission was 
lower than pre-experiment trust, as shown in 
Figure 4b.

Overall, these results show that priming can 
be effective at influencing initial trust level, 
especially when the priming is meant to raise 
trust. Interestingly, after the end of the experi-
ment, there were no significant differences in 
trust across the three a priori priming groups 
according to a Kruskal-Wallis omnibus test of 
the 12-question postexperiment trust survey 
data, χ2(2, N = 48) = 1.986, p = .371. Thus, these 
data also provide evidence that operators adjust 
their trust level over time as they work with the 
AS, and thus the effects of priming are not 

enduring. This finding aligns with previous 
empirical evidence demonstrating that trust has 
inertia (Lee & Moray, 1994; Lewandowsky  
et al., 2000; Parasuraman, 1993), whereby the 
effect of perceived automation performance on 
trust is not instantaneous but changes over time.

System Performance Results
There were no significant differences in the 

system performance metrics, including the pri-
mary metric of area coverage, across the prim-
ing groups. However, a post-hoc analysis of the 
impact of frequency of computer and video game 
playing provided different results. This analysis 
was conducted for two main reasons. First, gam-
ing frequency was the most significant demo-
graphic predictor of utilization, implying that 
frequent gamers experienced lower workload 
levels (ρ = −0.450, p < .001). Second, in terms 
of the real-time subjective ratings measured via 
the interface shown in Figure 3, gaming fre-
quency correlated with higher average ratings 
of trust (ρ = 0.216, p = .037), perceived perfor-
mance (ρ = 0.248, p = .016), and expectations  
(ρ = 0.302, p = .003).

Although all of these correlations were weak to 
moderate in strength, the fact that gamers were 
faster at using the interface and had a somewhat 
higher propensity to trust the automation raised 
the question of whether frequent gamers reacted to 
a priori priming differently than nongamers. To 
facilitate this analysis, participants were divided 
into categories of gamers and nongamers based on 

Figure 4. Trust ratings comparison. (a) Pre-experiment ratings. (b) Average real-time ratings during the 
mission. Standard error bars are shown. N = 32 for each a priori priming level.
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participants’ self-reported frequency of playing 
computer and video games. Eighteen participants 
who reported that they were “weekly gamers,” 
“a-few-times-a-week gamers,” or “daily gamers” 
were classified as gamers. The other 30 partici-
pants reported that they played computer or video 
games once a month or less frequently.

There was a fairly equal distribution of gamer 
participants across the a priori priming levels: 
negative priming (5), no priming (7), and posi-
tive priming (6). Gamers who experienced the 
positive-priming level had higher ratings of trust 
in the AS prior to the experiment. Mann-Whitney 
pairwise comparisons showed that the positive-
priming gamers had 22.8% higher trust ratings  
(M = 6.67, SD = 0.49) compared to the no-priming 
gamers (M = 5.43, SD = 0.76; Z = −2.598, p = 
.009) and 19.1% higher trust ratings compared 
to the negative-priming gamers (M = 5.60, SD = 
0.52; Z = −2.364, p = .018). Similar results were 
found for the average real-time rating of trust 
during the missions, whereby the positive-
priming gamers had 23.9% higher trust ratings 
(M = 6.06, SD = 0.82) compared to the no-
priming gamers (M = 4.89, SD = 1.21; Z = 
−2.446, p = .014) and 35.2% higher trust rat-
ings compared to the negative-priming gamers 
(M = 4.48, SD = 1.22; Z = −2.882, p = .002). 
Again, there were no significant differences in 
average real-time trust ratings between the 
negative-priming gamers and the no-priming 
gamers (Z = −0.536, p = .592).

In terms of system performance, gamers who 
experienced negative priming had 10% higher 
average area coverage performance (M = 66.0%, 
SD = 8.4%) as compared to gamers with positive 
a priori priming (M = 59.6%, SD = 9.2%), which 
was a marginally significant difference (Mann-
Whitney Z = −1.715, p = .086). So gamers with 
positive priming had 35% higher average trust 
but 10% lower average area coverage perfor-
mance as compared to gamers with negative 
priming. These results are shown in Figure 5.

There were no other significant differences in 
system performance metrics among gamers 
based on priming. Also, a similar analysis of 
nongamers revealed that while a priori priming 
did affect their reported trust in the AS, there 
were no significant differences in behavior or 
system performance across the a priori priming 
groups for nongamers.

Gamers in the negative-priming group under-
stood the imperfections in the automation, 
reporting lower trust in the AS. However, these 
differences in performance did not manifest in 
the nongaming population. Why did priming of 
trust influence only the behavior of gamers in a 
way that affected system performance? One 
potential reason is that gamers may have a 
higher propensity to overtrust automation. As 
described earlier, gaming frequency correlated 
with higher average ratings of trust in the AS  
(ρ = 0.216, p = .037). Also, gamers began the 
mission with significantly higher ratings of trust 

Figure 5. Impact of a priori priming on gamers. (a) Average real-time rating of trust in automated 
scheduler. (b) Area coverage system performance by the end of the mission. n = 10 for negative-priming 
gamers and n = 12 for positive-priming gamers.
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(M = 5.91, SD = 1.22) as compared to all non-
gamers (M = 5.25, SD = 1.16) according to a 
Mann-Whitney test (Z = −2.254, p = .024) but 
eventually adjusted their trust to the same, lower 
levels of trust of nongamers (Figure 6a).

Additional evidence of the different reactions 
of gamers and nongamers to priming is provided 
by an analysis of total mouse clicks. Mouse 
clicks provide a measure of the level of involve-
ment of the operator and can serve as a proxy for 
actions to guide the automation (Bruni, Mar-
quez, Brzezinski, & Cummings, 2006; Janzen & 
Vicente, 1998). An ANOVA indicated a signifi-
cant difference in the total mouse clicks among 
the priming levels, F(2, 90) = 3.765, p = .027. 
There was also a significant effect for gamer 
versus nongamer, F(1, 90) = 4.458, p = .038, and 
a significant interaction effect between gamer/
nongamer and priming level, F(2, 90) = 4.135, p = 
.019. Gamers (M = 314, SD = 78.9) overall had 
11% fewer total mouse clicks on average as 
compared to nongamers (M = 352, SD = 79.7). 
There was no difference in the total mouse clicks 
of nongamers across the priming levels. How-
ever, gamers reacted to negative priming with a 
significantly larger number of mouse clicks (M 
= 381, SD = 95.6), whereas gamers with positive 
priming had the smallest number of mouse 
clicks (M = 277, SD = 42.1) of any group (Fig-
ure 6b). Gamers were prone to overtrusting the 
automation, and with positive priming, they did 
not take as much action to guide the automation.

As described previously, overtrust in imper-
fect automation can lead to the phenomenon of 
automation bias (Mosier et al., 1998), whereby 
operators accept an AS-generated solution while 
disregarding or neglecting to search for contra-
dictory information (Chen & Terrence, 2009; 
Cummings, 2004; Lee & Moray, 1994; Muir & 
Moray, 1996; See, 2002). Thus, positive priming 
may have induced automation bias in gamers, 
whereby they overtrusted the imperfect AS and 
did not intervene frequently enough. Negative 
priming may have pushed gamers to a more 
appropriate level of trust in the AS, helping them 
avoid automation bias and encouraging them to 
intervene more frequently.

Another possible reason is that priming trig-
gered a learned behavior in gamers. Wickens 
and Hollands (2000) proposed in their human 
information-processing model that working 
memory has a more direct impact on perception 
and response selection as compared to long-term 
memory. Previous studies have shown that prim-
ing can “spread activation,” meaning that the 
prime activates an association in memory prior 
to carrying out a task (Anderson, 1983; Niedeg-
gen & Rösler, 1999). Additionally, the strength 
of the effect of the prime on behavior is influ-
enced by the match between earlier experiences 
and the current situation (Domke, Shah, & 
Wackman, 1998; Lorch, 1982). Gamers, espe-
cially those who play action video games, have 
learned how to manually control characters or 

Figure 6. Comparison of gamers and nongamers. (a) Real-time trust ratings. (b) Total mouse clicks. 
Standard error bars are shown.
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vehicles and manipulate automation to obtain a 
desired result. Thus, negative priming of gamers 
may have activated this previously learned 
behavior to intervene more frequently in order to 
manipulate the automation to improve perfor-
mance. In contrast, nongamers likely did not 
have as much previous experience working with 
automation, and thus their behavior did not 
change significantly even though they reported 
lower trust.

The limitations of this analysis must be con-
sidered. There is a need for further experiments, 
as some priming results have been challenging 
to replicate in the psychology literature (Koss-
lyn & Rosenberg, 2011). The definition of a 
“gamer” is based on self-reported information, 
meriting further research to establish which 
types of video games and what frequency of 
video game play influence operator trust, behav-
ior, and performance. The sample size of gamers 
in this data set was small, only 18 participants 
conducting two missions each. Authors of future 
research should aim to evaluate these findings 
with a larger sample size of gamers and non-
gamers. Despite these limitations, initial evi-
dence shows that previous experiences with 
automation and video game play can have a sig-
nificant impact on initial trust level in automa-
tion and reaction to priming/training methods.

Conclusions
In this paper we described an experiment that 

was conducted to evaluate the validity of using 
priming to influence operator trust and system 
performance in a human–automation collab-
orative system for controlling multiple UVs. It 
was found that priming the initial trust level of 
operators using quotes from previous users of 
the system was successful at adjusting initial 
trust levels, with the strongest effect from posi-
tive priming. Participants who play computer 
and video games frequently were found to have 
a higher propensity to overtrust automation but 
also experienced lower workload levels. By 
priming these gamers to lower their initial trust 
to a more appropriate level, system performance 
was improved by 10% as compared to that of 
gamers who were primed to have higher trust 
in the AS. Gamers who experienced negative 
priming took more action to guide the fast, but 

suboptimal, automation as compared to gamers 
who experienced positive priming.

These results have interesting implications for 
personnel selection and training for future real-
time human–automation scheduling systems for 
multiple UVs. Although gamers may bring valu-
able skills, such as faster visual attentional pro-
cessing (Green & Bavelier, 2003) and faster 
encoding of visual information into short-term 
memory (Wilms, Petersen, & Vangkilde, 2013), 
they are also potentially prone to automation bias. 
One potential method for overcoming this propen-
sity to overtrust automation is through priming 
during training. However, results in this experi-
ment demonstrated that the effects of priming are 
not enduring; thus regular priming throughout 
missions may be necessary to maintain the appro-
priate level of trust, as Rice et al. (2008) proposed.
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Key Points
•• This study presents an experiment in which opera-

tors experienced different levels of trust priming 
prior to conducting simulated missions of super-
vising a decentralized network of heterogeneous 
unmanned vehicles with the assistance of an auto-
mated scheduling algorithm.

•• The results of the experiment showed that par-
ticipants who play computer and video games 
frequently had a higher propensity to overtrust 
automation, and with positive priming, they did 
not take as much action to guide the automation.

•• By priming gamers to lower their initial trust to a 
more appropriate level, system performance was 
improved by 10% as compared to that of gam-
ers who were primed to have higher trust in the  
automation.
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