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Abstract— In the future vision of allowing a single operator to 

remotely control multiple unmanned vehicles, it is not well 
understood what cognitive constraints limit how many vehicles 
and related tasks a single operator can manage. This paper 
illustrates that when predicting the number of unmanned aerial 
vehicles (UAVs) a single operator can control, it is important to 
model the sources of wait times caused by human-vehicle 
interaction, especially since these times could potentially lead to 
system failure. Specifically, these sources of vehicle wait times 
include cognitive reorientation and interaction wait time, queues 
for multiple vehicle interactions, and loss of situation awareness 
wait times. When wait times were included, predictions using a 
multiple homogeneous and independent UAV simulation dropped 
by up to 67%, with loss of situation awareness as the primary 
source of wait time delays. Moreover this study demonstrated 
that even in a highly automated management-by-exception 
system, which should alleviate queuing and interaction wait 
times, operator capacity is still affected by situation awareness 
wait time, causing a 36% decrease over the capacity model with 
no wait time included. 
 

Index Terms—multiple unmanned vehicles, supervisory 
control, Fan-out, operator capacity 

I. INTRODUCTION 
ith the recognition that intelligent autonomy could 

allow a single operator to control multiple vehicles 
(including air, ground, and water), instead of the 

converse which is true today, there is increasing interest in 
predicting the maximum numbers of autonomous vehicles an 
operator can control. Indeed, the Office of the Secretary 
Defense’s Roadmap for unmanned aircraft systems (UASs) 
specifically calls for such future architectures [1]. Because of 
the increased number of sensors, volume of information and 
operational demands that will naturally occur in a multiple 
vehicle control environment, excessive cognitive demands 
will likely be placed on operators. As a result, efficiently 
allocating attention between a set of dynamic tasks will be 
critical to both human and system performance. To this end, 
this paper will discuss recent efforts to model human capacity 
for management of multiple unmanned/uninhabited aerial 
vehicles (UAVs), outline an extension to a previous operator 
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capacity model, and demonstrate, using experimental 
evidence, how the upper bound predictions can significantly 
change with the new model.  

II. BACKGROUND 
While a number of research efforts have experimentally 

demonstrated in simulations that under various levels of 
autonomy, operators can control anywhere from one to twelve 
unmanned air vehicles [2-4] and one to eight ground vehicles 
[5, 6], there has been very little research in developing a 
model for predicting controller capacity. In terms of operator 
intervention, control can range from manual control (e.g., 
actually flying the UAV) to supervisory control (higher-level 
planning and goal state changes). Operators engaged in 
manual control will necessarily be able to control fewer 
vehicles than in supervisory control since manual control 
requires significantly higher levels of dedicated attention to 
lower level skill-based cognitive activities, with fewer 
resources available for higher level planning tasks. Indeed, the 
tasks and their required attentional resources of each vehicle 
will likely limit human capacity, as well as the number of 
vehicles. 

In one of the few attempts to theoretically predict an upper 
bound for an operator controlling multiple independent 
homogeneous unmanned vehicles, it has been proposed that 
the number of ground robots a single individual could control 
can be represented by Eqn. 1 [7-10] . In this equation, FO 
(Fan Out) equals the number of robots a human can 
effectively control, NT (Neglect Time) is the expected amount 
of time that a robot can be ignored before its performance 
drops below some pre-determined threshold, and IT 
(Interaction Time) is the time it takes for a human to interact 
with the robot to raise performance to an acceptable level. 
Thus, the total capacity is the summation of all neglect and 
interaction times divided by the interaction time. While 
originally intended for ground-based robots, this work has 
direct relevance to other unmanned systems in the air or 
on/under the water, as these systems are becoming more 
autonomous and will move from the manual control domain to 
that of multiple vehicle supervisory control. Because these 
vehicles are assumed to be homogenous, the assumption is the 
operators are responsible for a homogeneous set of tasks. 

 

 
The ratio of operator interaction time to an overall mission 

time like neglect time is similar to another metric known as 
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utilization (UT) or percent busy time. UT is the ratio of time 
an operator is actively engaged in a task (including the three 
major elements of information processing: perception, 
cognition, and action) to the overall operating time of a 
system. Several studies have demonstrated that UT is a metric 

that can be used to evaluate human-automation interaction, 
and that operators working beyond 70% utilization experience 
significantly degraded performance [2, 11, 12]. However, UT 
is a gross measure of human-automation interaction time in 
that it does not discriminate among different kinds of 
interaction time (which will be discussed below).  

Equation 1 is an improvement over the more general UT 
metric in that it compares specifically neglect and interaction 
times and is a useful measure to establish an ideal upper 
bound for operators. However, it suffers from the same 
limitations as UT in that it does not capture the different 
components of interaction time. Furthermore, we propose 
there remains an additional critical variable that must be 
considered when modeling human control of multiple 
vehicles, regardless of whether they are on the ground or in 
the air, and that is the concept of Wait Time (WT). In complex 
problem solving tasks, humans are serial processors in that 
they can only solve a single complex problem or task at a time 
[13], and while they can rapidly switch between tasks, any 
sequence of tasks requiring complex cognition will form a 
queue, and consequently, wait times for these tasks will build. 
In the context of a system of multiple vehicles in which two or 
more vehicles will likely require attention simultaneously 
from a human operator, wait times are significant in that as 
they increase, the actual number of vehicles that can be 
effectively controlled decreases. Moreover, while task and 
human-computer interface dependently, if humans are 
cognitively saturated or have low situation awareness, they 
may not realize that a particular vehicle is in need of attention, 
thus inducing another wait time until the task is recognized. 

Figure 1 illustrates the relationships between interaction, 
neglect and wait times in terms of overall multiple vehicle 
system performance. The role of the operator in general is to 
ensure all vehicles operate at some predetermined minimally 
acceptable level of performance. Because of the intermittent 
supervisory control aspect of multiple vehicle control, 

operators will only attend to those vehicles in need 
(interaction time) to bring them to this acceptable performance 
level, hence the increase in performance during IT in Fig. 1. 
During neglect time periods, the vehicles operate without the 
need for operator intervention until such time that 
performance drops below the threshold. Point A in Fig. 1 
represents a discrete event that terminates NT, which causes 
the vehicle to require operator assistance such as a system 
failure (e.g., an engine loss or loss of a sensor). However, 
termination of an NT state is not necessarily caused be 
singular, discrete events. Point B represents performance 
degradation during NT which causes vehicle performance to 
eventually drop below the performance threshold, e.g., a slow 
degradation of an inertial navigation system. In both NT 
cases, once performance has dropped below an acceptable 
level, the vehicle must wait until the human recognizes the 
problem, solves the problem internally, and then 
communicates that goal to bring the vehicle to an acceptable 
state so that it can move into a NT state. As can be seen in Fig. 
1 at point C, if the problem is not addressed immediately, the 
vehicle must wait and operate at some non-optimal 
performance level. As will be discussed in depth in the next 
section, this delay can be caused by either a loss of operator 
situation awareness (the operator does not recognize the 
vehicle is in a degraded state), or the operator is overloaded 
with more critical tasks from other vehicles. Moreover, since 
operators cannot generally and instantly bring performance 
above the threshold, there is an additional interaction wait 
time while the operator is actively attending to a vehicle (e.g., 
commanding it back to the correct course) to achieve the 
desired performance level. 

Interaction and neglect times are important in predicting 
operator capacities for handling multiple vehicles, especially 
for those domains that are time-critical and high risk like 
UAVs, as WT could become a critical point for possible 
system failure. Even for UUVs (unmanned underwater 
vehicles) that must surface for communications, waiting is not 
only sub-optimal, it can be extremely hazardous. Moreover, 
ground-based robots (or unmanned ground vehicles, UGVs) 
engage in time-critical missions such as search and rescue, 
which would be negatively impacted if the problem of WT 
was not addressed. While most robots and vehicles can be 
preprogrammed to follow some predetermined contingency 
plan if they do not receive required attention, mission success 
will likely be significantly degraded if wait times grow 
unexpectedly. 

A. Wait Times 
As outlined above, from a robot or vehicle perspective, 

WT imposed by human interaction (or lack thereof) can be 
decomposed into three basic components: 1) wait time in the 
human decision-making queue (WTQ), 2) interaction wait 
time (WTI), and 3) wait time due to loss of situation 
awareness (WTSA). For example, suppose an operator is 
controlling two robots on a semi-autonomous navigation task 
(much like the Mars Rovers). While typical operations involve 
human interaction with a single vehicle, there will be times 
when both vehicles require attention near-simultaneously. 
When this occurs, once the human operator begins assisting 
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the first robot, the second robot must wait while the operator 
solves the problem and then issues the commands to it (WTI1). 
For the second robot, the time it waits in the queue (WTQ2) is 
effectively WTI1.  

IT is the time during which a human’s attention is focused 
on a single vehicle in order to solve a problem or induce some 
change to improve performance above a specified threshold. 
From the human perspective, IT includes the time required to 
determine the nature of the problem, solve the problem, and 
communicate that solution with some type of feedback. Thus, 
the vehicle must wait some period of time during the 
“interaction” due to the human decision-making process. In 
teleoperation, where the human is directly controlling a 
robot’s movements and positions, interaction wait times might 
be very small, and occur in rapid succession as the controller 
gets sensor feedback and adjusts commands accordingly. 
However, in other supervisory control scenarios that require 
minimal manual control but significant cognitive input, such 
as the need to provide a new mission to a UAV, WTI can be 
quite large depending on the complexity of the problem.  

WTSA is perhaps the most difficult wait time component 
to model because it represents how cognitively engaged an 
operator is in a task. Situation awareness (SA) is generally 
defined as having three levels, which are: 1) the perception of 
the elements in the environment, 2) the comprehension of the 
current situation, and 3) the projection of future status [14, 
15]. While SA can decrease under high workload due to 
competition for attentional resources [16], it can also decrease 
under low workload due to boredom and complacency [17].  
If an operator does not realize a vehicle needs attention (and 
thus experiences a loss of SA), the time from the initial onset 
of the event to actual operator recognition of the problem 
could range from seconds to minutes. 

Equation 2 categorizes general wait time that is not part of 
human-robot interaction as the summation of wait times that 
result from queues due to near-simultaneous arrival of 
problems plus the wait times due to the operator loss of SA. 

Equation 3 demonstrates how the Fan-out equation would 
change as a result of the inclusion of wait times. For the 
remaining discussion in this paper, WTI will be considered to 
be subsumed in IT, which includes time needed for the human 
to make decisions about a new vehicle problem and then 
communicate the solution to the vehicle. 

While not explicitly linked to interaction time, wait time as 
a function of WTSA and WTQ occurs in the denominator of 
Eqn. 3 because WT represents time that should have been 
spent in the interaction task due to a degraded vehicle state but 
was not due to human attention inefficiency (either a loss of 
situation awareness or an inefficient sequencing of tasks in a 
queue.) Thus, wait times occur only after a vehicle has moved 
from the NT period to an IT period but must wait until the 
operator attends to it to achieve a performance increase.  Wait 
times, in effect, increase overall IT.  

The original Fan-out equation (1) represents a theoretically 
perfect system with instantaneous system response, as well as 
humans who induce no system delays. The modified Fan-out 
in Eqn. 3 represents a more conservative upper bound which 
accounts for inefficiencies in human attention allocation 
(WTSA), limits on the human ability to attend to multiple 
complex tasks simultaneously (WTQ), as well as the inherent 
delay that will always accompany the human information 
processing loop of perception, cognition, and action that occur 
in every decision making process (WTI). It should be noted 
that the modified Fan-out (Eqn. 3) is not intended to make an 
accurate prediction of exactly how many vehicles a person 
could control, but merely set an upper limit given human and 
system limitations. 

B. Levels of Automation   
One of the primary variables that will influence operator 

capacity in the supervision of multiple vehicles is the level of 
system autonomy. The challenge in achieving the one-
controlling-many goal for management of multiple unmanned 
vehicles in the future is to determine how automation can be 
used to reduce human workload. Higher levels of system 
autonomy will increase NT, which should decrease IT and 
associated wait times. In terms of aiding the operator in 
complex decisions, automation decision support can range 
from fully automatic, where the operator is completely left out 
of the decision process, to minimal levels where the 
automation offers basic data filtering or recommendations for 
the human to consider [18]. For rigid tasks that require no 
flexibility in decision-making and with a low probability of 
system failure, higher levels of automation (LOAs) often 
provide the best solution in terms of operator workload [19]. 
However, even partially automated systems can result in 
measurable costs in human performance, such as loss of 
situational awareness, complacency, skill degradation, and 
decision biases [20]. 

In the context of managing multiple vehicles, increasing the 
levels of automation should reduce workload and wait times 
by effectively reducing interaction time, but there are several 
measurable costs for both operators and the system in general. 
Loss of situation awareness and the propensity for automation 
bias are significant problems that can result when automation 
authority increases. For example, at high levels of automation 
where the system takes over execution of some or all 
functions, overall wait times are expected to decrease as 
automation can generally make faster decisions than humans, 
and the number of opportunities for lower level human errors 
should be reduced. Superficially, it seems that the system 
should perform well at higher LOAs, but under abnormal and 

WT: Wait time 
WTQ: Queuing wait time 

WTSA: Wait time caused by a loss of situation awareness 
WTI: Wait time due to human decision making, nested in overall 
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unexpected conditions, automation could fail, possibly 
causing a catastrophic event to occur. This is particularly 
problematic under uncertain or novel conditions because the 
human operator may not understand the situation well enough 
to determine if the automation is working correctly and if it 
requires intervention.  

III. MAUVE: THE EXPERIMENTAL TEST BED  
In order to study how increasing autonomy influences the 

proposed different components of wait time in the multiple 
unmanned vehicle control domain, a dual screen simulation 
test bed named the Multi-Aerial Unmanned Vehicle 
Experiment (MAUVE) interface was developed (Fig. 2). This 
interface allows an operator to supervise four homogeneous 
and independent UAVs simultaneously and intervene as the 
situation requires. In this simulation, operators are responsible 
for supervising four UAVs tasked with destroying a set of 
time-sensitive targets in a suppression of enemy air defenses 
(SEAD) mission. Because the simulated UAVs are highly 
autonomous, they only require that operators provide high-
level mission planning and execution actions as inputs to the 
UAVs. The UAVs launch with a pre-determined mission plan, 
so initial target assignments and routes are already completed. 
The operator’s job is to monitor each UAV’s progress, re-plan 
aspects of the mission in reaction to unexpected events, and in 
some cases manually execute mission critical actions such as 
arming and firing of payloads.  

MAUVE UAVs are capable of 6 high-level actions: 
traveling enroute to targets, loitering at specific locations, 
arming payloads, firing payloads, performing battle damage 
assessment, and returning to base, generally in this order. 
Battle damage assessment (BDA) is the post-firing phase of 
combat where it is determined whether the weapon(s) hit the 
target and if the desired effect was achieved.  In MAUVE, 
BDA is semi-automated in the sense that operators are 
responsible for scheduling BDA in advance, but the UAV 
performs it automatically after firing, if scheduled. 

A. Navigation Display 
The left-hand side of the MAUVE interface in Fig. 2 is 

known as the navigation display, and it consists of a map 
display and a mission planning and execution panel. Both 

elapsed time and time remaining in absolute and relative terms 
are shown on the top right of the map display. The map 
display represents a two-dimensional spatial layout of the 
battle space, updated in real-time. Threat or hazard areas, 
circular in shape, have a striped yellow pattern, and can be 
dynamic throughout scenarios, changing size, locations, 
disappearing entirely, or emerging as time progresses.  

The UAVs, always held constant at four, independently 
change colors according to their current action which include 
Arm Payload, Fire Payload, Move to Next Target, and Return 
to Base. Arming and firing are only enabled if the pre-
established rules of engagement (RoE) of the simulation are 
met.  For arming, the UAV must be directly on top of a target 
within pre-determined arming or firing windows. For firing, 
the UAV should be armed at the correct target. The Move to 
Next Target button allows operators to bring UAVs out of 
loiter patterns in case of scheduling problems, and the Return 
to Base button causes all future targets, waypoints, and loiter 
points to be deleted from the mission plan. Subsequently, a 
straight line path is planned directly back to base and is 
intended for emergency scenarios. 

Targets are designated by a diamond-shaped icon and are 
assigned a priority of high (H), medium (M), or low (L). 
Active targets are differentiated from inactive targets by their 
color, which is either red or gray on the display, respectively. 
Waypoints, shown on the map display with black triangle 
icons, represent UAV turning points. In addition, UAVs can 
be loitered at specific points, and typically a UAV loiters for a 
user-specified amount of time before moving. However, the 
departure from a loiter pattern must be commanded by the 
operator. UAV routes can be changed in minor ways by 
selecting a particular waypoint or loiter point and dragging it 
to the desired location. More significant routing changes, such 
as the addition or removal of waypoints, loiter points, or 
targets, can be accomplished using the mission planning and 
execution panel. Routing changes are typically only required 
as a result of unexpected scenarios and represent real-time 
replanning. 

Operators are provided with a “Request TOT Delay” button 
which allows them limited opportunities to manipulate the 
Time-on-Targets (TOTs) for those targets assigned. Operators 
can request a TOT delay for a given target for two reasons: 1) 

Fig. 2. MAUVE Interface
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According to the current mission plan, they are predicted to 
arrive late to a target, and therefore will miss their deadline, or 
2) for workload purposes, i.e., if operators feel they need to 
spread out a very high workload time block to manage the 
UAVs more effectively. However, this function should be 
used with care because moving back one target’s deadline 
likely changes the UAV’s arrival time at all subsequent 
targets. It is important to highlight this change of TOT as a 
request, not a command, and operators’ requests can be 
approved or denied. In MAUVE, the probability of approval is 
a function of how far in advance of the deadline the request is 
sent, as would likely be the case in true military situations. 
When a TOT deadline is immediately approaching, the chance 
of approval is zero but nearly 1.0 when requested 15 minutes 
in advance, which is the limit for the decision support, to be 
discussed in the next section. In MAUVE, a request always 
takes 5 seconds for response, and during this intervening time, 
no other TOT requests can be made.  

B. The Decision Support Display 
The right-hand side of the MAUVE simulation in Fig. 2 

provides decision support for task management, and it consists 
of a UAV status window, chat box, UAV health and status 
updates, and the decision support window. The status window 
at the top left of the decision support display gives operators 
low-level, detailed information for each UAV such as current 
target, current action being performed, latitude and longitude, 
course, and weapons information.  Speed and altitude are also 
shown, although they are not directly controllable by 
operators.  

The bottom left of the decision support display has a text-
based datalink communication tool known as a chat box that 
contains a time history of all human communication 
interactions. The chat box window displays various 
notification messages that appear in response to scenario 
events or actions taken by users, as well as periodic task-
relevant questions for operators to answer from a simulated 
superior officer. One message that is particularly important to 
operators is notification that a TOT request is accepted or 
denied. The bottom right of the decision support display 
contains a UAV health and status notification window which 
separates human communications in the simulation from 
system communications and only contains messages from 
individual UAVs.  

The manipulation of the appearance and functionality of the 
actual task management decision support (the timeline block) 
is the primary independent variable for the experiment that 
will be discussed in the subsequent section. The basic premise 
of the decision support is to simplify standard air tasking order 
(ATO) data and combine it in a single interface with up-to-
date mission planning information. An ATO provides a 
schedule of events for a mission as well as required resources.  
Information contained in an ATO includes which aircraft have 
been assigned to certain strikes, times on targets, waypoints, 
and call signs to be used on those missions. Since the focus of 
this research was to determine how increasing automation 
would affect wait times, four versions of ATO decision 

support were created in MAUVE: termed manual, passive, 
active, and super active, respectively. These will be described 
in detail below. 

The manual LOA level of decision support (Fig. 3a) 
presents all required ATO and mission planning information 

Fig. 3. Increasing Levels of Mission Autonomy 
(a) Manual (b) Passive (c) Active (d) Super active
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in a text-based table format. Current TOT windows and 
estimated times of arrivals (ETAs) for up to the next 4 targets 
in a UAV’s timeline are presented. The next waypoint or 
navigation point on the current route segment is provided, as 
well as the final ETA for arrival at base in the last column.  A 
low level of automated assistance is provided to the user 
through the “Next Expected Action” column, which tells the 
user what they should be doing next and at what time, 
according to the ATO. This information is updated 
dynamically to reflect changing ATO requirements and 
mission planning changes initiated by the user.   

The passive LOA (Fig. 3b) assimilates all of the ATO and 
current mission information contained in the manual level and 
transforms it into a horizontal timeline format, color coded by 
action. The major difference between the passive and the 
manual level is entire schedule integration for users using a 
graphical format versus text-based. The visual timelines are 
relative, with the left side representing predicted UAV actions 
in the near future and the right side up to 15 minutes into the 
future. Target ETA’s are represented by black rectangles on 
the bottom of each timeline, and waypoint, loiter point and 
base arrival times are marked by black triangles on the top of 
each timeline. The TOT windows, arming windows and BDA 
periods are represented by red, yellow and brown blocks of 
time.  

All of the information in the graphical timeline is available 
under manual automation, but it cannot be obtained without 
substantial cross-checking of table entries. Moreover, the 
manual table format does not facilitate schedule comparisons 
across different vehicles. With this visual representation, 
recognizing problems with the current schedule is 
perceptually-based, allowing users to visually compare the 
relative location of display elements, instead of specific times 
to one another. This level of decision support is termed 
passive because the automation is not performing any tasks 
except transforming the basic ATO and mission planning 
information into a graphical format. 

The active LOA (Fig. 3c) uses the same horizontal timeline 
format as the passive automation level but provides additional 
help from the computer. In the active version, an algorithm 
searches for periods of time in the schedule that it predicts will 
cause high workload for the operator, directing the operator’s 
attention toward them. The computer identifies a high 
workload area, or “bottleneck” as a period of time during 
which multiple UAVs are scheduled to simultaneously 
execute mission critical actions which require human 
interaction, including arming, firing, or performing BDA. The 
automation draws attention to these areas of concern by a 
reverse shading technique, in which the “bottlenecks” are 
highlighted while the rest of the timeline’s colors are muted 
but still visible.  As no information is hidden only made less 
salient, the operator’s attention can be directed to the 
appropriate areas of the schedule while allowing him to 
maintain SA for the overall mission.   

In addition to identifying areas of high workload, the 
computer also recommends a course of action to alleviate the 

high workload areas, such as moving a particular TOT. 
Computer recommendations appear in gray boxes to the right 
of each relevant UAV’s timeline, and subjects have several 
options: 1) They can acknowledge a high workload area but 
take no action, 2) They can follow the recommendation to 
relieve the projected high workload area by shifting a TOT, or 
3) They can make other mission planning changes to ensure 
the high workload area does not occur, such as deleting a 
target from a UAV’s plan. While the automation makes 
locally optimal recommendations, the algorithm is not 
globally optimal. Following the computer’s recommendation 
to relieve a high workload area removes that particular 
schedule conflict but sometimes creates another in the process. 

The reverse shading technique, in conjunction with the 
recommendations, permits operators to make local changes to 
alleviate workload and immediately see the effect on the 
global plans of all the UAVs. The purpose of the active level 
of automation is to help operators identify future time periods 
of potential high workload farther in advance, so that they can 
avoid them or at least be better prepared to handle them. This 
level of decision support is termed active because the 
automation actively aids operators by narrowing down a set of 
possible solution alternatives for high workload problems. 

The super active LOA (Fig. 3d) also builds upon the 
passive level visual timeline, but instead of making 
recommendations to the operator, as in the active LOA, a 
management-by-exception (MBE) approach is taken. MBE 
occurs when automation notifies a human that it is going to 
take some action and gives the operator a limited time to veto 
the automation. In this experiment, MBE occurs in the super 
active condition when the computer automatically executes 
the arming and firing actions for all UAVs at each target, 
when the rules of engagement are met.  Operators are given 30 
seconds to intervene with the automation. For example, in 
order to fire, a UAV has to be located at the particular target it 
was due to fire on, already armed, and within the TOT 
window for that target. While the automation handles the 
actual execution of tasks, the operator is still responsible for 
determining if the arming and firing actions are appropriate, as 
well as replanning actions and manipulating routes to ensure 
the UAVs arrive at the correct targets on time. For the 30 
seconds prior to every arming and firing action, exception 
boxes appear to the right of the timeline that allow the 
operator to veto these actions. The color of the box indicates 
which action the UAV is preparing to perform, red for firing 
and yellow for arming.  

IV. EXPERIMENTAL VALIDATION 
 Figure 4 depicts our hypotheses in terms of how wait times 
would be influenced by the MAUVE different levels of 
automation. Because increasing levels of automation should 
theoretically reduce operators’ workload, we proposed that 
WTI would be progressively lower for the increasing levels. 
As previously discussed, WTQ depends heavily on WTI, 
which is expected to decrease with increasing levels of 
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automation in MAUVE. Therefore, WTQ should follow the 
same decreasing trend as level of automation increases.  
 For WTSA, the highest level of automation (super active), 
should theoretically eliminate any wait time due to the loss of 
SA but only for expected events. When unexpected events 
occur, operators may have low SA due to complacency, and 
therefore, they may incur WTSA by not noticing that the 
mission plan needs adjustment or that a UAV needs attention. 
In contrast, given the lack of decision support, the manual 
level should produce the largest total amount of situation 
awareness wait times of all LOAs. We hypothesized that the 
active and passive levels should have the lowest accumulated 
WTSA, because operators are continually interacting with the 
vehicles and are thus “in-the-loop” as opposed to “on-the-
loop” for those operators with super active control. The 
hypotheses of Fig. 4 are ranked on an ordinal scale both to 
normalize the variables and because no prior evidence exists 
to formulate more quantitative hypotheses. In order to validate 
these hypotheses, an experiment with the MAUVE simulation 
interface was conducted, which will be described below. 

A. Apparatus, Participants, & Procedures 
Training and testing was conducted on a four screen system 

called the multi-modal workstation (MMWS) [21]. A total of 
12 subjects took part in this experiment, 10 men and 2 
women. Subjects were recruited based on whether they had 
UAV, military and/or pilot experience. The subject population 
consisted of undergraduates and graduate students, as well as 
those from the local reserve officer training corps (ROTC) and 
active duty military personnel. All were paid $10/hour. In 
addition, a $50 incentive prize was offered for the best 
performance. The age range of participants was 20 – 42 years 
with an average age of 26.3 years.  Nine participants were 
members of the ROTC or active duty officers. While no 
subjects had operational UAV experience, nine participants 
had piloting experience. The average number of flight hours 

among this group was 120. 
Subjects had two main objectives in this experiment: 1) To 

guide each UAV so that together, all UAVs properly executed 
the required missions, which changed over time, and 2) To 
answer periodic questions about the situation from 
commanders, which was a secondary task. All subjects 
received between 90 and 120 minutes of training which 
culminated in a 15 minute training scenario similar to, but 
easier in difficulty than the testing sessions. Subjects were 
required to achieve a predetermined minimum level of 
performance in this scenario, making no more than two re-
planning or targeting mistakes, to move onto the actual test 
sessions. 

Following training, participants tested on two consecutive 
30 minute sessions, which represented low and high workload 
scenarios. These were randomized and counter-balanced to 
prevent a possible learning effect. The low replanning 
condition contained 7 replanning events, while the high 
replanning condition contained 13. These numbers were based 
on objective and subjective feedback gained through pilot 
testing. Each simulation was run several times faster than real 
time so an entire strike could take place over 30 minutes 
(instead of several hours as is commonplace in actual strikes).  

B. Experimental Design 
The primary independent variable of interest in this 

experiment was the level of decision support (Fig. 3). A 
secondary factor, level of replanning was included to simulate 
low and high workload scenarios. The level of decision 
support was between-subjects, and the level of replanning was 
within-subjects. The statistical model used for the majority of 
the analyses was a 2x4(3) repeated measures linear mixed 
model. Three subjects were nested within each automation 
level, and both independent factors were fixed while subjects 
represented a random factor. Age was used as a covariate in 
all analyses and for all reported results α=0.05 unless stated 
otherwise. The dependent variables were the different 
components of wait time (WTI, WTQ, and WTSA) and as 
will be described in more detail below, were captured through 
mouse clicks and data file time stamps of screen objects.   

V. RESULTS  

A. Interaction Wait Time (WTI) 
In this experiment, WTI was recorded from the time an 

operator selected a degraded UAV to the time a solution was 
communicated to the UAV (mean = 81.5s, SD (standard 
deviation) = 57.6s). WTI was significant for level of 
automation (F(3,13) = 8.08, p = 0.003) and not significant for 
level of replanning (F(1,12.1) = 2.13, p = 0.170). From post-
hoc analyses, two homogeneous subsets of automation levels 
were found, super active/active and passive/manual, meaning 
that super active and active LOAs produced statistically the 
same wait times, as did passive and manual. Figure 5 
demonstrates how these results compared to predictions, 
which were generally in line with expectations.  It is worth 
noting for these and the remaining results that the relatively 
low subject number limits the generalizability of these results. Fig. 4. Experimental Hypotheses 
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B. Wait Time in the Queue (WTQ) 
Wait time spent in the queue was recorded whenever two or 
more vehicles required operator attention simultaneously, and 
the operator moved immediately to the vehicle(s) waiting in 
the queue after finishing a task with another vehicle (mean = 
35.0s, SD = 43.4s). Figure 6 illustrates the results as 
compared with predictions. The amount of wait time spent in 
the queue was significant for level of replanning (F(1,12.3) = 
18.08, p = 0.001) and marginally significant for level of 
automation (F(3,13.2) = 3.10, p = 0.063). The unusual spike 
in WTQ for the active level of automation under high 
replanning in Fig. 6 warranted further investigation which 
showed that for the high replanning condition, the active level 

had significantly more WTQ than both the super active and 
passive levels (A (active) vs. SA (super active), p = 0.009; A 
vs. P (passive), p = 0.074). In addition, those subjects with 
active decision support experienced an equal amount of WTQ 
as those with the manual level. 

C.  Situation Awareness Wait Time (WTSA) 
Situation awareness wait time was recorded when at least 

one vehicle required attention, but the operator did not realize 
it (mean = 263.7s, SD = 239.7s). This time interval was 
marked by operator inactivity, i.e., if a problem was present, 
and the operator did not attend to it and was not engaged in 
any other task. Common situations where WTSA was incurred 
included when subjects forgot to arm and fire on a target and 
left a UAV loitering unnecessarily, or when a subject flew a 
UAV into a threat area without attempting to redirect it to a 
safe area. WTSA was significant for level of replanning 
(F(1,12.3) = 18.70, p = 0.001) but not for level of automation 
(F(3,13.2) = 2.14, p = 0.144). However, as depicted in Fig. 7, 
there was a significant difference in cell means under the high 
replanning condition between the active and super active level 
(p = 0.046). Interestingly, under manual automation, there was 
no significant difference in WTSA between the high and low 
replanning conditions.  

VI. DISCUSSION 
In general, there was a decreasing trend of WTI with 

increasing levels of automation, which was reasonably 
consistent with expectations (Fig. 5). Similarly the WTQ 
results approximately followed the predicted trend of 
decreasing WTQ with increasing automation level, except for 
the relatively high average WTQ for active automation (Fig. 
6). Quantitative analysis of WTQ accumulation in the active, 
high replanning test sessions showed that the majority were 
accumulated in several large queues that formed late in the 

Fig. 5. Interaction Wait Times Results 

Fig. 6. Wait Time in the Queue Results 

Fig. 7. Situation Awareness Wait Time Results 
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scenarios when multiple, difficult re-plans were required of 
the operator.  

Further investigation of the anomalous WTQ active 
condition demonstrated that this problem can be attributed to 
subjects’ inappropriate use of the “Request TOT change” 
function. It appeared that for those operators in the active 
condition, when not engaged in a specific task, they fixated 
on resolving possible areas of predicted high workload [22]. 
Because of this fixation, the WTSA predictions did not match 
the actual results (Fig. 7). Subjects using the active level of 
automation spent significantly more time attempting to 
achieve an optimal schedule based on computer 
recommendations, which led to a loss of SA and subsequent 
significantly higher queuing times. 

As can be seen in Fig. 8, of all of the proposed wait time 
components, WTSA contributes significantly more than the 
other elements under both low and high workload conditions. 
There was no significant difference in the relative proportions 
of WTI, WTQ, or WTSA across the different levels of 
automation. The proportion of WTSA made up 63% of all 
wait time in the low replanning condition and 72% in the high 
replanning condition, showing a trend of increasing 
proportion of WTSA with increasing workload. 

Figure 9 demonstrates how the predictions from Eqn. 1 
would change for the high workload condition using the data 
from this experiment if the proposed wait times are included, 
as in Eqn. 3. By including wait times in the prediction model, 
the upper bound of the number of homogeneous independent 
unmanned vehicles a single controller can manage drops 36-
67% based on the effectiveness of the decision support. More 
importantly, even under a high level of automation 
represented by the super active management-by-exception 
decision support, subjects still experienced wait times due to a 
loss of situation awareness that then led to a reduction in 
predicted capacity (36%). This significant result demonstrates 
the importance of including human decision making 
limitations in an upper bound prediction model, even for a 
highly automated system. In addition, the increasing WTSA 
for the lowest three LOAs indicate that operators were 
approaching their workload limit, culminating in the cognitive 
saturation of operators under the active condition who were 
not effectively controlling the number they were assigned, 

(Fig. 9). In the active condition of the experiment, operators 
clearly struggled with the multiple vehicle management task, 
driven primarily by WTSA (Figs 7 & 8). This relationship was 
captured in the upper limit predictions in Fig. 9, which was 
not captured in the original Fan-out (Eqn. 1) because it does 
not capture inherent inefficiencies in human decision-making 
and action. 

These results illustrate how critical it is to ensure that when 
predicting an upper limit for operator capacity based on 
temporal attributes, the impact of specific automation decision 
support designs on decision times and situation awareness is 
critical. These results also highlight the fact that any model 
that attempts to capture temporal measurements of human-
automation interaction is both subject to the task and the 
context. The significance of the level of replanning across the 
wait times demonstrates that one external environmental 
variable can dramatically influence the results, so caution 
should be exercised in generalizing specific results to other 
domains.  

One additional source of wait time that deserves further 
investigation not addressed in this study is wait time due to 
cognitive reorientation (WTCR), which is a component of 
interaction wait time. WTCR is the time it takes an operator to 
regain the correct mental model, and situation awareness 
needed to solve a problem once recognized. Thus, WTCR is 
primarily a component of WTI but could be related to WTSA 
in that operators with lower WTSAs will likely have lower 
WTCR. WTCR represents a switching cost that occurs when 
an operator is cognitively engaged in one task but then must 
spend some period of time reorienting to a new problem. This 
environment of switching attention between multiple vehicles 
means that operators must  not only concentrate attention on a 
primary task, such as higher level mission planning, but also 
be prepared for alerts for other events, such as a vehicle 
system failure. This need to concentrate on one task, yet 
maintain a level of attention for alerts/information from other 
potential tasks causes operators to have a conflict in mental 
information processing.  

WTCR and the associated switching costs are very difficult 
to capture as performance-based simulations such as the one 
reported in this UAV study cannot accurately and consistently 
categorize WTCR. These difficulties have also been shown in 
multiple control of ground robots [9]. Using software that 
tracked users’ cursor movements and activation of control 
devices, we were able to determine when a subject was 
engaged with a particular UAV, but we were unable to 
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determine at what point the cognitive reorientation occurred, a 
subtle transition. This inability to partition WTCR from the 
overall category of WTI could possibly be addressed through 
some psychophysiologic measure or perhaps a more carefully 
crafted scenario. This area deserves more attention because it 
is unclear how much WTCR contributes to overall wait times, 
and how technological interventions such as intelligent 
decision support could possibly mitigate this and other wait 
times. 

VII. CONCLUSIONS 
This research extends previous work attempting to predict 

the number of homogeneous and independent unmanned 
vehicles a single operator can control. We propose that any 
predictive model of operator capacity that includes human-in-
the-loop remote interaction should include various sources of 
wait time which include wait time due to human-computer 
interactions (including cognitive reorientation), queuing wait 
time, and wait time due to a loss of situation awareness. Using 
data from a simulation examining control of multiple 
homogeneous and independent UAVs, capacity predictions 
that included these sources of delay dropped by up to 67%, 
with loss of situation awareness as the primary source of wait 
time delays. Furthermore, this study demonstrates that both 
interface design components, as well as the level of decision 
support automation, can be a significant contributor to overall 
wait times. Moreover, even in a highly automated 
management-by-exception system which should alleviate 
queuing and interaction times, this study demonstrated that 
operator capacity is still affected by situation awareness wait 
time, causing a 36% decrease over the capacity model with no 
wait time. Further work is needed to more accurately capture 
cognitive reorientation times which represent a switching cost 
as well as loss of situation awareness wait times.  
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