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Abstract—Unmanned aerial vehicles (UAVs) provide unprece-
dented access to imagery of possible ground targets of interest
in real time. The availability of this imagery is expected to in-
crease with envisaged future missions of one operator control-
ling multiple UAVs. This research investigates decision models
that can be used to develop assistive decision support for UAV
operators involved in these complex search missions. Previous
human-in-the-loop experiments have shown that operator detec-
tion probabilities may decay with increased search time. Providing
the operators with the ability to requeue difficult images with
the option of relooking at targets later was hypothesized to help
operators improve their search accuracy. However, it was not
well understood how mission performance could be impacted by
operators performing requeues with multiple UAVs. This work
extends a queuing model of the human operator by developing
a retrial queue model (ReQM) that mathematically describes the
use of relooks. We use ReQM to generate performance predictions
through discrete event simulation. We validate these predictions
through a human-in-the-loop experiment that evaluates the im-
pact of requeuing on a simulated multiple-UAV mission. Our re-
sults suggest that, while requeuing can improve detection accuracy
and decrease mean search times, operators may need additional
decision support to use relooks effectively.

Index Terms—Decision theory, man machine systems, un-
manned aerial vehicles.

I. INTRODUCTION

N IMPORTANT aspect of ongoing and envisaged un-

manned aerial vehicle (UAV) missions is the visual search
task, in which operators are responsible for finding a target
in an image or a video feed. Due, in part, to advances in
networked sensors, military analysts are becoming increasingly
overwhelmed with the volume of incoming UAV imagery (both
full motion video and static images) [1]. Given the future De-
partment of Defense vision of one operator supervising multiple
UAVs, the amount of incoming imagery to be analyzed in real
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time will grow [2]. Moreover, with recently announced wide-
area airborne sensors such as Gorgon Stare and Argus which
can generate up to 64 images per single UAV camera concur-
rently, there is an urgent need to develop efficient approaches
for human analysis of UAV-generated imagery [1], [3].

Given the complex interactions between the human and the
automated sensors in these UAV missions, models of the human
operator are necessary in order to develop more appropriate
decision support systems (DSSs) that account for operator
decision-making inefficiencies, such as increased wait times for
vehicle selection and loss of situation awareness [4]. Mathe-
matical models for human operators interacting with multiple
UAVs have been developed using a queuing framework [5],
[6], where external tasks are generated from an underlying
stochastic process and the human supervisor, modeled as a
server, services the stream of tasks. While analysis of realistic
multi-UAV missions is analytically intractable, discrete event
simulation (DES) of operator queuing models has been used
to generate accurate performance prediction of experimental
results [6]. Operator models have also been developed for
human information aggregation using two-alternative-choice
(2-AC) models [7]-[11] and visual search formulations
[12]-[22].

In difficult search environments, operators searching imagery
in multi-UAV environments may desire more choices than
determining if a target is present or absent in an image. More
specifically, operators may seek additional information in order
to find the target, possibly through another visit later on in the
mission, or they may choose to ignore a task because there
is not sufficient information to make a confident assessment.
We hypothesized that, instead of a two-choice model, operators
would be better served by having a third option of reevaluating
a search task at a later time by requeuing the image and taking
another glance via a relook. Throughout this paper, we make
a distinction between the choice of requeuing, which is the
abandonment of the current search task, and a relook, which
is an additional glance at a previously searched image.

While it is straightforward to implement a requeue option
in a multi-UAV simulator, the effect of providing requeue and
relook capabilities must be investigated experimentally since
there is a potential for undesirable effects such as increased
operator workload. Furthermore, these capabilities could be
operationally important in minimizing collateral damage and
reducing errors and have been studied in the context of opti-
mal stopping [23] and inspection problems [24]. While these
works showed promising results in assessing the informational
value of an additional look, these studies are limited in two
main ways. First, previous work related to the speed—accuracy
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Fig. 1. Queuing model for the human operator in which new targets arrive at
a known rate X\ and they are processed at a rate Ae.

tradeoff shows that operator accuracy may degrade with time,
due to either vigilance effects attributed to fatigue [25] or
task difficulty [26]. Furthermore, complex missions such as
those involving multivideo visual search tasks or missions that
require both planning and searching tasks can increase operator
workload [6].

This effort makes three novel contributions in presenting a
choice model for a search task with requeues. First, we develop
a retrial queue model (ReQM) for visual search tasks that
includes the possibility of requeuing difficult images and pose
ReQM as a variation of a retrial queue with feedback [27]-[30].
We next develop a DES with ReQM (DES-ReQM) that embeds
operator models derived from previous experimental data of a
simulated multi-UAV mission. We then present results in the
predicted performance of multi-UAV visual search tasks using
DES-ReQM. We build on previous work [31] by discussing
the results of a human-in-the-loop experiment that confirm
the predictions made by DES-ReQM, as well as presenting
experimental observations of operator behavior in requeuing
and relooking tasks. We conclude with a discussion on the
implications for requeues and relooks with an actual operator
in the loop.

II. OPERATOR MODELING

Queuing models for human operators have been previously
proposed in the context of air traffic control, where the human
operator is treated as a serial controller, capable of handling one
complex task at a time [5]. These queuing models of operators
have been recently extended to account for operator workload
and attention inefficiencies in the context of human supervisory
control of multiple UAVs [6]. Fig. 1 shows a general queuing
model for a multi-UAV supervisory control problem for the
visual search task. Search tasks are generated by a Poisson
process at an average rate ), and the human operator (with
possible help from a DSS) services the tasks at a rate A.. In
complex tasks, operators may dedicate themselves only to a
single task at a time, allowing the incoming tasks to accumulate
in the queue. The visual search task initiates when the operator
begins examining the image feed once the UAV reaches the
target, and concludes with a decision on the target location.

A. Decision Models

An important feature of an operator queuing model is that
a submodel is needed to understand how humans accumu-
late information and ultimately make detection decisions in
search tasks (the “Operator” block in Fig. 1). One common
formulation uses a 2-AC framework [7]-[11], [32]. 2-AC mod-
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els originate from hypothesis testing models [7] and char-
acterize information accumulation as a stochastic diffusion
process. It can be shown [33] that sufficient statistics of the
diffusion model can be summarized by two random variables
that can be measured empirically: the probability of choosing
one of the alternatives P and the mean response time 7T'. For
the visual search task in this paper, P is the probability of
detection.

Previous work in the visual search literature has also at-
tempted to provide some insight in human response times and
accuracy in a speed-accuracy tradeoff setting. For example,
signal detection theory (SDT) has been used to mathematically
characterize human performance in visual search tasks. In most
experiments, subjects are shown a sequence of images, and
both detection time and accuracy are measured. Earlier work
has proposed generating a receiver operating characteristic for
humans to understand the relationship between correct detec-
tion and false alarms [20], while other work extends the SDT
framework to include attention [34]. King er al. [35] used
realistic imagery and assumed an SDT model to describe the
performance of the subjects. Waldman et al. [36] developed
an empirical model for visual detection with search, based on
identifying parameters of a probabilistic model, such as search
time and accuracy. Sperling and Melchner [37] investigated
visual search with attention more specifically looking at re-
action times and investigating a so-called attention operating
characteristic. More recently, Huang and Pashler [38] have
considered attention in visual search.

Extensive work in visual search has also emphasized the use
of probabilistic models that relate mean decision time to the
mean time to search [13]-[15], [18]—[20]. Recent work has also
moved beyond the mean decision times and analyzed the role
of parameter identification for parameterization of the search
time distributions [39], [40]. While the characterization of the
search is also important from a cognitive science perspective,
the work in this paper does not address the low-level details of
how the search is accomplished but rather seeks to understand
and quantify the effect of sequential searches within the context
of supervisory control.

B. Motivation for Requeues

We used experimental data obtained from a multi-UAV sim-
ulator including visual search tasks to determine the relation-
ship between detection probability and search time in search
tasks performed by single operators in multi-UAV simulated
missions [6]. The search tasks contained imagery obtained
from Google Maps, and the participants were instructed to
maximize the number of targets found over the course of
the mission. In multiple target searches, this previous work
observed that subject probability of detection degraded with
time since difficult searches required additional cognitive effort
from the operators [41] and operators had to switch between
planning and searching [6]. We used these data to determine
that the empirical mission probabilities of detection decreased
with increased search time and hypothesized that the increased
likelihood of mistakes arises because people are forced to make
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Fig. 2. Detection probability decreases as a function of time due to shared
attention between planning and visual search tasks: The best estimate is
the solid line, the 2-0 regions are shown as diamond-etched lines, and the
maximum-likelihood estimate is shown as triangles. The vertical lines show
illustrative examples of search times for detection probabilities of Py = 0.85
and P; = 0.80.

a choice on a search task in order to move on to waiting search
tasks.

Fig. 2 shows the probability of detection modeled using
a logistic regression for a visual search task obtained from
previous experimental data in multi-UAV simulated missions
[6] and is consistent with previous vigilance literature [26],
[41]. The logistic model will be explained further in Section III,
but given the decrease in operator accuracy with time, it appears
that there could be a benefit to requeuing the current search task
(and possibly abandoning it in the absence of new sources of
information). While one of the key benefits of a requeue is that
it frees the operator to pursue other searches, particularly since
the queuing model assumes that tasks are continually arriving,
an additional benefit of a requeue is that a search task could be
investigated at some later time in the mission via a “relook.”
Note that, when search tasks are requeued, they are simply
reinserted in the queue, and there is no explicit provision for
how a requeued task is searched again (e.g., first-come first-
served (FCFS) policy). For example, an operator may choose
to take another look at a requeued task after having explored
other tasks or never search the task again for the remainder of
the mission.

III. RETRIAL QUEUING MODEL ReQM

In order to account for requeuing in a queuing framework,
this section first describes the formulation for requeuing a
task using retrial queues [27], [28] and describes the ReQM
developed for this effort. Fig. 3 shows a visualization of ReQM.
Just like in conventional queues for human operator models,
ReQM treats the human as a server [6], and if the operator
is free to initiate an available visual search task, the task is
shown to the operator and can be serviced immediately. If the
operator does not wish to complete the initiated task and wishes
to delay it to some other time (which could lead to never seeing
it again), the task is inserted in a so-called orbit pool. ReQM is a
slight variation of the retrial queues in [29] and [30] but differs
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Detailed retrial queue model of operator
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Fig. 3. In contrast to the queuing model in Fig. 1, retrial queuing allows for

operator requeues in difficult tasks, which are then placed in an orbit queue.
Targets are then reinserted in the available task list at some later time, and the
operator can choose to search or abandon them.

fundamentally by attempting to model how requeues and target
detections are made by the operator (which are not addressed in
[29] and [30]). Additional details of ReQM are provided in the
following main components: 1) task arrival and service rates;
and 2) operator choice model.

A. Arrival and Service Rates

ReQM assumes that new tasks follow a Poisson arrival with
a rate \ and that new tasks are serviced by the operator at
a rate )\.. Note that, for queuing models of visual search
tasks performed with UAVs, the UAVs are allocated in the
environment to maximize the total number of targets found.
Therefore, A, has a strong dependence on numerous mission-
specific factors, but the principal drivers are operator search
time and, in the case of a multi-UAV setting, vehicle routing
policy that likely requires operator intervention [42]. Under
certain arrival and service rates, queue instability can occur, in
which the number of outstanding targets will grow unbounded
over time. Vehicle routing policies have been developed to pro-
vide guarantees under which queue instability can be prevented
[42], but it is unclear whether these guarantees will hold with
actual operators in the loop, particularly if these operators have
the capability of requeuing targets.

B. Choice Model

The choice model is the underlying mechanism under which
the operator can make a detection decision (e.g., whether there
is a target in the image or not) or decide that a task needs to be
requeued.

1) Detection Decision: We abstract the operator choice
model into a detection probability and search time distributions.
For the detection probability, we derived a logistic regression
model from previous experimental data [6]. The operator is
assumed to make correct detections with probability

1

€]

where t = [1, t,], t5 denotes the search time, and {3 is a vector of
parameters obtained from the experimental data. In distinction
to the work in [43], the detection probability is a nonstationary
quantity and is negatively dependent on the search time.
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Search time distributions can likewise be estimated from
previous experimental data regarding the visual search task
in a simulated multi-UAV experiment [6]. We found that the
lognormal distribution in (2) is a good approximation for the
search time distribution, where 7 and o2 are the mean and
variance of the search times

) <—<1og<ts>—1og<T>>2

te:T, 0 , ts>0. (2
I( 0%)ocexp 952 ) > (2)

2) Requeuing Decision: If the operator is not willing to
make a detection decision, then the operator can choose to
requeue the task. However, the requeuing policy describing how
the operator decides to requeue tasks may depend on a number
of factors, including the total amount of time spent searching for
a target, the total number of remaining tasks, and target arrival
rates. As a first approximation, ReQM assumes that an operator
will requeue the target with some probability p, which is the
probability that the search time exceeds some critical search
time 7;; (additional details on how 7, is chosen are provided
in Section IV).

In summary, the operator choice model in ReQM assumes
that the operators are going to either make a correct detection,
make an incorrect detection, or ask to requeue the task. Search
times are distributed according to f(t; T, 0?), and in the event
of a detection decision given a realization ¢s from this search
time distribution, the operator makes a correct detection with
probability Py(ts).

C. ReQM Analysis and the Need for Simulation

ReQM is an initial attempt to represent how a repeated visual
search task with a task requeuing option can be properly for-
malized using retrial queues. However, analysis of this model
is difficult without human-in-the-loop experimental data, as it
is unclear how frequently subjects decide to requeue tasks, and
previous work in retrial queuing theory does not provide insight
into these choices for human operators.

In addition, even if we understood how operators requeue
targets, it would be difficult to analyze ReQM in closed form
since real models for retrial queues may deviate from some of
the common assumptions necessary for analytical tractability.
In ReQM, for example, requeuing invalidates the assumption of
independent arrivals. Furthermore, Choi and Park [29] assume
that a task in the orbit queue can only be serviced if the
nominal queue is empty. This is not a suitable representation
for the multiple-UAV relook problem, since a target can be
requeued regardless of the remaining outstanding visual search
tasks. Queuing theory is also concerned with queue stability, in
the sense that the number of tasks does not grow unbounded
over time, which may not be a valid assumption when human
performance is considered.

IV. DES oF ReQM: DES-ReQM

While it will be the topic of future work to investigate
whether the analytical methods from retrial queuing theory
may be applicable, a method for admitting less restrictive
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assumptions can be addressed by using DES. First, where
analytical methods are not available for analyzing a queue
in closed form, DES can help provide insight of the queue
transient properties. Second, DES can be used for tuning the
appropriate set of parameters to be used for human-in-the-loop
experiments, such as determining appropriate task arrival rates.
The ultimate goal of the DES environment in this effort is to
provide a high-fidelity simulation of the experiment, and this
section discusses a DES model of ReQM, DES-ReQM, which
is composed of three main parts: an environmental module, a
routing policy module, and a requeue policy module.

A. Environmental Module in DES-ReQM

The environment is assumed to be a bounded region, popu-
lated with stationary targets that are generated according to a
Poisson process with arrival rate A\. Without loss of generality,
for the kinds of single-operator multi-UAV missions envisioned
for this work, we assume that the low-level vehicle control
loops are closed by an onboard autopilot and that low-level
planning problems (such as satisfying turn rate constraints on
UAVs) are not the responsibility of the operator but that of
appropriate low-level control algorithms.

B. Operator Planning Module in DES-ReQM

In modeling the operator planning policy, we make the
assumption in DES-ReQM that operators allocate UAVs to
targets according to a policy that routes UAVs to the targets
that are nearest geographically. While the current research is
investigating the role of different routing strategies [42], we will
assume this greedy approach.

We are interested in a mission objective that maximizes the
total number of targets found (Ng) out of the total number of
possible targets in the environment (N7)

Jp = Np/Nr. 3)

Np is a function of numerous operator-specific parameters
(such as target difficulty, search time, and requeue policy), but
in the multi-UAV setting, it also has a strong dependence on the
routing policy for the vehicles. For example, operators could
increase vehicle travel time by assigning a vehicle to visit a
distant target, rather than allocating vehicles to service nearer
tasks.

Upon reaching the targets, the UAVs are assumed to loiter
around the target and initiate a visual search task only when the
operator has chosen an available UAV. For the ReQM, UAVs
initiate a visual search task according to an FCFS policy (in
which the first UAV to reach the target initiates the search
task first), which is a common assumption made in vehicle
routing problems [42]. The search times were modeled by using
the search time distributions from previous experiments per-
formed in the Research Environment for Supervisory Control
of Heterogeneous Unmanned Vehicles (RESCHU) multi-UAV
simulation environment [6]. Realizations of the search times
for the ith task ¢! are generated by sampling a new random
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Fig. 4. Trend of (A, *,¢) empirical relook probabilities agrees with that of
(solid red line) theoretical relook probability for three different arrival rates
chosen for testing in DES-ReQM: A = {20, 30, 40} (in seconds per target).

number from the lognormal distribution in (2) with mean T and
variance o2

th~ f(ts; T, 0%). 4)
In turn, the search outcome is generated by the realization
of the random variable P;(t) from the logistic regression of
(1). For the human-in-the-loop experiment discussed in the
next section, we determined, from previous experimental data
[6], that the logistic regression parameters are given by 3 =

[~2.300,0.037]. For the search time distributions, we found
that log(T') = 3.1 and 02 = 0.6.

C. Requeue Module in DES-ReQM

The requeuing model in DES-ReQM assumes that a task is
requeued by the operator if the realization of the search time t*
exceeds a critical time 7. If the realization of the search time
is less than 7}, the task is not requeued, and a probability of
correct detection is calculated using (1). For example, suppose
that the critical time is chosen as T),; = 25 s, and a new search
time is realized from the distribution in (4). Suppose that this
realization was ti = 27 s. In this case, the task is automatically
requeued by the system when T;.; = 25 s has elapsed. When a
requeue takes place, the task is inserted in the orbit pool, and a
new route is calculated for any available UAV in the simulation.
If, however, the realization of the search task was ti = 23 s, the
task would not be requeued, and the probability of a correct
detection would be calculated with (1).

The critical time 7;; was varied as a simulation parameter
and discretized in the interval T, € {20, 25, 30,...,60}. This
interval was chosen since it described over 95% of the support
of the search time data from previous experiments. Note that the
theoretical requeue probability p for each of the critical times
T, can be found with the following integral (which is the red
line labeled “Empirical” in Fig. 4):

Tr

B(T) = Pr(t > To) = 1 — /f(ts|u,02)dts. )
0
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ity for three different arrival rates. Lower arrival rate decreases J from 0.62 to
0.42 as relook probability increases to 0.8, but detection probability increases
from 0.82 to 0.86.

Unfortunately, the integral is not available in closed form,
but numerical routines can evaluate the cumulative distribution
function of the lognormal distribution.

D. Simulation Results

This section presents simulation results of the performance
using the previously developed operator choice models ana-
lyzing one hundred 10-min-long simulated UAV missions. In
this setting, we analyzed the detection probability (P;) and the
fraction found [Jp, given by (3)].

Targets were modeled given with three distinct average target
arrival rates A € {20, 30,40} (in seconds per target) that, given
previous human-in-the-loop experimental data, were arrival
rates representing different task loads. Fig. 4 shows the agree-
ment between the theoretical predictions relating the requeue
probability with the search time 7.;. For example, choosing a
relook search time of 7, = 25 s implies that the probability of
requeue will be on the order of p = 0.3. Recall from (5) that, as
the search time 7., threshold increases, we intuitively expect
the probability of requeuing to decrease since operators will
have more time to make decisions on the presence or absence
of the target.

By varying the time 7, it is possible to, in turn, investigate
the effect of requeuing on mission performance. Fig. 5 shows
the impact of varying the probability of requeuing on the
detection probability and fraction found Jr, averaged over the
100 Monte Carlo simulations. Fig. 5 shows that DES-ReQM
predicts that tasks that were requeued with probability p = 0.3
for arrival rates of A = 30 s/target resulted in a fraction found of
Jr = 0.5, while requeuing with probability p = 0.78 resulted
in a fraction found of Jp = 0.4 Predictably, the increase in
requeue probability decreases the fraction found .Jr since oper-
ators do not have enough time to find new targets. On the other
hand, the probability of detection under all three arrival rates
increases from 0.81 to 0.86, thereby demonstrating the potential
for an improvement in the overall probability of detection by
virtue of moving on to less challenging tasks.
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Fig. 6. RESCHU (a) interface and (b) search panel. (a) RESCHU interface:
UAVs (shown as a blue bell shape) are directed to fly to (red diamonds)
locations with targets while avoiding (yellow circles) risky areas. (b) RESCHU
search panel during a search task showing the (top right) timer counting down
and the relook button.

In summary, DES-ReQM shows that there is an important
tradeoff between maximizing the fraction of targets found and
ensuring a high overall accuracy in target detection. There-
fore, requeues may be beneficial in the context of improving
probability of detection, but a human-in-the-loop experiment
is needed to investigate operator requeuing strategies and the
effect on mission performance. We discuss the relation between
experimental and simulation results in the later sections.

V. RELOOK EXPERIMENT

Using the results from the DES-ReQM simulations, an ex-
periment was conducted with the objective of investigating the
performance of a retrial queue when users had an available
requeue option. The experiment was performed in RESCHU
[6], a simulation specifically tailored to investigate human-in-
the-loop interaction with multiple UAVs. A typical RESCHU
interface is shown in Fig. 6(a). A single operator is tasked with
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handling N UAVs in an environment where targets are non-
moving but appear at random intervals. When a UAV (shown
as a blue bell shape) reaches a location of interest (shown as a
red diamond), a visual search task is initiated by the operator
in the top left panel of the interface, with a magnified version
of the search panel shown in Fig. 6(b). Note that, in the visual
search task panel, the operator can zoom in and out the display
while panning the image. In addition, the operator can query the
system with the “Query” button to find out how many residual
search tasks still need to be processed in the mission.

A. Experimental Objective

In this experiment, a single operator was responsible for the
coordinated search of an area using six homogeneous UAVs.
The objective of this experiment was to maximize the fraction
found, which was explained to the participants as the total num-
ber of targets found out of the total number of possible targets
in the environment (3). This experiment had two treatments:
1) a relook mode (a “within-subject” treatment) and 2) a timer
condition to induce artificial time pressure (a “between-subject”
treatment).

In the first treatment, the operators were tested under three
different relook modes.

1) No relook (NR): Operators did not have the ability to
relook. Operators were required to commit to the location
of a target before returning to the UAV planning task.

2) Relook with consent (RWC): Operators had the option of
requeuing at any time, but after 7); seconds, a flashing
message was displayed on the search screen to suggest to
the operator to requeue.

3) Relook without consent (RWOC): Operators had the
option of initiating a requeue at any time, but after 7},
seconds, the target was automatically requeued.

The second treatment involved the use of the timer and
was inserted to provide operator feedback on how much time
had been spent searching. Previous work has shown that time
pressure can cause different operator strategies, so the two
experimental conditions were with and without a timer [4].

B. Search Task and Visualization of Requeued Targets

The search images were obtained from Google Maps, and
aerial views of different scenes were presented to the operator.
Each scene contained a target that needed to be found by the
operator, and hence, errors were only in the class of missed
detections. Different images were presented to the operator.
Fig. 7 shows two examples of search tasks, where Fig. 7(a)
shows a search task with the objective of finding the fighter
jet (located in the lower right corner of the image). Fig. 7(b)
shows an example of a search task requiring the detection of
a helicopter landing pad in a cluttered environment. The tasks
were randomly placed in the mission, and pilot tests were used
to populate the image database to ensure sufficient diversity.

In the RWC and RWOC conditions, a target became available
for assignment 7. seconds after it was requeued. Tasks that
were requeued changed color for 7, = 15 s to show that they
were not available for search. When they became available
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(b)

Fig. 7. Examples of imagery used in the interface. The search task in (a)
requires that the participant finds the fighter in the image, while the task in
(b) requires a search for the helicopter pad.

again, the tasks were changed to their initial color but were
enclosed by an orange circle to inform the operator that they had
been previously visited. The relook counter was incremented by
one if the targets with an encircling orange circle were searched
again.

When operators were ready to make an assessment of the
target, they right clicked the image on their best estimate of the
target location, and a small menu appeared. One menu item was
“Submit,” which, when selected, was evaluated as correct or
incorrect by the software. If the participant mistakenly clicked
the screen, a “Cancel” menu allowed the participant to return to
the search.

C. Experimental Participants and Procedures

A total of 36 participants took part in the experiment (8
female and 28 male): Thirty participants were 18-25 years old,
four participants were 25-35 years old, and two participants
were older than 35 years. After a 10-min training session,
the participants were randomly assigned a relook mode (NR,
RWC, or RWOC) and a timer setting (timer or no timer) and
participated in three sessions with a fixed timer setting and a
counterbalanced order of relook modalities. The participants
performed the first 20-min test session, took a rest break,
repeated a second 20-min session (with another relook setting),
took another rest break, and concluded with a third 20-min
experiment session. The order of the trials was randomized and
counterbalanced on the timer conditions between subjects. The
experimental parameters were chosen as follows: N = 6 UAVs,
A = 30 s/target, T, = 25s,and T,, = 15 s.

VI. EXPERIMENTAL RESULTS

A mixed model analysis of variance of 2 (timer or no
timer) X 3 (NR, RWC, or RWOC) repeated measures was used
for statistical analysis. Three participants had to be excluded
since they were outside the 3-¢ interval for the fraction found
given by (3).

A. Performance With Relook Modalities

The results in this section present the probability of detection,
the mean search time, and the fraction found for the timer
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Fig. 8. Probability of detection increases most with a timer using RWC and
most with RWOC.

condition and decision support modalities. Recall that, since
there is a target present in every image, then the probability of
a missed detection is the only error for these search missions.

Fig. 8 shows that the probability of detection improved,
on average, from 0.72 (with NR) to 0.80 (with RWC), for
the case when a timer was used (left). Furthermore, when no
timer was used (right), the probability of detection increased,
on average, from 0.74 (with NR) to 0.78 (with RWOC). For
the overall probability of detection, the mode was significant
at the v = 0.05 level, with RWOC and RWC showing bet-
ter detection than NR, with F'(2,62) = 6.674 and p = 0.002.
Post hoc comparisons using a Tukey honest significant dif-
ference (HSD) test indicated that RWC and RWOC did not
differ from each other, and there was neither a significant main
effect of timer nor a significant interaction between timer and
modality. In particular, the change in the mean of the detection
probability in the NR mode (mean: 0.73; standard deviation
(SD): 0.09) was significantly different (p = 0.001) from that
in the RWC mode (mean: 0.80; SD: 0.10). The change in the
mean of the detection probability in the NR mode (mean: 0.73;
SD: 0.09) was also significantly different (p = 0.03) from that
in the RWOC mode (mean: 0.78; SD: 0.11). These results
demonstrate that providing the operator with requeuing choices
improved their accuracy in a statistically significant manner.
Practically, an improvement of accuracy from 0.72 to 0.80 is
significant for UAV operations, since it decreases the likelihood
of collateral errors.

Next, we investigated the effect of operator search times for
the tasks. The operator search times for repeated looks in the
RWC and RWOC modes were aggregated together to ensure a
fair comparison to the NR mode and are shown in Fig. 9 and
hence are representative of the total time spent searching the
images. It can be seen that the mean search time decreased from
21.0 s (with NR) to 19.1 s (with RWC) for the case when a timer
was used (left). Furthermore, when no timer was used (right),
the mean search time decreased from 22.5 s (with NR) to 19.4 s
(with RWOC). For the overall mean search time (o = 0.05), the
mode is significant: F(2,62) = 7.032; p = 0.002. The timer
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effect and the interaction between mode and timer were not
significant.

Post hoc comparisons using a Tukey HSD test indicated that
the change in the mean search time in the NR mode (mean:
21.82; SD: 4.38) was significantly different (p = 0.02) from
that in the RWC mode (mean: 19.79; SD: 3.49). The change in
the mean search time in the NR mode (mean: 21.82; SD: 4.38)
was also significantly different (p < 0.001) from that in the
RWOC mode (mean: 18.91; SD: 2.87). These results may also
have practical multi-UAV significance, where improvements in
the speed of detection of the location of an adversary can have
dramatic consequence for mission success.

Lastly, the objective of this experiment was to maximize the
correct fraction that is the quotient of the total number of targets
found and the total number of targets possible. The results for
the correct fraction for each requeue mode and timer condition
are shown in Fig. 10. As anticipated by the DES in Section III,
there appeared to be a decrease in the fraction found as relooks
are employed: The mean fraction found decreased from 0.55
(with NR) to 0.51 (with RWOC). This change in the correct
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Fig. 11. Total number of requeues made by the 36 participants in the RWOC
and RWC modes. Note the outlier with a total of 44 requeues.

fraction was not statistically significant with respect to the
mode [F(2,62) = 1.254; p = 0.29] or timer [F'(2, 62) = 0.03;
p = 0.974]. However, a Pearson correlation revealed that, as the
probability of a relook increased, the fractions of targets found
decreased (r = —0.71; p < 0.001). This highlights the cost of
such an action in that the more frequently operators elected to
reinsert tasks in the queue, the less time they had to prosecute
other targets.

B. Behavioral Analysis of Use of Relooks and Requeues

The next step in the analysis was quantifying the num-
ber of times that requeuing was actually implemented by the
participants (Fig. 11). A total of 697 requeues was made by
the subjects. The 12 subjects that had the highest number of
requeues accounted for 47.9% of the total requeues made by
all subjects. Interestingly, the subject that requeued the most
targets had previous actual UAV experience and may have been
more inclined to relook at the targets for operational consider-
ations. In the RWC mode, a total of 269 requeues was made,
with 149 requeues occurring after the time limit 7,; = 25 s had
expired. This means that 55.3% of the participants ignored the
recommendation made by the decision support algorithm and
chose to continue searching the image. In turn, 44.7% of the
participants anticipated the automation’s prompt. In the RWOC
mode, a total of 428 requeues was made, with 274 requeues
being implemented by the decision support algorithm because
the participants searched longer than 7,,; = 25 s. Out of all the
participants in the RWOC mode, 10 out of 36 people never
requeued voluntarily (the algorithm requeued the tasks for them
all the time). Of the people that did requeue voluntarily at least
once, they did so, on average, 41.6% of the time.

Target relooks occurred less frequently than requeues, and
the summary statistics are shown in Table I. Interestingly, there
was a statistically significant difference between the proba-
bilities of requesting a relook between the RWC and RWOC
modes [F(1,35) = 13.46; p < 0.001]. Out of all the visual
search tasks, a total of N = 3499 was analyzed in the first look,
N = 311 in the second look, N = 72 in the third look, and
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TABLE 1
SUMMARY STATISTICS OF RELOOKS
Number of relooks 0 1 2 3
Number of tasks inspected | 3499 311 72 17
Probability of error 22.7% | 41.5% | 63.2% | 85.7%
Number of requeues 524 128 34 11
09
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Fig. 12. Mean search time for targets that were detected decreases with
additional relooks. However, the probability of error increases, suggesting that
the subjects were not receiving additional information with each relook.

N = 17 in the fourth look. Note that the first look takes into
account not only tasks that were searched successfully but also
tasks that were skipped (either with or without consent). In the
first searches, a total of N = 2978 target detections was made
(either correct or incorrect), with a total of N = 524 requeues
made after having investigated the targets. Out of the total looks
that were made, only 17.8% of the tasks were looked at more
than once. The discrepancy between the number of requeues
and the number of looks is attributed to the fact that some
targets were skipped and never relooked again. This implies that
operators were using the requeuing function predominantly to
move on from difficult images.

To investigate further the existence of a benefit to relooking at
targets later in the mission, we show the mean search times for
correct detections and probability of errors associated with the
different numbers of looks in Fig. 12. Note that the mean search
time for correct detection slightly decreased from 17 to 15 s
with an increased number of relooks. This trend was also visible
for targets that were missed. However, the overall probability
of error increased as a function of the number of looks: from
22.7% in the first look to 41.5% in the second look, 63.2% in
the third look, and only 85.7% in the last look.

A logistic regression model was generated by using the
number of relooks as a categorical variable, and the overall
effect of the number of relooks was statistically significant with
a x? test (x? = 64.5; df = 4; p < 0.001). The difference in the
coefficients of the logistic regression model from one look to
two looks was statistically significant (x> = 5.7, df = 1; p =
0.02), but the difference from two to three looks and from three
to four looks was not significant. Nonetheless, this apparent
increase in error, coupled with the fact that only 17.8% of the
targets were looked again two or more times, hints further at the
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possibility that the operators that were being presented with the
same imagery later in the mission were pressured to make an
assessment and frequently made this assessment erroneously.
Additional discussion on this observed effect is presented in
Section VIIL

Increased error with relooks of the same image has profound
ramifications for supervisory control of UAV missions, because
it suggests that operators may be willing to make a mistake to
avoid repeating the same searches. Furthermore, it also suggests
that the perceived benefit of the requeuing methodology is the
freedom to keep exploring other tasks, rather than being forced
to make a choice on a difficult image. (Recall that targets that
were requeued by the operators were enclosed by an orange
circle so that they could be clearly observed by the operator.)

C. Subjective Assessment of Confidence and Workload

Subjective assessment of the different requeue models is
important, since the operator must ultimately accept or reject
the recommendations set forth by such automated DSSs. In
developing DSSs for complex mission planning involving the
visual search task, two key subjective assessments are confi-
dence and workload.

The subjective confidence assessment was a reflection of
how accurately people felt about their performance in detecting
the targets in the image. Upon completion of a search task,
participants were asked about their subjective confidence on
the accuracy of their detection. A five-point Likert scale was
used, where 1 indicated “not very confident” and 5 indicated
“very confident.” The probability of detection was averaged for
each condition that the participant performed, and a correlation
between confidence and average probability detection yielded
a Pearson correlation coefficient of r =0.42 (p < 0.001),
demonstrating that participant confidence was significantly cor-
related with their performance.

The three different modalities showed a statistically signifi-
cant difference in confidence, at the & = 0.05 level [F'(2,62) =
4.39; p = 0.02]. However, neither the interaction between
mode and timer was significant. Post hoc comparisons using
a Tukey HSD test indicated that the change in the mean of
the self-assessed confidence in the NR mode (mean: 3.79;
SD: 0.59) was significantly different (p = 0.01) from that in the
RWC mode (mean: 3.95; SD: 0.48), indicating that operators
felt that they performed better in the RWC mode.

Workload was measured in two distinct ways. In the first
subjective method, participants were asked to rate their own
level of workload. For the self-assessed workload and at the end
of each search task, participants could enter 1 (not very loaded)
to 5 (very loaded) on a five-point Likert scale. Changes in the
self-assessed workload across the mode were not statistically
significant at the o = 0.05 level [F'(2,62) = 1.92; p = 0.15].
In addition, the interaction between mode and timer was not
significant [F'(2,62) = 1.10; p = 0.34], and neither was the
timer treatment significant [F'(1,31) = 2.10; p = 0.16]. In the
second method, interval utilization (or percent busy time) was
used to gauge the objective workload in the experiment [44],
[45]. Interval utilization has been shown in previous work
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to be a reliable assessment for workload [6]. For the mean
interval utilization (Fig. 13), participant interaction time with
the user interface was normalized by the time between detection
tasks and averaged for each participant. The increase in mean
utilization across the mode was statistically significant at the
a = 0.05 level [F'(2,62) = 6.49; p = 0.003]. The interaction
between mode and timer was not significant [F'(2,62) = 0.57;
p = 0.57], and the timer treatment was also not significant
[F(1,31) = 0.55; p = 0.47]. While the differences in partic-
ipant interaction time were statistically significant, the small
practical difference in percent utilization (from 43% in the NR
mode to 46% in the RWC mode) may have made this difference
imperceptible to the subjects and hence may be a possible
reason for the lack of statistical significance in the subjective
assessment.

Post hoc comparisons using a Tukey HSD test indicated
that the change in the mean of the interval utilization in the
NR mode (mean: 0.43; SD: 0.07) was significantly different
(p =0.02) from that in the RWC mode (mean: 0.46; SD:
0.07). Also, the changes in the mean interval utilization in the
NR mode (mean: 0.43; SD: 0.07) and RWOC mode (mean:
0.46; SD: 0.07) were significant (p = 0.002). While interval
utilization increase is expected in the RWC and RWOC modes
since the operators had an additional tool to use, utilizations on
the order of 40%—70% are still within the acceptable range for
human supervisory control [46].

D. Comparison to DES Model

Finally, we validate the predictions made by DES-ReQM by
comparing the results obtained in the DES and the experiment.
For these simulation comparisons, the NR case was simulated
by assuming that 7},; was a very large number such that the em-
pirical probability of a requeue was zero in all the simulations,
while RWOC was the case described earlier for the case of
Ty = 25s. The RWC case in Table I was determined by finding
the corresponding probability of requeuing that was observed
in the experiment. Table II presents the results comparing
the use of requeues in terms of the fraction found metric as
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TABLE 1I
FRACTION FOUND DES-ReQM COMPARISON TO EXPERIMENT
DES-ReQM Exp p-value Power
p | o p [ o
NR 0.58 | 0.14 0.55 | 0.14 p=0.16 0.27
RWC 0.53 | 0.16 0.53 | 0.12 p=0.61 0.05
RWOC 0.55 | 0.15 0.51 | 0.13 p=0.23 0.42

predicted by DES-ReQM and obtained experimentally. The first
column shows the mode condition (NR, RWC, and RWOC),
the second column shows the mean and SD of the fraction
found predicted by DES-ReQM, the third column shows the
experimental results, and the fourth column shows the power
analysis. Note that, in order to compare the RWC experimental
and simulated conditions, we had to first determine the em-
pirical average probability of requeuing which we found to
be p = 0.38. Nonparametric Mann—Whitney U-tests showed
no statistical difference between the predictions made by the
DES-ReQM and the experiment for all the three conditions:
z=1.41 and p = 0.16 for NR, z = —0.51 and p = 0.11 for
RWC, and z = 1.21 and p = 0.23 for RWOC.

VII. DISCUSSION ON THE USE OF REQUEUES

In this experiment, the probability of detection and the mean
search time improved with the presence of the requeue option,
whether mandated or not. The cost of such requeues meant
somewhat increased objective workload (but no increase in sub-
jective workload), and the more the participants that accessed
the relook feature, the fewer the targets that they were likely to
find. Such results highlight the cost-benefit issues surrounding
any new decision support tool in that it can often provide
benefit, but there are also possible negative consequences if
such a tool is invoked too often.

One of the interesting results from this experiment was that
detection probability increases as subjects are provided with the
capability to requeue. However, relooks actually increase the
probability of making an error. This seemingly counterintuitive
result arises from the total number of targets that were searched
in the NR mode compared to the RWC and RWOC conditions.
In fact, subjects in the NR mode made an average of 32.6
total searches, while 31.2 and 30.8 were made in the RWC
and RWOC modes. However, in the RWC mode, only 25.8
and 22.0 total decisions were made, and of these decisions, the
respective error probabilities were 19.2% and 19.1% for RWC
and RWOC. In contrast, the NR mode had an error rate of
27.8%, suggesting that the benefit of the relook was to allow
people to skip difficult targets. Nonetheless, it appears that
people felt implicit pressure to make a decision for repeated
targets. Thus, this research suggests that, when there is not
new information in an additional glance, allowing operators to
requeue (i.e., skip) a target, but not relook at it, may be a more
effective strategy when tasks are arriving stochastically. This
result has broader implications for the value of information of
an additional look, as well as teaming of operators, where it may
be advantageous to requeue skipped targets for other teammates
to avoid the increased likelihood of a mistake.
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VIII. CONCLUSION AND FUTURE WORK

This paper has developed a choice model for an operator per-
forming visual search tasks generated from multiple unmanned
vehicles. Using previous experimental data that demonstrated
that human search accuracy could decay with time, we have
developed a novel retrial queuing model of an operator that
provides the operator with an additional choice by allowing the
operator to requeue challenging targets.

A human-in-the-loop experiment was performed under dif-
ferent requeue conditions, which showed that the use of re-
queues increases the overall probability of detection and the
operator confidence but could decrease the fraction of targets
found. Furthermore, the additional use of requeues increased
operator workload as measured by utilization, although this
was shown to be within acceptable standards based on previous
research in human supervisory control.

These observations open up an interesting area of work
that should seek to understand the value of information of an
image, and under what circumstances, an operator may require
additional imagery to reach a conclusion. Another important
conclusion of this paper is that it has shown that supplying
the operators with one additional choice of requeuing, rather
than constraining them to a forced choice context, improves
accuracy and confidence. This has important ramifications, not
only for the external validity of the 2-AC models but also for
practical considerations in actual missions, in designing DSSs
that can provide additional flexibility to stressed operators.

Future work will include developing “optimal” relook poli-
cies, understanding that, in practicality, generating satisficing
parameters is more realistic since optimality may be difficult
to quantify in dynamic uncertain command and control settings
[47]. These policies will also be evaluated in tasks where the
target is absent, leading to a richer set of operator models.
Moreover, additional work is needed to more fully understand
the information processing ramifications of relooks as it is not
clear whether the success of the relook mechanism is due to
scene complexity, a possible attention filtering bias, or that
operators had more confidence knowing that they had such
a tool available. Such understanding could possibly lead to
identification of images in advance that could cause operator
difficulty, possibly allowing them to be inserted in the queue at
a more opportune time.

An additional consideration would be to quantify what kind
of additional imagery information would be desired by an
operator to increase the likelihood of detection in the event of a
relook. Finally, a tighter coupling between the role of requeuing
and the mission parameters needs to be made. For example,
it will be beneficial to understand precisely what the role of
vehicle routing is for the purposes of aiding the relook tasks
(e.g., with different path planners), as well as the number and
heterogeneity of UAVs.
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