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In the push to develop smart energy systems, there is increasing focus on how to design systems
that measure and predict user behavior in order to effect optimal energy consumption. While such focus
is clearly an important component in the success of these future systems, substantially less attention is
paid to the human on the other side of the energy system loop — the supervisors of power generation
processes, the proverbial men (or women) behind the curtain. Out of sight and sadly in terms of
technological advancements, out of mind, today these operators perform high risk jobs in often data-
rich, but information-impoverished settings. For these operators, pervasive computing of the future will
likely add to an already complex array of data streams, and introduce a new layer of supervisory
complexity in response to the goal of dynamically adapting enérgy management.

The Three Mile Island nuclear power plant accident in 1979 was caused primarily by operator
misunderstanding of sensor data from an overwhelmingly complex control panel [1]. More recently in
2003 in the Northeast, operators were not able to both see and understand critical system states for
nearby power grids, ultimately leading to the largest blackout in North American history which
contributed to at least 11 deaths and cost an estimated $6 billion [2]. In these high profile cases, and in
countless other more minor electric and nuclear power plant incidents, a significant problem was and
continues to be the lack of explicit design to support rapid data aggregation and information
visualization to support supervisors’ time-pressured decision making.

The development of smartenergy systems that leverage pervasive computing could further add
to the workload of these supervisory control operators who will have to predict possible power plant
load and production changes due to environmental and plant events, as well as dynamic system
adaptation in response to customer behaviors. Contrary to many assumptions, the insertion of more
automation, both in terms of distributed sensors and algorithms to post-process data for operators, will
not necessary reduce-workload, nor necessarily improve system performance. These concepts are
explored in more detail in the following sections.

Supervisory Control and Workload in Power Generation

Current power generation operations are highly automated. In normal, day-to-day operations,
automation controls the adjustment of system parameters, while human operators generally take the
role of system supervisors, monitoring system states and typically intervening in only non-monitoring
operations, such as responding to an alarm, managing a plant start-up, or overseeing other off-nominal
operations. However, in present-day power generation operations, while the system itself is highly
automated, little automation is used to support and augment supervisor decision-making and
performance, especially in time-critical, system anomaly situations. Indeed, while digital displays are
replacing analog ones in current control rooms, many plant displays, particularly in the nuclear reactor
realm, simply graphically replicate analog displays, effectively keeping the look and feel of 1960s-era
control rooms.



Central to a system control paradigm with such high levels of automation is the idea of Human
Supervisory Control (HSC). HSC assumes that a human operator will monitor a given system, taking on
the role of system supervisor or manager [3]. This role suggests that the operator is not tasked with
operating low-level system actions, though the operator can intervene if and when the situation

requires. This relationship between the system and an operator is commonly termed “human on-the-

loop”, rather than “in-the-loop”, directing focus away from constant, direct control toward the
supervisory control paradigm.

Figure 1 depicts a conceptual model of HSC in terms of two human operators controlling two
plants. This model indicates that the control of the physical system (labeled “Plant”) is the responsibility
of the automation (labeled “Automation”). The human operators (“Human 1” and “Human 2”) supervise
and interact with the system (“Plant”) only through the automation. In addition to plant supervision

responsibilities, human operators will be required to monitor and synthesize different types of
information coming from the smart grid system to ensure safe and efficient plant operation. Though this
additional information may aid operators in decision making for plant operations, the increase of

information could increase operator workload.
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Figure 1: HSC model for power generation systems (modified from [4]).



Given that the introduction of pervasive computing in smart grid settings could increase the
workload for supervisory control operators, especially those without any advanced decision support, a
seemingly reasonable solution is to introduce more automation in terms of grid management.
Automation is commonly introduced into HSC systems to reduce the likelihood of operator error by
reducing operator workload. This relationship is not universally true, however as increased automation
often just changes the nature of the work [5-7].

Several studies reviewed by Parasuraman, et al. [8] suggest that automation in aircraft cockpits
has been known to actually increase workload, rather than decrease workload as intended.
Interestingly, there is little evidence supporting the idea that operators will delegate tasks to
automation when workload is high [9, 10]. It is unclear whether these relationships can be generalized
to the power generation domain, though several similarities exist between automated aircraft control
and power generation systems. For example, monitoring an aircraft on autopilot contains similar
monitoring tasks as monitoring a power generation system. Alarms or warnings activate when the
system reaches a state outside of predefined parameters and operators are then expected to take over
some level of control of the system.

As evidenced by the TMI accident and the 2003 Northeast blackout, both of which required
operators to move from a monitoring state to an emergency action mode with significant time pressure,
operator lack of understanding of what the automation was doing, often called mode confusion,
exacerbated the problem. Mode confusion occurs when an HSC operator attempts to take control of a
highly automated system, but does not understand the current mode of automation (i.e., the goals or
objectives the automation is attempting to achieve). In both aviation and power generation systems,
this lack of automation understanding can and has caused catastrophic human-system failure due to
confusion over who is in control (the human or system), especially when the desired goal state of the
operator differs from that of the automation.

In the development of smart energy systems;.it remains an open question how supervisors of
power plants will respond to the inevitable addition of higher layers of automation. Human supervisory
control operators-of power generation processes will need to understand how a smart energy
management system could affect the power generation process, both in terms of safety and efficiency.
However, significant automation will be needed to both manage these processes as well as data
representation so the operator understands what the automation is doing. Such nested layers of
automation increase system opacity, and a lack of automation transparency, i.e., a lack of sufficient and
intelligible feedback, is causal factor mode confusion [6, 8].

Designers of future smart energy systems will need to consider the unintended consequences of
possible mode confusion and increased workload for HSC operators caused by increasing levels and
layers of automation, particularly for emergency scenarios. This will require more advanced display
technology in the form of integrated software decision support tools that leverage more advanced
information visualization and data fusion techniques for both current and predicted state
representations. Furthermore, the design and operation of future smart energy systems will require
socio-technical changes, i.e., organizational and regulatory policies and procedures will also have to be
updated or changed outright. For example, it remains unclear how smart grid technologies meant to



improve efficiency, but ultimately linked to power generation safety, will influence operating procedures
and certifications.

The Need for Human Oversight of Automated Planning

The assumption that increased automation can reduce workload for operators in futuristic smart
energy systems is not only naive in terms of workload management as previously discussed, but this also
ignores the critical role that the human operator plays in supervisory control systems in that they can
apply reasoning in situations where automation cannot be absolutely correct in all situations.

One of the most critical aspects of any integrated sociotechnical system design with significant
embedded autonomy is that of role allocation i.e., who (automation and/or human) should perform
which functions and when? According to early research examining human-computer allocation in the air
traffic control domain, humans and computers (called machines at that time) possess the respective
strengths listed in Table 1, known as Fitts’ List [11]. This early attempt at role allocation between
humans and computers recognized that automation can be used to support, not necessarily replace,
human operators in large scale computational decision-making tasks.

As depicted in Table 1, algorithms can execute repeatable, precise, and speedy computations,
which are ideal for complex optimization problems such as those inherent in pervasive computing and
smart grid environments. However, automation.can be inflexible and unable to adapt to changing
situations. Though fast and able to handle complex computation far better than humans, computer
optimization algorithms are notoriously “brittle” in that they.can only take into account those
guantifiable variables identified during the design stages as critical [12, 13].

Table 1: Fitts’ List for Human-Computer Role Allocation (adapted from [11]).

Humans are better at: Computers are better at:
Perceiving patterns Responding quickly to control tasks
Improvising and using flexible procedures Repetitive and routine tasks
Recalling relevant facts at the appropriate time Reasoning deductively
Reasoning inductively Handling simultaneous complex tasks
Exercising judgment Fast and accurate computation

In contrast to automation brittleness, humans’ strengths in planning environments are their
abilities to improvise, learn, and reason inductively, which are precisely the skills required to adapt to
unexpected circumstances. This type of problem solving is called knowledge-based reasoning [14],
during which humans make decisions under novel and uncertain situations, which are attributes
inherent to supervisory control scenarios. In terms of managing the large data streams that will be
generated in smart grid environments, automation will be critical in handling the bulk of problem solving
and system management. However, just as evidenced by the 2003 Northeast blackout, even highly
automated systems can be presented with a set of dynamic and unexpected variables states never
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envisioned in advance by designers, which can ultimately lead to catastrophe. So while smart grids of
the future, with embedded complex algorithms to balance power input and output across a network,
will be highly automated, they will not be able to be completely automated, primarily due to the
inherent uncertainty in both the environment and the algorithms themselves.

While keeping the human in the loop for potential interventions for low probability events like a
blackout is well established in the supervisory control literature, significantly less is known about if and
how human operators can provide value in assisting embedded algorithms optimize system
performance, which is the crux of smart grid operations. For future smart energy systems, every
customer represents a node that may not always behave in an expected manner, which may cause
problems between expectations and forecasts that do not match actual operating conditions. Given the
complexity of such a large problem space with layers of uncertainty, it is not clear that algorithms will
always be able to truly optimize in all conditions across what is effectively a decentralized network.
While little research has examined how operators in decentralized energy networks can aid algorithms
in optimizing system performance, recent research in supervisory control of unmanned vehicles sheds
light on the capabilities of humans working collaboratively with algorithms to achieve superior
performance in system optimization.

In the near future, the military envisions networks of decentralized unmanned vehicles
(including air, ground, sea surface, and subsurface) that work together, with a human on the loop, to
conduct resource allocation missions, e.g., using an array of unmanned vehicles to search remote,
possibly hostile areas for enemies or victims. In these futuristic networks, each unmanned vehicle
computes its best plan with some type of local negotiation with other unmanned vehicles, with no
globally optimal plan since each vehicle strives to maintain the best plan with possibly limited
information. The decentralized approach is superior to the centralized one in terms of protection against
network vulnerabilities caused by bandwidth limitations and reliance on specific vehicles for critical
tasks.

These decentralized network attributes have direct mappings in future smart grid energy
environments, where smaller, decentralized spheres of localized smart grid control could be created,
possibly managed by home and building owners. Just as in the network of decentralized unmanned
vehicles, these smaller spheres could allow for local optimization of resources, without requiring more
complex and resource intensive globally optimal network solutions at substations or utility-managed
command centers. However, such nodes of local control still require some supervisory oversight,
particularly in anomalous situations such as major power outages and extreme weather conditions.

Given that relatively high levels of automation are absolutely essential for the operation of
these decentralized networks, but yet humans are needed at some level for system oversight, it remains
an open question just how much human collaboration should be allowed and what the impact of human
interaction could be for such a system. To partially address these issues, an experiment was conducted
that examined how well a decentralized network of vehicles would perform if no human oversight was
provided, as compared to how well the system would perform if a human operator was allowed to
“tweak” the resource allocation and scheduling plans of the automation.

In this experimental setting, a network of five unmanned vehicles was given the task of
searching as much of a predetermined area as possible, and then track found targets using a mixed



integer linear programming algorithm. In the automation-only condition, the automation generated all
plans, which were automatically approved and a human operator never changed the tasking or rate at
which plans were generated. In the second condition, humans + automation, humans were allowed to
update the algorithm’s tasking or replan more often if they thought the automation was not performing
adequately. The details of this experiment are provided in [15].

Figure 2 demonstrates just how much value added the human provided in terms of the two
primary dependent measures, percentage of area covered and number of targets found. Three different
workload levels were investigated to determine how both the automated planners and the operators
would respond under changing workload conditions, i.e., the 30s/45s/120s factor levels represent the
time between replanning intervals so that 30s represents high workload and120s represents relatively
low workload.

As can be seen in Figure 2, allowing a human operator the ability to evaluate and occasionally
change an automated solution allowed the system to perform substantially better than if the
automation was left alone. Of the six conditions shown in Figure 2, only for the 120s interval for the area
searched metric was the automation-only approach statistically no different than the human-assisted
mode, suggesting that the longer intervals between replanning werebeneficial for the automation.
However, for the targets found metric, the collaboration between the human and the automation
resulted in more than 20% increase across all factor levels.
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Figure 2: Value added by allowing humans to work with a planning and scheduling algorithm.

While the results in Figure 2 are for a decentralized unmanned vehicle planning and scheduling
problem, they highlight the importance of understanding the benefit of human interaction in domains
where automation is used for decentralized scheduling and resource allocation, which is likely in the
future of smart grids. The human operator was critical in this domain because of the uncertainty



inherent in the system. The autonomous planners on the unmanned vehicles operated with a priori cost
functions coded by the algorithm designers, which theoretically generated an optimal solution, but in
reality could be improved upon by occasional human judgment.

This temporal component of human interaction is important to consider because previous
related research has shown that if operators intervene too much in such distributed planning systems,
the overall system performance could suffer [16]. The key is determining some robust range of helpful
human interaction. In addition, while military command and control settings possibly contain more
uncertainty than power generation settings, there are many sources of uncertainty in smart grid system
management that could lead to similar problems such as weather, customer behaviors, algorithm
design, and system failures.

Conclusion

In the envisioned future of smart energy systems, pervasive computing systems will measure
user behavior in order to infer behavior as a step to mitigateiand optimize energy usage. Such systems
will require significant embedded algorithms, as well as some level of human supervisory control, the
proverbial man behind the curtain. We have shown here that.in domains where uncertainty exists in the
world as well as in probabilistic algorithms, which is clearly the case in behavioral inference, it is critical
to consider the human role not just as a monitor of anomalous system states, but also as one of
collaborator.

While it is generally recognized that in power generation environments, automation in the form
of intelligent agents is needed in safety-critical monitoring tasks like fault detection, situation
assessment or diagnosis, and response planning [17], unfortunately there is no organized effort that we
are aware of to focus on developing algorithms and associated decision tools in support of supervisors
that will manage futuristic’dynamic and adaptive smart grids. Such research is needed to determine the
required degree of interactivity between supervisory control operators and the automation central to a
pervasive computing system, how to manage the voluminous data streams that will be generated by
smart energy systems, and how.to balance the competing objectives of safety and optimal energy
production.
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