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Abstract 

Military intelligence analysts are increasingly tasked to sift through enormous volumes of 

data to identify the proverbial intelligence “needle in a haystack.” One specific domain 

exemplifying this new intelligence paradigm is network analysis of terrorist organizations. 

This area of intelligence analysis uses mostly commercially available software applications 

to leverage the powers of social network theory against large terrorism data sets. An 

additional challenge is the fast paced development cycle for new sensors, which are capable 

of collecting data at unmanageable rates. As such, analysts are in dire need of new 

analytical techniques that give them the ability to effectively and efficiently transform the 

collected data into intelligible information and, subsequently, intelligence. Therefore, the 

primary focus of this thesis is to analyze two visualization techniques within social network 

analysis, with the intent to identify which mode of visualization is most effective for the 

intelligence tasks of: 1) identifying leaders and 2) identifying clusters.  

 To test the effectiveness of the visualizations, an experiment was conducted in 

which participants exploited matrix and node-link visualizations constructed from a 

surrogate terror data set. The objectives of this experiment were to test the effectiveness of 

the node-link visualization compared to the matrix visualization, based on two criteria: 1) 

effectiveness at identifying leaders and clusters within a network, and 2) the time it takes 

to complete each task. Participants in the experiment were all Air Force intelligence 

analysts and the experiment utilized a 2 (Visualization) x 2 (Task) mixed design study 

within-subjects on the visualization task factor and between-subjects on the visualization 

technique factor.  

 The node-link visualization resulted in statistically significantly better performance 

in all studied scenarios where the objective was identifying leaders. Although node-link 

also returned a better performance than the matrix for identifying clusters, there was not a 

statistically significant difference. The same lack of statistical significance holds true for the 

completion time dependent variable. In all cases, there was not enough difference between 
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the times produced by the node-link and matrix to determine if either offers a statistically 

significant decrease in the time it takes to complete tasks using either visualization.  

At this time, the matrix should not be universally integrated into the current 

methodologies used by analysts to exploit terror network visualizations until more 

research is conducted into the respective strengths and weaknesses within the intelligence 

domain. However, analysts should be independently encouraged to explore and adapt new 

methods of visualization into their current practices and identify new or improved versions 

of the visualizations identified within this thesis for future testing.  
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Thesis Supervisor: Peter Jones 

Title: Technical Staff, Lincoln Laboratories 

 

  



4 
 

Acknowledgements 

I would like to thank all those who influenced, inspired, and supported me during the 

development of my thesis and throughout my studies at MIT. It was only through this 

persistent mentoring that I was able to both excel and complete my research. 

Foremost, I would like to thank my advisor Professor Missy Cummings for believing 

enough in my abilities to advise my thesis while away from MIT. Your insights and 

comments helped me transform my ideas into a well-researched thesis I can be proud of, 

for that I am forever thankful. 

Equally important, was my thesis reader Erin Solovey. I am sincerely grateful for the 

time you spent reading the numerous drafts of my thesis and experimental protocols. Your 

insights and mentoring ensured I was able to conduct a successful human experiment. 

Lastly, thank you for guiding my writing and, when necessary, motivating me to create a 

thesis that was on par with HAL standards. 

I would also like to thank my thesis advisor at Lincoln Laboratories, Dr. Peter Jones. 

Your guidance early-on in my writing process and during the design of my experiment was 

instrumental to the successful completion of both. Above all, I truly appreciate the time you 

sacrificed from your primary responsibilities to advise my thesis. 

To my supervisors and coworkers at Hanscom, Air Force Base; thank you for your 

patience and support as I undertook a full-time course load at MIT in parallel with my full-

time job.  

To the organization of Air Force intelligence analysts who participated in my study; 

although you asked to remain anonymous, please know that I am forever indebted for your 

willingness to support my research and your encouragement for a fellow analyst. You are 

the heroes who I endeavored to support with this thesis. 

I would also like to thank my parents for their continued love and support. Your 

selfless understanding and support of my aspirations has always been a key component to 

all my successes. 

 

Chris Berardi 

MIT 

January, 2013 

  



5 
 

Table of Contents 

Chapter 1 .................................................................................................................................................................. 9 

1.1 Motivation .................................................................................................................................................... 9 

1.2 Understanding the Problem ............................................................................................................... 11 

1.2.1 Relationships between data, information, and intelligence .......................................... 12 

1.2.2 The Intelligence Process .............................................................................................................. 14 

1.2.3 Problem Statement ........................................................................................................................ 16 

1.3 Research Goals ........................................................................................................................................ 17 

1.4 Thesis Overview ..................................................................................................................................... 18 

Chapter 2 ............................................................................................................................................................... 20 

2.1 Historical Perspective on Visualizations ....................................................................................... 20 

2.2 Literature Review ................................................................................................................................... 28 

2.2.1 Social Network Analysis and Terrorism ................................................................................ 28 

2.3 Literature Gaps ........................................................................................................................................ 32 

2.4 Fundamental Concepts in Network Analysis ............................................................................... 35 

2.5 Visualizations ........................................................................................................................................... 37 

2.5.1 Node-link Visualizations .............................................................................................................. 38 

2.5.2 Matrix Visualizations .................................................................................................................... 39 

2.6 Social Network Measures .................................................................................................................... 41 

2.6.1 Betweenness Centrality ............................................................................................................... 41 

2.6.2 Closeness Centrality ...................................................................................................................... 42 

2.7 Conclusion ................................................................................................................................................. 43 

Chapter 3 ............................................................................................................................................................... 44 

3.1 Cognitive Task Analysis ....................................................................................................................... 44 



6 
 

3.1.1 Scenario Task Overview .............................................................................................................. 47 

3.1.2 Cognitive Process Flow Charts .................................................................................................. 51 

3.2 Information Processing Model for Terror Visualizations ....................................................... 58 

3.2.1 External Inputs ................................................................................................................................ 59 

3.2.2 Internal Inputs ................................................................................................................................. 62 

3.2.3 Perception ......................................................................................................................................... 63 

3.2.4 Comprehension ............................................................................................................................... 63 

3.2.5 Action .................................................................................................................................................. 66 

3.3 Conclusion ................................................................................................................................................. 66 

Chapter 4 ............................................................................................................................................................... 68 

4.1 Overview .................................................................................................................................................... 68 

4.2 Visualization Data Set ........................................................................................................................... 68 

4.2.1 Descriptive Statistics of Data Set .............................................................................................. 70 

4.3 Node-Link Visualizations .................................................................................................................... 71 

4.4 Social Network Matrices ...................................................................................................................... 73 

4.5 Visualization performance hypotheses ......................................................................................... 78 

4.5.1 Identifying Clusters ....................................................................................................................... 79 

4.5.1 Identifying Leaders ........................................................................................................................ 80 

4.6 Conclusion ................................................................................................................................................. 80 

Chapter 5 ............................................................................................................................................................... 81 

5.1 Experiment Objectives ......................................................................................................................... 81 

5.2 Experimental Hypotheses ................................................................................................................... 81 

5.2.1 Performance at Identifying Leaders ....................................................................................... 82 

5.2.2 Performance at Identifying Clusters ....................................................................................... 82 

5.3 Experimental Tasks ............................................................................................................................... 83 



7 
 

5.3.1 Task 1: Identification of Leaders .............................................................................................. 83 

5.3.2 Task 2: Identification of Clusters .............................................................................................. 85 

5.4 Experimental Design ............................................................................................................................. 86 

5.4.1 Independent Variables ................................................................................................................. 86 

5.4.2 Dependent Variables ..................................................................................................................... 86 

5.5 Procedure .................................................................................................................................................. 88 

5.6 Data Collection ........................................................................................................................................ 90 

5.7 Conclusion ................................................................................................................................................. 90 

Chapter 6 ............................................................................................................................................................... 91 

6.1 Overview .................................................................................................................................................... 91 

6.2 Participants ............................................................................................................................................... 91 

6.3 Results by Visualization ....................................................................................................................... 93 

6.3.1 Identification of Leaders Performance .................................................................................. 93 

6.3.2 Identification of Clusters Performance .................................................................................. 98 

6.3.3 Time to Complete Performance .............................................................................................. 101 

6.4 Conclusion ............................................................................................................................................... 103 

Chapter 7 ............................................................................................................................................................. 104 

7.1 Identification of Leaders Performance ........................................................................................ 104 

7.2 Identification of Clusters Performance ........................................................................................ 105 

7.3 Subjective Responses .......................................................................................................................... 106 

7.3.1 Matrix Subjective Responses ................................................................................................... 106 

7.3.2 Node-link Subjective Responses ............................................................................................. 107 

7.3.3 Universal Subjective Responses ............................................................................................. 108 

7.4 Recommendations ............................................................................................................................... 109 

7.4.1 Visualization Experiment Recommendations ................................................................... 109 



8 
 

7.5 Conclusions ............................................................................................................................................. 110 

7.5.1 Research Objectives and Findings ......................................................................................... 110 

7.5.2 Recommendations and Future Work.................................................................................... 112 

Appendix A ......................................................................................................................................................... 114 

Appendix B ......................................................................................................................................................... 120 

Appendix C .......................................................................................................................................................... 122 

Appendix D ......................................................................................................................................................... 127 

Appendix E .......................................................................................................................................................... 132 

Appendix F .......................................................................................................................................................... 137 

Appendix G ......................................................................................................................................................... 146 

Bibliography ....................................................................................................................................................... 153 

 

 

  



9 
 

 

 

 

1Chapter 1 

 

Introduction  

“It will not be quick and it will not be easy. Our adversaries are not one or two terrorist 

leaders, or even a single terrorist organization or network. It's a broad network of individuals 

and organizations that are determined to terrorize and, in so doing, to deny us the very 

essence of what we are: free people. They don't live in Antarctica. They work, they train and 

they plan in countries. They're benefiting from the support of governments. They're benefiting 

from the support of non-governmental organizations that are either actively supporting them 

with money, intelligence and weapons or allowing them to function on their territory and 

tolerating if not encouraging their activities. In either case, it has to stop. 

We'll have to deal with the networks…This will take a long, sustained effort. It will require the 

support of the American people as well as our friends and allies around the world.” 

Donald Rumsfeld [1] 

1.1 Motivation 

Since the September 11, 2001 attacks on the United States, a momentous amount of 

attention has shifted to the fields of intelligence and terrorism. In the 11 years since that 

ominous attack, the intelligence community has made substantial advancements in their 

ability to collect data on adversaries; however, equal progress has not been made in the 

analytical technologies that are required to sift through the new information. In 2010, 

Lieutenant General David A. Deptula, then Air Force Deputy Chief of Staff for Intelligence, 

Surveillance and Reconnaissance, captured this new paradigm when he remarked that in 
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the not too distant future military intelligence organizations will be, “swimming in sensors 

and drowning in data” [2].  

David Shedd, deputy director for the Defense Intelligence Agency, elaborated on the 

magnitude of the data problem within the post-September 11 intelligence community, “The 

day after — should we ever be attacked — you will say it was somewhere, you just couldn’t 

either find it, or worse yet, connect it . . . It’s just borne out of the enormity of the data that 

is out there. As a veteran of what has been termed intelligence failures and occasionally an 

intelligence success, I can tell you that will be viewed as failure” [3]. Shedd continued to 

explain that the problem is how an analyst processes all the data and finds the proverbial 

intelligence needle in a haystack. “The problem for that analyst today is you can’t possibly 

[process all data] in a 24 hour day, if they were to work 24 hours a day, and get through all 

that data even in their area of responsibility,” [3]. 

Today, it is all but accepted that the intelligence community is drowning in data and 

has recognized the presence of a “big data1” problem [4]. To combat this, there is a growing 

movement to improve the analytical tools offered to intelligence analysts. CIA spokesman 

Preston Golson argues, “the challenges facing our analysts today is the volume of 

information…Strong search tools are necessary because the signal-to-noise ratio is very 

high” [4]. One specific domain within this movement is network analysis of terrorist 

organizations. This area of intelligence analysis uses mostly commercially available 

software applications to leverage the powers of social network theory against large 

terrorism data sets.  

Over the past 11 years, some software applications have made incremental 

improvements to the ways an analyst manipulates data and interacts with a given data set 

by incorporating advanced algorithms and improved user control interfaces. However, the 

basic methods of visualizing terror network data sets have changed very little during the 

same period of time. As such, the primary focus of this research is analyzing the 

visualizations of social network analysis in the domain of intelligence (Figure 1-1), with the 

                                                        
1 Big data is an information technology term used to describe stores of data that are far too large and complex 
to analyze with current applications or database management tools. 
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intent to identify which modes of visualization are most effective for the intelligence tasks 

of: 1) identifying leaders and 2) identifying clusters. These two tasks were chosen because 

of their reoccurring importance highlighted in both the historical perspective and literature 

review in Chapter 2, as well as during the knowledge elicitation for a hybrid cognitive task 

analysis outlined in Chapter 3. Additionally, these research observations are corroborated 

by academic research into social network task taxonomy [5, 6] and recognized to be 

consistent with the primary tasks of social network analysis [7, 8]. 

 

In parallel with the slow development of analytical software in the intelligence 

domain, academia continues to make strides, particularly in the field of visualizing social 

networks (see Chapter 2: Literature Review for a full list of works). However, only a 

minority of this research has transferred into intelligence methods and techniques. As such, 

more research is required in this specific niche of social network analysis in the domain of 

intelligence.  

1.2 Understanding the Problem 

To understand why visualizations of social network analysis are critical, it is imperative to 

understand where they fit in the intelligence creation process. This process involves the 

transformation of data to information, then information to intelligence. Before continuing, 

it is important to note one key distinction between information and intelligence; 

intelligence is predictive in nature, allowing the anticipation or prediction of future 

Figure 1-1: Scope of Thesis Research 
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situations. Sections 1.2.1 and 1.2.2 will build upon this difference and explain how 

intelligence is created and the six phase process intelligence analysts employ to create 

intelligence. As a result of understanding of the relationship between data, information, 

intelligence and the complex cognitive processes an analyst uses to transform data into 

intelligence, the reader will gain appreciation for the points during the process which 

bottleneck the production of intelligence [9]. 

1.2.1 Relationships between data, information, and intelligence 

Intelligence is only of value when it is available and contributes to, or shapes, a decision-

making process by, “providing reasoned insight into future conditions or situations” [9]. 

However, this same axiom does not hold true for raw data. Therefore, the burden is on the 

intelligence analyst to transform raw data into intelligence (Figure 1-2). This 

transformative process begins with the collection of data from sensors. The first step is to 

process the raw data into a form intelligible by an analyst. Depending on the type of raw 

Figure 1-2: Relationship of Data, Information, and Intelligence (from [9]) 
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data, this step is either automated as in the production of an image from a camera, requires 

an analyst, in limited cases, to transform the raw data into information such as language 

translation. In the context of social network analysis, this stage typically involves 

transforming the tabular raw data into a visualization, or series of visualizations. This 

specific transformative process (data → information) is also known within the intelligence 

community as processing and exploitation2, which is explained in section 1.2.2.  

Although seemingly simple, this stage is a key juncture in the transformative 

process because it produces the medium through which information is presented to an 

analyst and provides the basis from which intelligence is created. Errors made in the 

transformation of data to information will propagate throughout the process and could 

potentially result in misleading intelligence. Furthermore, a failure to transform data into 

an effective form of information limits the potential of the data and could inhibit the 

amount of intelligence produced. 

After data is transformed into information, the subsequent information can be 

integrated and analyzed to produce intelligence. Within the intelligence community this 

process is referred to as analysis and production, which will be defined in the next section 

titled The Intelligence Process. The transformation of information to intelligence is 

accomplished through a structured sequence of actions. The first is the integration of 

multiple sources of information. During integration data is collated and marshaled 

according to predetermined criteria, which allows for comparison of similar information 

during the next step. Following integration is evaluation, during which each new item of 

information is evaluated with respect to, “the reliability of the source and the credibility of 

the information” [10]. Being that not all information is of equal credibility, this step is 

critical to ensuring the most credible information is given the highest weight during 

analysis. Once information is evaluated, it is ready for analysis. During analysis, 

assessments3 are made by comparing already integrated and evaluated information; these 

assessments are combined and used to discern patterns or links. Finally, the analysis and 

                                                        
2 For the purposes of this thesis exploitation is defined as, “the process by which raw data is transformed into 
information that can be readily disseminated, used, and transmitted by an analyst” [10]. 
3 For the purposes of this thesis assessment is defined as, a prediction of the future state of an organization, 
individual, or adversary. 
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production process concludes with interpretation, which is a largely inductive reasoning 

process in which available information is evaluated. From this sequence of integration, 

evaluation, analysis, and interpretation, intelligence is finally produced. Although, this is a 

generic process which applies to all forms of intelligence, within the context of social 

network analysis, analysis would be conducted by evaluating multiple visualizations of 

social networks and interpreting the information resident in each of those visualizations to 

create a prediction about the terror network, or networks, being analyzed (see Figure 1-4). 

1.2.2 The Intelligence Process 

The formal intelligence process, which facilitates the transformation of data described in 

section 1.2.1, is defined by the Joint Chiefs of Staff in Joint Publication 2-0 as the intelligence 

process [9] (Figure 1-3). This process consists of six interrelated phases of intelligence 

operations. Each of these phases contains a wide-range of activities conducted by analysts 

for the purpose of providing decision-makers with timely and relevant intelligence. Each 

one of these phases can be deconstructed into many distinct sub-categories; however, for 

the purposes of this thesis only an abstraction of each category is required to gain an 

appreciation for the process as it pertains to social network analysis.  

Figure 1-3: The Intelligence Process (from [9]) 
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 Planning and Direction – “The determination of intelligence requirements, 

development of appropriate intelligence architecture, preparation of collection plan, 

and issuance of orders and requests to information collection agencies” [11]. This 

category specifically involves the intelligence preparation for rapid response to 

possible crises and contingency operations by organizing intelligence 

infrastructures, which are capable of responding to a range of operations set forth 

by a specific military unit’s mission. 

 Collection – “The acquisition of information and the provision of this information to 

processing elements” [11]. At this stage, it is important to note that data is acquired, 

not intelligence. In social network analysis, this stage consists of collecting the 

tabular data that is used to create visualizations.  

 Processing and Exploitation – “the conversion of collected information into forms 

suitable to the production of intelligence” [11]. After raw data is collected during the 

collection category, it is converted into forms of information that can be readily used 

by analysts. A hallmark of this category of operations is the actual transformation of 

data into information. In the context of social network analysis, this is the stage 

where the raw data gathered during the collection process is transformed into 

visualization. 

 Analysis and Production – “The conversion of processed information into intelligence 

through the integration, evaluation, analysis, and interpretation of all source data 

and the preparation of intelligence products in support of known or anticipated user 

requirements” [11]. This process results in an analyst analyzing a social network 

visualization for patterns, links, or other items of intelligence value. 

 Dissemination and Integration – “The delivery of intelligence to users in a suitable 

form and the application of the intelligence to appropriate missions, tasks, and 

functions” [11]. This category is simply the compiling of intelligence products 

produced in the analysis and production category and delivery to the intended 

consumer. In the context of social network analysis, this task would result in 

compiling a textual report of the intelligence analysis and disseminating it to the 

respective consumer. 
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 Evaluation and Feedback – “Continuous assessment of intelligence operations 

throughout the intelligence process to ensure that intelligence requirements are 

being met” [11]. During evaluation and feedback, an analyst assesses the accuracy of 

his or her intelligence produced during the analysis and production phase.  

1.2.3 Problem Statement 

As outlined in section 1.1, the problem facing analysts today is an abundance of data and no 

effective means to analyze the data. This indicates a potential problem within the transition 

of data to information and focuses the problem down to the processing and exploitation 

phase of the intelligence process. During this phase, as shown in Figure 1-4, an analyst 

most commonly transforms the data into a node-link visualization (discussed extensively in 

section 2.2). However, little to no emphasis is given to creating alternating modes of 
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visualization that could result in a more effective transformation of data to information. 

Furthermore, there is little existing research into the effectiveness of one form of 

visualization over another in the domain of intelligence (discussed in the literature review 

in Chapter 2). Therefore, an experiment into the effectiveness of different forms of social 

network visualization is needed to determine the most effective means of transforming the 

data into information; this is the focus of this thesis research. 

1.3 Research Goals 

At the most basic form, this thesis demonstrates that there is more than one means to 

effectively visualize terror networks within the domain of military intelligence. Specifically, 

the goal of this research is to demonstrate that some visualization methodologies may be 

more effective at certain tasks and, furthermore, that no single method of terror network 

visualization is a “one-size-fits-all” solution. The scope of this research limits the 

comparison to two visualization methods. The first is the node-link visualization, which 

serves as the control since it is the most ubiquitous method of terror network visualization 

used within the intelligence domain today. The second is the matrix network visualization, 

which is a promising method of social network visualization studied commonly within the 

academic community [6, 12]. However, it is important to note that the goal of this work is 

not to prove that the matrix is a replacement for the node-link visualization; rather, it is to 

demonstrate that the matrix may be more effective at certain analytical tasks than the 

node-link and can serve as a companion to node-link. The objectives and sub-objectives of 

this goal are as follows: 

 Objective 1: Understand the cognitive tasks associated with exploiting terror 

network visualizations 

o Understand the cognitive model of analyzing terror network visualizations 

o Understand if and/or where the cognitive model can be augmented 

 

 Objective 2: Adapt a matrix visualization that is useable by intelligence 

analysts 



18 
 

o Adapt a visualization that draws from engineering psychology and human 

performance to offset any limitations identified in the cognitive task analysis  

 

 Objective 3: Test the efficacy of the matrix visualization against the current 

domain standard method (node-link) visualizations using domain experts. 

o On the aggregate, show statistical evidence which differentiates the matrix 

from the control 

 

 Objective 4: Discuss the results of the experiment in a manner that is 

accessible by members within the military intelligence community. 

Since the overarching goal is, “investigate means to effectively visualize terror 

networks” the results of this work must be understandable by members within the 

community where the change is targeted. Therefore, maximum effort is placed on creating 

models and using academic frameworks that will not obfuscate the results for the average 

military intelligence reader. Even if this work proved the matrix is more effective to a 95% 

statistical significance, the results are useless if the military analysts who create and 

analyze the visualizations fail to comprehend the cognitive model, visualizations, or the 

experiment. 

1.4 Thesis Overview 

To answer the research objectives outlined above the thesis was organized in the following 

manner: 

 Chapter 1, Introduction: identifies the problem and describes the motivation and 

research objectives of this thesis 

 

 Chapter 2, Background: provides a summary and background of node-link and 

matrix social network visualizations and outlines the past research done in regards 

to social network visualizations with in the domain of intelligence. 
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 Chapter 3, Cognitive Task Analysis: outlines the cognitive task analysis used to satisfy 

the goals of this research, which includes scenario task overviews of visualization 

exploitation and cognitive flow-charts of visualization exploitation. An information 

processing model for exploitation terror network visualizations is introduced and 

described with respect to the cognitive task analysis. 

 

 Chapter 4, Terror Network Visualizations: identifies and explains the characteristics 

of the visualizations that will be used in the human performance experiment 

described in Chapter 5. 

 

 Chapter 5, Human Performance Experiment: discusses the experimental hypotheses 

and outlines details about the variables, participants, and procedures employed in 

the human experimentation. 

 

 Chapter 6, Results:  presents the analysis of variations between the visualizations 

and the statistical results of the experiment described in Chapter 5 

 

 Chapter 7, Discussion and Conclusion: describes the overall findings of this research 

respective to the hypotheses and discusses the applicability of the results to future 

exploitation of terror networks. This chapter concludes by summarizing the 

problem, motivation, and objectives of this research and proposes potential areas of 

research to extend the work done in this thesis. 
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2Chapter 2 

 

Background 

This chapter begins by providing a historical perspective on visualizing social networks 

and a literature review on social network analysis within the domain of intelligence. After 

which, the chapter covers fundamental concepts of social network analysis and defines 

terms which will be used throughout the thesis. The chapter then provides a detailed 

description of node-link and matrix visualizations and concludes with identifying gaps in 

current social network visualization research for consideration when developing the 

human experimentation.  

2.1 Historical Perspective on Visualizations 

In social sciences, the field of social network analysis aims to comprehend how groups of 

individuals function and consequentially, how they behave. It is, “a methodological form of 

analysis that fuses mathematics, anthropology, psychology, and sociology” [13]. In the 

domain of criminology and terrorism research, social network analysis is an effective 

model for capturing the structure of a nefarious organization, because it permits an analyst 

to understand the structural relevance of individual actors and better understand the 

relationship of one actor to another, or to the group at large. Specifically within the context 

of terror networks, social network analysis offers three key advantages over traditional 

forms of intelligence analysis: 1) the ability to detect clusters, 2) identification of important 
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actors and their roles, and 3) discovery of patterns of interaction [14]. These are critical 

factors, because correctly exploiting networks can assist an analyst, “in predicting behavior 

and decision-making within the network . . . [and] to evaluate specific courses of action that 

will influence the members of a social network in a desirable manner” [15].  

Social network analysts at large, use graphical representations or visualizations to 

study the patterning of the social interactions among actors. For the most part, they seek to 

discover two types of patterns: 1) social groups, defined as collections of actors who are 

tightly linked to one another; or 2) social positions, defined as actors who are linked into a 

total social system in a defining way [16]. Since the beginning of social network analysis, 

researchers have used graphical representations to identify one or both of these two types 

of patterning. Some visualizations methods are constructed explicitly to identify social 

groups and, conversely, other methods were designed to reveal social positions. The two 

most common forms of visual representation are historically known as points and lines, 

(referred to herein as node-link) and matrices [16]. However, the first form of visualization 

is far more ubiquitous and commonly used as the primary technique for representing social 

network data [16, 17, 18], which some scholarly authors argue is because of its naturalness 

and ability to make detailed connections explicit [17]. 

 To understand the prominence of node-link visualizations, as well as the rise and 

fall of the matrix, it is important to trace the roots of social network visualization back to 

the seminal works done during the 1930s. Freeman, in his authoritative work on the 

history of visualizing social networks, categorizes the evolution of visualizations into five 

main phases [16]: 

 Phase 1: Hand Drawn Images in Social Network Analysis (circa 1930s) 

 Phase 2: Point and Line Images Grounded in Computation (circa 1950s) 

 Phase 3: Computer Generated Point and Line Images (circa 1970s) 

 Phase 4: Screen Oriented Point and Line Images (circa 1980s) 

 Phase 5: Network Images in the Era of Web Browsers (mid-1990s to present) 
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Phase 1: Hand Drawn Images in Social Network Analysis (circa 1930s) 

Jacob Moreno, the inventor of sociometry4, first introduced hand-drawn graphical 

representations as a fundamental part of social network analysis in the 1930s, where he 

extensively used node-link visualizations and introduced several innovations that were 

later adopted by other scholars [19, 20, 21]. His innovations included the development of 

directed relationships (Figure 2-1(b), where arrows represent the directed links between 

nodes) and the use of different colors and shapes as categorical schemes for various classes 

of actors (Figure 2-1(a)). Most notably, Moreno’s work also emphasized the idea of placing 

nodes according to meaningful geographical positions to make the relative power of a 

specific node more apparent. This theory is the foundation for the many different forms of 

node-link layout algorithms used today in contemporary social network analysis. Moreno’s 

seminal work is significant because almost all of the techniques he proposed 80 years ago 

are still in use today and most innovations discussed in later phases can be traced back to 

one of Moreno’s works. 

                                                        
4 Sociometry is the precursor to social network analysis and much of social psychology. Defined by Mareno 
himself as, “the mathematical study of psychological properties of populations, the experimental technique of 
and the results obtained by application of quantitative methods” [20]. Wasserman and Faust offer a more 
simple definition, “the measurement of interpersonal relations in small groups” [7].  

(a) (b) 

Figure 2-1: (a) Classifying nodes with shapes [17], (b) Moreno’s directed graph of a collection of 

babies [17] 
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Phase 2: Point and Line Images Grounded in Computation (circa 1950s) 

The introduction of computational procedures aided researchers with the problem of 

determining locations for nodes relative to each other on a plane. During the period from 

the 1950s through the 1970s the most prominent methods for positioning nodes were: 

factor analysis [22, 23], multidimensional scaling [24], and correspondence analysis [25]. 

The introduction of computers offered two key advantages to these methodologies: 1) the 

opportunity for more elaborate computations and 2) easily replicable results [16]. As such, 

researchers were now able to take large complex data sets and calculate multiple variables 

and then analyze the correlations among the variables.  

This advancement yielded many significant outcomes, but the one most germane to 

this thesis is the ease in which researchers could now manipulate matrix data. This 

increased accessibility of matrices to researchers greatly contributed to the evolution of the 

matrix as a viable visualization methodology, because the rows and columns of a matrix 

could now be permutated according to optimization algorithms; so that readily accessible 

patterns arose on the screen [17]. Figure 2-2 is an example of an early computational 

matrix manipulation done by Laumann and Guttman using multidimensional scaling to find 

the best possible arrangement of nodes [24]. Approximately one year after Laumann and 

Figure 2-2: Matrix visualization between corporations and corporate directors [21] 
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Guttman’s work, Jacques Bertin published the seminal works on matrix visualizations [26, 

27], which outlined a taxonomy of visualization methodologies and argued the relevance 

and importance of matrices, which he referred to as “the reorderable matrix,” in the 

domain of network analysis (Figure 2-3).  

 

 As the discussion of later phases will reveal, this phase is often characterized as the, 

“era of graph theory” [7], during which “sociograms waned in importance as 

sociomatricies became more popular as more mathematical and statistical indices were 

invented that used sociomatricies” [7]. As such, this era marks the pinnacle of matrix based 

research with respect to social network analysis, which, from this point forward, takes a 

secondary role to node-link visualizations. 

In addition to the opportunity for more elaborate computations, the other hallmark 

of this period is the ability to easily produce replicable results. As a result of computational 

approaches that utilized the same algorithms, different researchers were now capable of 

producing a near identical visualization for the same data set. While seemingly trivial, this 

offered a common denominator to the academic community for the comparison and 

collaboration of social network research data.  

Phase 3: Computer Generated Point and Line Images (circa 1970s) 

While the computational advancements in Phase 2 offered many benefits, researchers were 

still drawing the visualizations from their analyses by hand. However, with the 

introduction of the earliest personal computers in the 1970s two main innovations 

occurred: 1) the wider availability of computational resources to a larger community and 

Figure 2-3: Example of a recordable matrix used by Bertin to show groups of nodes with similar 

characteristics [12] 
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2) the possibility of printing images from a computer, as opposed to drawing them by hand 

[17]. During the first half of this period, most efforts went into the development of 

applications for analysis of social network data and little attention was devoted to getting 

computers to draw network graphics [28]. However, in 1978, Lesnaik et al., and Klovdahl 

separately developed programs which could take outputs from other social network 

analysis software and produce graphic images [16]. Four years later Klovdahl published a 

picture produced by an early social analysis tool, ORTEP [29] (Figure 2-4(a)), and seven 

years later Klovdahl published an early three-dimensional picture using a follow-on 

visualization tool called View_Net [30] (Figure 2-4(b)) (for a complete history of computer 

programs in social network analysis see [28]). This period documented many 

advancements in social network analysis software: specifically, developments in the 

automated production of node-link visualizations. However, no simular advancements in 

matricies occurred. 

While revolutionary at the time, these early computer generated images were 

limited because they most commonly produced visualizaitons on black and white plotters. 

However in the late 1980s, with the widespread use of screen oriented personal 

computers, a shift occured from paper-based graphics to screen-oreinted visualizations. 

(a) (b) 

Figure 2-4: (a) Klovdahl's 1982 computer generated visualization [26], (b) Klovdahl’s 1988 three-

dimensional visualization [27] 
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This shift to screen images permitted much more flexibility and, for the first time since 

Moreno’s work in the 1930s, facilitated the use of colors in visualizaitons of social networks 

[16, 17, 28].  

Phase 4: Screen Oriented Point and Line Images (circa 1980s) 

This phase of social network visualization is defined by the development of many 

multifaceted analysis tools that included access to various algorithms for locating points, 

along with various options for moving and editing points and changing their shapes and 

colors [16]. Four of the most popular tools developed during this phase, which are all node-

link focused, were Krackplot developed by Krackhardt, Blythe and McGrath (1995), Pajek 

developed by Batagelj and Mrvar (1996), Netvis developed by Krempel (1996), and 

Multinet produced by Richards and Seary (1996) [31]. These tools offered researchers an 

unprecidented amount of customization when analyzing data and the ability to produce 

visualizations which easily communicated patterns. To illistrate the magnitude the effects 

this phase had on social network visualization, Freeman built the comparison depicted in 

Figure 2-5 [16].  

(a) (b) 

Figure 2-5: (a) Original image from [97] of a homeless woman’s social support network; (b) A 

Krackplot rendition of the data in Figure (a) [15] 



27 
 

Using the new analytical tools, such as Krackplot, a user can now assign shapes and 

colors for each social group and use the spring embedded layout algorithm within 

Krackplot to clearly outline the three different social groups within the network. In this 

regard these tools were a resounding success. However, these programs were still limiting 

because they each used a specific format that was only accessible by other users with the 

same program. As a result, many visualizations could be created and distributed for 

corroboration, but unless the receivers used the same program he or she could only inspect 

the image. This prohibited further manipulation of the visualizations and thus, the possible 

discovery of new insights. 

Phase 5: Network Images in the Era of Web Browsers (mid-1990s to present) 

Finally, in the fifth phase the availability of the Internet allowed for the worldwide 

proliferation of complex computational algorithms and the rapid exchange of images and 

results. This phase introduced many new technical formats of visualizations; however, the 

most important result of this phase is the evolution of visualization standard practices. 

Freeman argues this evolution started because most early images were constructed by the 

application of ad hoc rules. As time progressed and as visualization techniques became 

more replicable, images have increasingly been constructed by applying standardized 

procedures for placing nodes [16]. Early applications, as discussed in phase 2, used factor 

analysis, multidimensional scaling, or correspondence analysis. However, more recently 

these methods have been superseded by various forms of spring embedders, “which is a 

purely algorithmic technique to find meaningful placements of nodes using the idea of 

seeing the connections between nodes as springs” [17] to place points in node-link 

visualizations. 

 Although the crescendo of matrix research occurred in the late 1960s with Bertin’s 

work, Phase 5 shows the first signs of a resurrection of the matrix. During this period many 

works have endeavored to add to Burtin’s insights [32, 33, 34, 35]. While these works are 

still relatively few, they show promise and a renewed academic interest using matrix 

visualizations for social network analysis. 
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2.2 Literature Review  

As discussed in section 2.1, social network analysis as a field of study dates back to the 

1930’s and contains contributions from notable pioneers, such as Jacob Mareno [19] and 

Jacques Bertin [27]; however, social network analysis in the context of criminal, covert5, or 

terrorism networks is a relatively new field which traces its oldest academically 

documented roots to the early 1980s.  

2.2.1 Social Network Analysis and Terrorism 

Over the past thirty years, academic research into the application of social network 

analysis in crime, intelligence, and covert networks has steadily increased. The catalyst 

behind the slow evolution of this social network analysis niche is traceable back to a 

seminal work done by Malcolm Sparrow [36] on the application of network analysis 

techniques to intelligence analysis, which focused on using social network analysis to 

identify network vulnerabilities. Sparrow argued that intelligence agencies, “have 

remained for the most part relatively unsophisticated in their use of analytic tools and 

concepts” [36]. As an answer to this problem, Sparrow proposed social network analysis, 

arguing it had a lot to offer intelligence agencies, which could potentially use social 

network analysis to analyze the structural significance of a network, discover central actors 

within organizations, and understand roles and positions within a network. However, 

despite the immense potential for social network analysis within this domain, Sparrow 

correctly asserted there was little research overlap between the fields of social network 

analysis and intelligence6. Sparrow made three key assertions within his paper to both 

support his position and start the terrorism social network analysis movement: 1) the 

relevance of social network analysis to intelligence analysis, 2) the significant potential 

within the intelligence field for adopting social network analysis, and 3) the mutual 

rewards obtained from collaboration between both fields [36]. 

                                                        
5 “covert networks” or “dark networks” are often used interchangeably in literature for adversarial 
subversive human networks – terror networks. 
6 Prior to Sparrow’s work there were only three literary sources which tied social network analysis to the 
criminal or intelligence domains [101] [55] [102]. Those works, while pioneering, offered only 15 pages of 
combined insight into the field.  



29 
 

Equally important to his efforts to increase the proliferation of social network 

analysis, Sparrow went on to define the four characteristics of covert or criminal networks 

that separate them from overt networks: 

1. Size – Covert networks can be “huge, with many thousands of nodes” [36]. 

2. Incompleteness – Covert or criminal network data is, “inevitably incomplete;” some 

pieces of data are almost always missing or misreported. 

3. Fuzzy Boundaries –Borders in covert networks will be unclear and may make it 

difficult to determine the associations of each actor. 

4. Dynamic – New connections are made frequently resulting in a constantly evolving 

network. 

These characteristics, further substantiated in research by Baker and Fulkner [37], 

are still widely considered to be accurate and remain a key challenge to the adaptation of 

social network analysis in the domains of intelligence and criminal analysis because these 

properties produce “computational nightmares, demand algorithmic complexity, and 

require substantial advances in methods of statistical inference.” [36] 

Since Sparrow’s work, published in 1991, several authors have attempted to 

increase the overlap between the two fields by offering examinations of criminal or covert 

networks through the use of social network analysis, such as: Baker and Faulkner’s 

examination of illicit networks within the heavy electrical equipment industry [37], Klerks’ 

critical analysis of criminal organizations in the Netherlands and the techniques for 

examining these networks [38], and Deckro and Renfro’s social network analysis of the 

Iranian Government [15]. While each of these works offered amplifying information on the 

application of social network analysis to the disciplines of military and criminal analysis, 

few novel insights or techniques were offered within those works. Furthermore, little 

research had been undertaken into the application of social network analysis; explicitly 

towards terrorism. In 2001, recognizing the slow growth within the field of terrorism, Silke 

[39] and Brennan et al. [40] examined the current state of terrorism research and 

documented many cases where research in the field of terrorism was lacking empirical, 

quantitative, and substantive analysis. Silke, quoting Schmid and Jongman [41], offered the 
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following bleak assessment of terrorism research prior to the September 11 attacks, “there 

are probably few areas in the social science literature in which so much is written on the 

basis of so little research” [39]. 

Of the research that existed prior to the September 11 attacks, Arquilla and 

Ronfeldt’s [42] book titled Networks and Netwars: The Future of Terror, Crime and 

Militancy, synthesized previous research and suggested the concept of “Netwar”7 and its 

growing applicability to terrorism. Of particular interest, Arquilla and Ronfeldt discussed 

the differences in network analysis between social networks and organization networks, 

arguing, “the field of network analysis, writ large, has been dominated by social network 

analysis, but organizational network analysis can be even more helpful for understanding 

the nature of netwar” [42]. Arquilla and Ronfeldt suggest a framework for “organizational 

network analysis,” which differs primarily from social network analysis in that it does not 

use empirical methods or mathematics to measure value of networks. Instead, 

organizational network analysis attempts to understand the strategies, methods, and 

information exchange systems used within a network to derive intelligence. Although, the 

organization network analysis framework suggested by Arquilla and Ronfeldt provided a 

novel way to view network analysis, the authors received criticism for their inability, “to 

literally apply their theoretical approaches to terrorist or covert groups using any form of 

sociometric, organizational analysis, or graph theory” [13]. One of the final critical pieces of 

research, prior to the September 11 attacks, was work done by Carley, Reminga, and 

Kamneva [43] concerning approaches for destabilization of dynamic terror networks. This 

particular work is significant, because it acts as a foundation for continued works done by 

Carley and researchers at the Dynamics Networks project in Computational Analysis of 

Social and Organizational Systems (CASOS) at Carnegie Mellon University, which include 

[44, 45, 46, 47]. 

In the time since the September 11 attacks, many more academic scholars 

endeavored to research applications between the fields of social network analysis and 

terrorism. Specifically, works such as: Carley’s [45] research into the emerging field of 

                                                        
7 New concept of warfare forces in which adversarial forces organized into, “network forms of organization, 
often giving them an advantage over hierarchical forms” [42]. 
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dynamic network analysis; Carley et al., [44, 46] continued research into the disruption and 

destabilization of dynamic covert networks; and work done by Farley [48] and others to 

adapt and create new mathematical, stochastic, and quantitative social network analysis 

approaches explicitly for the understanding and analysis of terror networks [49, 50, 51]. 

Another influential work, similar in nature to Silke’s work, is van Meter’s [52] thorough 

chronological examination of the multiple forms of link and network analysis and his 

illustration of social network analysis application to covert networks using historical 

examples. Of particular significance, van Meter’s work once again reminded academia of 

the many potential applications of social network analysis to intelligence analysis. 

However, while the aforementioned works suggest incremental improvements and 

demonstrate some overlap between social network analysis and the field of terrorism, 

there was still a lack of substantive application and novel research surrounding the 

application of social network analysis explicitly for terror networks. 

However, 2006 marked the introduction of a seminal academic work where social 

network analysis was directly applied in the analysis of terrorism. That work, done by 

Valdis Krebs [53], applied graph theory and network theory in the analysis of the 

September 11 al-Qaeda cell. In this work, Krebs provided the most illustrative example of 

the social network analysis of a terrorist organization, specifically because Krebs applied 

social network analysis to a real terrorist cell, as opposed to previous research, which 

primarily used notional cells or networks. Krebs work continues to be one of the most 

referenced works in the application of social network analysis to terror networks and 

seemingly, provided inspiration for the continued development of social network analysis 

applications that aim to assist intelligence agencies against the war on terror. 

In addition to Krebs’ work, and lesser examples in the previously mentioned 

research, there have been only a small number of other studies that attempt to map terror 

networks and cells. Specifically, Koschade [13] applied social network analysis to map the 

2002 Bali Bombing Cell of Jemaah Islamiyah; Saxena, Santhanam, and Basu [54], used social 

network analysis to chart the interactions and connection between terror groups in Jammu 

& Kashmir; and Qin, Xu, Hu, Sageman, and Chen [49], presented a social network analysis 

case study of the Global Salafi Jihad network. 
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Despite all the aforementioned works, there still exists little literature in which 

substantive academic advancements have been suggested and proven with any statistical 

significance. Lacking even further developments in the field of terrorism social network 

analysis is the actual visualization of these networks as an output of social network 

analysis. Only three works [13, 38, 50] identified more than one possible technique of 

visualizing terror networks. However, there were additional works [14, 47, 53, 55, 56] that 

focused on refining one specific technique of terror social network analysis visualization, 

but these pieces of literature made few substantive strides towards improving the 

visualizations. 

2.3 Literature Gaps 

To help understand where the gaps in literature occur, a literature density map was 

created (Figure 2-6). This visualization organizes the literature research across two key 

categories: the social network analysis approach and domain. For social network analysis 

approach the two sub-categories are quantitative and visualization. The two sub-categories 

for domain are pedagogy and intelligence. If a piece of literature was primarily aimed at 

advancing the academic theories of social network analysis or the visualization methods 

without applicability to any specific domain, then this piece of literature was categorized as 

pedagogy. The pedagogy domain is further deconstructed into two sub-categories, 

instructional or proof of concept. The literature categorized in the instructional sub-

category were those pieces that made no new assertions about social network analysis, but 

instead specifically focused on educating the reader on a specific method of social network 

analysis. All pieces of literature that endeavored to substantiate the effectiveness of a new 

method within social network analysis were categorized in the proof of concept sub-

category. 

Conversely, if the pieces of literature were aimed primarily at advancing the 

applicability of social network analysis within the domain of intelligence, then it was 

categorized in the intelligence domain. Within this category are two sub-categories: 

terror/criminal and military. Literature which dealt specifically in the domain of terror or 

criminal social network analysis was categorized in the terror/criminal sub-category. 
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Examples include, analysis of the September 11 terror [53] network and the Global Salafi 

Jihad network [49]. The military sub-category is different in that it does not deal with any 

terrorism related analysis. Instead it focuses on more conventional military targets. 

Examples include: social network analysis of military Command, Control, Communications, 

Computers, Intelligence, Surveillance and Reconnaissance (C4ISR) architectures [57], and 

the social network analysis of the Iranian Government [15]. 

Each piece of literature was placed on the matrix based on the primary focus of the 

research. However, in some cases a piece of literature spanned multiple segments. In this 

situation the piece of literature was placed on the line between the two or more segments 
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Figure 2-6: Literature Density Matrix 
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of literature it spanned across (examples include: [58] & [5]). Also of note, the solid blue 

blocks in Figure 2-6, “Quantitative X Pedagogy” and “Visualization (Other) X Pedagogy,” 

were intentionally not populated because these two cross-sections of research contain 

potentially hundreds of articles that are not directly applicable to the scope of this 

literature review. As such, they were purposely omitted to keep the complexity of the 

visualization manageable.  

Additionally, there were ten works that did not fit neatly into any matrix portion of 

Figure 2-6. Those works are listed below the matrix in a box titled, “Background 

Information on Terror Social Network Analysis not directly tied to either category.”  In 

most cases these documents were excluded from the matrix because they either provided 

background on terrorism social network analysis or, borrowing from Silke [39], because 

they were primarily “integrators of previous literature”. 

From this visualization two key findings become evident. First, the preponderance 

of social network analysis work done in the domain of intelligence has been primarily 

focused on developing quantitative approaches to social network analysis. In fact, 18 of the 

25 pieces of literature in the Intelligence domain endeavored to develop a quantitative 

approach or used a primarily quantitative approach to apply social network analysis. While 

this work is important and shows promise, the complexity of the mathematical models 

presented makes it almost inaccessible to the average intelligence analyst. Thus, little of 

this academic work is transferable to the analyst who is charged to apply social network 

analysis. 

The second key finding is the density of literary references in the social network 

analysis approach of Visualization between the Pedagogy and Intelligence domains. 

Specifically, there exists a large disparity between the quantities of research done in the 

domains of Pedagogy compared to Intelligence; 12 works in the domain of pedagogy 

compared to only 4 in intelligence. However, one could argue that all research originates in 

the domain of pedagogy and eventually transfers to other domains. Nonetheless, some of 

the academic research dates back to 2004, but these advancements have not transferred 

into the intelligence domain. Decomposing the analysis one level further yields a finding of 
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particular importance - the dramatic difference between the pedagogical work done in 

support of a matrix based social network analysis visualizaiton approach versus the 

relative absence of any simular work done in the domain of intelligence. This underserved 

segment of research represents a large gap in literature and research based on the 

documents reviewed.  

The lack of relevant research into intelligence focused social network analysis 

visualization approaches may help explain why the node-link visualization persists as the 

most prominent means within the intelligence community. Without data collection and 

research into other visualization methodologies, little advancements in other areas can be 

expected.  

2.4 Fundamental Concepts in Network Analysis 

There are several key concepts at the heart of social network analysis visualization. These 

concepts are critical to the effective discussion of social network analysis at large and, 

specifically, social network analysis visualization. These concepts are: social network, actor, 

group, relational tie, directional versus nondirectional tie, relation, dichotomous relations, 

social roles, and social positions. Many different definitions exist for these terms [7, 59]; 

therefore, in an effort to ensure consistency, all of the definitions defined below are 

extracted from [7]. Additionally, many of the terms defined below are referred to within 

the intelligence community by domain specific synonyms. Although each term below is 

defined by its respective social network theory reference, the below definitions will tie the 

definitions from social network theory to the synonyms of the intelligence community. This 

is necessary to create a nexus of common terms between the intelligence and academic 

audience of potential readers. 

 Social Network – Consists of, “a finite set or sets of actors and the relations defined 

on them. The presence of relational information is a critical and defining feature of a 

social network” [7]. 

 Actor – In social network analysis, social entities are referred to as actors. “Actors 

are discrete, individual, corporate, or collective social units” [7]. Examples of actors 
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are: people in a group, departments within an organization, or government agencies 

within a city. While it is possible to represent more than one type of actor in a 

network, all the actors identified within this thesis are homogeneous; all 

representing individual people. As such, all further concepts will be defined within 

the context where actors equate to people. Of particular importance to this thesis, in 

the lexicon of intelligence, the term node also commonly refers to an actor. 

 Group – The power of network analysis resides in the ability to model the 

relationship among groups of actors. For the purposes of this research, a group is, 

“the collection of all actors on which ties are to be measured. One must be able to 

argue by theoretical, empirical, or conceptual criteria that the actors in the group 

belong together in a more or less bounded set” [7]. Of particular note, in the lexicon 

of intelligence the terms group and cluster are used synonymously. 

 Relational tie – Actors are linked together by social ties. There are many different 

types of ties among actors: friendship, business transactions, jointly attending a 

social event, belonging to the same social club, talking together, or sending 

messages. However, “the defining feature of a tie is that it establishes a linkage 

between a pair of actors” [7]. This thesis also uses the term link synonymously with 

tie, because link is the predominant term used within the domain of intelligence. 

 Relation – Defined as, “a collection of a specific kind of ties among members of a 

group” [7]. Examples include the set of friendships among pairs of children in a 

classroom, or the formal diplomatic ties maintained by pairs of nations in the world. 

This is an important concept because two actors may have more than one type of 

relational tie. Therefore, by categorizing the relational ties it is possible to measure 

several different relations.  

 Directional vs. Nondirectional tie – In a directional relation, the relational tie 

between a pair of actors has an origin and a destination; that is, the tie is directed 

from one actor in the pair to the other actor in a pair” [7]. Examples include: one 

person gives money to another; the first person is the source of the money, and the 

second person is the destination. Whereas, in a nondirectional relation, the tie 
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between a pair of actors does not have a direction. For example, we could define a 

nondirectional tie as present if two people lived on the same street. 

 Dichotomous relations – “These relations are either coded as present or absent for 

each pair of actors” [7]. These relations are analogous to a binary representation, 

were the tie either exists, (1) or does not exist (0); there is no range of varying states 

of existence between those values.  

 Social Roles – Refers to, “the patterns of relations which exist between actors or 

between positions” [7]. As noted by [60], the theory of “roles” is just a theoretical 

construct invited by social scientist, but can be expressed in everyday language. 

Examples include: boss’s boss, a brother’s friend, or an ally’s enemy [7]. 

 Social Positions – Refers to, “a collection of actors who are similarly embedded in 

networks of relations [or] a collection of actors who are similar in social activity, 

ties, or interactions, with respect to actors in other positions” [7]. Social positions 

can be thought of as analogous to, but not strictly defined as, jobs or occupations 

within a network. 

All the concepts outlined in this section will be used in accordance with the above 

definitions throughout this thesis, unless otherwise noted. 

2.5 Visualizations  

With an understanding of the basic terms and definitions, it is possible to discuss the two 

proposed forms of visualization, node-link and matrix, in more explicit detail. Before 

continuing, it is important to note that there are many different ways to use both node-link 

and matrix visualizations. The depictions used in this research and the explanations given 

below are only those that pertain to the visualization of terror networks. It is not meant to 

be an all-inclusive discussion of every facet or combination of representations possible for 

either node-link or matrix visualizations (for a complete description see [7]).  

 Social network visualization, at the most basic form, is a model of a social network 

data set. The difference between visualizations is the visual encoding used to depict the 
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data set. The next two sections will cover the visual encoding used by node-link and matrix 

visualizations to depict a notional nondirectional dichotomous data set (derived from [7]). 

2.5.1 Node-link Visualizations   

Node-link visualizations, also referred to as node-link graphs or sociograms8, encode data 

sets by depicting the ties between nodes as lines between objects in a plane. Figure 2-7(b) 

depicts an example of this configuration from the data in Figure 2-7(a), where the nodes 

(circles) represent individual people and the lines between the people represent 

nondirectional dichotomous ties. This simple organization often makes the node-link 

visualization easy to read and understand. For example, based on the graph in Figure 

2-7(b) it is known that Ross has a connection to Sarah, Keith, and Allison because there are 

lines that connect the different actors. However, it is important to note that in the Figure 

2-7(b) the location of nodes on the page is arbitrary, and the length of the links between 

points in meaningless. The only information in the graph is the set of nodes and presence 

or absence of lines between pairs of nodes.  

 However, different algorithms can be applied to place nodes in adjacent positions 

according to various topological, structural, or node attribute based criteria. Figure 2-7(c) 

is an example of a free form layout of the same data in Figure 2-7(a) using a spring 

embedded layout. As discussed in section 2.2 of this chapter, the spring embedder layout is 

extremely common, “where nodes have repulsive and attractive forces in relation to the 

number of edges that connect them (attractive force) and the distance that exists between 

them (repulsive force)” [17]. The result is a graph that forms visually distinct groups, so 

that an analyst can detect groups of individuals relatively easily. This ability to easily 

manipulate the relative position of nodes is one of the major strengths of node-link 

visualizations.  

 While node-link diagrams are the most familiar representation of graphs in general, 

and effective at showing the overall structure of a network, Ghoniem et al. [6] showed that 

                                                        
8 Defined as, “a picture in which people (or more generally, any social units) are represented as points in two-
dimensional space, and relationships among pairs of people are represented by lines linking the 
corresponding points” [7]. This term is a precursor used by Jacob Mareno to what is now referred to as a 
node-link visualization [21]. 
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density has a strong impact on readability of these visualizations. Focusing on basic 

readability tasks, such as finding an actor or determining if two actors are linked, Ghoniem 

et al., concluded that node-link diagrams perform badly for dense networks, even with few 

(e.g. 20) nodes. This is the most prominent criticism of node-link visualization; also 

referred to as the problem of data occlusion [18]. 

2.5.2 Matrix Visualizations   

Matrices visually encode a social network data set by using a two-way matrix, also termed a 

sociomatrix9. In a sociomatrix, once again assuming nondirectional dichotomous 

relationships, the two dimensions of the matrix are arrayed as an actors x actors matrix, 

which implies the same layout of actors contained on the rows are also contained on the 

columns. A relationship between actors is communicated by a Boolean value where the 

rows and columns of specific nodes intersect. Figure 2-8(b) is an example of a basic 

sociomatrix. Figure 2-8(b) is a symmetrical matrix showing the interconnections between 

the nodes (Allison, Drew, Eliot, etc.). The matrix is symmetrical because the data set is 

nondirectional. Meaning the links do not show a relationship from one person to another, 

                                                        
9 This term is a precursor used by Jacob Mareno to what is now referred to as a matrix visualization [21]. 

Figure 2-7: (a) Raw data set [7]; (b) Sociogram of data set; (c) Free Form layout of data set 
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but simply communicates a relationship exists. Furthermore, in this matrix the links 

between nodes are represented by a “1” at the intersection of nodes; this is a binary value 

that indicates a connection exists. Likewise a value of “0” indicates no connection exists 

(note all cells are with a “1” are only highlighted in grey to make the clusters more 

apparent, there is no social network significance to the coloring).  

Since this is a symmetrical matrix it can be read from top down or left to right and 

yield the exact same results. For example, starting with node “Keith” on the top of Figure 

2-8(b), if that column is followed down until the first link it reveals a “1” at the intersection 

with Ross. This represents a nondirectional link between Keith and Ross. Similarly, if you 

start Keith on the left side of the visualization and follow the row right it also reveals a “1” 

at the intersection with Ross. This shows the same relation as using the first method. 

Additionally, the black diagonals are the intersection of the same node in the matrix and 

carry no significance. For example, where Keith intersects with himself on the matrix the 

cell is black because Keith cannot have a relational tie with himself. 

In sociomatrices, similarly to sociograms, different algorithms can be applied to 

place nodes in adjacent positions according to various topological, structural, or node 
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(Drew, Eliot)

(Keith, Sarah)

(Allison, Drew)

(Ross, Sarah)

(Keith, Ross)

Raw Data
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Allison - 0 0 0 1 1

Drew 0 - 1 0 0 0

Eliot 0 1 - 0 0 0

Keith 0 0 0 - 1 1

Ross 1 0 0 1 - 1

Sarah 1 0 0 1 1 -

Sociomatrix
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Eliot - 1 0 0 0 0

Drew 1 - 1 0 0 0

Allison 0 1 - 1 1 0

Sarah 0 0 1 - 1 1

Ross 0 0 1 1 - 1

Keith 0 0 0 1 1 -

Ordered Sociomatrix

Figure 2-8: (a) Raw data set [7]: (b) Sociomatrix from raw data set; (c) Reordered sociomatrix 
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attribute based criteria. Figure 2-8(c) is an example of a reordered sociomatrix, which 

contains the same data as Figure 2-8(b). In this case the nodes were manually reordered to 

reveal the patterning around the Allison, Sarah, Ross, and Keith subgroup. 

As mentioned in the previous section, one of the most common criticisms of node-

link analysis is its inability to display large and/or dense networks. As node-link 

visualizations grow in size they have a tendency to occlude data. Some scholarly authors 

advocate the use of matrices to solve this problem [6], because in matrix visualizations 

objects cannot overlap; thus resolving the data occlusion and improving readability [17]. 

Furthermore, the “global” patterns that occur as a result of the layout algorithms applied to 

matrices, can reveal clusters and show characteristics of the data that are not readily 

discernible from node-link visualizations due to occlusion.  

2.6 Social Network Measures 

Although the focus of this paper is not on quantitative analysis methods, a certain number 

of these measures are required to identify curiosities within social network data. There are 

many different quantitative analysis algorithms available (see [7]: pp 167-215 for an 

overview). However, this research will focus specifically on two measures: betweenness 

centrality and closeness centrality. These two measures were chosen because most 

intelligence analysts receive preliminary training on them and because they can assist in 

the analysis of social network roles and positions. 

2.6.1 Betweenness Centrality 

Betweenness centrality is, “the idea that a node is central when it is able to connect 

relevant clusters that would otherwise be disconnected” [17]. Extremum betweenness 

centrality measures reveal actors who have a high degree of control over the information 

that travels between disparate actors, which indicates a specific node may act as a “broker” 

of information [49]. Within the context of terrorism, this specific social network 

characteristic may indicate the network structural properties of a leader. While this 

measure is unable to solely identify a leader within a network, it can be used to cue an 



42 
 

analyst’s attention on a specific actor for further study or analysis with other social 

network measures of centrality or ego. 

For example, if the geodesic10 between actors n1 and n4 is: n1 →n2 →n3 →n4, the 

shortest path between actors n1 and n4 has to go through two other actors, n2 and n3. This 

implies that, “the two actors contained in the geodesic might have control over the 

interaction between [n1 and n4]” [7]. Defined mathematically (Equation 2-1), actor 

betweenness centrality is the sum of the proportions, for all pairs of actors, in which a 

specific actor is involved in a pair’s geodesic(s): 

   (  )   ∑
   (  )

   
   

 

Equation 2-1: Betweenness Centrality [7] 

2.6.2 Closeness Centrality 

Closeness centrality is, “how close an actor is to all the other actors in the set of actors. 

Extremum closeness centrality measures reveal actors who have a high degree of access to 

the entire network and the information with flows throughout the network, which may 

indicate a specific actor has the network structural properties of a potential leader. Similar 

to betweenness centrality, this measure cannot solely determine the presence of a leader. 

Instead, it is used to cue an analyst’s attention on a specific actor for further study or 

corroboration with other quantitative measures. 

The idea is, “that the actor is central if it can quickly interact with all others” [7]. 

Defined mathematically (Equation 2-2), actor closeness centrality is the inverse of the sum 

of geodesic distances from actor i to all other actors [7].  

   (  )  [∑ (     )

 

   

]

  

 

Equation 2-2: Closeness Centrality [7] 

                                                        
10 Defined by [7] as: “A shortest path between two nodes” 
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These quantitative methods will be used primarily to organize the data within a 

visualization. Other quantitative measures may be introduced later in the research, but 

their role will simply be to validate or support the two aforementioned measures.  

2.7 Conclusion 

This Chapter started by presenting historical perspective on the history of social network 

visualizations and a review of current terror social network analysis literature. After which, 

the gaps in literature were discussed, which revealed several gaps within the current 

academic research; the most prominent of which was the large disparity between the 

quantities of research done on visualizations of social network analysis in the domain of 

pedagogy compared to intelligence. Followed by, defining key concepts within social 

network analysis and providing a detailed explanation of the node-link and matrix forms of 

visualization.  
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3Chapter 3 

 

Cognitive Processes for Exploitation of Terror 

Network Visualizations 

This chapter provides a description and analysis of the cognitive tasks employed by 

military intelligence analysts to interpret and exploit terror network visualizations. First, a 

cognitive task analysis is used to understand the specific tasks and challenges an analyst 

may encounter. From the cognitive task analysis, both a scenario task overview and event 

flow diagrams were constructed to support the development of an information processing 

model. The chapter concludes with a synopsis of the insights from both the cognitive task 

analysis and the information processing model and a brief discussion on how these help 

inform the adaptation of social network visualizations for terror network analysis. 

3.1 Cognitive Task Analysis 

The basic goal of the military intelligence analyst is to construct one or more hypotheses 

about the future state of the specific topic or situation being analyzed; however, this task is 

challenging because an analyst must sort through enormous volumes of data while 

combining pieces of unstructured information to eventually create an accurate 

understanding of the situation. The nature of the data, the complex cognition and logic 

required, and an environment characterized by time pressure, task saturation, and 
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significant repercussions for errors, combine to create a challenging and complex 

environment in which an analyst must operate [61].  

To understand the challenges and complexities, a cognitive task analysis was 

performed to help identify the specific cognitive processes, challenges, and constraints an 

analyst faces while exploiting terror network visualizations. A cognitive task analysis, as 

defined by Chipman et al, is, “the extension of traditional task analysis techniques to yield 

information about the knowledge, thought processes, and goal structures that underlie 

observable task performance” [62]. The cognitive task analysis conducted herein 

corresponds to this definition. It utilizes a combination of ecological [63], bootstrap [64], 

and hybrid [65] approaches including: 

 Literature Review: Past cognitive task analyses conducted in the domain of 

intelligence analysis were reviewed [61, 66, 67, 68, 69, 70] along with all the 

documents outlined in the literature review in section 2.4. Although some the 

previous cognitive task analyses focused primarily on the tasks associated with 

generic intelligence analysis, most schemas, methods, and processes used correlate 

directly to those used in the exploitation of intelligence visualizations.  

 Table-top Analysis: Defined by Flach as, “review of published literature that 

describes the nature of the work” [63]. Reviewed works include: military 

intelligence analyst training curriculum for various courses offered by US Air Force, 

US Army, US Navy, and Defense Intelligence Agency; Air Force Doctrine Document 2-

0: Global Integrated Intelligence, Surveillance, & Reconnaissance Operations [10]; 

Joint Publication 2-0 Joint Intelligence [9]; and Joint Publication 2-01, Joint and 

National  Intelligence Support to Military Operations [71]. 

 Knowledge Elicitation: Semi-structured interviews were conducted with multiple 

intelligence analysts with varying levels of experience. Open-ended questions were 

used to guide the interviews and specific questions were used to clarify 

inconsistencies between interview responses and information gleaned from other 

sources. All interviews were conducted either in person or over the telephone and 

lasted approximately 30 minutes. 
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 Naturalistic Observations:  Prior to beginning this thesis research the author spent 

4.5 years as an Air Force Intelligence Analyst, which offered the opportunity to 

observe analyst interactions with varying types of terror network visualizations. 

The results of the cognitive task were organized along the procedures described by 

Nehme et al, for generating requirements for future systems [65]. Specifically, a scenario 

task overview (Table 3-1), event flow diagrams (Figure 3-2 through Figure 3-5), and an 

information processing model (Figure 3-6) were created to capture and convey the results 

of the task analysis. Each of these cognitive task analysis artifacts will be discussed in 

further detail below. 

However, before continuing it is important to understand the process by which an 

analyst is tasked. This process (outlined in Figure 3-1) is critical because it determines an 

analyst’s goals when exploiting any form of intelligence. Generally (there are minor 

differences between military services), a commander creates a set of priority intelligence 

Figure 3-1: Analyst Tasking Process 
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requirements (PIRs). A PIR is, “an intelligence requirement stated as a priority for 

intelligence support, that the commander and staff need to understand the adversary or 

other aspects of the operational environment” [11]. An example of a PIR is, “Who are the 

leaders of the XXX terrorist network?”  These PIRs are then decomposed into essential 

elements of information (EEI’s), which are defined as, “the most critical information 

requirements regarding the adversary and the environment needed by the commander by 

a particular time to relate with other available information and intelligence in order to 

assist in reaching a logical decision” [11]. An example of an EEI based of the PIR used in the 

previous example is, “Who is the network facilitator?” or “Who is the network financer?”  

The analyst will then use these EEI’s to create a cognitive task flow (depicted in Figure 3-1 

as smaller version of Figure 3-2, which is discussed in section 3.1.2).  

 Understanding this process is important because as the PIRs and EEIs change, the 

cognitive tasks required to satisfy the PIRs and EEIs change as well; therefore, the cognitive 

task analysis outlined below was created using two PIRs: 1) the identification of leaders 

and 2) identification of clusters. These two tasks were chosen because the historical 

perspective and literature review in Chapter 2, as well as the knowledge elicitation 

discussed in this chapter revealed they were the two most common tasks conducted by an 

analyst. All task information from this point forward is a direct result of these inputs. 

3.1.1 Scenario Task Overview 

 Using these two PIRs, a scenario task overview was created for an analyst who is 

charged with both identifying leaders and identifying clusters with in a terror network. 

That scenario task overview is outlined below in Table 3-1. 

Data 
Familiarization 

It is assumed that the 
following is known or 
provided prior to entering 
this phase: 1) Desired 
essential elements of 
information are 
understood by the analyst. 
2) Visualization symbolism 
is known. 3) Veracity of 
information communicated 
in the visualization is 
known. 4) Context of 
visualization is known. 

During this phase the analyst acquaints himself/herself with the 
essential elements of information, which determine what information 
an analyst should extract from the visualization. For example, an 
essential element of information could be, "Identify the leader of the 
network."  The analyst would then take the information outlined in 
the assumptions and begins to analyze the visualization and 
eventually create a projection on which actor is the leader of the 
network. Depending on the essential element of information the task 
goals will change slightly to adapt. For the task goals below the 
essential elements of information are assumed to be: 1) Identify any 
leaders or actors of interest within the network and 2) Identify any 
clusters within the network. 
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Phase Transition 

The essential elements of information provided during the data 
analysis phase determine what intelligence information the 

analyst is tasked to extract from the visualization. The analyst 
uses these "intelligence goals" to search the visualization. 

Visualization 
Exploitation 

Phase Goals Phase Task Decomposition 

 # Subtask 
Description / Explanation  

(if necessary) 

1. Understanding 
Visualization 

1.1 Scan visualization Scan visualization in order to 
perceive information required 
for comprehension of the 
situation. 

1.1.2 Perceive anomalies in 
the visualization 

Perceive topographical 
anomalies (items which may 
communicate an error in the 
data or visualization) 

1.1.2.1 Rectify anomalies to 
determine validity of 
visualization 

Draw schemas from pre-
acquired knowledge and 
compare against anomalies to 
determine if visualization is 
valid; thus, worth further 
analysis 

1.1.3 Perceive curiosities in 
the visualization 

Perceive topographical 
curiosities (items of potential 
intelligence value) 

1.1.3.1 Rectify curiosities to 
determine future 
analytical priorities 

Draw from pre-acquired 
knowledge to determine if 
curiosities are of potential 
value and use assumptions to 
determine analytical priority 

Phase Goal Transition Information perceived during the Data Familiarization phase 
feeds the Analyze Phase by providing a starting point for analysis 
and a prioritized list of items to analyze. 

2. Analyze Visualization 

2.1 Revisit curiosities 
perceived in task 1.1.3 

 

2.1.1 Determine which 
essential element of 
information the curiosity 
may satisfy 

Once correct essential element 
of information is determined 
analyst will recall correct 
schemas from pre-acquired 
knowledge. 

2.1.2 Recall from memory 
characteristics 
associated with essential 
elements of information 

Recall schemas from pre-
acquired memory  

2.2 Leader identification Analyze curiosities to 
determine if any identified 
actors demonstrate the 
characteristics of a network 
leader 

2.2.1 Perceive actor's network 
position relative to the 
network 

Does an actor’s relative 
position in the network 
communicate a certain 
position in a hierarchy 

2.2.1.1 Comprehend whether 
this position qualifies the 
actor as a potential 
leader 

 

2.2.2 Perceive quantitative 
measures of actor's 
structural prominence 

Do quantitative measures 
communicate an extremum 
value which may indicate a 
high structural significance 
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2.2.2.1 Comprehend whether 
these measures qualify 
the actor as a potential 
leader 

 

2.2.3 Classify actor After comprehension actor will 
be classified as a leader or 
remain unclassified 

2.3 Cluster identification Analyze curiosities to 
determine if any sub-groups 
demonstrate the 
characteristics of a cluster 

2.3.1 Perceive sub-group's 
network position 
relative to the network 

Does an actor’s relative 
position in the network 
communicate a certain 
position in a  hierarchy 

2.3.1.1 Determine boundaries of 
sub-group 

Analyst must determine the 
boundaries of  a sub-group. If 
boundaries are undefinable, 
then a cluster does not exist 

2.3.1.2 Determine complete list 
of actors within sub-
group 

Actor identification is 
necessary to feed task 2.3.2 

2.3.1.3 Comprehend whether 
this position qualifies the 
actor as a potential 
leader 

 

2.3.2 Perceive quantitative 
measures of sub-group's 
structural prominence 

Do quantitative measures 
communicate an extremum 
value which may indicate a 
high structural significance 

2.3.2.1 Comprehend whether 
these measures qualify 
the sub-group as a 
potential cluster 

  

2.3.3 Classify sub-group After comprehension sub-
group will be classified as a 
cluster or remain unclassified 

Phase  Transition 
The leaders and clusters comprehended in the Analyze 
Visualization Phase feed directly into the Assessment Phase where 
an analyst will make a projection. 

Assessment 3. Construct Hypothesis 

3.1 Recall leaders classified 
in task 2.2.3 and clusters 
classified in task 2.3.3 

 

3.2 Project hypothesis about 
future state of network 

Projections are used to satisfy 
and expand upon the essential 
elements of information 

3.2.1 Create potential  
targeting outcome 
hypothesis 

Analyst will make projections 
about the future state of a 
network if certain nodes are 
removed. 

3.2.1.1 Recall from pre-acquired 
knowledge the 
background and 
dynamics of the specific 
network 

 

3.2.1.2 Hypothesize on the 
impacts if a specific 
leader is removed 

Project the future state of the 
network if specific leaders are 
strategically removed 

3.2.1.3 Hypothesize on the 
impacts if a specific 

Project the future state of the 
network if specific clusters are 
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cluster is removed isolated or removed 

3.2.1.4 Hypothesize on the 
impact if no actions are 
taken 

Project the future state of the 
network if no actions are taken 

Phase Goal Transition 

The hypotheses created in the previous phase goal must be 
evaluated against an analyst's pre-acquired knowledge and the 
information in the visualization to determine the validity of the 
hypothesis 

4. Test Hypothesis 

4.1 Recall hypotheses from 
tasks 3.2.1.2 - 3.2.1.4 

 

4.2 Recall from pre-acquired 
knowledge the 
background and 
dynamics of the specific 
network 

 

4.3 Compare hypotheses 
pairwise  

Hypotheses will be compared 
side-by-side to determine 
which course of action is most 
likely to occur and; therefore, 
which hypothesis is most 
likely correct 

4.3.1 Assess the meta-
information used to 
create each hypothesis 

 

4.3.1.1 Assess the validity of 
information 

What is the level of uncertainty 
in the reporting for which each 
hypothesis is based 

4.3.1.2 Assess the quality of the 
source 

What is the quality of the 
source for which each 
hypothesis is based 

4.3.1.3 Assess the recency of 
information 

What is the recency of 
information for which each 
hypothesis is based 

4.3.2 Project the likelihood of 
each hypotheses 
occurring 

From the meta-information 
and the analyst's pre-acquired 
knowledge on the specific 
network he/she can project 
the likelihood of each 
hypothesis occurring 

4.3.3 Select the hypothesis 
with the highest 
likelihood of occurrence 

 

Phase Goal Transition 
After determining which hypothesis is most likely to occur the 
analyst will compile a report and disseminate it to the information 
requester to satisfy the essential elements of information 

5. Disseminate Reporting 

5.1 Recall hypothesis with 
highest likelihood of 
occurrence from 4.3.3 

 

5.2 Substantiate hypothesis 
in written form 

 

 5.3 Disseminate written 
report to requestor 

 

Table 3-1: Scenario Task Overview  

The scenario task provides a useful organization of the tasks an analyst will 

encounter while exploiting a visualization for both leaders and clusters. This task overview 

was used as a starting point for creating the cognitive process flow charts, which take the 
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tabular decomposition of tasks outlined in Table 3-1 and maps them to the flow of 

information and the decisions an analyst will make during the exploitation of a 

visualization. 

3.1.2 Cognitive Process Flow Charts 

The cognitive process flow charts capture the sequence of the tasks outlined in the scenario 

task overview (Table 3-1) and identify where decisions are made by an analyst. The first 

flow chart (Figure 3-2) illustrates the high-level process that an analyst must navigate. In 

this flow chart, and all thereafter, the processes begins with both a visualization and 

assumptions, which are used by the analyst to satisfy the PIRs and EEIs. 

 This cognitive task analysis assumes a visualization is given to the analyst for 

exploitation versus the analyst creating the visualization and then exploiting. The cognitive 

task analysis revealed this to be a common occurrence, where one analyst would create a 

visualization then disseminate, potentially through email or hard copy, to other analysts for 

information purposes or for corroboration on the assessment. Furthermore, the distinction 

between receiving a visualization and creating a visualization is a key assumption, because 

the process to create a visualization is fundamentally different from the processes to 

exploit a visualization. This is because creating a visualization is a much more complex 

process that involves simultaneous research and exploitation.  

 Additionally, the assumption of exploitation versus creation yields an additional 

process end point during the Data Familiarization Phase. In this case, if the analyst 

exploiting the visualization determines the data to be of insufficient quality, he or she will 

end the exploitation process. This process termination deviates from the visualization 

creating process, wherein if the analyst determined the data to be of insufficient quality he 

or she would conduct more research and update the visualization until the quality of the 

data was sufficient enough to effectively analyze. However, because an analyst that receives 

the visualization may not have the background, expertise, or the access (for example: 

research information may be of a higher classification) to further research a topic it forces 

an analyst in this situation to end the exploitation process.  



52 
 

 
Figure 3-2: Cognitive Process Flow Chart (Overview) 
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Once an analyst understands the visualization and assumptions, the analyst can 

begin the data familiarization phase. This phase consists primarily of building an 

understanding of the visualization and classifying both anomalies and curiosities for later 

exploitation. Once this phase is complete, an analyst transitions to the visualization 

exploitation phase, wherein he or she uses identification loops that are designed to yield 

hypotheses about possible conclusions from the visualization. Once the analyst completes 

all required identification loops, he or she can then transition to the assessment phase. In 

this phase the analyst must make an assessment on the information within the 

visualization. Each of these phases is further decomposed below and shows specifics of 

each process, loop, and decision. 

Data Familiarization Phase 

The primary purpose of this phase is for the analyst to build an understanding of the 

visualization and on the assigned EEIs (Figure 3-3). Thus, the first process in the phase is 

scanning the visualization. This is done by the analyst to confirm he or she understands all 

the symbolism and nomenclature prior to analysis. After this, the analyst begins the 

process of detecting anomalies in the visualization. In this research, anomalies are defined 

as data that display the potential to be spurious. An example of an anomaly is multiple 

nodes of the same name. If a visualization has anomalies the analyst must then decide if the 

visualization is still of sufficient quality to exploit. If it is not, then the process ends (for 

reasons explained in the beginning of section 3.1.2.). However, if it is of sufficient quality 

then the analyst begins searching for curiosities within the visualization. In this research, 

curiosities are defined as data that displays the characteristics of a valuable piece of 

intelligence. An example of a curiosity would be a single node in a network with an 

exorbitant quantity of links relative to other nodes. If there are no curiosities in a 

visualization, then there is no information of intelligence value to be gained by exploiting 

the visualization and the process ends. However, if the analyst does detect one or more 

curiosity he or she decides whether they could potentially satisfy an EEI. If they can, then 

they are classified (i.e. potential leader or potential cluster) for later analysis in the 

visualization exploitation phase. 
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Visualization Exploitation Phase 

During this phase (Figure 3-4) an analyst must determine the intelligence value of the 

curiosities he or she previously classified in the data familiarization phase. This phase 

starts with the analyst scanning the visualization for the pre-classified curiosities. After 

identifying the curiosities he or she will enter an EEI specific identification loop. In this 

loop the analyst must reconcile the data presented in the visualization with previous 

experience and background knowledge on the subject (referred to in later parts of this 

Figure 3-3: Data Familiarization Phase Decomposition 
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chapter as pre-acquired knowledge). If the item of interest matches the analyst’s pre-

acquired knowledge then he or she will definitively classify the item. The analyst will  

continue this loop until all items which could potential satisfy the EEI are exhausted. When 
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complete the analyst then moves on to the next EEI identification loop and repeats the 

same process. This continues until all loops are complete.  

Assessment Phase 

The final phase in the cognitive flow process is the assessment phase (Figure 3-5). The 

primary purpose of this phase is for the analyst to construct hypotheses about the network 

and then select a single one based on the likelihood of that hypothesis occurring. This 

phase starts with the analyst creating initial hypotheses. These hypotheses are developed 

from the information the analyst classified in the visualization exploitation phase. For 

example, if the analyst identified two potential leaders in the visualization exploitation 

phase, he or she would create a hypothesis about each of those leaders (“Node X is the 

leader of the XXX network” and “Node Y is the leader of the XXX network”) and use the 

assessment phase to select the most likely hypothesis. 

After identifying hypotheses the analyst will use the hypothesis identification loop 

to determine the validity and project the likelihood of each hypothesis occurring. This is 

done by reconciling the hypothesis against the analyst’s pre-acquired knowledge. The first 

stage is to determine if the hypothesis is valid. For example, an analyst may hypothesize 

that, “node X is the leader of the XXX terror network.”  However, he or she may recall from 

their pre-acquired knowledge that “node X” died 7 months ago; thus, this is an invalid 

hypothesis. If the hypothesis is determined to be invalid, the analyst will discard it and 

move onto the next hypothesis. If the hypothesis is determined to be valid, then the analyst 

begins the process of predicting the likelihood of the hypothesis occurring. This is done 

primarily through a sequence of two decisions. The first is the quality of the information 

source. In most cases the analyst will know the veracity of the information provided by the 

data source. From this he or she will determine if the hypothesis is of high enough quality. 

For example, if a data source is identified as “low probability”, then the analyst will factor 

this into the projection of likelihood. If the hypothesis is of sufficient quality the analyst will 

then assess the recency of the information. If the information is recent enough the analyst 

will exit the hypothesis validation loop.  
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 Figure 3-5: Assessment Phase Decomposition 
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Each loop is evaluated sequentially until all are complete; at which time the analyst 

will compare the projected likelihood of occurrence for each hypothesis and typically select 

the hypothesis with the highest likelihood of occurrence. From this, he or she will draft 

reporting and disseminate it to other analysts, who will continue to develop and refine the 

hypothesis. Upon completing this phase, the cognitive flow process is complete.  

3.2 Information Processing Model for Terror Visualizations 

From the cognitive task analysis described in section 3.1 an information processing model 

was adapted from [72, 73, 74] to illustrate the cognitive processes used by an analyst both 

within and between phases. The model illustrated in Figure 3-6, outlines a basic 

information processing model for analyzing visualizations, which resulted from the 

information gleaned during the cognitive task analysis. In this model the blue squares 

represent cognitive processes that make up the substantive steps of the information 

processing function of the model. This model deviates from traditional information 

processing models in that the action step results in a prediction by an analyst about the 

future state of the data being analyzed [72]. This is because exploiting terror network 

Figure 3-6: Information Processing Model 
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visualizations does not result in any direct physical action from perceived information. 

Alternatively, the information perceived while exploiting visualizations must be 

temporarily stored in the working memory while perceived information is synthesized into 

an understanding of the situation that is capable of supporting hypotheses on the future 

state of the external inputs. This prediction process, which involves hypothesis validation, 

is considered the action process in the model. 

There are two primary inputs to the information processing function, information 

exogenous to the process (visualizations of data) and information endogenous to the 

process (memory). Each of these inputs and cognitive processes will be explained in more 

detail in subsequent sections of this chapter.  

3.2.1 External Inputs 

The cognitive model for exploitation of terror networks starts (from left to right) with 

external inputs into the information processing function. However, an important nuance 

when dealing with visualizations is the transformation from data to visualization. This is an 

entirely separate process from the information processing model outlined above. The 

specifics of this process were discussed generically in section 1.2, but it is nonetheless 

important to note that visualizations are abstractions of the data and thus introduce a 

certain amount of uncertainty. Keim et al. described this phenomenon in the context of 

creating effective visualizations, “The challenge is to try to come up with a representation 

that is as faithful as possible to avoid introducing uncertainty. We must not fall into the 

naïve assumption that visualization can offer a virgin view on the data” [75]. As such, every 

step in the information processing model outlined above both recognizes and accounts for 

the imperfect data displayed by visualizations. This key challenge of the external inputs will 

be discussed in further detail in each of the cognitive process steps. 

The input sources in the model are representative of the information gleaned during 

knowledge elicitation, naturalistic observation, and literature on task taxonomy for graph 

visualization [76]. They are as follows: 
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 Symbolic: Information provided by the two primitive elements of network 

visualizations - nodes and links. 

 Magnitude: Information provided by the two primitive elements (node/links) of 

network visualizations on the aggregate. 

 Spatial: Information provided by the relationship of one or more primitive element 

(node/link) to another. 

Symbolic information is characterized as the information provided purely by the 

nodes and links. Specifically for nodes, this information can include the size, color, shape, or 

iconic representation of a specific node; all of which are used in terror visualizations to 

convey specific meaning or context. These nodal symbolic representations, while relatively 

simplistic, are capable of conveying many additional dimensions of data to an analyst. For 

example, in a node-link visualization instead of using a generic node form (such as: ❶) an 

analyst may encounter an icon that commutates specific characteristics about the 

represented node (such as: ). These same symbolic representations are also possible in 

matrix visualizations; nodes can be replaced with icons to communicate the same 

characteristics as outlined above in node-link visualizations; however, this practice is less 

common in matrix visualizations. While node icons are an effective way to communicate 

additional information in a relatively small amount of space, if poorly labeled they can also 

be easily misunderstood.  

Similar to nodes, links can also be represented using a variety of methods (color, 

size, labels); however, links can also communicate directionality within a network. As 

discussed in Chapter 2, directionality is defined as, “ties oriented from one actor to 

another” [7], whereby the direction of the link communicates a specific relationship. For 

example, in a node-link visualization if node X made a phone call to node Y this relationship 

would be visualized by a directional link (X→Y). This same information is displayed in a 

matrix visualization by using a nonsymmetrical matrix to communicate the directionality of 

communication from one note to another. While subtle, this additional dimension of 

network data can provide key information on the relationships between specific nodes. 

Perceiving the significance of these relationships and all node and link symbolic 
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representations is absolutely critical to understanding the overall situation and context of 

the visualized network.  

Magnitude information, meaning the emergent abstract characteristics of the 

network on whole, is important to an analyst because it determines the overall link 

density11 of a network and directly contributes a network’s perceived complexity [6]. 

Recognizing the size and complexity of a network is critical to efficient analysis. As such, it 

is incumbent upon an analyst to understand the limits of readability using specific 

visualizations and either: 1) break a network down into two or more sub networks, or 2) 

employ an alternate means (possibly different visualizations) to examine a specific 

network. 

Spatial information includes the effects of any topographic or temporal layouts used 

to organize or communicate the relationship among the nodes in a network. There are a 

variety of possible layouts (spring embedder, force directed, hierarchical, attribute based, 

k-means, etc.), each of which offers a different perspective of the network. An analyst must 

understand the implications of certain layouts and comprehend the benefits and 

drawbacks of each. For example, if an analyst is exploiting a network visualization that uses 

a hierarchical layout the analyst must understand the positions and roles within that 

network topography. A failure to do so would reduce the amount of information that could 

be perceived from the hierarchical visualization. Furthermore, spatial information is used 

in conjunction with symbolic information to interpret and examine the terror network on a 

whole.  

Another external input to the information processing function is goals. Goals both 

provide context and drive the cognitive processes of an analyst. As discussed in section 3.1, 

an analyst’s goals are set forth based on the PIRs and EEIs. This is significant input, because 

the goals will drive what information is perceived and processed through the information 

processing function. 

                                                        

11 Link density is defined by Goenhiem et al., as:    √
 

  
 ; where l is the number of links and n is the number 

of nodes [6]. 
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3.2.2 Internal Inputs 

While external inputs play a large role in an analyst’s ability to process information from a 

terror network, internal inputs play an equally critical role because the ability of any given 

analyst to reach accurate projections depends on the internal inputs (long-term or working 

memory). This is because each analyst has a set of pre-acquired knowledge, which is gained 

through training or past experiences executing cognitively congruent tasks, which is stored 

in long-term memory. In processing information, the analyst will draw from this pre-

acquired knowledge to recall mental models, situational models, and schemata developed 

in past to help organize or marshal information in a current task [77]. Although all analysts 

have a baseline of heuristics as a result of formal training (some variation exists based on 

the source and quantity of training), most analysts will not have the same set of mental 

models or schemata to draw from. For example, an experienced analyst will have much 

more developed mental models and schemata than a new analyst. This wide range of 

experiences is the reason why two analysts exploiting the same visualization can reach two 

different assessments. Furthermore, these cognitive structures offer a key advantage when 

attempting to process information, because an analyst can draw from these long-term 

memory structures (schemata or scripts) to act on current situations with the benefit of not 

overloading working memory [77]. 

Working memory, which is “a vulnerable, temporary store of activated information” 

[72], plays a critical role in the processing of information by linking the long-term memory 

structures with elements from the current situation. This section of the cognitive model is 

largely responsible for rectifying the information disparities between what is available and 

what is required. However, the role played by working memory is highly vulnerable to 

disruption when “attentional” resources are diverted to other mental activities [72]. 

Endsley frequently refers to the working memory as the main “bottleneck” and elaborates 

on the constraints of working memory, “a heavy load is imposed on working memory, as it 

is taxed with simultaneously achieving the higher levels of SA [situational awareness], 

formulating and selecting responses, and carrying out subsequent actions” [77]. As such, 

working memory can become easily overburdened if managed improperly. 
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3.2.3 Perception  

The first cognitive process in the information processing function is perception where 

“information received by our sensory system is perceived, that is, provided with some 

meaningful interpretation based on memory of past experience” [73]. This is where raw 

data is received by the brain and transformed into a meaningful form of information. 

Perceptual processing has two key features: 1) it typically proceeds automatically and 

rapidly (requiring little attention; thus, not overly burdening working memory) and, 2) it is 

driven by both external inputs (visualizations and goals) and by internal inputs (long-term 

and working memory) [72]. 

For an intelligence analyst this information enters the cognitive process in the form 

of external inputs, described in Section 3.2.1. While most information is perceived directly 

from external input sources (nodes, links, size, topography, etc.), some of the external 

inputs are also combined with internal input sources (examples include: known network 

structures of a leader) to form a more complete understanding of the situation. This fusion 

of various inputs results in the perception of characteristics that would not have been 

discernible by examining any one input alone. These perceptions of inputs form the 

foundation of the information processing function because this is the first point which 

meaning is applied to the data emerging from the visualization. 

3.2.4 Comprehension  

The second cognitive process is comprehension of the current situation. In the 

comprehension process, disjointed information from the perception process is synthesized 

with goals to achieve a more holistic picture of the current state of the data and 

comprehend the significance of objects [77]. To achieve comprehension, an analyst must 

reconcile the differences between the gaps in information provided during the perception 

process with the information required to satisfy his or her goals. This is done by 

temporarily storing information in working memory with the objective of accessing 

“information that was not sensed and perceived but was generated internally” [73]. The 

greater the mismatch in the information available from the perception process relative to 
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the information required to satisfy the goals, the greater the cognitive workload required 

to perform the information-processing. All of the literature reviewed during the cognitive 

task analysis indicates that this is the single most difficult step for an analyst during the 

exploitation process. 

As discussed in section 3.1, the two goals fed into the information processing model 

for this thesis are: 1) the identification of leaders, and 2) identification of clusters. These 

goals, along with the perceived information and pre-acquired knowledge, are fed directly 

into the working memory. The first goal, identification of leaders, involves cross cueing the 

information resulting from the perception process against any schemata or scripts in the 

long-term memory to reach valuable conclusions (examples are: positive identification of 

any salient actors or normalization of anomalies). For example, an analyst may identify a 

node with an exponentially higher number of links than adjacent nodes. By itself, this 

perceived information is inconclusive. This is because the perception of this information is 

important, but the comprehension of the meaning within the context of the network is 

more critical to satisfy the goal of exploitation. A single node with many connections could 

indicate a salient actor (leader of a terror network) or it could represent an innocuous 

actor with many unimportant connections (network facilitator or the suburban equivalent: 

a mailman). To comprehend which conclusion is most likely correct, an analyst may recall 

scripts or heuristics from memory to assist in identifying salient actors. In this case, an 

analyst may fuse a perceived network structure with heuristics or experiences from past 

analyzed network topologies where the salient actors were known. From this synthesis an 

analyst can begin to comprehend the salience of particular actors in the network. However, 

as discussed in the external inputs section, because visualizations interject uncertainty, 

there is no way for the analyst to know for certain whether his or her comprehension is 

correct. This remaining gap between information available and information needed to 

satisfy a goal is what makes intelligence analysis a cognitively complex and challenging 

task. 

To resolve the uncertainty an analyst uses a sub-process, where possible, within the 

comprehension process to identify and analyze meta-information revealed from the 

perception process. All perceived information contains some level of meta-information, 
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which is defined by Pfautz et al., as “characteristics or qualifiers of information that affect 

the user’s information processing, situational awareness, and decision making” [69]. 

Examples of meta-information are: the source quality of the information, recency, and 

uncertainty. Occasionally this meta-information is explicitly stated in visualizations, but 

sometimes this information is left out of visualizations to reduce visual complexity. In the 

case of the latter, this sub-process is not viable. However, when this information is 

available it further complicates an analyst’s job, because to comprehend information an 

analyst must recognize the meta-information and reason through it using one of the 

following methods (derived from [61]): 

 Deductive Reasoning: Where the conclusion, or conclusions, follows from the 

premises. 

 Inductive Reasoning: Where the conclusion, or conclusions, though supported by 

the premises, does not follow from them necessarily. This method is the inverse 

of deductive reasoning, where an observation is used to infer a larger theory. 

 Abductive Reasoning: When one attempts to determine the best or most plausible 

explanation for a given set of evidence. 

Through these methods of mentally taxing complex reasoning an analyst can often 

reach some form of comprehension. In a case where an analyst had access to all 

information and meta-information (i.e. if he or she created the visualization), he or she 

could use deductive or inductive reasoning to reach comprehension. However, as a result of 

the uncertainty within visualizations and the lack of access to the complete set of meta-

information, most comprehended information is as a byproduct of the best or most 

plausible explanation, given the limitations of the meta-information (i.e. abductive 

reasoning). While effective at reaching collusions in complex uncertain domains, abductive 

reasoning will not consistently produce accurate results. It is the objective of the analyst to 

accept some uncertainty in his or her analysis, but ensure that any conclusions factor in 

inaccuracies and minimize them to the maximum extent possible. 
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3.2.5 Action 

The third and final step of information processing is the ability to predict the future states 

of elements in the situation. In the case of terror network visualization, predictions are 

typically achieved through knowledge of the data from which the visualization is built and 

comprehension of the visualization. Specifically, an analyst will form a prediction that 

answers the goals: 1) the identification of leaders and 2) identification of clusters. The 

extent to which an analyst can accurately predict either one of these tasks relies heavily on 

the quality of the information perceived and more importantly the resulting information 

comprehended. As discussed in the flow charts in section 3.1.2, an analyst will create 

multiple competing hypotheses regarding the future state of the situation. Each hypothesis 

is then evaluated based on the aggregate meta-information, such as level of confidence or 

probability of occurrence. Typically an analyst will predict the hypothesis, or hypotheses, 

with the highest accuracy and highest level of confidence.  

Unfortunately, if an analyst makes an error in perception, then that error can 

propagate through all the processes in the information processing model. Once an error is 

made, it is likely that additional errors will be made based on the previous bad information; 

thus, creating a cycle of error-on-error analysis. This cycle can go largely uncorrected until 

the analyst has an opportunity to receive feedback on the quality and accuracy of his or her 

predictions. If feedback on an analyst’s prediction is available the analyst will accumulate 

lessons learned from that projection and use that data to continuously populate and update 

their pre-acquired knowledge. This iterative cycle of evaluation of analysis and feedback is 

how an analyst builds experience.  

3.3 Conclusion 

This chapter outlined a cognitive task analysis to identify the specific cognitive processes, 

challenges, and constraints an analyst faces while exploiting terror network visualizations. 

The results of that analysis were then used to create an information processing model for 

visualization. The model identified and illustrated the cognitive processes used by an 

analyst to transition through three main stages of information processing: perception, 
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comprehension, and projection. Of particular significance, the transition from perception to 

comprehension was noted as one of the primary bottlenecks inhibiting effective 

information processing. 
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4Chapter 4 

 

Terror Network Visualizations 

This chapter provides background and details on the specific terror network visualizations 

that were used in the human subjects experiment described in Chapter 5. This chapter 

begins with a discussion of the data set used in the study, then transitions into the specific 

adaptation of node-link and matrix visualizations, concluding with a discussion on the 

design principles used.  

4.1 Overview  

The two visualizations described in this chapter were created for the purposes of the 

human experiment described in Chapter 5, which is designed to test the efficacy of each 

visualization at identifying leaders and identifying clusters. The intent of these 

visualizations is to provide an intuitive interface that leverages design principles 

(discussed in more detail in section 4.5) to present an integrated set of information to an 

analyst [72]. The specific description of each visualization is discussed in further detail 

below. 

4.2 Visualization Data Set 

For this study it is critical to have a data set that has both truth (i.e. the roles and positions 
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of the nodes which compose the network are known) and characteristics of a real-world 

terrorist network. Failure to use a network with truth or characteristics of a terror network 

could jeopardize the experimental testing. With this in mind, three possible courses of 

action were investigated: 

 Actual Terror Data Set – The simplest solution would be to use data from an 

existing terrorist network. However, this method was excluded because 

classification constraints do not allow for the use of real-world data on terrorist 

networks, and to guarantee the impartiality of potential experiment participants 

an open source terrorist network (ex. 9/11 Hijackers) was avoided. 

 Simulated Data Set – A data set could be simulated to mimic the topographic and 

statistical properties of a known terror network. However, this method was also 

excluded because the scope of this work is to find a visualization that enhances 

the exploitation of terror networks. The author felt designing a data set and 

proving its statistical congruence with a terror data set would be outside the 

scope of this research and distract from the true purpose. 

 Surrogate Data Set – The final option explored was finding a surrogate data set 

that mimicked the topographic and statistical properties of a terror network. In 

all, six different data sets were explored: Bernard & Killworth Fraternity [78], 

Padgett Florentine Families [79], Read Highland Tribes [80], Stokman-Ziegler 

Corporate Interlocks [81], Thurman Office [82], and the Karate Club [83].  

The data set ultimately selected to satisfy all three targeted characteristics is the 

Karate Club data set [83]. The data set was gathered by Wayne Zachary on a university 

karate club. Zachary describes the specifics of the club as: 

“The karate club was observed for a period of three years, from 1970 to 

1972. In addition to direct observation, the history of the club prior to the 

period of the study was reconstructed through informants and club records 

in the university archives. During the period of observation, the club 

maintained between 50 and 100 members, and its activities included social 

affairs (parties, dances, banquets, etc.) as well as regularly scheduled karate 
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lessons. The political organization of the club was informal, and while there 

was a constitution and four officers, most decisions were made by consensus 

at club meetings. For its classes, the club employed a part-time karate 

instructor, who will be referred to as Mr. Hi.” [83] 

 Although the data set is not related to terrorist activities, it has truth, which 

includes documented roles and positions of the members within the group (to include: 

leaders, and clusters). Additionally, the karate club data set represents a simple graph12 

with single nondirectional dichotomous relations13 and offers complex interactions among 

34 discrete social actors; these characters of the data set mimicked Sparrow’s key 

characteristics of a terrorist network:   

 Complexity (encompasses Sparrow’s characteristics of size and fuzzy boundaries 

[36]) – Terror networks have the potential to be hundreds of connections spanning 

multiple time zones and continents; resulting in networks that are often large and 

dense. 

 Uncertainty (encompasses Arrow’s characteristic of incompleteness and dynamic 

[36]) – Most of the data an analyst has on a terrorist network is based on invalidated 

reporting. The veracity of this information is not always substantiated. Therefore, a 

significant portion of the data in a terror network has the potential to be wrong or 

misleading.  

4.2.1 Descriptive Statistics of Data Set 

A specific interest is the overall link density of the network (see section 3.2.1 for a review 

of link density), which can be used as an indicator of network complexity (research 

indicates higher density equates to higher complexity [6]). While the density of this 

network is low (0.259), it is desirable for this research, because it will allow for the entire 

network (34 nodes and 78 links) to fit on a single sheet of paper. A density above this level 

may result in static visualization with many confusing clusters of links, which could result 
                                                        
12 Defined by [7, p. 95] as: “A graph that has no loops and includes no more than one line between a pair of 
nodes” 
13 Defined by [7, p. 95] as: A graph of a social network where, “the nodes represent actors, and the lines 
represent the ties that exist between pairs of actors on the relation” 
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in the occlusion of significant data and subsequently impact an analyst’s ability to draw 

conclusions from the visualization. Although complex networks are common in the domain 

of intelligence, a network with a density that is too high could make the node-link diagram 

more complex than the matrix visualization; thus, creating a disparity between the two 

visualizations and potentially jeopardizing the results of the human experiment. 

Regarding the uncertainty of the data set, a cursory analysis yielded two key 

findings. The network contains two clusters organized around two opposing leaders and 

six nodes that link the two clusters together (visible in Figure 4-1). To gain an accurate 

understanding of the network, an analyst will have to walk through the cognitive model 

outlined in the previous chapter to successfully identify the two clusters, leaders, and 

normalize the connections between both clusters. Thus the clusters, and the potentially 

misleading connections between them, display an acceptable level of uncertainty in a 

network of this density.  

4.3 Node-Link Visualizations 

The first visualization method this chapter will focus on is node-link. As discussed in 

 

Mr. Hi 
Leader of Cluster 

(Blue) 

John 
Leader of Cluster 

(Red) 

Figure 4-1: Karate Club leaders and clusters 
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Chapter 2, this form of visualization is by far the most pervasive within the military 

intelligence enterprise. Academic research indicates that node-link diagrams are one of the 

most effective ways to visualize relatively low density networks (a link density less than 

0.4) [6]. However, when the data density grows larger and more dimensions of data (such 

as node attributes) are added, node-link visualizations can become very complex and 

difficult to analyze. Therefore, the challenge when creating a visualization for human 

experimentation is to create a visualization that will challenge participants, but not confuse 

or bias participants towards one visualization technique. 

Figure 4-2 shows a basic node-link visualization, of the karate club data set, 

organized using a spring embedded layout (further details on the specific algorithm can be 

found in [84]). Due to the ease of readability associated with spring embedded layouts, all 

node-link diagrams depicted herein will use the same spring embedded layout. The 

primary benefit of node-link visualization is the ability to view the entire network topology. 

However, at its most rudimentary form, node-link analysis does not show much data; only 

nodes and links. It is possible, by overlaying additional node attributes, to show multiple 

dimensions of meta-information using this visualization technique. Figure 4-3 

Figure 4-2: Basic node-link visualization of karate club data set 
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demonstrates one method where meta-information can be incorporated into a node-link 

visualization. In this example, ordinal values of closeness centrality are depicted by 

changing node size; where a large node indicates high closeness centrality and a small node 

indicates low closeness centrality. Additionally, the scalar values are denoted on the left 

side of the label for each node. By adding the closeness centrality of each node, it overlays 

an additional dimension of data and communicates emergent meta-information on the 

network (the concept of emergent features is discussed further in section 4.5).  

Another dimension of data can be added by changing the node color. Figure 4-3 

illustrates an example of this method. In this case, closeness centrality is still depicted by 

node size, but betweenness centrality is now illustrated by changing the node color; where 

blue nodes indicate high betweenness centrality and red nodes indicate low betweenness 

centrality. The result is a visualization that shows the topology, but also offers quantitative 

measure of centrality that communicates the relative “importance” of each node.  

Many more layers of information may be added on top of this visualization, but each 

additional layer of information has the potential to complicate analysis and diminish 

analytical returns by occluding other data. In the case of node-link analysis, it does not 

necessarily mean that added information and complexity directly correlates to more 

effective visualizations. Therefore, striking an optimal balance between information and 

complexity is a primary challenge when creating a node-link visualization.  

4.4 Social Network Matrices 

As discussed in Chapter 2, this method of visualization currently is not common within the 

intelligence community. In addition to the reasons mentioned in Chapter 2, the absence of 

this form of network visualization may also be due to a lack of commercially available 

intelligence oriented matrix analysis tools, and little to no analyst training on matrix 

analysis. For example, the matrices created for this thesis were constructed using a 

combination of UCINET, which is open-source social network analysis program developed 

by experts in the field of social network analysis [85]and ORA, which is a complex social 

network analysis tool developed by Carnegie Mellon’s Center for Computational Analysis of  
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Figure 4-3: Enhanced node-link visualization with multidimensional data 
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Social and Organizational Systems [86]; and Microsoft Excel. To the author’s knowledge 

there is no single commercially available tool which can accomplish all the tasks necessary 

to create a visualization similar to the matrices in Figure 4-4 and Figure 4-5. This is 

supported in research done by Henry et al., who surveyed all the tools in the “International 

Network for Social Network Analysis” software repository. Their examination revealed that 

node-link represented the preponderance (54 out of 55) of available tools [18].  

Figure 4-4 represents a symmetrical matrix showing the interconnections between 

the nodes (labeled numerically from 1-34 on the top and left of the matrix). The matrix is 

symmetrical because the data set is nondirectional. Meaning the links do not show a 

relationship from one person to another, but simply communicates a relationship exists. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

1 2.0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 1 2.0 1 1 1 1 1 1 1 1

3 1 1 2.0 1 1 1 1 1 1 1 1

4 1 1 1 2.0 1 1 1

5 1 2.0 1 1

6 1 2.0 1 1 1

7 1 1 1 2.0 1

8 1 1 1 1 2.0

9 1 1 2.0 1 1 1

10 1 2.0 1

11 1 1 1 2.0

12 1 2.0

13 1 1 2.0

14 1 1 1 1 2.0 1

15 2.0 1 1

16 2.0 1 1

17 1 1 2.0

18 1 1 2.0

19 2.0 1 1

20 1 1 2.0 1

21 2.0 1 1

22 1 1 2.0

23 2.0 1 1

24 2.0 1 1 1 1 1

25 2.0 1 1 1

26 1 1 2.0 1

27 2.0 1 1

28 1 1 1 2.0 1

29 1 2.0 1 1

30 1 1 2.0 1 1

31 1 1 2.0 1 1

32 1 1 1 1 2.0 1 1

33 1 1 1 1 1 1 1 1 1 1 1 2.0 1

34 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2.0

Figure 4-4: Unpartitioned symmetrical matrix visualization of data set 
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Furthermore, in this matrix the links between nodes are represented by a “1” at the 

intersection of nodes (note all cells are with a “1” are highlighted in grey to make the 

clusters more apparent).  

One of the most common criticisms of nodal-link analysis is its inability to display 

large and/or dense networks. As nodal-link visualizations grow in size they have a 

tendency to become cluttered and difficult to analyze. Some scholarly authors advocate the 

use of matrices to solve this problem [6]. Figure 4-4 is an example of a matrix, which in this 

case is an un-partitioned14 symmetric matrix composed from the Karate Club data set. 

Matrices, such as Figure 4-4, can be used to spot patterns spanning many different nodes or 

links. These patterns can reveal clusters and show characteristics of the data that are not 

readily discernible from node-link visualizations due to occlusion.  

As with node-link visualizations, basic matrices only depict the basic topology. 

However, to ensure that each visualization presents similar amounts of data, for purposes 

of the human experiment described in the next chapter, the same information must be 

communicated in the matrix as in the node-link diagram. To add additional dimensions of 

data, the matrix was partitioned using a k-means clustering algorithm (for details on the 

specific algorithm please see references [87, 88]). Since the number of clusters in this 

network was already known k was set to 3 (k=3 also returns the lowest r-square for 

integers k= x; 2<x<5)15. This algorithm partitioned the matrix into two large clusters with a 

third cluster of actors who serve as intermediaries between the two main clusters.  

Additionally, both the ordinal and scalar values for betweenness and closeness 

centrality for each node were overlaid on the diagonal of the matrix, with closeness 

centrality on the left and betweenness centrality on the right. Similar to the node link 

visualization, conditional formatting was added to both measures of centrality, where blue 

nodes indicate high centrality values and red nodes indicate low centrality values; 

                                                        
14 Meaning no layout algorithms were been applied to alter the organization of the nodes. 
15 An analyst would not know to employ the k-means algorithm or set k=3.  However, this layout selection is 
relatively insignificant because most layout choices are transparent to an analyst; they are set to a default 
setting in most social network applications.  This also holds true for node-link the layouts, where the data is 
automatically visualized by most social network applications in a spring-embedded layout. 
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Figure 4-5: Partitioned symmetrical matrix of karate club dataset 
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used to cue an analyst’s attention. The result is a visualization that contains the same 

amount of information and meta-information as Figure 4-3.  

4.5 Visualization performance hypotheses  

Academic research [89] has shown that human performance can improve when 

visualizations promote parallel processing; promoting perception as opposed to the more 

cognitively demanding process of integrating memory and inference. This research is 

consistent with the bottleneck identified in the information processing model outlined in 

Chapter 3. As such, design principles that promote efficient perception can be used to help 

predict under which tasks each visualization will perform the best. This is because node-

link and matrix visualizations promote different design principles, which, hypothetically, 

should predispose each one to be better at certain tasks. As such, this section will focus on 

the design principles in each visualization and hypothesize how it will affect performance 

during the user testing described in the next chapter. However, before identifying design 

principles within the visualizations, it is important define the design principles.  

The first design principle, the proximity compatibility principle (PCP), states that, to 

“the extent that information sources must be integrated, there will be a benefit to 

presenting those sources either close together, in an objectlike format, or by configuring 

them to create emergent features” [72]. The theory behind PCP is based on two principles: 

display proximity and processing proximity. Display proximity is the physical closeness of 

two or more display components that display relevant information. Processing proximity is 

the extent to which two or more information sources are used in the same display oriented 

task. The level of processing proximity will drive the level of display proximity. Stated more 

simply, if a display task requires high processing proximity, then high display proximity 

should follow. The inverse of this relationship also holds true. Therefore, by developing 

visualizations with certain display components close together, the new visualization 

creates perceptual similarities and emergent features. 

 The second design principle, emergent features, can assist in the holistic or global 

processing of a display. While there is not a widely accepted definition of emergent 
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features, this paper will use the definition provided by Bennett et al., “the high-level, global 

perceptual features that are produced by the interactions among individual parts or 

graphical elements of a display (e.g. lines, contours, and shapes)” [90]. These features are 

the emergent values of a “global property” of a set of stimuli, which are not necessarily 

evident if each stimulus were viewed in isolation [72]. Bennett et al., along with other 

researchers, have shown that the use of emergent features is an indicator of improved user 

performance [90, 91]. 

  The relationship between PCP and emergent features is not discrete. For example, 

PCP can be used to create emergent features, which should result in improved analyst 

performance. For example, in the context of the task of identifying clusters, an emergent 

feature was created by using layout (node-link) and partitioning (matrix) algorithms to 

promote a high display proximity of certain nodes; which resulted in easily identifiable 

clusters. Whereas in the task of identifying leaders, an emergent feature was created by 

increasing the display proximity of the measures of centrality through colocation of this 

information on the visualization and the use of conditional formatting using colors (also 

referred to by [92] as color proximity). 

With the presence of PCP and emergent features, analysts should realize many 

cognitive benefits including: reduced visual search costs, increased direct perception, 

reduced need to retain information, and reduced information access costs or internal 

division of attention [93]. Therefore, the design principles evident in each visualization 

should indicate which form of visualization will be most effective, depending on the specific 

task (identify leaders or identify clusters).  

4.5.1 Identifying Clusters 

In the specific case of terror network visualizations, clusters emerge as a key global 

property of the overall network. In both visualizations an emphasis is placed on ordering 

the nodes, through specific layout or partitioning algorithms, so clusters emerge and cue an 

analyst’s perception. The clustering algorithms identify those actors in a network that are 

approximately equivalent in structure [7]. However, clustering algorithms return varying 
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results depending on the inputs of each specific algorithm. Nonetheless, an analyst can still 

utilize these emergent clusters to cue more localized processing to determine the salience 

or accuracy of specific clusters. While both node-link and matrix display clusters through 

the use of algorithms, the boundaries of clusters in node-link visualizations may be difficult 

to define because of the multiple overlapping links. Comparatively, links do not overlap in 

the matrix visualization, which may make it easier for an analyst to accurately identify 

clusters and their boundaries. 

4.5.1 Identifying Leaders 

Another emergent feature evident in both visualizations is the node salience as a byproduct 

of the presented measures of centrality. Not only do the colors assist in cuing an analyst’s 

perception, but by stratifying each node based on closeness and betweenness centrality the 

nodes which are similar in attributes are more easily integrated and compared [72]. This 

emergent feature can help an analyst more quickly identify which actors in a network are 

salient and which are innocuous. Once again, this design principle exists in both forms of 

visualization. Although these attribute based variations make it easier to identify 

potentially salient nodes, it may be more difficult for an analyst compare the attributes 

against the over network topology using the matrix. This is because the global topology of 

the network is not obvious in the matrix visualization.  

4.6 Conclusion 

This chapter outlined the terror network visualizations that were used for the user 

experiment outlined in Chapter 5. The result is two visualizations, node-link and matrix, 

which communicate similar amounts of both information and meta-information to an 

analyst. These visualizations were then analyzed through a lens visualization design 

principles, proximity compatibility principle, and emergent features, to formulate 

hypothesis about the future performance of each visualization during the user experiment. 

Finally, each of the above hypotheses will be used in the next chapter to formalize higher 

fidelity experimental hypotheses.  
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5Chapter 5 

 

Human Performance Experiment 

5.1 Experiment Objectives  

The objectives of this experiment were to test the effectiveness of the node-link 

visualization compared to the matrix visualization, based on two criteria: 1) effectiveness 

at identifying leaders within a network, and 2) effectiveness at identifying clusters within a 

network; two fundamental tasks in terror social network analysis introduced in Chapter 1. 

5.2 Experimental Hypotheses 

The following experimental hypotheses are a result of academic literature on the subject of 

comparing the readability of social network graphs [6], on the results of a pilot study 

conducted by the author pertaining to a sample set of 5 current military intelligence 

analysts, and on the initial hypothesis outlined in Chapter 5 based on the design principles 

inherent in each visualization. 
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5.2.1 Performance at Identifying Leaders 

The ability to identify leaders from a node-link or matrix visualization is primarily 

influenced by the emergent features of the visualization techniques, such as the color 

proximity presented by conditionally formatting the measures of centrality and node 

position relative to the network topology. For example, Figure 4-3 and Figure 4-5 clearly 

identify one of the cluster leaders16 (node 34) by presenting an extremum closeness 

centrality using node size or cell color; however, the second cluster leader (node 1) does 

not have as strong of a color or size cue. As such, successfully identifying this leader would 

be challenging in both visualization techniques. A node-link visualization may make this 

task easier by providing information on a node’s position relative to the entire network 

topology. The matrix visualization also provides topological information, but to a lesser 

degree. As such, the following hypotheses capture the expected performance at identifying 

leaders: 

 Hypothesis 1: The ability to accurately identify leaders within a network or cluster is 

expected to be better supported by the node-link visualization as compared to the 

matrix visualization. 

 Hypothesis 2: Use of the node-link visualization is expected to require less time to 

accurately identify leaders as compared to the matrix visualization. 

5.2.2 Performance at Identifying Clusters 

Successfully identifying clusters is primarily a function of two sub-tasks: the ability to 

identify a cluster and to accurately identify where the community stops and where the next 

community begins. The node-link visualization may make the second sub-task difficult, 

because there is no clear bifurcation between clusters. The matrix visualization may make 

this task easier, because it more clearly communicates the boundaries between clusters. 

However, the accuracy of the clusters within the matrix depends on the quality of the 

clustering algorithm used to partition the network. This factor and analyst unfamiliarity 

with this visualization technique may degrade matrix performance; however, matrix 

                                                        
16 Defined as one of the leaders identified by Zachary in his original description of the data set [83]. 
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training (explained in 5.7) should help offset the second factor. As such, the following 

hypotheses capture the expected performance at identifying clusters: 

 Hypothesis 3: The ability to accurately identify clusters within a network is expected to 

be better supported by the use of the matrix visualization as compared to the node-link 

visualization. 

 Hypothesis 4: Use of the matrix visualization is expected to require less time to 

accurately identify leaders as compared to the node-link visualization. 

5.3 Experimental Tasks 

As discussed throughout this thesis, two test scenarios were designed for this experiment. 

The first scenario is focused on identifying leaders within a network, which is referred to in 

the taxonomy of graph visualization tasks as analyzing roles and positions [6]. The second 

scenario is focused on identifying clusters within a network; this task is referred to, under 

the same taxonomy, as identifying communities of interest [6]. All of the below 

experimental tasks are recognized to be consistent with the primary tasks of social 

network analysis [7, 8] and were adapted from academic research on task taxonomy for 

social network graph visualizations [6, 5] (all experimental visualizations and questions 

discussed below are outlined in Appendix F). 

5.3.1 Task 1: Identification of Leaders 

Identifying leaders within a social network is among the most important tasks an analyst 

must perform when exploiting a network. Under normal operational circumstances an 

analyst would first create a hypothesis regarding which nodes represent the characteristics 

of a leader and then conduct research to either prove or disprove that hypothesis. For 

example, an analyst may hypothesize that there are four nodes that display the 

characteristics of a leader, but research reveals that the network only has two leaders. The 

analyst must then return to his or her previous hypothesis and update it based on the 

additional information. To mimic this process, additional information was sequentially 

incorporated into the questions to mimic these cognitive tasks:  
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 (Task 1) “Analyze roles and positions - these are higher level tasks relying on the 

interpretation of groups of actors (positions) and connection patterns (roles).” [6] 

o (Question 1.1) Identify any central actors, which are defined as actors linked to 

many others or that bridge communities together.  

 Correct Responses: Any node that acts as a bridge between the two 

clusters (nodes 1, 3, 9, 14, 20, 31 32, 33, and 34), any node with an 

extremum measure of centrality (nodes 3 and 34) or a leader from the 

data set (nodes 1 and 34) 

o (Question 1.2) Identify any potential leaders within the network. 

 Correct Responses: Any node with an extremum measure of centrality (nodes  

32, 33 and 34) or a leader from the data set (nodes 1 and 34) 

o (Question 1.3) Assuming there are only two leaders, identify those leaders. 

 Correct Responses: Leaders from the data set (nodes 1 and 34) 

The correct answers defined above are from one of two sources: 1) the data set 

truth identified by Zachary [83], or 2) an emergent feature which resulted from the design 

of Figure 4-3 and Figure 4-5. The answers that resulted from an emergent feature are 

acceptable responses for questions 1.1 and 1.2 because they display the structural 

properties of a leader. However, they are unacceptable for question 1.3 because this 

question attempts to assess the accuracy of identifying the leaders as defined in the data 

set [83]. Table 5-1 below outlines the source for each correct answer. 

Table 5-1: Source of Correct Task Question Answers 

Question Correct Responses 
Source of Correct Response 

Data Set Truth Emergent Feature 
(Question 1.1)     
 Nodes: 1, 3, 9, 14, 20, 31 32, 33, 34 X  
 Node: 3  X 
(Question 1.2)    
 Nodes: 1, 32, 33 ,34 X  
 Node: 3  X 
(Question 1.3)    
 Nodes: 1,34 X  

 

The above outlined sequence of questions mimics the normal process an analyst 

engages in when he or she tries to satisfy the overall task of analyzing roles and positions. 
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By increasing the specificity of each sequential question, with the ultimate goal of 

identifying a leader, it will help identify potential limitations in visualizations.  

5.3.2 Task 2: Identification of Clusters 

The sequence for identifying clusters is similar to that outlined above for identifying 

leaders. An analyst will first create a hypothesis and then conduct research to either prove 

or disprove the hypothesis. The primary difference between identifying clusters and 

identifying leaders is that the identification of clusters requires one fewer steps, or 

questions, than identifying leaders. This does not imply that the task is easier than 

identifying leaders; given the information in the visualizations there is only enough data to 

support one question, as opposed to three. As such, this experimental scenario will follow 

an identical construct as the identification of leaders scenario, but will have only one 

question. 

 (Task 2) “Identify all communities, i.e. cohesive groups of actors that are strongly 

connected to each other.” [6] 

o (Question 2.1) Assuming there are only two clusters, identify those clusters. 

 Correct Answer: Cluster 1, defined by the data set as Mr. Hi’s cluster; cluster 2, 

defined by the data set as John’s cluster. [83] 

However, different than Task 1, the correct answers defined above for Task 2 are 

also from only one source: 1) the data set truth identified by Zachary [83]. Question 2.1 

attempts to assess the accuracy of identifying the clusters as defined in the data set [83]. As 

such, only the true answers from the data set are acceptable responses. Table 5-2 below 

outlines the source for each correct answer. 

Table 5-2: Source of Correct Task Question Answers 

Question Correct Responses 
Source of Correct Response 

Data Set Truth Emergent Feature 
(Question 2.2)    
 Clusters: 1, 2 X  
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5.4 Experimental Design 

This experiment is a 2 (Visualization Technique) x 2 (Visualization Task) mixed design 

study within-subjects on the visualization task factor and between-subjects on the 

visualization technique factor.  

5.4.1 Independent Variables 

Two independent variables were of interest in this experiment: 1) visualization technique 

and 2) visualization task. Visualization technique refers to specific visualization (node-link 

or matrix) a participant will use to answer the task questions. In this experiment 

participants saw either the node-link (Figure 4-3) or the matrix (Figure 4-5) visualization. 

Therefore, this two level factor was a between-subjects variable. The visualization task 

factor includes both identifying leaders and clusters. This factor is a within-subjects 

variable, because every participant was asked to perform both the task of identifying 

leaders and clusters. 

5.4.2 Dependent Variables 

Two dependent variables were used in the experiment: 1) accuracy of analyst assessment 

and 2) time to reach assessment. Each of those variables is described in detail below. 

Assessment Accuracy 

Assessment accuracy addresses the participant’s ability to correctly answer the 

subordinate questions to each of the task scenarios and is the primary factor supporting all 

the hypotheses outlined in section 5.2. Accuracy of assessment is a critical task an analyst 

will perform and is directly correlated to the effectiveness of an analyst at exploiting terror 

network visualization. In this experiment, assessment accuracy will be measured using the 

four possible outcomes of signal detection theory (see 2 x 2 matrix in Figure 5-1): hit, miss, 

false alarm, or correct rejection. A hit indicates the participant provided one of the correct 

responses outlined in sections 5.4.1 and 5.4.2, which will be recorded by awarding the 

participant a score of “1” in the signal column for the question. Conversely, a miss indicates 
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the participant failed to provide one of the correct responses outlined in sections 5.4.1 and 

5.4.2, which will be recorded by awarding the participant a score of “0” in the signal column 

for the question. A false alarm indicates the participant provided a response that was not 

outlined in sections 5.4.1 or 5.4.2, which will be recorded as a “1” in the noise column for 

the question. Finally, once the number of false alarms is known the number of correct 

rejections can be directly computed. [72] 

Organizing the collected participant data in this manner will not only allow for the 

direct comparison of correct answers between visualizations, but also will permit more in-

depth analysis on other factors; such as probability of false alarm for each visualization. For 

this variable, a higher percentage of hits, relative to misses, is desirable and a lower 

percentage of false alarms, to correct rejections, is desirable.  

For questions 1.1 through 1.3 participants were scored primarily on the percentage 

of hits to the total number of hits possible. This method of evaluation results in an overall 

percentage correct for each task. For question 2.1, the process used to evaluate the answers 

and score each participants assessment accuracy is slightly different to the process for 

questions 1.1 through 1.3. This is because identifying a cluster is a more complex task than 

simply identifying presence or absence. The difficulty when identifying clusters is 

 

Yes 

No 

Response 

Signal Noise 

State of the World 

Hit 

Miss 
Correct 

Rejection 

False 
Alarm 

Figure 5-1: The four outcomes of signal detection theory [6] 
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determining where one cluster stops and another begins or, said differently, accurately 

identifying the borders. Therefore, each participant was given two scores.  One for each of 

the two clusters. Then an aggregated percentage based on the number of nodes they 

correctly identified for each of the two clusters was created for each participant. For 

example, if a participant was able to correctly identify 16 of the possible 18 nodes in cluster 

one and only 5 of the possible 16 nodes in cluster two. Those scores aggregated these 

scores to create an overall percentage correct for question 2.1, which in this example would 

result in an agregatted score 62%. This method of scoring provided a better indication of 

which visualization would be better at not only identifying the presence of the cluster, but 

also which was better at identifying how much of the cluster the participants were able to 

correctly identify.  

Time to Reach Assessment 

Time to reach assessment supports hypotheses 1 through 4. This variable provides a 

measure of how long it took each analyst to answer the task scenarios for a specific 

visualization. In this experiment, time to reach assessment was used to support the data 

gathered in the accuracy of assessment variable of the experiment to determine if one 

visualization took relatively longer to analyze than the other. However, because time to 

complete the task is not critical on the order of minutes or seconds, this variable is only 

slightly related to the research goals. As such, it was used as quantitative support to 

substantiate any qualitative information gathered in the post experiment survey. For this 

variable, a low time to assessment is desired; this indicates an analyst was able to quickly 

analyze the visualization and reach an assessment. However, rushing through the tasks to 

reach conclusions was not encouraged. 

5.5 Procedure 

The experimental procedure, outlined below, closely follows John Goodall’s suggested 

format for both comparative evaluation of visualizations and for evaluating exploratory 

tasks [94]. Participants each adhered to the following basic format: 1) a brief introduction 

by the author to the study and each of the visualizations, 2) refresher training on the 
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definitions and importance of centrality measures, 3) a series of timed experimental tasks 

using a specific visualization, and 4) a post experiment questionnaire. Further details on 

the procedure are provided below. 

Each participant performed the experiment individually. Upon arriving at the 

testing site, the participants were first welcomed by the experimenter and given a brief 

introduction to the experiment. Participants then completed a signed consent form 

(Appendix A), followed by a demographic survey17, which gathered information on 

participants previous experiences with intelligence analysis and exploitation of social 

network visualizations (Appendix B). After finishing the demographic survey, participants 

were given a self-paced tutorial on a set of PowerPoint slides that detailed the purpose of 

the experiment and explained the visualization. Tutorials (Appendix C & D) were created 

for each visualization. The experimental tutorials took approximately ten minutes to 

complete. Participants were not offered any incentives for performance. 

Included in the tutorials were a series of training lessons on the measures of 

centrality (closeness and betweenness) used in the visualizations. These lessons involved 

instruction on the definitions of the measures of centrality with examples of networks and 

the resulting measures. Participants were then given examples with the measures of 

centrality and asked to assess which nodes displayed the highest measure for both 

closeness and betweenness centrality. Only after a participant was able to correctly identify 

each measure of centrality, thus demonstrating proficiency with measures of centrality, 

was he or she allowed to proceed to the actual experiment. If a participant failed the 

training he or she received additional instruction until able to successfully demonstrate 

proficiency with the measures of centrality. 

Following the training and demonstration of proficiency, participants completed the 

two test scenarios described in the previous sections for the visualization; lasting 

approximately 10 minutes. Visualizations were individually printed on an 11x17 inch piece 

of plain white copy paper and given to the participant. In an effort to prevent a possible 

                                                        
17 Primary intent of demographic survey was to identify those participants who were color blind.  None of the 
participants reported being color blind. 
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order effect, the order in which visualizations and task scenarios were presented was 

randomized. Prior to beginning the tests, participants were informed that their accuracy of 

assessment was recorded and that the time to reach assessment was being recorded. This 

was done to ensure participants understood the variables by which they would be 

assessed. Once the experiment was completed, feedback was solicited about each 

visualization and the experience through a post-experiment questionnaire (Appendix E). In 

total, the two test scenarios followed by the questionnaire took a total of fifteen minutes on 

average. The entire experiment took approximately thirty minutes per participant. 

5.6 Data Collection 

During the experiment, participant’s responses to each of the task scenario questions were 

documented as well as the time required to answer. The experimenter also took notes 

during the experiment to record any emerging patterns or other matters of interest, which 

included difficulty focusing or comments made throughout or during a specific task. No 

audio or video recording was captured at any point during the experiment. 

5.7 Conclusion 

This chapter outlined the design of the human performance experiment used to judge the 

efficacy of visualization techniques. Specifically, the experiment consisted of four 

experimental hypotheses on the subjects of accuracy of assessment and time to reach 

assessment. These hypotheses were tested using two experimental tasks and two 

independent variables; the details of which were explained in the experimental design. 
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6Chapter 6 

 

Results 

This chapter presents the statistical results of the experiment described in Chapter 5. There 

were two independent variables: visualization (node-link or matrix) and task (identifying 

leaders and identifying clusters). Two dependent variables were captured to measure 

performance: accuracy (quantified in percent correct) and time to complete (quantified in 

terms of seconds) each task. A thorough analysis of each of these variables is presented 

within this chapter. 

6.1 Overview  

The results presented in this chapter are organized by independent variable. The first 

section (6.2) begins with an analysis of the dependent variables by the visualization 

independent variable, and then section (6.3) offers an analysis of the dependent variables 

using the task independent variable. For all reported results, α = 0.05 unless otherwise 

stated. Additionally, any results which represent statistical significance are denoted in the 

captions with an asterisk, “*”. 

6.2 Participants 

In total, 60 participants took part in the experiment; 30 participants per visualization 
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condition. The 60 participants were all Air Force Airmen, with an average age of 32.92 (σ = 

9.59), and who all hold the Air Force Specialty Code of Intelligence Analyst (1NX or 14NX). 

The average amount of participant intelligence experience was 4.25 years (σ = 2.89). Figure 

6-1 shows the age and skill distribution of all sampled participants (some points on the 

graph represent more than one participant). Since, the earliest age a person can join the 

military is 18 years old, this is also the earliest age at which a person can begin to accrue 

intelligence experience. As such, the area shaded in red, on Figure 6-1, reflects a segment of 

population that is not possible within the military intelligence community.  

  

The wide range of intelligence experience (min = 1 years, max = 16 years) is 

attributable to the scarcity of intelligence analysts available for testing in the Boston 

metropolitan area. Additionally, the large concentration of samples at the lower ranges of 

intelligence experience reflects a common post-September 11 trend within the military 

intelligence community; many individuals were retrained into the intelligence career field 

to satisfy the growing demand for intelligence assets to support operations in Afghanistan 

and Iraq. 
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Figure 6-1: Distribution of Sample Set 
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6.3 Results by Visualization 

6.3.1 Identification of Leaders Performance 

As outlined in section 5.4.1, three experimental questions were used to determine the 

participants’ ability to accurately identify leaders within a network. In the first question 

(Q1.1) participants were asked to: Identify central actors, which are defined as actors linked 

to many others or that bridge communities together. Three participants who were given the 

matrix misread this question and responded as if they were answering question 2.1, which 

was: Assuming there are only two clusters, identify those clusters. As such, those three 

responses were removed from the data set; resulting in an uneven number of responses for 

each condition (matrix = 27, node-link = 30).  
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Figure 6-2: Percentage correct for question 1.1: Identify central actors, which are defined as actors 

linked to many others or that bridge communities together. Node-link showed significantly higher 

percentage of correctly identifying central actors than matrix.  

 

Table 6-1: Question 1.1 Percentage Correct Summary* 

 Mean Median Std Dev 
Node-Link 51.11 50.00 20.76 

Matrix 33.33 33.33 21.57 
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An unpaired two-tailed t-test indicates that there is a statistically significant 

difference in accuracy of identifying central actors between visualizations (F(26,29) = 

1.080, p = 0.0025). A data transformation was not conducted on the data gathered for 

question 1.1, because both distributions passed a D'Agostino & Pearson normality test 

(Matrix p = 0.2691, Node-Link p = 0.6863). The boxplot in Figure 6-2  shows the median 

percentage correct, quartiles and extreme values (outside the whiskers, which show 5-95 

percentiles) for each visualization, and Table 6-1 summarizes the key statistics. 

To understand whether a correlation exists between completion time and 

percentage correct, a nonparametric Spearman correlation analysis was conducted for both 

independent variables (Matrix r = 0.08754, p = 0.6642; Node-Link r = 0.2154, p = 0.2530). 

The Spearman correlation was necessitated because the time to complete for this question 

was not a normal distribution. The results indicate there is a positive correlation; although 

not statistically significant, between time to complete and percentage correct for both 

visualizations. The scatterplot in Figure 6-3 shows the distribution of values for both 

visualization as well as nonlinear semilog curve (           ( )            ) of the 

values. 
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Figure 6-3: Scatterplot of time vs. percent correct for Q1.1 question 1.1: Identify central actors, which 

are defined as actors linked to many others or that bridge communities together. Node-link and matrix 

both showed a positive correlation that is not statistically significant 
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In the second question (Q1.2) participants were asked: to identify any potential 

leaders within the network. An unpaired two-tailed t-test was used to understand the 

difference in results. This test indicated that the node-link visualization returned a 

statistically significant higher average percentage correct than matrix when identifying 

potential leaders between visualizations (F(29,29) = 1.107, p = 0.0044). Since there were 

no normality violations and both distributions passed a D'Agostino & Pearson normality 

test (Matrix p=0.2281, Node-Link p=0.1041), a data transformation was not conducted. The 

boxplot in Figure 6-4 shows the median percent correct as well as the quartiles and any 

extreme values (outside the whiskers, which show the 5-95 percentiles) for each 

visualization; Table 6-2 summarizes the key statistics. 
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Figure 6-4: Percentage correct for question 1.2: identify any potential leaders within the network. 

Node-link showed significantly higher percentage of correctly identifying potential leaders than the 

matrix. 

 

Table 6-2: Question 1.2 Percentage Correct Summary* 

 Mean Median Std Dev 
Node-Link 67.33 70.00 23.77 

Matrix 48.67 60.00 25.01 



96 
 

 

An identical correlation analysis to that described for question 1.1 was conducted 

for question 1.2 to understand whether there exists a correlation between time to complete 

and percentage correct (Matrix r = -0.1569, p = 0.4076; Node-Link r = 0.3684, p = 0.0452). 

The results indicate there is a negative correlation; although not statistically significant, 

between time to complete and percentage correct for the matrix visualization. Indicating 

that as participants spent more time responding to question 1.2, using the matrix 

visualization, their percentage correct scores decreased. However, the analysis also 

indicates there is a statistically significant positive correlation between time to complete 

and percentage correct for the node-link visualization. The scatterplot in Figure 6-5 shows 

the distribution of values for both visualization as well as nonlinear semilog curve 

(           ( )            ) of the values. 
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Figure 6-5: Scatterplot of time vs. percent correct for question 1.2: identify any potential leaders within 

the network. Node-link showed a statistically significant positive correlation and matrix showed a 

negative correlation that is not statistically significant 

In the third, and final, question (Q1.3) participants were asked: Assuming there are 

only two leaders, identify those leaders. However, as there were only three possible 

outcomes for this question (0%, 50%, or 100%), the resulting data is noncontinuous and 

far from Gaussian. However, the data distributions were far enough apart (visible in Figure 

6-6) to yield a statistically significant difference under nonparametric measures of 
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significance. A Mann-Whitney U test confirmed the statistically significant difference (p = 

0.0231). Figure 6-6 shows both a histogram, which displays the distribution of values for 

each visualization, and a boxplot, which shows the median percent correct, upper and 

lower quartiles and any extreme values (outside the whiskers, which show the 5-95 

percentiles) for each visualization; Table 6-3 summarizes the key statistics.  
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 Figure 6-6: a) Histogram of percentage correct for question 1.3: Assuming there are only two leaders, 

identify those leaders.; b) Boxplot of percentage correct for question 1.3: Assuming there are only two 

leaders, identify those leaders. Node-link showed significantly higher percentage of correctly 

identifying leaders than the matrix. 

 

Table 6-3: Question 1.3 Percentage Correct Summary* 

 Mean Median Std Dev 
Node-Link 56.67 50.00 38.80 

Matrix 33.33 50.00 33.04 

 

Because the responses for question 1.3 were noncontinuous, a nonparametric 

Spearman correlation analysis was conducted for both independent variables to only 

understand whether there was a positive or negative correlation, versus understanding the 

specific quantifiable level of correlation (Matrix r = 0.004801, p = 0.9799; Node-Link r = 

0.06294, p = 0.7411). The results indicate there is a very small positive correlation; 
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although not statistically significant, between time to complete and percentage correct for 

both visualizations. The scatterplot in Figure 6-7 shows the distribution of values for both 

visualization and a nonlinear semilog curve (           ( )            ) of the values. 
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Figure 6-7: Scatterplot of time vs. percent correct for question 1.3 Assuming there are only two leaders, 

identify those leaders. Node-link showed a positive correlation that is not statistically significant and 

matrix showed a negative correlation that is not statistically significant  

6.3.2 Identification of Clusters Performance 

As outlined in section 5.4.1, one experimental question was used to determine the 

participants’ ability to accurately identify clusters within a network. Participants were 

asked: Assuming there are only two clusters, identify those clusters. An unpaired two-tailed t-

test indicates that there was not a statistically significant difference in accuracy of 

identifying clusters between visualizations (F(29,29) = 1.480, p = 0.0948). As there were 

normality violations, a log transformation of the data was required to meet homogeneity 

and normality assumptions. After transformation, both categories of data passed a 

D'Agostino & Pearson normality test (Matrix p = 0.7258, Node-Link p = 0.0639). The 

boxplot in Figure 6-8 shows the median % correct as well as the quartiles and any extreme 

values (outside the whiskers, which show the 5-95 percentiles) for each visualization; 

Table 6-4 summarizes the key statistics. 
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Figure 6-8: Percentage correct for question 2.1: Assuming there are only two clusters, identify those 

clusters. Node-link showed a higher percentage of correctly identifying clusters than the matrix, 

although not statistically significant 

 

Table 6-4: Question 2.1 Percent Correct Summary 

 Mean Median Std Dev 
Node-Link 53.64 66.02 26.65 

Matrix 41.93 44.11 21.91 

 

Similar to the correlation results for question 1.2, Spearman correlation analysis 

(Matrix r = 0.4326, p = 0.0170; Node-Link r = -0.1502, p = 0.4281) results indicate there is a 

negative correlation; although not statistically significant, between time to complete and 

percentage correct for the node-link visualization. Indicating that as participants spent 

more time responding to question 2.1, using the node-link visualization, their percentage 

correct scores decreased. However, the analysis also indicates there is a statistically 

significant positive correlation between time to complete and percentage correct for the 

matrix visualization for question 2.1. The scatterplot in Figure 6-9(a) shows the 

distribution of values for both visualization as well as nonlinear semilog curve 

(           ( )            ) of the values. 
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Although there is a statistically significant positive correlation between time to 

complete versus percentage correct for the matrix visualization, there is also a statistically 

significant correlation between time to complete and frequency of false alarms for the 

matrix (Matrix r = 0.4287, p = 0.0181; Node-Link r = -0.2458, p = 0.1904). Indicating that 

while additional time to complete results in a higher percentage complete, it also results in 

a higher quantity of false alarms. The scatterplot in Figure 6-9(b) shows the distribution of 

values for both visualization and a nonlinear semilog curve (           ( )            ) 

of the values. 
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Figure 6-9: (a) Scatterplot of time vs. percent correct for question 2.1: Assuming there are only two 

clusters, identify those clusters. Matrix showed a statistically significant positive correlation and node-

link showed a negative correlation that is not statistically significant; (b) Scatterplot of time vs. false 

alarms for question 2.1: Assuming there are only two clusters, identify those clusters. Matrix showed a 

statistically significant positive correlation and node-link showed a negative correlation that is not 

statistically significant 

The percentage correct results for all participants, from all questions, were averaged 

in to a composite average percent correct. A Pearson correlation analysis was conducted 

for both independent variables to only understand whether there was a positive or 

negative correlation, between age and average percent correct (Matrix r = 0.03729, p = 

0.8449; Node-Link r = 0.06378, p = 0.7377). The results indicate there is a very small 

positive correlation; although not statistically significant, between age and average 

percentage correct for both visualizations. The same correlation analysis was conducted 

(a) (b) 
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for years of experience versus average percent correct as well. The results (Matrix r = 

0.02272, p = 0.9052; Node-Link r = 0.03176, p = 0.8677) indicate there is a very small 

positive correlation; although not statistically significant, between years of experience and 

average percentage correct for both visualizations. The scatterplot in Figure 6-10 shows 

the distribution of values for both visualization as well as linear regression curve with 95% 

confidence bands (                    ) of the values. 
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Figure 6-10 (a) Scatterplot of average percentage correct vs. age for questions 1.1, 1.2, 1.3, and 2.1.  

The results of a correlation analysis indicate a slightly positive correlation that is not statistically 

significant (b) Scatterplot of average percentage correct vs. years of experience for 1.1, 1.2, 1.3, and 

2.1.  The results indicate a slightly positive correlation that is not statistically significant 

6.3.3 Time to Complete Performance 

As outlined in section 5.4.1, time to complete was recorded for all previously discussed 

questions. An unpaired two-tailed t-test was performed on the time to complete each 

question to determine if there was a statistically significant difference in the time required 

to complete for a given visualization. The results of the t-test indicates that there was not a 

statistically significant difference in time to complete for any of the questions (Q 1.1: F = 

1.352, p = 0.2456 / Q 1.2: F = 1.088, p = 0.8085 / Q 1.3: F = 2.079, p = 0.6373 / Q 2.1: F = 

1.369, p = 0.7743). As there were normality violations for all the time distributions, a log 

transformation of the data was required to meet homogeneity and normality assumptions. 

(a) (b) 
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After transformation all the data passed a D'Agostino & Pearson normality test. Figure 6-11 

shows the boxplots of median time, as well as the quartiles and any extreme values 

(outside the whiskers, which shows 5-95 percentiles) for questions 1.1, 1.2, 1.3, and 2.1; 

Table 6-5 summarizes the key statistics. 
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Figure 6-11: Time to Complete for Questions 1.1, 1.2, 1.3, and 2.1 

Table 6-5: Time to Complete for Questions 1.1, 1.2, 1.3, and 2.1 Summary 

 Q 1.1 (Seconds) Q 1.2 (Seconds) Q 1.3 (Seconds) Q 2.1 (Seconds) 
 Node-Link Matrix Node-Link Matrix Node-Link Matrix Node-Link Matrix 

Mean 59.98 47.31 39.99 37.93 18.88 21.33 32.73 30.69 
Median 64.56 49.43 38.90 40.46 13.96 21.48 33.88 26.42 
Std Dev 2.267 2.022 2.369 2.286 3.244 2.262 2.538 2.217 
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6.4 Conclusion 

The data collected as a result of the human experiment proposed in Chapter 5, revealed 

that node-link visualizations produce better accuracy for questions 1.1, 1.2, and 1.3. Thus, 

indicating that the node-link visualization performed superiorly in all studied scenarios 

where the objective was identifying leaders. However, there was not enough of a difference 

in between the performance of the node-link visualization and the matrix visualization for 

identifying clusters (question 2.1) to indicate which is more suited. The same holds true for 

the time to complete dependent variable. In all cases, there was not enough difference 

between the times produced by the node-link and matrix to determine if either offers a 

statistically significant decrease in the time it takes to complete tasks using either 

visualization.  
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7Chapter 7 

 

Discussion and Conclusion 

This chapter discusses the quantitative results presented in Chapter 6 and compares them 

to the experimental hypotheses outlined in Chapter 5. Where possible, an explanation is 

offered if experimental results deviated from the experimental hypotheses. Finally the 

chapter concludes with a discussion of experimental observations documented by the 

investigator during and after the experiment, and subjective responses gathered from 

participants in the post-experiment questionnaire. 

7.1 Identification of Leaders Performance 

Identification of leaders was classified by the percent correct responses for questions 1.1, 

1.2, and 1.3. As outlined in section 5.2.1 and 5.5.2, identification of leaders addresses an 

analyst’s ability to correctly analyze a visualization and identify central actors, potential 

leaders, and the true leaders. The results indicate that for each of the identification of 

leaders questions, the node-link showed a statistically significant higher average percent 

correct than the matrix. Furthermore, the node-link also showed a positive correlation 

between time spent analyzing the visualization and the percentage correct for all 

identification of leaders tasks; however, the correlation was only statistically significant for 

question 1.2. These results are consistent with hypothesis 1, which postulated; the ability to 
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accurately identify leaders within a network or cluster is expected to be better supported by 

the node-link visualization as compared to the matrix visualization. 

 However, the results also indicate that for questions 1.1 and 1.2 the node-link took 

longer on average, although not statistically significant, to analyze than the matrix. These 

results are inconsistent with hypothesis 2, which theorized; use of the node-link 

visualization is expected to require less time to accurately identify leaders as compared to the 

matrix visualization.  

7.2 Identification of Clusters Performance 

The results for the identification of clusters, classified by the percent correct response for 

question 2.1, were not as straightforward as those from the identification of leaders task. 

As outlined in section 5.2.1 and 5.5.2, identification of clusters addresses an analyst’s ability 

to correctly identify the two true clusters within the presented visualizations. Node-link 

showed a higher average percentage of correctly identifying clusters than the matrix, 

although not statistically significant. These results are not consistent with hypothesis 3, 

which theorized that; the ability to accurately identify clusters within a network is expected 

to be better supported by the use of the matrix visualization as compared to the node-link 

visualization. However, there was a higher amount of variability in the responses for the 

node-link than the matrix. These results possibly indicate that although the matrix lacked 

in accuracy over the node-link, it showed improved precision over the node-link. 

Nonetheless, the matrix showed the highest statistically significant positive correlation 

between the time to complete and the percent correct for any of the visualization or task 

combinations experimented. Whereas the node-link showed a negative correlation, not 

statistically significant, between time to complete and percentage correct. 

 Although the percentage correct favored the node-link, the matrix showed a shorter 

average time to complete, although not statistically significant, than the node-link. This 

result is consistent with hypothesis 4, which postulated that the; use of the matrix 

visualization is expected to require less time to accurately identify leaders as compared to the 

node-link visualization. However, when considered in parallel with the relatively high 
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positive correlation between time to complete and percent correct for identifying clusters 

on the matrix, it raises the curiosity that if participants had spent more time, could the 

overall percent complete have been higher. 

7.3 Subjective Responses 

After the experiment each participant was given the opportunity to fill out a questionnaire 

about his or her experience. The specific questions asked of each participant are outlined in 

Appendix E. In total, about 60 percent of the participants filled out the post-experiment 

questionnaire. Both their responses regarding the effectiveness of the visualizations, as 

well as general feedback on the overall experiment and observations made by the 

investigator during the experiment, are discussed below. 

7.3.1 Matrix Subjective Responses 

The participants who used the matrix often cited many obstacles that stemmed from 

unfamiliarity with the visualization. A frequent participant comment when asked, what he 

or she like least about the visualization, was “it’s not [a] totally natural look or feel, so it did 

take some getting used to.”  However, a few participants were quick to point out that the 

matrix was easy to use once the basics were understood. One participant commented, “it 

took a little bit to understand the flow, but once you did you could move around pretty fast, 

understanding who knew who without it being convoluted when the groups get bigger”. In 

all, the majority of responses about the matrix indicated that the analysts were interested 

in the new form of visualization, but struggled to learn how to analyze the matrix in such a 

short period of time. One participant explicitly stated, “I need more time to understand it”. 

Coincidentally, that participant was the second highest performer for the matrix. 

 When asked what each analyst liked best about the matrix visualization, some 

participants made comments in support of the experimental hypothesis concerning the 

performance of the matrix. Commenting, “this visualization is another good tool for id’ing 

[identifying] relationships, leadership, and clusters.”  This comment, and others like it, may 

be indicative of the promise analysts see in the matrix as a complement to other well 

established forms of visualization. Additionally, these comments and discussions with 
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participants, after the experiment, also suggested that analysts acknowledge the limitations 

of the current forms of visualization and were intrigued by the new form of visualization 

presented in this experiment. 

 Although no participants explicitly stated that any part of the visualization 

precluded them from accomplishing either task, four participants recommended that the 

numbers should be bigger in the diagonal of the matrix. The investigator followed-up on 

these responses with a discussion to confirm what, if any, the small size of these numbers 

had on the experiment. In all cases, the analysts indicated that the numbers were not used 

at all to reach the conclusions for either task and that even if they were larger that they 

would not have factored into their specific responses. 

7.3.2 Node-link Subjective Responses 

Much of the feedback on the node-link diagram is consistent with the experimental 

hypotheses. Specifically, when asked what he or she liked about the node-link, analysts 

often replied, “the visualization allowed you to see the big picture easier”. This comment 

refers to the global perspective provided in the node-link diagram. However, many 

participants found the node-link diagram to be overly complex and difficult to analyze. This 

was a resounding topic of feedback, “very distracting visualizations, a lot of graphics 

condensed in [a] small area”, “sometimes lines were hard to see to identify connections in 

some areas do [to] there being so many”, or “a lot of intersecting nodes made it confusing”. 

As discussed in Chapter 4, one of the most common criticisms of the node-link visualization 

is the overlapping of many links, which results in the occlusion of data. The feedback from 

this experiment confirms that criticism. 

 In all, less feedback was received on the questionnaires that followed node-link 

visualizations. Although there is no obvious reason for this lack of feedback, one 

explanation may be that the analysts, who have in most cases received instruction on this 

form of visualization at some point in their career, had less trouble understanding and 

utilizing the node-link visualization as a result of the previous instruction. This is a known 

risk anytime an experimental control is tested against a domain standard. 



108 
 

7.3.3 Universal Subjective Responses  

Universally, many participants had difficulty understanding the numbers associated with 

the betweenness and closeness centrality. Roughly ten participants asked the investigator 

about the relative significance of the numbers and indicated the presence of the numbers 

complicated their analysis. The participants’ questionnaire responses supported this 

experimental observation and indicated they knew the significance of both measures, but 

were unsure of the purpose of the quantitative representations. A common comment when 

the participants were asked, was there anything negative or distracting about the 

visualization, was, “I didn’t really understand the numbers . . . so I just used the colors and 

amount of links”. This same sentiment was conveyed by roughly half of those participants 

who commented on the betweenness or closeness centrality measures. Although seemingly 

negative, the quick adjustment away from the numbers to the colors indicates that this 

section of the tutorial was effective and that the analysts, on the whole, generally 

understood how the measures of centrality could help them answer the tasks and 

employed gestalt-based reasoning. 

Some participants felt recording the time forced them to rush through the 

experiment. Five participants even cited this as the component of the experiment they liked 

least, often indicating that it forced quick conclusions over thorough analysis. The utility 

offered by the collection of this dependent variable may not be worth the impact on the 

overall experiment. This is a consideration which must be factored into future experiments 

of a similar nature. 

Regardless of the visualization, the preponderance of participants recognized the 

importance and necessity of this type of research. Many either left feedback on the 

questionnaire similar to, “this is something we do not do enough of”, or explicitly 

communicated this sentiment to the investigator after the experiment. While unsupported 

by any quantitative data, this resounding feedback indicates that analysts recognize that 

they may not be using the most effective means available to analyze terror networks. This 

conclusion does not support either visualization, but supports the need for continued 

research along the lines of this thesis. 
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7.4 Recommendations 

7.4.1 Visualization Experiment Recommendations 

Based on the quantitative assessment of the data collected and the comments elicited at the 

completion of the experiment, the following recommendations should be taken into 

consideration for future experiments into the effectiveness of visualizations for terror 

network analysis. 

 Continue to use intelligence analysts to test the effectiveness of intelligence 

visualizations. This demographic responded differently to the visualizations than 

hypothesized, in part because the hypotheses were based on research in academic 

literature where the participants were not intelligence analysts [6]. Although more 

research is required, initial conclusions supported by the work in this thesis indicate 

that the results of academic work on the effectiveness of different forms of social 

network visualizations may not be wholly extensible to the domain of intelligence. 

 Time to complete each task should not be an explicit component of the experiment. 

Either this variable should be captured passively by an investigator or not at all. 

Although analysts often work under time pressure, the time pressure is not on the 

order of seconds or minutes. Furthermore, they were unaccustomed to having their 

analysis timed on a stopwatch. Removing this factor should help eliminate the 

affects which result from analysts rushing through the analysis and subsequently 

reaching premature conclusions as documented in the  post experiment comments.  

 Remove quantitative measures from visualizations or identify a better way to 

integrate this information. Many analysts appeared intimidated by numbers and 

immediately disregarded them in favor of a color scale. Although this could be a 

byproduct of the tutorial, the experimental observations coupled with the post 

experiment feedback indicated that the numbers were only a distraction to the 

analysts and offered little to no assistance in answering the tasks. 
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7.5 Conclusions 

There is an increasing requirement for more advanced analytical methodologies to help 

intelligence analysts cope with the growing amount of data they are saturated with on a 

daily basis. This trend will only be further exasperated in the future if the means for 

acquiring data continue to advance and the tools for making sense of the data remain static. 

Specifically, within the context of terror network analysis, one of the largest problems is 

the transformation of raw tabular data into a visualization that is easily and effectively 

exploited by intelligence analysts. To be effective, a visualization must allow analysts to 

readily identify both leaders and clusters within a network. The current method within the 

intelligence domain is the node-link visualization, which encodes data sets by depicting the 

ties between nodes as lines between objects in a plane. This method, although useful, has 

limitations when the size and complexity of data grows. Therefore, this research was 

motivated by the desire to evaluate the matrix visualization with intelligence analysts to 

assess the efficacy of this form of visualization and potential identify an alternate means of 

visualizing terror network data. 

 The matrix offers an alternate perspective because the two dimensions of the matrix 

are arrayed as an actors x actors matrix, which implies the same layout of actors contained 

on the rows is also contained on the columns. A relationship between actors is 

communicated by a Boolean value where the rows and columns of specific nodes intersect. 

This form of visualization may offer benefits over the node-link, because as node-link 

visualizations grow in size, they have a tendency to occlude data. Matrices offer a solution 

to his problem, because in matrix visualizations objects cannot overlap; thus resolving the 

data occlusion and improving readability. 

7.5.1 Research Objectives and Findings 

The objectives of this research, outlined in Chapter 1, were to understand the cognitive 

processes associated with exploiting terror network visualizations, adapt a matrix 

visualization that is useable by intelligence analysts, and assess its efficacy as compared to 
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the current domain standard (node-link). These objectives were addressed throughout the 

thesis in the following manner. 

 Objective 1: Understand the cognitive tasks associated with exploiting terror 

network visualizations (see Chapter 3). 

 Objective 2: Adapt a matrix visualization that is useable by intelligence analysts (see 

Chapter 4) 

 Objective 3: Test the efficacy of the matrix visualization against the current domain 

standard method (node-link) visualizations using domain experts (see Chapters 5-

6). 

 Objective 4: Discuss the results of the experiment in a manner that is accessible by 

members within the military intelligence community (see Chapter 7). 

Chapter 3 outlined a cognitive task analysis to identify the specific cognitive 

processes, challenges, and constraints an analyst faces while exploiting terror network 

visualizations. The results of that analysis were then used to create an information 

processing model for visualization. The model identified and illustrated the cognitive 

processes used by an analyst to transition through three main stages of information 

processing: perception, comprehension, and projection. Of particular significance, the 

transition from perception to comprehension was noted as one of the primary bottlenecks 

inhibiting effective information processing. 

Chapter 4 built upon the analysis in Chapter 3 and outlined the adaptation of a 

matrix visualization and node-link visualization which were used for the user experiment 

outlined in Chapter 5. The resulting human performance testing revealed that node-link 

visualizations produce statistically significant better average accuracy for questions 1.1, 

1.2, and 1.3. Thus, indicating that the node-link visualization performed superiorly, in 

terms of percentage correct, in all studied scenarios where the objective was identifying 

leaders. The node-link visualization also performed better on the task of identifying 

clusters, returning higher average percent correct, although not statistically significant, 

than the matrix. 
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Although the matrix visualization did not perform as well as hypothesized in this 

thesis, some subjective feedback from participants in the experiment suggests that matrix 

performance may improve as participants become more familiar with the matrix. 

7.5.2 Recommendations and Future Work  

Although the results of this thesis indicate that the node-link supported both investigated 

tasks better than the matrix, more investigation is needed to determine if this conclusion is 

universal across all intelligence tasks and populations. The following are recommendations 

for future follow-on experiments based on the research presented in this thesis. 

 To gain a more detailed understanding of the potential of matrices. A longitudinal 

study should be conducted using only the matrix, where a static group of analysts 

are tasked to exploit multiple terror networks at different times over a 

predetermined period of time; perhaps a month. This type of experiment would 

provide detailed data on learning that may occur as analysts become more familiar 

with the matrix. 

 A similar experiment to the one outlined in this thesis should be conducted with 

other data sets of varying size and complexity. While the node-link proved superior 

in the research outlined herein, this may be a byproduct of the specific data set 

chosen, not the visualization. To understand the extent of these affects, more 

experiments are needed using a variety of data sets.  

 An experiment similar to the one described in this thesis should also be run for both 

the node-link and matrix on a computer. This form of experimentation is required to 

understand the effectiveness of each visualization in a more realistic setting. 

 The participant responses outlined in section 7.3 should be addressed and further 

investigated in future experiments; specifically the effects of collecting time of the 

conclusions reached by participants 

At this time, the matrix should not be universally integrated into the current methodologies 

used by analysts to exploit terror network visualizations until more research is conducted 

into the respective strengths and weaknesses within the intelligence domain. However, 
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analysts should be independently encouraged to explore and adapt new methods of 

visualization into their current practices and identify new or improved versions of the 

visualizations identified within this thesis for future testing.   
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8Appendix A 

 

Consent to Participate 

The following consent to participate was signed by all participants prior to taking part in 

the experiment 
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CONSENT TO PARTICIPATE IN  

NON-BIOMEDICAL RESEARCH 

Design and Exploitation of Terrorist Networks Visualizations Protocol 

You are asked to participate in a research study conducted by Christopher Berardi from the 

Systems Design and Management Program in the Engineering Systems Division at the 

Massachusetts Institute of Technology (M.I.T.). The results of this work will support Chris’ 

thesis work into the Design and Exploitation of Terrorist Networks Visualizations. You 

were selected as a possible participant in this study because you are a formally trained 

military intelligence analyst. You should read the information below, and ask questions 

about anything you do not understand, before deciding whether or not to participate. 

 PARTICIPATION AND WITHDRAWAL 

Your participation in this study is completely voluntary and you are free to choose whether 

to be in it or not. If you choose to be in this study, you may subsequently withdraw from it 

at any time without penalty or consequences of any kind. The investigator may withdraw 

you from this research if circumstances arise which warrant doing so.  

 PURPOSE OF THE STUDY 

The Design and Exploitation of Terrorist Networks Visualizations project investigates 

assisting users in exploiting complex visualizations of terrorist networks through the 

employment of multi-mode visualizations. The objective of this experiment is to ascertain 

the efficacy of varying visualization techniques in the context of military intelligence 

analysis. The primary interest is relative performance of users while executing exploratory 

task on multiple modes of visualizations. 

 PROCEDURES 

If you volunteer to participate in this study, we would ask you to do the following things: 

Each participant will perform the experiment individually. Upon arriving at the testing site, 

they will be greeted and given a brief introduction to the experiment. Participants will then 
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be asked to sign in- formed consent forms and complete a background questionnaire 

gathering demographic information and their previous experiences with intelligence 

analysis. After finishing the demographic survey, the experiment and visualizations will be 

explained in detail to the participant. The experiment administrator will provide training 

on any quantitative social network analysis measures used in the visualizations. Once the 

participant has received instructions on the execution of the experiment and completed the 

social network analysis measures training, they will begin the experiment. At this point the 

experimenter will present the participant a randomly selected visualization and asked to 

respond to each exploratory task. After which the participant will be asked to answer the 

same exploratory tasks for a second visualization. It is expected that the tasks for each set 

of visualizations will take approximately 10 minutes. Participants will conclude the 

experiment by taking the NASA TLX workload survey and interview on the interface with 

the experimenter. Participants will then be debriefed about the experiment, and thanked 

for their participation.  

 POTENTIAL RISKS AND DISCOMFORTS 

Participants will be given a clear explanation of the study tasks and study tasks are 

commensurate with the tasks performed by analysts during routine performance of their 

job. Thus, there are no anticipated physical or psychological risks 

 POTENTIAL BENEFITS  

There are no potential benefits a subject may receive from participating in this study. 

However, the results of the study will be used to improve the design of future terror 

network visualizations. 

 PAYMENT FOR PARTICIPATION 

There is no compensation offered for participation in this study. 

 CONFIDENTIALITY 
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Any information that is obtained in connection with this study and that can be identified 

with you will remain confidential and will be disclosed only with your permission or as 

required by law.  

Participant’s responses to each of the exploratory tasks will be documented as well as the 

time required to answer. Field notes will be taken during the experiment to record any 

emerging patterns or other matters of interest. Usability, mission performance, 

demographic and experience data will be collected by questionnaire. 

Each subject will randomly be assigned a number which will identify data related to their 

experiment. At no point will personally identifiable information be associated with a 

subject's experimental data. 

Data will be stored electronically in a locked room on campus and will be destroyed 90 

days after the analysis of the experiment is complete. 

 IDENTIFICATION OF INVESTIGATORS 

If you have any questions or concerns about the research, please feel free to contact 

Christopher Berardi (email: cberardi@mit.edu / phone: (719) 930-8907) or alternately 

Professor Mary Cummings (email: missyc@mit.edu / phone: (617) 252-1512) 

 EMERGENCY CARE AND COMPENSATION FOR INJURY 

If you feel you have suffered an injury, which may include emotional trauma, as a result of 

participating in this study, please contact the person in charge of the study as soon as 

possible. 

In the event you suffer such an injury, M.I.T. may provide itself, or arrange for the provision 

of, emergency transport or medical treatment, including emergency treatment and follow-

up care, as needed, or reimbursement for such medical services. M.I.T. does not provide any 

other form of compensation for injury. In any case, neither the offer to provide medical 

assistance, nor the actual provision of medical services shall be considered an admission of 

fault or acceptance of liability. Questions regarding this policy may be directed to MIT’s 

Insurance Office, (617) 253-2823. Your insurance carrier may be billed for the cost of 
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emergency transport or medical treatment, if such services are determined not to be 

directly related to your participation in this study. 

 RIGHTS OF RESEARCH SUBJECTS 

You are not waiving any legal claims, rights or remedies because of your participation in 

this research study. If you feel you have been treated unfairly, or you have questions 

regarding your rights as a research subject, you may contact the Chairman of the 

Committee on the Use of Humans as Experimental Subjects, M.I.T., Room E25-143B, 77 

Massachusetts Ave, Cambridge, MA 02139, phone 1-617-253 6787. 
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SIGNATURE OF RESEARCH SUBJECT OR LEGAL REPRESENTATIVE 

 

I understand the procedures described above. My questions have been answered to my 

satisfaction, and I agree to participate in this study. I have been given a copy of this form. 

________________________________________ 

Name of Subject 

________________________________________ 

Name of Legal Representative (if applicable) 

________________________________________     ______________ 

Signature of Subject or Legal Representative   Date 

 

 

SIGNATURE OF INVESTIGATOR  

 

In my judgment the subject is voluntarily and knowingly giving informed consent and 

possesses the legal capacity to give informed consent to participate in this research study. 

 

________________________________________    ______________ 

Signature of Investigator     Date 
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9Appendix B 

 

Demographic Survey 

The following survey was completed by all participants prior to starting the experiment. 

  



121 
 

Visualization Demographic Survey 

 

Age: ____________________ 

 

1. Gender: 

 □ Male  

□ Female 

 

2. If currently or formerly part of armed forces: 

a. Country/State: ____________________ 

b. Status: □ Active Duty □ Reserve □ Guard □ Retired  

c. Service: □ Army □ Navy □ Air Force □ Other ____________________ 

d. Rank: ____________________ 

e. Years of Service: ____________________ 

f. Military occupation: _______________ 

g. Years of experience in occupation: _________________ 

 

3. Do you have experience exploiting terrorist network visualizations? 

□ Yes 

□ No 

 

If yes: 

Number of years: ____________________ 

 

4. Are you color blind? 

□ Yes  

□ No  

 

5. Is your vision correctable to 20/20? 

□ Yes  

□ No  

SUBJECT: ___________ 

DATE: ___________ 

TIME: ___________ 
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10Appendix C 

 

Matrix Experiment PowerPoint Tutorial 

The following experiment tutorial was seen by all participants prior to starting the 

experiment. 
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11Appendix D 

 

Node-Link Experiment PowerPoint Tutorial 

The following experiment tutorial was seen by all participants prior to starting the 

experiment. 
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12Appendix E 

 

Post Experiment Questionnaire 

This appendix outlines the post experiment questionnaire used to solicit feedback from 

participants on the visualizations.  
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E.1 Node-link Questions 

The following questions were used to guide post-experiment discussion with the 

participants on the topic of the node-link visualization. 

1. How did you use the node-link visualization to satisfy Task 1? 

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

___________________________________________________________________________________________________ 

_____________________________________________________________________________________________________

_______________________________________________________________________________________________ 

2. How did you use the node-link visualization to satisfy Task 2?  

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________ 

_______________________________________________________________________________________________ 

_______________________________________________________________________________________________ 

_______________________________________________________________________________________________ 

 

3. What did you like best about the visualization?  Please explain your answer below. 

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_______________________________________________________________________________________________ 

_______________________________________________________________________________________________ 

_______________________________________________________________________________________________ 
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4. What did you like least about the visualization?  Please explain your answer below. 

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

________________________________________________________________________________________________ 

5. Was there anything negative or distracting about the node-link visualization? Please 

explain your answer below. 

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_______________________________________________________________________________________________ 

6. Is there any additional information that you wished you had, which would have help 

with your exploitation tasks? 

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

________________________________________________________________________________________________ 

7. Are you an expert in Microsoft Excel?  Please check appropriate box. 

Yes ________________ / No ________________ 
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E.2 Matrix Questions 

The following questions were used to guide post-experiment discussion with the 

participants on the topic of the matrix visualization. 

1. How did you use the matrix visualization to satisfy Task 1? 

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

___________________________________________________________________________________________________ 

_____________________________________________________________________________________________________

_______________________________________________________________________________________________ 

2. How did you use the matrix visualization to satisfy Task 2?  

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________ 

_______________________________________________________________________________________________ 

_______________________________________________________________________________________________ 

_______________________________________________________________________________________________ 

 

3. What did you like best about the visualization?  Please explain your answer below. 

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_______________________________________________________________________________________________ 

_______________________________________________________________________________________________ 

_______________________________________________________________________________________________ 
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4. What did you like least about the visualization?  Please explain your answer below. 

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

________________________________________________________________________________________________ 

5. Was there anything negative or distracting about the node-link visualization? Please 

explain your answer below. 

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_______________________________________________________________________________________________ 

6. Is there any additional information that you wished you had, which would have help 

with your exploitation tasks? 

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

_____________________________________________________________________________________________________

________________________________________________________________________________________________ 

7. Are you an expert in Microsoft Excel?  Please check appropriate box. 

Yes ________________ / No ________________ 
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13Appendix F 

 

Experiment Visualizations 

This appendix outlines the visualizations used during the human experiment..  
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14Appendix G 

 

Supporting Statistics 

This appendix outlines the supporting statistics for of the results and calculations 

presented in Chapter 6.  
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Table G-1: Summary Percentage Correct 

Percent 
Correct 

Q1.1 
Matrix 

Q 1.2 
Matrix 

Q1.3 
Matrix 

Q2.1 
Matrix 

Q 1.1 
Node-
Link 

Q 1.2 
Node-
Link 

Q 1.3 
Node-
link 

Q 2.1 
Node-
link 

Number of 
values 

27 30 30 30 30 30 30 30 

Minimum 0.0 0.0 0.0 14.71 0.0 20.00 0.0 8.824 

Median 33.33 60.00 50.00 44.12 50.00 70.00 50.00 66.18 

Maximum 77.78 80.00 100.0 97.06 88.89 100.0 100.0 100.0 

Mean 33.33 48.67 33.33 47.16 51.11 67.33 56.67 62.45 

Std. Deviation 21.57 25.01 33.04 22.97 20.76 23.77 38.80 30.31 

D'Agostino & Pearson omnibus normality test 

K2 2.626 2.956 1.961 4.035 0.7529 4.524 6.900 19.44 

P value 0.2691 0.2281 0.3751 0.1330 0.6863 0.1041 0.0317 <0.0001 

Passed 
normality test 
(alpha=0.05)? 

Yes Yes Yes Yes Yes Yes No No 

 

Table G-2: Summary Percentage Correct after log transformation for Question 2.1 

Percent 
Correct 

Q1.1 
Matrix 

Q 1.2 
Matrix 

Q1.3 
Matrix 

Q2.1 
Matrix 

Q 1.1 
Node-
Link 

Q 1.2 
Node-
Link 

Q 1.3 
Node-
link 

Q 2.1 
Node-
link 

Number of 
values 

   30    30 

Minimum    1.167    0.9456 

Median    1.645    1.820 

Maximum    1.987    2.000 

Mean    1.623    1.730 

Std. Deviation    0.2191    0.2665 

D'Agostino & Pearson omnibus normality test 

K2    0.6409    5.501 

P value    0.7258    0.0639 

Passed 
normality test 
(alpha=0.05)? 

   Yes    Yes 
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Table G-3: Summary Time to Complete 

Time Q1.1 
Matrix 

Q 1.2 
Matrix 

Q1.3 
Matrix 

Q2.2 
Matrix 

Q 1.1 
Node-
Link 

Q 1.2 
Node-
Link 

Q 1.3 
Node-
link 

Q 2.1 
Node-
link 

Number of 
values 

27 30 30 30 30 30 30 30 

Minimum 14.00 4.000 5.000 8.000 5.710 4.030 2.460 5.000 

Median 49.40 40.47 21.50 26.42 64.53 38.92 14.00 33.92 

Maximum 121.0 294.0 122.0 187.0 265.0 172.6 220.0 191.0 

Mean 58.64 53.18 30.00 43.04 79.98 54.61 37.06 48.91 

Std. Deviation 36.21 55.79 29.10 42.48 61.85 42.68 48.71 46.91 

D'Agostino & Pearson omnibus normality test 

K2 5.446 43.86 26.05 25.04 14.30 9.819 29.10 16.61 

P value 0.0657 <0.0001 <0.0001 <0.0001 0.0008 0.0074 <0.0001 0.0002 

Passed 
normality 
test 
(alpha=0.05)? 

Yes No No No No No No No 

 

Table G-4: Summary Time to Complete After log transformation 

Time Q1.1 
Matrix 

Q 1.2 
Matrix 

Q1.3 
Matrix 

Q2.1 
Matrix 

Q 1.1 
Node-
Link 

Q 1.2 
Node-
Link 

Q 1.3 
Node-
link 

Q 2.1 
Node-
link 

Number of 
values 

27 30 30 30 30 30 30 30 

Minimum 1.146 0.6021 0.6990 0.9031 0.7566 0.6053 0.3909 0.6990 

Median 1.694 1.607 1.332 1.422 1.810 1.590 1.145 1.530 

Maximum 2.083 2.468 2.086 2.272 2.423 2.237 2.342 2.281 

Mean 1.675 1.579 1.329 1.487 1.778 1.602 1.276 1.515 

Std. Deviation 0.3057 0.3591 0.3545 0.3458 0.3554 0.3746 0.5111 0.4045 

D'Agostino & Pearson omnibus normality test 

K2 3.605 2.682 0.7395 1.952 3.204 2.205 1.492 0.4564 

P value 0.1649 0.2615 0.6909 0.3767 0.2015 0.3320 0.4743 0.7959 

Passed 
normality 
test 
(alpha=0.05)? 

Yes Yes Yes Yes Yes Yes Yes Yes 
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Table G-5: Summary of Percentage Correct Unpaired t tests 

Unpaired t test Q1.1 Matrix vs 
Node-Link 

Q1.2 Matrix vs 
Node-Link 

Q2.1 Matrix vs. 
Node-Link 

  P value 0.0025 0.0044 0.0948 

  Significantly different? (P < 0.05) Yes Yes No 

  One- or two-tailed P value? Two-tailed Two-tailed Two-tailed 

  t, df t=3.169 df=55 t=2.963 df=58 t=1.698 df=58 

F test to compare variances 

  F,DFn, Dfd 1.080, 26, 29 1.107, 29, 29 1.480, 29, 29 

  P value 0.8360 0.7854 0.2971 

  Significantly different? (P < 0.05) No No No 

 

 

Table G-6: Summary of Mann Whitney U Test for Question 1.3 

Mann Whitney U test Q1.3 Matrix vs Node-Link 

  P value 0.0231 

  Exact or approximate P value? Exact 

  Significantly different? (P < 0.05) Yes 

  One- or two-tailed P value? Two-tailed 

  Sum of  ranks in column R,AX 766.0 , 1064 

Difference between medians 

  Median of column R 50.00 

  Median of column AX 50.00 

  Difference: Actual 0.0 

  Difference: Hodges-Lehmann 50.00 

 

 



150 
 

 

 

Table G-7: Summary of Percentage Correct Time to Complete Unpaired t tests 

Unpaired t test Q1.1 Time 
Matrix vs 
Node-Link 

Q1.2 Time 
Matrix vs Node-
Link 

Q1.3 Time 
Matrix vs Node-
Link 

Q2.1 Time 
Matrix vs. 
Node-Link 

  P value 0.2456 0.8085 0.6373 0.7743 

  Significantly 
different?  
(P < 0.05) 

No No No No 

  One- or two-
tailed P value? 

Two-tailed Two-tailed Two-tailed Two-tailed 

  t, df t=1.174 df=55 t=0.2435 df=58 t=0.4740 df=58 t=0.2881 df=58 

F test to compare variances  

  F,DFn, Dfd 1.352, 29, 26 1.088,29, 29 2.079, 29, 29 1.369, 29, 29 

  P value 0.4401 0.8214 0.0532 0.4032 

  Significantly 
different?  
(P < 0.05) 

No No No No 

 

 

Table G-8: Summary Spearman r Correlation for Time vs. Q1.1 Percent Correct 

Spearman r Time (Seconds) vs. Q 1.1 
% Correct(Matrix) 

Time (Seconds) vs. Q 1.1 
% Correct(Node-link) 

  r 0.08754 0.2154 

  95% confidence interval -0.3133 to 0.4619 -0.1680 to 0.5422 

P value 

  P (two-tailed) 0.6642 0.2530 

  Exact or approximate P value? Approximate Approximate 

  Significant? (alpha = 0.05) No No 

Number of XY Pairs 27 30 
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Table G-9: Summary Spearman r Correlation for Time vs. Q1.2 Percent Correct 

Spearman r Time (Seconds) vs. Q 1.2 
% Correct(Matrix) 

Time (Seconds) vs. Q 1.2 
% Correct(Node-link) 

  r -0.1569 0.3684 

  95% confidence interval -0.4980 to 0.2262 -0.001876 to 0.6498 

P value 

  P (two-tailed) 0.4076 0.0452 

  Exact or approximate P value? Approximate Approximate 

  Significant? (alpha = 0.05) No Yes 

Number of XY Pairs 30 30 

 

Table G-10: Summary Spearman r Correlation for Time vs. Q1.3 Percent Correct 

Spearman r Time (Seconds) vs. Q 1.3 
% Correct(Matrix) 

Time (Seconds) vs. Q 1.3 
% Correct(Node-link) 

  r 0.004801 0.06294 

  95% confidence interval -0.3659 to 0.3742 -0.3144 to 0.4231 

P value 

  P (two-tailed) 0.9799 0.7411 

  Exact or approximate P value? Approximate Approximate 

  Significant? (alpha = 0.05) No No 

Number of XY Pairs 30 30 

 

Table G-11: Summary Spearman r Correlation for Time vs. Q 2.1 Percent Correct 

Spearman r Time (Seconds) vs. Q 2.1 
% Correct(Matrix) 

Time (Seconds) vs. Q 2.1 
% Correct(Node-link) 

  r 0.4326 -0.1502 

  95% confidence interval 0.07453 to 0.6919 -0.4929 to 0.2327 

P value 

  P (two-tailed) 0.0170 0.4281 

  Exact or approximate P value? Approximate Approximate 

  Significant? (alpha = 0.05) Yes No 

Number of XY Pairs 30 30 
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Table G-12: Summary Pearson r Correlation for Years of Experience vs. Average Percent Correct 

Pearson r Yrs of Exp vs. Avg % 
Correct(Matrix) 

Yrs of Exp vs. Avg % 
Correct(Node-link) 

  r 0.02272 0.03176 

  95% confidence interval -0.3404 to 0.3800 -0.3324 to 0.3877 

  R square 0.0005160 0.001009 

P value 

  P (two-tailed) 0.9052 0.8677 

  Significant? (alpha = 0.05) No No 

Number of XY Pairs 30 30 

 

 Table G-13: Summary Pearson r Correlation for Age vs. Average Percent Correct 

  

Pearson r Age vs. Avg % 
Correct(Matrix) 

Age vs. Avg % 
Correct(Node-link) 

  r 0.03729 0.06378 

  95% confidence interval -0.3275 to 0.3924 -0.3035 to 0.4146 

  R square 0.001390 0.004068 

P value 

  P (two-tailed) 0.8449 0.7377 

  Significant? (alpha = 0.05) No No 

Number of XY Pairs 30 30 
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