
 

 

 

 

Abstract— Advances in autonomy have made it possible to 

invert the typical operator-to-unmanned vehicle ratio so that a 

single operator can now control multiple heterogeneous 

Unmanned Vehicles (UVs). Real-time scheduling and task 

assignment for multiple UVs in uncertain environments will 

require the computational ability of optimization algorithms 

combined with the judgment and adaptability of human 

supervisors through mixed-initiative systems. The goal of this 

paper is to analyze the interactions between operators and 

scheduling algorithms in two human- in-the-loop multiple UV 

control experiments.  The impact of real-time operator 

modifications to the objective function of an optimization 

algorithm for multi-UV scheduling is described.  Results from 

outdoor multiple UV flight tests using a human-computer 

collaborative scheduling system are presented, which provide 

valuable insight into the impact of environmental uncertainty 

and vehicle failures on system effectiveness. 

I. INTRODUCTION 

NMANNED vehicle (UV) operations have increased 

dramatically over the past decade [1-3]. Typical UV 

operations, however, require more human operators than a 

comparable manned vehicle requires [1]. There is increasing 

pressure to reduce the training costs and manning 

requirements per vehicle [1] while expanding UV operations 

[2]. This can be achieved by leveraging advances in 

autonomy for both individual vehicle navigation [4] and 

multiple vehicle coordination [5]. The United States 

Department of Defense envisions a future with single 

operator control of multiple heterogeneous (air, sea, land) 

UVs [3]. 

A variety of computer optimization algorithms have been 

developed to address the problem of scheduling tasks for 

multiple UVs [6-8]. While varying in their method of 

formulating the scheduling problem and solving the 

optimization, most of the approaches available utilize a 

completely autonomous scheduler with little to no human 

input during the development of the schedule. 
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A mixed-initiative scheduling system, where a human 

guides a computer algorithm in a collaborative process to 

solve the scheduling problem, could best handle a realistic 

scenario with unknown variables, possibly inaccurate 

information, and dynamic environments. Though fast and 

able to handle complex computation far better than humans, 

computer optimization algorithms are notoriously “brittle” in 

that they can only take into account those quantifiable 

variables identified in the design stages that were deemed to 

be critical [9, 10]. Human operators can aid algorithms in 

dealing with unforeseen problems, such as weather variations 

and unexpected movement of targets, which automated 

planners often have difficulty accounting for and responding 

to [11]. 

A number of studies have shown that humans 

collaborating with computer algorithms can achieve higher 

performance than either the human or the algorithm alone 

under certain conditions [12-15]. While extensive research 

has been conducted to develop better algorithms for 

planning, comparatively little research has occurred on the 

strategies employed by humans working with mixed-

initiative systems, especially when working in dynamic, 

time-critical situations with high information uncertainty 

[16].  

The goal of this paper is to analyze the interactions 

between operators and scheduling algorithms in two human-

in-the-loop multiple UV control experiments. Both 

experiments used the same multiple UV control system, as 

described in Section II. The real-time scheduling process 

utilized by this system is explained in more detail in Section 

III. We found that the ability for operators to clearly 

communicate their goals to the automated planner improved 

performance and was essential to establishing trust.  Results 

from simulation experiments and outdoor flight tests are 

presented, where we found that operators were working 

harder to control fewer vehicles than in simulation.  These 

experiments provide valuable insights into the impact of 

operator modifications of the objective function of the 

automated planner as well as the impact of environmental 

uncertainty and vehicle failures on system effectiveness. 

II. MULTIPLE UV CONTROL SYSTEM 

Both experiments utilized a collaborative, multiple UV 

simulation environment called Onboard Planning System for 

UVs Supporting Expeditionary Reconnaissance and 

Surveillance (OPS-USERS), which leverages decentralized 
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algorithms for vehicle routing and task allocation. Operators 

controlled multiple, heterogeneous UVs for the purpose of 

searching the area of interest for new targets, tracking 

targets, and approving weapons launch. All targets were 

initially hidden, but once a target was found, it was 

designated as hostile, unknown, or friendly, and given a 

priority level by the user. Hostile targets were tracked by one 

or more of the vehicles until they were destroyed by a 

Weaponized Unmanned Aerial Vehicle (WUAV). Operators 

were presented with imagery of the target to allow them to 

verify the classification of the target as hostile, after which 

they had the final decision to approve all weapon launches. 

Unknown targets were revisited as often as possible, tracking 

target movement. A primary assumption was that operators 

had minimal time to interact with the displays due to other 

mission-related tasks. 

 

 
Fig. 1.  The Map Display. 

 

The primary interface used by the operator is a Map 

Display, shown in Fig. 1. The operator commands the UVs 

in collaboration with the automation by creating search tasks 

in the Map Display and then choosing a schedule generated 

by the automation that assigns vehicles to tasks.  Operators 

had two exclusive tasks that could not be performed by 

automation: target identification and approval of all WUAV 

weapon launches. The operator compares and selects task 

schedules through a second display called the Schedule 

Comparison Tool (SCT), shown in Fig. 2. 

A task-based, decentralized implementation was chosen 

for the automated planner to allow rapid reaction to changes 

in the environment [17]. The task planner used in OPS-

USERS is the Consensus Based Bundle Algorithm (CBBA), 

a decentralized, polynomial-time, market-based protocol that 

can generate new schedules on the order of seconds [18].  

The human operator provides high-level task-based control, 

as opposed to more low-level vehicle-based control, by 

approving which tasks should be completed by the vehicles. 

The vehicles then utilize CBBA to allocate tasks amongst 

themselves in a decentralized manner. 

In such architectures, operators do not directly 

individually task a single vehicle. When appropriate, the 

decentralized task planner can modify the tactical-level plan 

(at the vehicle level) without human intervention, which 

includes changing the task assignment without affecting the 

overall plan quality (i.e., agents switch tasks). The CBBA 

algorithm is able to make these local repairs faster through 

inter-agent communication than it could if it had to wait for 

the next update from the human operator.   

CBBA consists of two phases that alternate until the 

assignment converges. In the first phase, task selection, UVs 

place bids on the set of tasks for which they receive the 

highest reward. In the second phase, conflict resolution, plan 

information is exchanged between neighbors and tasks go to 

the highest bidder. Each individual UV only needs to know 

the bids of the other UVs, not the locations or trajectories of 

the other UVs.  CBBA is guaranteed to reach a conflict-free 

assignment, given a strongly connected network [18]. 

One key advantage of CBBA is its ability to solve the 

multiple assignment problem where each UV is assigned a 

set of tasks (a plan), as opposed to solving the single 

assignment problem, where each UV is only assigned to their 

next task. Planning several tasks into the future improves 

effectiveness in complex missions. Also, plans can be carried 

out even if the communication link with the ground control 

station is intermittent or lost. The architecture is scalable, 

since adding additional agents also adds computational 

capability, and the decentralized framework is robust to a 

single point of failure, since no single agent is globally 

planning for the fleet [18]. 

Operators were shown the results of the scheduling 

algorithm through the SCT, a decision support interface, 

shown in Fig. 2. The display showed the high-level 

performance metrics of each schedule, as well as unassigned 

high, medium, and low priority tasks that could not be 

completed by one or more of the vehicles due to constraints 

on vehicle resources. If the operator was unhappy with the 

automation-generated schedule, he or she could create new 

tasks or conduct a “what-if” query process by dragging the 

desired unassigned task into the large center triangle. This 

query forces the automation to generate a new plan if 

possible that prioritizes a particular task, in effect forcing the 

decentralized algorithms to re-allocate the tasks across the 

UVs. Details of the interface design and usability testing are 

provided in previous research [19]. 

 

 
Fig. 2.  The Schedule Comparison Tool (SCT). 

 



 

 

 

III. REAL-TIME MIXED-INITIATIVE SCHEDULING PROCESS 

To evaluate the potential benefits of the real-time mixed-

initiative scheduling process utilized by this testbed, the 

Human-Automation Collaboration Taxonomy (HACT) was 

employed. HACT was developed to provide system 

designers with a model that can be used to analyze 

collaborative human-computer decision making systems [20, 

21]. HACT extends the Parasuraman [22] information 

processing model by adding an iterative data analysis stage 

combined with an evaluation step where operators can 

request more information or analysis, as shown in Fig. 3. 

The authors of HACT included three distinct roles in the 

decision-making process: the moderator, generator, and 

decider. The moderator is responsible for ensuring that each 

phase in the decision-making process is executed and that the 

process moves forward. The generator develops feasible 

solutions and begins to evaluate the solutions. Finally, the 

decider makes the final selection of the plan and has veto 

power over this selection. Each of these roles could have 

different Levels of Collaboration (LOC) between human and 

computer, qualitatively rated with integer categories from -2 

where the role is entirely assumed by the automation, to 2 

where the human is responsible for the role. A LOC of 0 is a 

balanced collaboration between the human and automation. 

HACT’s ability to delineate degrees of collaboration 

between the human and computer at different points in the 

decision-making process makes it well suited to model the 

collaborative scheduling process used by the testbed in this 

effort. The moderator role in this process was assigned to 

level 2 because the human operator fully controls the 

replanning process by deciding when to replan, modify the 

plan, and accept a final plan. The operator cannot change the 

criteria to evaluate plans and can only modify the plans by 

attempting to assign tasks through the “what-if” process. 

Therefore, the generator role was assigned to level -1, which 

indicated a mixed role, but with a larger automation 

presence. Finally, the decider role was assigned to level 1, 

since the automation presented a final solution to the 

operator, but the selection of the final solution was 

completely up to the human operator and the automation did 

not have veto power. 

The HACT framework was extended and slightly modified 

to illustrate two specific human-automation collaborative 

scheduling techniques in OPS-USERS, as shown by the red 

lines in Fig. 3. The first was the “what-if” sensitivity analysis 

tool that already exists in the testbed.  The second was a 

proposed method to allow the human operator to modify the 

weightings of optimization variables in the objective 

function of the automated planner during a mission. 

As previously discussed, the operator can query the 

automated planner in a “what-if” manner to determine the 

feasibility and performance consequences of adding a task to 

the schedule of the UVs. As shown in Fig. 3, this process 

occurs when the human operator is in the decider role, 

looking at a proposed plan that has been selected by the 

automated planner. The human operator essentially modifies 

the constraints placed on the schedule, by specifying that a 

specific task be assigned in the schedule. These changes send 

the automated planner back into the generator mode, to 

recalculate potential solutions to the optimization problem. 

Many iterations of this “what-if” loop would be required to 

achieve a solution that the human operator desires, especially 

if the automated planner is choosing solutions based on an 

objective function that does not place an emphasis on the 

quantities of interest to the human operator at that point in 

the mission.  

As illustrated in Fig. 3, providing the operator with the 

capability to modify the objective function of the automated 

planner could result in a shorter loop within the collaborative 

decision-making process than the “what-if” loop. This 

changes the method by which the automated planner would 

select the best solution, which occurs in the decider role. In 

terms of the HACT framework, it would change the LOC 

designation for the decider role from -1 to a more balanced 

collaborative level of 0. The human operator would have the 

ability to modify the way that the automation evaluates plans 

      “What-if” – changes the constraints 

Operator changing the way automation evaluates feasible solutions to choose the best 

Fig. 3.  Modified HACT Model with Dynamic Objective Function. 



 

 

 

by changing the weightings in the objective function. 

Positive performance results have been shown in previous 

research where the human operator could change the search 

space of the automation [15] or modify the way that the 

automation evaluates plans [23], even under time-pressure 

[24].  

In a highly dynamic environment and scenario, aligning 

the objectives of the operator and automated planner is 

crucial. Providing the operator with a dynamic objective 

function could reduce the number of cognitive steps and 

amount of time necessary for the combined human-

automation team to evaluate and select a new schedule. The 

impact of a dynamic objective function is evaluated in the 

next section along with the results of outdoor flight tests. 

IV. CASE STUDIES IN REAL-TIME MIXED-INITIATIVE 

SCHEDULING: FROM LABORATORY EXPERIMENTS TO 

OUTDOOR FLIGHT TESTS 

Two human-in-the-loop multiple UV control experiments 

using the OPS-USERS testbed were conducted. First, the 

OPS-USERS interface was modified slightly to allow the 

operator to either choose one quantity or choose any 

combination of equally weighted quantities for the automated 

planner to use in evaluating mission plans. To compare the 

performance and workload of operators using these dynamic 

objective functions against operators using a static objective 

function, an experiment was conducted where 30 participants 

performed two 20-minute long simulated UV missions [25]. 

Each scenario had 10 targets initially hidden to the operator.  

Some of the operators could adjust the objective function of 

the algorithm in the SCT, as shown in Fig. 2, while others 

had a static objective function. It was assumed that all UVs 

and sensors operated normally throughout the mission. 

OPS-USERS was also adapted to operate with real UVs in 

an uncontrolled, outdoor environment [26]. The purpose of 

the effort was to demonstrate the technology in the context of 

a real-world operational scenario and to incorporate design 

elements into the system to make it robust to unpredictable 

hardware failures. Eight outdoor flight tests were conducted 

at Fort Devens, Massachusetts, with three quadrotor 

helicopters carrying video cameras that could broadcast 

images to the command center and one fixed wing 

Unmanned Aerial Vehicle (UAV). One operator, who was 

very familiar with the entire system, conducted all of the 

missions. Each scenario had three targets initially hidden to 

the operator and target detection was automated based on the 

GPS position of the target. The average mission length was 

22 minutes. 

Additions to the system included a high-level health 

monitoring system that was implemented to alert the operator 

of potential health degradations in the UVs (e.g. failures in 

communications or GPS tracking). In addition, the operator 

could a) command an individual vehicle to hold its current 

position and temporarily allow other UVs to accomplish its 

tasks or b) remove a UV entirely, with the capability to 

repair or replace it without needing to stop and restart the 

mission. 

A number of insights can be gained from these two 

experiments. First, general lessons learned from both tests 

are shared. Second, the impact of a highly uncertain outdoor 

environment with vehicle failures on operator and system 

performance is analyzed. 

A. OPS-USERS in Simulation and in Flight 

Requirements for future real-time mixed-initiative 

scheduling systems can be derived from the results of both 

experiments: 

1) Allow operators to communicate their goals to the 

automated planner as clearly as possible. In the simulation 

experiment, one group of operators could only choose one of 

the five objective function variables at a time to be their 

highest priority for evaluating plans. Another group of 

operators had a “multi-objective” option, which enabled 

them to choose any combination of these quantities as high 

priority. By providing operators with multiple options and 

the capability to communicate their goals more clearly to the 

automated planner, it halved the number of times that the 

operator had to modify the objective function of the 

automated planner [25]. This supports the findings from the 

previous HACT analysis and it appears that the multi-

objective function increased automation transparency and 

decreased “brittleness.” It is likely why operators using the 

multi-objective function generally rated their confidence and 

performance higher [25]. 

In the outdoor flight tests, the operator merged potentially 

conflicting information coming in from a variety of 

intelligence sources available during the mission. He then 

made decisions about the priorities of various tasks and how 

those priorities changed throughout the mission. By allowing 

the operator to communicate his or her priorities to 

automation, the algorithm could quickly decide how to 

allocate vehicles to handle the highest priority tasks, freeing 

up the operator to focus on how the mission was progressing. 

2) Enhancing operator Situational Awareness (SA) and 

managing operator workload are crucial to preventing 

errors. Operators who were limited to single-objective 

optimization, and thus were limited in their ability to 

collaborate with the automation, were the only operators who 

violated any Rules of Engagement [25]. These errors could 

have been caused by the lower measured SA of this group 

and because it appears that they were working harder by 

making double the amount of changes to the objective 

function throughout a mission [25].  

The use of multi-objective optimization, which 

encouraged greater operator engagement, may have caused 

this enhanced SA. Operators who could interact with the 

system were more actively involved with goal management, 

which also led to improved performance of secondary tasks, 

such as answering queries measuring SA. Additionally, at 

certain points during the mission, operators with access to a 



 

 

 

dynamic objective function were able to respond more 

quickly to queries than operators using a static objective 

function. This suggests that these operators had higher spare 

mental capacity, however, overall utilization (% busy time) 

and subjective workload measures show that there were no 

differences in overall workload across the three objective 

function types.  

In comparing workload levels between the simulation 

experiment and outdoor flight tests, the primary workload 

measure was a utilization metric calculating the ratio of the 

total operator “busy time” to the total mission time.  For 

utilization, operators were considered “busy” when 

performing one or more of the following tasks: creating 

search tasks, identifying and designating targets, approving 

weapons launches, interacting via the chat box, replanning in 

the SCT, or using the health monitoring panel (which was 

unique to the outdoor flight trials).  

Differences between the two tests needed to be taken into 

account for this comparison. As the number of targets in the 

mission is a large driver of workload, the utilization metric 

across the two studies was normalized by the number of 

targets in each test, ten for the simulation experiments and 

three for the outdoor flight tests. In addition, there was a 

difference in speed between the vehicles, with the simulated 

UVs moving faster than the real UVs outdoors. The larger 

number of targets and faster UVs were utilized in the 

simulated environment to create a more challenging mission 

that might lead to differences in performance based on 

different operator strategies. 

 The results of the workload comparison showed that 

when normalized by the number of targets in the mission, the 

operator was working harder in the outdoor mission 

(p<0.001). The average normalized utilization was 4.2% 

(SD=0.82%) for the simulation experiments and 7.9% 

(SD=2.1%) for the outdoor flight tests. Despite the need for 

normalization, it is clear that operators were working harder 

in the outdoor missions considering that there were more 

than three times as many targets in simulation, with faster 

vehicles, but the average non-normalized utilization was only 

78% greater (42.1% for simulation versus 23.6% for the 

outdoor flight tests). This increased workload in the outdoor 

missions can likely be attributed to the need to monitor the 

health and status of the vehicles, as discussed later in Section 

B. 

3) Automation “brittleness” can be avoided through 

careful design choices. Two design decisions in the OPS-

USERS system a) illustrate automation “brittleness” and b) 

show a method for dealing with brittleness. First, in the 

outdoor tests, a hierarchical system was used to determine 

which vehicle had priority in path planning for collision 

avoidance. By utilizing this system, however, a lower 

priority vehicle was temporarily forced to move away from a 

target that it was tracking, causing the target to be lost. As 

shown in Fig. 4, UAV 2 was the lower priority vehicle that 

was forced to move away from tracking Target J as the 

WUAV flew by. While this problem could be resolved 

through dynamically ordering the priority of vehicles 

throughout the mission, it is a representative example of 

automation brittleness, where the automation worked exactly 

as designed, but in a way that may not have been appropriate 

at the time due to the complex nature of a command and 

control mission. 

 

 
Fig. 4.  Automation “brittleness” caused UAV 2 to lose 

Target J 

 

In the simulation experiment, by limiting some operators 

to only single-objective optimization capabilities, we 

experimentally induced automation brittleness. Despite this, 

there were no significant differences in system performance 

between operators using either the dynamic or static 

objective functions [25]. How did this occur? 

Further analysis of the simulation experiment data showed 

that operators who were limited to only single-objective 

optimization capabilities chose to perform more “what-if’s” 

via the SCT than multi-objective operators in order to obtain 

acceptable plans from the automated planner.  There was a 

marginally significant difference (p=0.085) in the number of 

“what-if’s” between single-objective (Mean=9.95, SD=5.90) 

and multi-objective operators (Mean=7.00, SD=4.30). When 

faced with a more brittle system, that did not allow them to 

communicate as clearly to the automation, “what-if” 

sensitivity analysis may have contributed to these operators’ 

ability to maintain the same performance level as the other 

operators. Operators attempted at least one “what-if” 

approximately 30% of the time that they entered the SCT.  

When a “what-if” query was conducted, only one “what-if” 

query was necessary 94% of time. 

It should be noted that in the outdoor experiment, the 

number of “what-if’s” was much lower, on average 1.5 per 

mission. The operator attempted at least one “what-if” only 

12% of the time that they entered the SCT to replan. The 

lower number of “what-if’s” can likely be attributed to two 

facts. First, the operator for the outdoor experiments was 

highly experienced with the system and understood the inner 

workings of the algorithm. Thus, he felt less of a need to 

question the automation-generated schedules. Second, with 

fewer targets, the system resources (i.e. the vehicles 



 

 

 

themselves) were rarely at full capacity. If the system was 

not operating at full capacity, then trade-offs were not 

needed, as all tasks could be scheduled. “What-if” queries 

are only valuable if the system is constrained by the available 

resources. 

4) The system must aid operators in understanding how 

the algorithm is performing. Subjective operator assessments 

of the algorithm collected after both simulated and real 

outdoor missions showed that operators were often confused 

about why the algorithm produced certain schedules. A few 

participants reported that they were frustrated because of 

perceived sub-optimal automation performance [25]. As was 

shown in previous experiments [27], a common complaint 

from participants was a desire for increased vehicle-level 

control, as opposed to only task-level control. Fifty-three 

percent of all simulation experiment subjects wrote about 

wanting to manually assign vehicles to certain tasks because 

they disagreed with an assignment made by the automation.  

These participants had little knowledge of the inner 

workings of the task allocation and path planning algorithm 

and thus it is likely that they were not aware of all of the 

variables and constraints that the algorithm took into account 

when creating plans. This is likely representative of future 

real-world operations, where human controllers will have 

limited knowledge of exactly how the “black box” 

automation works. When the final plans did not seem 

“logical” to the operator (regardless of the actual plan 

quality), trust in the automated planner decreased. Informing 

operators about algorithm performance in real-time and 

understanding how and why operators perceive algorithms to 

be suboptimal are crucial to future system designs. 

B. The Impact of Uncertain Environments and Vehicle 

Failures on Operator and System Performance 

The adaptation of OPS-USERS for outdoor flight tests 

was generally successful, as the system worked well in 

executing the mission, planning paths for the UVs, allocating 

tasks to the UVs, and conducting the given tasks. Based on 

the results, a number of valuable insights were gained from 

outdoor flight testing with regards to real-time human-

computer collaborative scheduling in a highly uncertain 

environment with vehicle failures: 

1) Health monitoring greatly increased operator 

workload. The workload for monitoring both the health and 

altitude of the UVs was so high that it needed to taken on by 

a second human operator to allow the primary operator to 

run the mission. The altitude monitoring could be remedied 

by more reliable sensors on board the vehicles. Health 

monitoring, however, is a very significant problem for single 

operator control of multiple UVs and even with highly 

automated vehicles may drive workload to unacceptably high 

levels. More highly automated health monitoring, error 

detection, and self-repair are necessary before single 

operator control of multiple UVs becomes feasible. 

2) In real-world operations, the operator must be allowed 

to override the automation in case of failures. It was 

discovered during operations that the automated planner had 

a poor model of battery discharge rate, due both to 

environmental uncertainty, such as wind, and the hardware 

that was chosen for use. This caused the automation to be 

indecisive about scheduling refuel times. More advanced 

vehicles have already been developed with better models of 

fuel usage and better prediction of flight time remaining. 

However, had this been an operational system, allowing the 

human operator to be able to override the automation when it 

entered this indecisive mode would have been crucial to 

mission success and vehicle safety. 

3) Robustness to real-world hardware failures and 

environmental uncertainty is challenging. Overall, from a 

planning and scheduling perspective, the system was fairly 

robust to hardware failures. The ability to remove and then 

re-engage a vehicle from the system was crucial for dealing 

with hardware issues. The decentralized implementation was 

also robust to poor communications between the vehicles.  

Two specific examples of environmental uncertainty 

created challenges for the scheduling system. First, imperfect 

waypoint tracking (due to wind, GPS noise, etc.) caused the 

automation to occasionally “churn” or alternate rapidly 

between two plans for how a vehicle would travel around an 

obstacle or avoid a collision. This sometimes resulted in 

travel delays or erratic paths. While the automation 

eventually made a decision without major impact to the 

mission, churning behavior can reduce operator confidence 

and trust in the automation, factors which have been shown 

to influence system performance [28]. 

Second, scheduling multiple vehicles to perform tasks that 

have highly uncertain time lengths is a very challenging 

scheduling problem. Due to this uncertainty in task time 

lengths, a design decision was made for these outdoor flight 

tests to create conservative schedules with short planning 

horizons. Each vehicle typically was assigned only a single 

task at a time and assumed that it would be performing that 

task infinitely, until the vehicle was notified either by the 

operator or another source that the task was complete. It is 

debatable as to whether this was the right choice for a highly 

dynamic mission with new tasks being created throughout 

the mission or whether it caused vehicles to avoid taking on 

multiple tasks that they were capable of accomplishing. 

Future work could include attempts to estimate the time 

length of certain tasks to allow for a longer planning horizon. 

4) There are a number of subjective factors that are 

difficult for algorithms to take into account in missions with 

high uncertainty. Human judgment, of both operators and 

safety pilots, played a crucial role in a number of areas. The 

operator had to subjectively determine when enough 

intelligence had been collected about the area of interest to 

proceed to the next portion of the mission. Sometimes the 

camera imagery of targets was unclear or blurry and 

classification of a target as friendly, unknown, or hostile 

required a subjective assessment. Safety pilots had to use 



 

 

 

their own judgment to determine how “well” a vehicle was 

behaving and whether it needed to be taken out of the 

mission. Safety pilots had to understand that vehicle 

behavior changed as battery levels reached critical levels, 

causing landing to become difficult. 

V. CONCLUSION 

Utilizing advances in autonomy, a system has been 

designed and utilized for single-operator decentralized 

control of multiple heterogeneous UVs. This system 

leverages mixed-initiative scheduling, where a human 

operator collaborates with an optimization algorithm to 

assign tasks to the UVs in real-time. Insights from two 

experiments using this system were presented. Both a 

simulation experiment and outdoor flight tests showed that 

operators must be able to communicate their goals to the 

automated planner as clearly as possible.  A key insight for 

system designers is that operators benefit from the ability to 

modify the objective function of the automated planner in 

real-time.  Managing operator SA, workload, and trust in the 

automation are crucial to system performance, along with 

implementing design interventions to avoid automation 

brittleness. Finally, environmental uncertainty and hardware 

failures make for a much more challenging operational 

environment, but a mixed-initiative scheduling system can 

overcome these challenges by combining the computational 

ability of optimization algorithms with the judgment and 

adaptability of human supervisors. 
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