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ABSTRACT 
In the near future, large, complex, time-critical missions, such as 

disaster relief, will likely require multiple unmanned vehicle (UV) 

operators, each controlling multiple vehicles, to combine their 

efforts as a team.  However, is the effort of the team equal to the 

sum of the operator’s individual efforts?  To help answer this 

question, a discrete event simulation model of a team of human 

operators, each performing supervisory control of multiple 

unmanned vehicles, was developed.  The model consists of 

exogenous and internal inputs, operator servers, and a task 

allocation mechanism that disseminates events to the operators 

according to the team structure and state of the system.  To 

generate the data necessary for model building and validation, an 

experimental test-bed was developed where teams of three 

operators controlled multiple UVs by using a simulated ground 

control station software interface.  The team structure and inter-

arrival time of exogenous events were both varied in a 2x2 full 

factorial design to gather data on the impact on system 

performance that occurs as a result of changing both exogenous 

and internal inputs. From the data that was gathered, the model 

was able to replicate the empirical results within a 95% 

confidence interval for all four treatments, however more 

empirical data is needed to build confidence in the model’s 

predictive ability. 

Categories and Subject Descriptors 

I.6.3 [Computing Methodologies]: Simulation and Modeling – 

applications.  

General Terms 

Performance, Experimentation, Human Factors. 
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1. INTRODUCTION 
Unmanned vehicles (UVs) are currently in use for numerous 

military operations, but they are also being considered for many 

non-military applications as well, including mining, fighting 

forest fires, border patrol and supporting police [1]. Currently, 

several human operators are required to control many of today’s 

UVs, but futuristic systems will invert the operator-to-UV ratio so 

that one operator can control multiple UVs [2].  To accomplish 

this goal, the level of automation will have to increase such that 

operators will give high-level, supervisory instructions to the UVs 

instead of manual control [3].  However, previous research  has 

shown that even under supervisory control, there is a cognitive 

limit as to the number of UVs a single human operator can 

effectively manage [4, 5].   Large, complex, time-critical 

missions, such as disaster relief, will likely exceed that limit and 

will require multiple operators, each controlling multiple UVs, to 

combine their efforts. Since such systems do not currently exist, 

many questions arise, including: (1) How many operators are 

necessary to achieve a set of mission objectives?  (2) How should 

the operators combine their efforts in the most effective way?  (3) 

Will the group performance be more than, equal to, or less than 

the sum of the individual contributions?   

2. RESEARCH OBJECTIVE 
The goal of this research is to develop a quantitative model of a 

team of human operators, each performing supervisory control of 

multiple unmanned vehicles, in time-critical environments. This 

model would allow stakeholders, such as vehicle designers and 

battlefield commanders, to vary input parameters, such as vehicle 

speed and number of human operators, in order to determine their 

impact on system performance.  

3. PREVIOUS RESEARCH 

3.1 Queuing Model of Supervisory Control of 

Unmanned Vehicles 
Supervisory control of unmanned vehicles involves an operator 

handling intermittent events via an automated system by giving 

high-level commands to UVs.  As such, supervisory control of 

unmanned vehicles has been previously modeled as a queuing 

system where the vehicles requesting assistance are regarded as 

users and the human operators are regarded as servers [6].  For 

instance, in a simple surveillance scenario whose timeline is 

shown in Figure 1, an unidentified contact suddenly emerges at 

time t. This event, labeled A, requires that the operator perform a 

task, in this case, assign an UV to the contact location for further 
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investigation.  Since this event is not directly controllable by the 

operator or vehicle, it is considered to be an exogenous event to 

the system. Ideally, the operator would notice this event and start 

“servicing” it immediately by performing the associated task.  

However, because of inherent inefficiencies of human attention, 

the operator will inadvertently introduce a delay between the 

arrival of this event and the moment he starts to service it (marked 

by event B in the timeline).  This delay is due to a combination of 

the Wait Time due to loss of Situational Awareness (WTSA) and 

the Wait Time due to Interaction (WTI) [4].  WTSA occurs when 

the operator is not aware that the event requires his attention, 

whereas WTI occurs when the operator has noticed the event, but 

has not measurably started the associated task yet (perhaps due to 

deciding between the right course of action from a number of 

options). Since it is extremely difficult to separate WTSA from 

WTI, the measured time between when an event emerges and 

when the operator starts the associated task (assuming the 

operator is not busy and has the resources available to service the 

event) will be considered WTOD – wait time due to operator 

delay.  Cummings and Mitchell [4] have shown that this delay can 

be quite significant particularly when operators are controlling 

multiple vehicles simultaneously and have degraded situational 

awareness.   

 

 

Figure 1: Timeline of events for simple UV scenario. 

 

The task of assigning a vehicle to a location also takes a finite 

amount of time known as the Service Time (ST).  At the moment 

when the operator finishes assigning a vehicle (C in Figure 1), that 

vehicle will begin to travel the assigned location.   The time 

during which the vehicle is travelling is referred to as the Travel 

Time (TT) and in this scenario also represents the Neglect Time 

(NT) of the vehicle, since the vehicle acts autonomously during 

this period without requiring the operator’s attention [7].  After 

some time, the vehicle will eventually arrive at the contact 

location, denoted by event D.  Similar to the time between A and 

B, the vehicle must wait a finite period of time before the operator 

begins to interact with the vehicle’s camera, denoted by event E.  

Finally, after another service time, the operator finishes 

identifying the contact (labeled event F) which may more may not 

spawn additional endogenous events, depending upon the 

scenario.  If the final objective of the operator is to simply identify 

unknown contacts, then the difference in time between event F 

(when the final objective is met) and event A (when the contact 

emerged) is known as the Objective Completion Time (OCT).   

Since time is of the essence in many UV applications, the goal of 

many UV system designers and decision makers it to minimize 

the average OCT for a given scenario. 

3.1.1 Multiple Event Handling 

3.1.1.1 Wait Time due to Queuing 
If an operator is busy interacting with a vehicle and another event 

emerges that requires the operator’s attention, then that event must 

wait for the operator to become available.  This additional time, 

not represented in Figure 1, is known as the wait time due to 

queuing (WTQ) since the event is considered to be in the queue 

for the operator’s attention. Since vehicles tend to produce 

endogenous events (such as requiring new waypoints when they 

have reached the old ones), as the number of vehicles or 

exogenous events in the system increases, the probability of an 

event experiencing WTQ grows.  Additionally, it has been shown 

that operators may take longer to respond to events as they 

emerge due to high workload and a loss of situational awareness 

[4]. Thus, as more events require the operator’s attention, the 

OCT will continue to grow until it reaches an unacceptable level, 

at which point a team of multiple operators will likely be required. 

3.1.1.2 Switching Strategy 
If more than one event is in the operator’s queue, the operator 

must select which event he will service next.  There are several 

strategies an operator can use, including first-in-first-out (FIFO), 

highest-priority-first or even random selection. Switching strategy 

affects the total time tasks spend waiting for service not only 

because of the ordering of the tasks (queuing policy), but also 

because of the time required for the mental model change of the 

operator (switching cost) if the tasks are dissimilar [8].  It has 

been demonstrated that for operators of multiple, unmanned 

vehicles, the switching cost can be substantial [9]. 

3.2 Single Operator Discrete Event 

Simulation Model 
Solving traditional queuing models can yield results of interest to 

the study of supervisory control such as the average time an event 

will spend waiting in a queue and server (operator) utilization.  

Although analytical solutions are possible for simple supervisory 

control systems, often the assumptions required for closed-form 

solutions, such as steady-state behavior and independent arrivals, 

are not met.  Discrete event simulations (DES) overcome many of 

the limitations of analytical models by using computational 

methods that do not require such strict assumptions [10] and 

therefore allow a richer set of complex UV-operator systems to be 

modeled.    

A single human operator controlling heterogeneous unmanned 

vehicles was successfully modeled using a Multi-UV Discrete 

Event Simulation (MUV-DES) model [8]. A Multi-UV, Multi-

Operator Discrete Event Simulation (MUVMO-DES) model that 

builds upon this work, but also considers multiple operators 

combining their efforts, is the focus of this research.  This new 

model consists of exogenous and internal inputs, operator servers 

and their interactions, and a task allocation mechanism that 

disseminates events to the operators according to the team 

structure and state of the system. The inputs to the model are both 

exogenous, such as the arrival rate of new contacts, and also 

internal, such as the length of time an operator spends interacting 

with a vehicle.  These inputs are also stochastic due to the large 

amount of uncertainty in environmental conditions and human 

behavior.   

4. METHODS 

4.1 Multi-UV, Multi-Operator Discrete Event 

Simulation Model 
Expanding the MUV-DES model to multiple operators required 

several new considerations, in particular a model of team 



communication, mutual performance monitoring and task 

allocation. 

4.1.1 Modeling Communication 
Geographically-disperse UV operators communicate through 

voice, chat or a combination of both.  Voice communication is 

typically the fastest and allows operators the ability to control the 

UVs while simultaneously communicating via a headset. Voice 

communication is effective for small teams but can become 

problematic as the number of operators becomes large, due to 

multiple voice messages that occur simultaneously.  Thus, voice 

communications are typically serial in nature, meaning only one 

operator can speak at a time.  Chat messages allow operators to 

send messages to each other asynchronously and in parallel.  Due 

to software’s ability to parse text and apply sorting filters in real-

time, chat communication often scales well with large teams.  

Chat messages also tend to be clearer than voice communication, 

in that they are not as susceptible to noisy communication 

channels, background noise, volume or operator accents.  

Furthermore, chat messages automatically create a real-time 

transcript of the communication, something that is typically not 

possible with voice. For the initial MUVMO-DES model, 

communications are assumed to be chat for data gathering 

purposes, but given the widespread use of chat by operational 

command and control personnel, this assumption also carries 

external validity. Modeling voice communications is left for 

future work. 

4.1.2 Mutual Performance Monitoring 
In addition to explicit communications, operators may also 

coordinate by mutual performance monitoring, recognized as one 

of the core components of teamwork [11]. Through a user 

interface, operators can typically view each other’s vehicles and 

commands to gain situation awareness of what the team is doing.  

For instance, instead of explicitly communicating, an operator 

may take a quick look at the interface to see if any other 

operator’s vehicles are already heading to a new contact before 

assigning their own.  However, because this form of coordination 

is unilateral, teammates must make assumptions about the actions 

and intentions of other teammates which may or may not be valid. 

4.1.3 Modeling Coordination 
Communication and mutual performance monitoring can be 

represented by discrete endogenous events that the operators 

generate.  For instance, in Figure 2, instead of servicing an event 

once it arrives (event A), an operator may choose to send a chat 

message to other operators by first starting a chat message, 

composing it for a finite period of time (labeled COORD) and 

then sending it before starting to service the task (event C). 

Similarly, an operator may perform a mutual performance 

monitoring task that also takes a finite period of time.  However, 

if an operator is composing a chat message or monitoring the 

performance of other operators, then the operator is considered to 

be busy and as such, any event that is waiting for the operator’s 

attention while he is communicating or monitoring will incur a 

WTQ for that period of time.  This additional WTQ represents a 

quantitative measurement of the coordination cost (process loss) 

associated with the team performance.  

The timeline shown in Figure 2 is a simple example of 

coordination but more complex coordination scenarios exist as 

well.  For simple tasks, a single communication message may be 

all that is needed, such as claiming responsibility for a target that 

emerges. For more complex tasks, the communication may 

involve a conversation that spawns several iterations of 

communication messages.  This initial model will only assume 

single communication messages and as such, will only be able to 

model simple coordination between the team members. 

 

 

Figure 2: Timeline of events with coordination. 

 

4.1.3.1 Coordination Strategies 
Similar to switching strategies, an operator will also have a 

coordination strategy that dictates the type and timing of the 

coordination he will perform when faced with a task that can be 

serviced by more than one operator.  One such strategy is to not 

coordinate at all, but this would require the team to have 

predefined roles and responsibilities (such as mechanistic teams) 

or run a high risk of task allocation errors.  A task allocation error 

occurs when more than one operator or no operator attempts to 

service a particular task.   

If an operator choose to coordinate her actions, she typically must 

choose the type of coordination first, i.e. whether or not to 

communicate, monitor or both.  In addition to the type of 

coordination, the timing of the coordination is very important as 

well.  A common strategy would be to coordinate first and then 

service the task. This type of coordination strategy is the least 

likely to incur task allocation errors. This coordination strategy 

was assumed for the initial MUVMO-DES model. However, other 

coordination strategies exist. For instance, an operator could 

service the task first and then send a courtesy message to other 

operators. This strategy allows the operator to give the fastest 

response to an event, but raises the possibility that another 

operator will also begin servicing the task before the first operator 

gets a chance to send the coordination message. 

4.1.3.2 Team Structure and Task Allocation 
Although the model was designed to be general and handle a 

variety of team structures, mechanistic and organic teams 

structures were chosen to be modeled initially since they represent 

two polar opposites of the organizational spectrum [12]. A 

mechanistic team is one where the operators have rigidly defined 

roles and responsibilities. For instance, when all of the vehicles of 

one type are assigned to one and only one operator, then that 

operator is given the full responsibility for performing the tasks 

that only that vehicle can do. If one of each vehicle type is 

allocated to each operator instead, then that team structure would 

be considered organic since any operator can perform any task 

that arises, provided that he has an appropriate vehicle available.  

Both team structures suffer from inefficiencies, or what Steiner  

[13] refers to as a “process loss” which is the differential between 

the performance of a team and the theoretical  maximum achieved 

if the efforts of the individuals were combined ideally. In 

mechanistic teams, process loss occurs when task loads are 

uneven and some operators are too busy while others are idle.  In 

organic teams, process loss occur when operators have to spend 



time coordinating how they will share the common queue and/or 

allocate the tasks amongst themselves in a sub-optimal manner.  

Due to the clear task allocation roles, extending the MUV-DES 

model for mechanistic teams involved having a separate queue 

and server for each operator.  Since each task was unique to an 

operator, every event that arose was automatically assigned to the 

appropriate operator.       

For the organic team, a different task allocation mechanism was 

needed.  Since the model is merely an abstraction of the actual 

scenario, the first attempt at an organic model randomly assigned 

the tasks to the operators based on who was available at that 

moment to service the event.  If more than one operator was 

available, the event was randomly assigned to one of the available 

operators. If no operator was available, the event waited in a 

common queue (incurring a WTQ cost) until an operator became 

available. This form of modeling assumes that there will be no 

task allocation errors, i.e. one and only one operator will service 

or attempt to service any particular task. In real organic teams, 

this will likely only happen if the teams coordinate their actions 

through communication or mutual performance monitoring.    

4.2 Data Gathering 
The MUVMO-DES model utilizes stochastic processes to account 

for the uncertainty within the system.  Therefore, random values 

are drawn for WTOD, service time, communication time, 

monitoring time, travel times and travel time in the model.  These 

probability density functions (pdfs) need to be generated by 

binning empirical data into histograms and fitting an appropriate 

curve. 

To generate the stochastic inputs necessary for model building 

and to validate the model’s outputs against actual team 

performance metrics, real data must be gathered. Since there are 

no extant systems of teams of operators each controlling multiple 

unmanned vehicles, there is no “real world” data to collect.  

Hence, an experimental test-bed where teams of operators 

controlled multiple UVs was specifically developed and 

experimental trials were conducted to gather the data used for 

model building and validation. 

 

Figure 3: Main display of the ground control interface. 

 

4.2.1 Experimental Test-Bed 
The experimental test-bed consisted of a video game-like 

simulation of unmanned vehicle control by a team of operators.  

The simulation included three ground control stations, with one 

subject assigned to each station.  

4.2.2 Ground Control Interface 
Subjects interacted with the ground control stations via a 

computer monitor display using standard keyboard and mouse 

inputs. The main display of the ground control station featured 

three sections – a large map, a chat panel and a system panel 

(Figure 3). The map represented the geographical area that the 

operators were responsible for, as well as all the vehicles under 

their control and contacts that they needed to handle. Contacts and 

vehicles were represented using MIL-STD-2525B icons [14] and 

the operators assigned vehicles to contacts by clicking on the map 

interface with the mouse. The operators were also able to 

communicate with each other via instant messaging within the 

chat interface window. Operators would type messages into the 

chat, which would then appear on all the other operator’s chat 

panels instantly. Chat messages were labeled with the operators 

unique IDs, which corresponded to the labels for each operator’s 

vehicle icons. In addition to the map and chat display, there was 

also a system panel where the system would occasionally send 

messages to a particular operator, such as a confirmation message 

that the operator had assigned a particular vehicle to travel to a 

particular location.  

4.2.3 Tasks 
Each mission scenario required a team of operators to “handle” 

contacts that appear intermittently over the map. To do this, the 

team of operators needed to perform both assignment and payload 

tasks. 

4.2.3.1 Assignment Tasks 
Assignment tasks required the operators to send their vehicles to 

the contacts on the map as they emerged.  Once assigned, the UV 

would start to travel to that particular contact location on the map 

in a straight line and would continue until either the vehicle 

reached its assigned destination or the operator re-assigned the 

vehicle elsewhere. There were no obstacles on any of the maps 

and no path-planning required.  

Although assignments were done by individual operators, they 

can be considered a “team task” since the operators had to 

coordinate their assignments to ensure that one and only one 

vehicle was assigned to each and every contact.  Furthermore, 

subjects were instructed that vehicles should be chosen in the 

interest of minimizing travel times, i.e. typically the closest 

available vehicle to the contact location. 

4.2.3.2 Payload Task 
Once a vehicle reached a contact, the operator performed a simple 

task by interacting with the vehicle’s payload. This task was 

unique to the vehicle and contact type, but involved either visual 

identification (e.g., where is the red truck in the parking lot?) or a 

simple hand-eye coordination task. Since all three vehicles were 

aerial of some sort, all payload tasks involved a birds-eye view of 

the terrain.  An example of a hand-eye coordination task is shown 

in Figure 4 where the operator must destroy a contact by centering 

the crosshairs over a stationary target on the ground and pressing 

the fire button three times.  The difficulty in this task was that the 

crosshairs are subject to jitter due to the motion of the UV. The 

other hand-eye coordination task involved dropping aid packages 

to victims on the ground.  This task was similar to the destruction 

task except that the crosshairs were steady but the projectiles were 

slow-falling and susceptible to the wind. Thus, players had to 

compensate for a light north-east wind, for instance, by aiming 

packages slightly to the southwest of the target location and 



pressing the drop button once.  Payload tasks are considered an 

“individual task” as they do not require any coordination or 

assistance from any of the other operators.   

 

 

Figure 4: Missile firing payload task. 

 

4.2.3.3 Scenario Objectives 
The objective of each scenario was to identify all unidentified 

contacts and either rescue them (if friendly) or destroy them (if 

hostile) as quickly as possible.  There were three vehicle types, 

one that handles each type of contact (unidentified, friendly, 

hostile) exclusively. Although any UV of the appropriate type 

could be assigned to a contact, only the first vehicle to start the 

payload task could successfully complete it.  When a contact first 

appeared on the map, it was always of the unidentified type, 

which required a scouting UV (Type A). Once the scouting UV 

arrived, the operator performed a visual identification task which 

transformed the contact from unidentified to either hostile or 

friendly.  If the contact was identified as being hostile, a tactical 

UV (Type B) was sent by an operator to the contact location to 

destroy it via the missile firing task.  Similarly, if an unidentified 

contact was identified as being friendly, a rescue UV (Type C) 

was sent by an operator instead to drop aid packages to the 

contacts’ location, thereby “rescuing” the contact.  The time a 

contact spent in the system, from the moment it arrived, until the 

moment it was successfully handled, was the objective completion 

time. Since a scenario consisted of multiple contacts, the Average 

Objective Completion Time (AOCT) was the metric of interest, 

where the average was simply the mean of all the OCTs for that 

scenario. 

4.2.3.3.1 Design of Experiments 
A 2x2 repeated measures experiment was conducted where the 

independent variables were team structure (mechanistic, organic) 

and the inter-arrival time of unidentified contacts (constant, 

erratic).  Ten teams of three participants each completed all four 

treatments. The order of trials was counter-balanced and randomly 

assigned to the teams. An alpha value of 0.05 was used for 

significance. 

4.2.4 Independent Variables 

4.2.4.1 Inter-Arrival Times of Exogenous Events 
Previous research has demonstrated that optimal UV operator 

performance occurs when the operator has a utilization lower than 

70% [15].  Thus, all scenarios were designed to have an operator 

utilization of about 50%, meaning that operators spent 

approximately 50% of their time, on average, performing 

assignment or payload tasks.  This was achieved in pilot studies 

by fixing the payload tasks and manipulating the number of 

exogenous events and their inter-arrival times until the average 

operator utilization was about 50%.   

The experimental trials had a total of 16 exogenous events 

(unidentified contacts emerging).  The time between successive 

exogenous events (the inter-arrival time) was 30 seconds for the 

constant treatment. For the erratic factor level, the inter-arrival 

times were generated from a bimodal distribution where the 

means of the modes were set at 75 seconds and 225 seconds from 

the start of the trial, with a standard deviation of 15 seconds.  In 

both the constant and bimodal treatments, the first exogenous 

event always appeared at time 0, thus only 15 events were drawn 

from the bimodal distribution for the erratic condition.  The inter-

arrival of exogenous events was varied between constant and 

erratic to determine if team structure had an effect on how 

operators performed under different task load distributions.   

4.2.5 Participants 
Participants were recruited via e-mail and paper advertisements 

and through word-of-mouth. All of the participants were between 

the ages of 18 and 35, with the mean age being 21.7. Some 

participants had military, video game or previous UV experiment 

experience. Due to scheduling concerns, some teams were 

composed of individuals who knew each other while most teams 

were composed of individuals who were randomly assigned.  The 

level of inter-personal relationships between team members 

(stranger, casual acquaintance, friend, romantic, etc) was not 

recorded. 

4.2.5.1 Training 
Prior to the experimental trials, the participants completed an 

individual 20-minute PowerPoint® training session.  Afterwards, 

the participants completed two practice scenarios (one 

mechanistic and one organic) as teams, each one taking about 10 

minutes to complete.   Thus, the total training time was 

approximately 40 minutes. 

5. RESULTS 
The order of the trials was checked to determine if a learning 

factor occurred across the four team sessions. Given that the 

training time was minimal, and previous research has shown that 

four or more training sessions is needed for teams to achieve 

stable performance [16], testing order was of concern, and showed 

a significant effect (F(3, 24) = 4.12, p=.02). Most teams did worse 

on the first trial, regardless of the treatment, than on subsequent 

trials (Figure 5). Thus, the final statistical model included a two 

factor, repeated measures ANOVA with blocking on the trial 

order. 

Team structure was significant (F(1, 24) = 1.484, p < 0.01), with 

mechanistic teams performing better than organic teams overall, 

although there was no significant difference when the inter-arrival 

rate was erratic.  Mechanistic teams performed worse when the 

inter-arrival rate was erratic as opposed to constant (t(15.8) = 

2.47, p = 0.03). However the inter-arrival rate had no significant 

effect on the organic teams.  The inter-arrival rate by itself was 

not significant, but the interaction of the independent variables 

was (F(1, 24) = 10.47, p = 0.04).  



 

 

Figure 5: Effect of AOCT vs trial order. 

 

5.1 Model Results 
The model was run 1000 times for each treatment condition.  For 

the organic team, the model predictions were within the 95% 

confidence interval of the empirical results for all four treatments 

(Figure 6). Since the mechanistic teams did not have to coordinate 

their actions due to their rigid role structure, they were initially 

modeled without any communication or monitoring behavior.  In 

the erratic inter-arrival condition, the model predictions for the 

mechanistic team was within the 95% confidence interval, 

however for the constant inter-arrival condition, the model’s 

predictions were low (Figure 6). 

 

Figure 6: Initial empirical results. 

Upon further investigation of the experimental transcripts, the 

mechanistic team did communicate and monitor each other’s 

actions, even though it was not necessary. Thus, a coordination 

strategy similar to that used by the organic team was implemented 

in the mechanistic model and new outputs were generated.  Not 

surprisingly, the additional cost associated with coordination 

increased the OCT of the mechanistic team. Thus, with the 

coordination strategy implemented in both teams, the model 

predictions were within the 95% confidence interval for all four 

treatment conditions (Figure 7).   

 

 

Figure 7: Revised empirical results.  

6.    DISCUSSION 
It was not surprising that the mechanistic teams performed worse 

under erratic inter-arrival times than they did when the inter-

arrival times were constant, since the erratic inter-arrival times 

caused events to arrive in batches, thereby increasing the queues.  

However, it was interesting that there was no significant 

difference in the performance of the organic team under the 

different inter-arrival rates of exogenous events.  This suggests 

that even though events arrived in clusters during the erratic inter-

arrival treatment, the organic team was able to handle the 

workload spike without increasing the AOCT.  This suggests that 

the organic team is more robust to environmental uncertainty than 

mechanistic teams due to their flexible structure and the ability to 

spread tasks across the team. 

It was predicted that mechanistic teams would perform better than 

organic teams, which they did, but not necessarily for the same 

reasons. Originally, mechanistic teams were thought to have an 

advantage over organic teams because they did not incur 

coordination costs.  As shown in the results, mechanistic teams do 

incur coordination costs and without taking these costs into 

consideration, the performance predictions are too low in the 

constant inter-arrival case. This is interesting because the 

communications are theoretically unnecessary. However, this 

highlights the importance of understanding the intrinsic need for 

communication between team members, even if it is not 

necessary. Future work should look at how to mitigate such 

communication overhead.  

So, if mechanistic teams are also incurring coordination costs, 

how are they still managing to perform better overall than organic 

teams?  The answer to this question perhaps lies in the fact that 

the empirical data used to generated the pdfs for the different 

sources (e.g. travel times, WTOD, service times) was separated 

into the four different treatment conditions. Although there was no 

statistically significant difference between the values and the 

differences could be attributed to sampling error, there were small 

differences in nearly every input condition.  Since the OCT is the 

sum of all of these individual times, then these differences (or 

errors) combine into a statistically significant result.   
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Other factors may play a role as well, such as the switching 

strategy of the operators. The switching strategy assumed for all 

of the operators was FIFO, although in many cases, operators did 

not adhere to this strategy. Thus, future analysis should determine 

the actual switching strategies observed in the experimental trials 

and implement those instead. 

Another issue is that statistical significance for data such as 

WTOD was difficult to obtain due to a number of factors.  First, 

the sample size of the experiment was small (n = 10) but this is 

not unusual for team studies since it takes multiple participants to 

form a single experimental unit. Increasing the sample size should 

reduce the standard error of the experimental results.  

Additionally, previous research has shown that UAV teams do not 

reach asymptotic performance levels until after they have 

completed around four sessions together [16].  Although this is 

likely to be highly contingent upon a number of factors such as 

the difficulty of the task, the inter-operability required for success 

and the length of the sessions, it does seem to be consistent with 

our results.  Thus, to further reduce variability in the experimental 

results, additional practice sessions should be added.  Finally, the 

experiment was not controlled for the skill level or the 

relationships of the individuals.  Factors such as age, video game 

experience and military background could have had an effect on 

individual performance.  If a reduction in the variability of the 

team’s performance is desired, then future experiments could 

select for and block on particular individual traits.  However, 

teams of futuristic UV operators may be just as diverse as the 

sample population, particularly if they are composed of 

individuals from different agencies or even nations operating via 

an interoperability standards [17]. These operators may have 

different levels of training, skills and attitudes which may result in 

significantly different levels of individual performance.  Thus, it 

is not necessarily a flaw in the experimental design to have 

diversity in regards to the individual traits, as it can be argued that 

such diversity will be likely in future UV systems.   

7. FUTURE WORK 
The model in this paper has successfully replicated the results of 

experimental trials, but it has not been used to predict the 

performance of teams in hypothetical situations. Future work will 

look at developing the model to predict the performance of teams 

in new scenarios and then verify those results empirically. One 

such scenario could be if the teams had an additional member or 

decision support tool that aided in task allocation. While the 

mechanistic teams performed better than organic teams overall, 

the fact that the mechanistic teams were more sensitive to 

variations in the environment suggests that this team architecture 

may not be ideal for volatile environments such as those found in 

command and control settings.  If an organic team had the benefit 

of a leader or decision support tool, then its coordination costs 

might drop significantly, whereas a leader or decision support tool 

would likely have little or no effect on a mechanistic team.  Thus, 

the team model could be updated to see just how much of a 

performance difference one could expect by having a leader or 

decision support tool in both team structures.  
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