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With reduced radar signatures, increased endurance and the removal of 
humans from immediate threat, uninhabited (also known as unmanned) ae-
rial vehicles (UAVs) have become indispensable assets to militarized 
forces. UAVs require human guidance to varying degrees and often 
through several operators. However, with current military focus on stream-
lining operations, increasing automation, and reducing manning, there has 
been an increasing effort to design systems such that the current many-to-
one ratio of operators to vehicles can be inverted. An increasing body of 
literature has examined the effectiveness of a single operator controlling 
multiple uninhabited aerial vehicles. While there have been numerous ex-
perimental studies that have examined contextually how many UAVs a 
single operator could control, there is a distinct gap in developing predic-
tive models for operator capacity. In this chapter, we will discuss previous 
experimental research for multiple UAV control, as well as previous at-
tempts to develop predictive models for operator capacity based on tempo-
ral measures. We extend this previous research by explicitly considering a 
cost-performance model that relates operator performance to mission costs 
and complexity. We conclude with a meta-analysis of the temporal meth-
ods outlined and provide recommendation for future applications. 

 
 
Introduction 

With reduced radar signatures, increased endurance and the removal of 
humans from immediate threat, uninhabited (also known as unmanned) ae-



rial vehicles (UAVs) have become indispensable assets to militarized 
forces around the world, as proven by the extensive use of the Shadow and 
the Predator in recent conflicts.  

Current UAVs require human guidance to varying degrees and often 
through several operators. For example, the Predator requires a crew of 
three to be fully operational. However, with current military focus on 
streamlining operations and reducing manning, there has been an increas-
ing effort to design systems such that the current many-to-one ratio of op-
erators to vehicles can be inverted (e.g., [1]). An increasing body of litera-
ture has examined the effectiveness of a single operator controlling 
multiple UAVs. However, most studies have investigated this issue from 
an experimental standpoint, and thus they generally lack any predictive ca-
pability beyond the limited conditions and specific interfaces used in the 
experiments.  

In order to address this gap, this chapter first analyzes past literature to 
examine potential trends in supervisory control research of multiple unin-
habited aerial vehicles (MUAVs). Specific attention is paid to automation 
strategies for operator decision-making and action. After the experimental 
research is reviewed for important “lessons learned”, an extension of a 
ground unmanned vehicle operator capacity model will be presented that 
provides predictive capability, first at a very general level and then at a 
more detailed cost-benefit analysis level. While experimental models are 
important to understand what variables are important to consider in 
MUAV control from the human perspective, the use of predictive models 
that leverage the results from these experiments is critical for understand-
ing what system architectures are possible in the future. Moreover, as will 
be illustrated, predictive models that clearly link operator capacity to sys-
tem effectiveness in terms of a cost-benefit analysis will also demonstrate 
where design changes could be made to have the greatest impact. 

 
Previous Experimental Multiple UAV studies 

Operating a US Army Hunter or Shadow UAV currently requires the full 
attention of two operators: an AVO (Aerial Vehicle Operator) and a MPO 
(Mission Payload Operator), who are in charge respectively of the naviga-
tion of the UAV, and of its strategic control (searching for targets and 
monitoring the system). Current research is aimed at finding ways to re-
duce workload and merge both operator functions, so that only one opera-
tor is required to manage one UAV. One solution investigated by Dixon et 
al. consisted of adding auditory and automation aids to support the poten-
tial single operator [2]. Experimentally, they showed that a single operator 



could theoretically fully control a single UAV (both navigation and pay-
load) if appropriate automated offloading strategies were provided. For ex-
ample, aural alerts improved performance in the tasks related to the alerts, 
but not others. Conversely, it was also shown that adding automation bene-
fited both tasks related to automation (e.g. navigation, path planning, or 
target recognition) as well as non-related tasks. However, their results 
demonstrate that human operators may be limited in their ability to control 
multiple vehicles which need navigation and payload assistance, especially 
with unreliable automation. These results are concordant with the single-
channel theory, stating that humans alone cannot perform high speed tasks 
concurrently [3, 4]. However, Dixon et al. propose that reliable automation 
could allow a single operator to fully control two UAVs.  

Reliability and the related component of trust is a significant issue in the 
control of multiple uninhabited vehicles. In another experiment, Ruff et al. 
[5] found that if system reliability decreased in the control of multiple 
UAVs, trust declined with increasing numbers of vehicles but improved 
when the human was actively involved in planning and executing deci-
sions. These results are similar to those experimentally found by Dixon et 
al. in that systems that cause distrust reduce operator capacity [6]. More-
over, cultural components of trust cannot be ignored. Tactical pilots have 
expressed inherent distrust of UAVs as wingmen, and in general do not 
want UAVs operating near friendly forces [7].  

Reliability of the automation is only one of many variables that will de-
termine operator capacity in MUAV control. The level of control and the 
context of the operator’s tasks are also critical factors in determining op-
erator capacity. Control of multiple UAVs as wingmen assigned to a single 
seat fighter has been found to be “unfeasible” when the operator’s task was 
primarily navigating the UAVs and identifying targets [8]. In this experi-
mental study, the level of autonomy of the vehicles was judged insufficient 
to allow the operator to handle the team of UAVs. When UAVs were 
given more automatic functions such as target recognition and path plan-
ning, overall workload was reduced.  

In contrast to the previous UAVs-as-wingmen experimental study [6] 
that determined that high levels of autonomy promotes overall perform-
ance, Ruff et al. [5] experimentally determined that higher levels of auto-
mation can actually degrade performance when operators attempted to 
control up to four UAVs. Results showed that management-by-consent (in 
which a human must approve an automated solution before execution) was 
superior to management-by-exception (where the automation gives the op-
erator a period of time to reject the solution). In their scenarios, their im-
plementation of management-by-consent provided the best situation 



awareness ratings and the best performance scores for controlling up to 
four UAVs.  

These previous studies experimentally examined a small subset of UAVs 
and beyond showing how an increasing number of vehicles impacted op-
erator performance, they were not attempting to predict any maximum ca-
pacity. In terms of actually predicting how many UAVs a single operator 
control, there is very little research. Cummings and Guerlain [9] showed 
that operators could experimentally control up to 12 Tactical Tomahawk 
missiles given significant missile autonomy. However, these predictions 
are experimentally-based which limits their generalizability. Given the 
rapid acquisition of UAVs in the military, which will soon follow in the 
commercial section, predictive modeling for operator capacity will be 
critical for determining an overall system architecture. Moreover, given the 
range of vehicles with an even larger subset of functionalities, it is critical 
to develop a more generalizable predictive modeling methodology that is 
not solely based on expensive human-in-the-loop experiments, which are 
particularly limited for application to revolutionary systems.  

In an attempt to address this gap, in the next section of this paper, we 
will extend a predictive model for operator capacity in the control of un-
manned ground vehicles to a UAV domain [10], such that it could be used 
to predict operator capacity, regardless of vehicle dynamics, communica-
tion latency, decision support, and display designs. 

 
Predicting Operator Capacity through Temporal 

Constraints 

While little research has been published concerning the development of 
a predictive operator capacity model for UAVs, there has been some pre-
vious work in the unmanned ground vehicle (robot) domain [10, 11]. Coin-
ing the term “fan-out” to mean the number of robots a human can effec-
tively control, Olsen et al. [9, 22] propose that the number of homogeneous 
robots or vehicles a single individual can control is given by: 

 
 (1) 

 
In this equation, FO (fan-out) is dependent on NT (Neglect Time), the 

expected amount of time that a robot can be ignored before its perform-
ance drops below some acceptable threshold, and IT (Interaction Time) 
which is the average time it takes for a human to interact with the robot to 
ensure it is still working towards mission accomplishment. Figure 1 dem-
onstrates the relationship of IT and NT. 

1+=
+

=
IT
NT

IT
ITNTFO



 IT 

 Segment 
   IT+NT 

NT 

Can insert ITs 
for additional 
robots here 

 
Figure 1: The relationship of NT and IT for a Single Vehicle 

 
While originally intended for ground-based robots, this work has direct 

relevance to more general human supervisory control (HSC) tasks where 
operators are attempting to simultaneously manage multiple entities, such 
as in the case of UAVs. Because the fan-out adheres to Occam’s Razor, it 
provides a generalizable methodology that could be used regardless of the 
domain, the human-computer interface, and even communication latency 
problems.  However, as appealing as it is due to its simplicity, in terms of 
human-automation interaction, the fan-out approach lacks two critical con-
siderations: 1) The important of including wait times caused by human-
vehicle interaction, and 2) How to link fan-out to measurable “effective” 
performance. These issues will be discussed in the subsequent section.  

Wait Times 
Modeling interaction and neglect times are critical for understanding 

human workload in terms of overall management capacity. However, there 
remains an additional critical variable that must be considered when mod-
eling human control of multiple robots, regardless of whether they are on 
the ground or in the air, and that is the concept of Wait Time (WT). In 
HSC tasks, humans are serial processors in that they can only solve a sin-
gle complex task at a time [3, 4], and while they can rapidly switch be-
tween cognitive tasks, any sequence of tasks requiring complex cognition 
will form a queue and consequently wait times will build. Wait time occurs 
when a vehicle is operating in a degraded state and requires human inter-
vention in order to achieve an acceptable level of performance.  In the con-
text of a system of multiple vehicles or robots, wait times are significant in 
that as they increase, the actual number of vehicles that can be effectively 
controlled decreases, with potential negative consequences on overall mis-
sion success.  



Equation 2 provides a formal definition of wait time. It categorizes total 
system wait time as the sum of the interaction wait times, which are the 
portions of IT that occur while a vehicle is operating in a degraded state 
(WTI), wait times that result from queues due to near-simultaneous arrival 
of problems (WTQ), plus wait times due to operator loss of situation 
awareness (WTSA). An example of WTI is the time that an unmanned 
ground vehicle (UGV) idly waits while a human replans a new route. 
WTQ occurs when a second UGV sits idle, and WTSA accumulates when 
the operator doesn’t even realize a UGV is waiting. In (2), X equals the 
number of times an operator interacts with a vehicle while the vehicle is in 
a degraded state, Y indicates the number of interaction queues that build, 
and Z indicates the number of time periods in which a loss of SA causes a 
wait time. Figure 2 further illustrates the relationship of wait times to in-
teraction and neglect times. 
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Figure 2: Queuing wait times (a) versus situational awareness wait times (b) 

 
Increased wait times, as defined above, will reduce operator capacity, 

and Equation 3 demonstrates one possible way to capture this relationship. 
Since WTI is a subset of IT, it is not explicitly included (although the 
measurement technique of IT will determine whether or not WTI should be 
included in the denominator.) 
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While the revised fan-out (3) includes more variables than the original 

version, the issue could be raised that the additional elements may not pro-
vide any meaningful or measurable improvement over the original equa-



tion which is simpler and easier to model. Thus to determine how this 
modification affects the fan-out estimate, we conducted an experiment 
with a UAV simulation test bed, holding constant the number of vehicles a 
person controlled. We then measured all times associated with equations 1 
and 3 to demonstrate the predictions made by each equation. The next sec-
tion will describe the experiment and results from this effort. 

Experimental Analysis of the Fan-out Equations 
In order to study operator control of multiple UAVs, a dual screen simu-

lation test bed named the Multi-Aerial Unmanned Vehicle Experiment 
(MAUVE) interface was developed (Fig. 3). This interface allows an op-
erator to effectively supervise four independent homogeneous UAVs si-
multaneously, and intervene as the situation requires. In this simulation, 
users take on the role of an operator responsible for supervising four 
UAVs tasked with destroying a set of time-sensitive targets in a suppres-
sion of enemy air defenses (SEAD) mission. The left side of the display 
provides geo-spatial information as well as a command panel to redirect 
individual UAVs. The right side of the display provides temporal schedul-
ing decision support in addition to data link “chat windows” commonly in 
use in the military today [12]. Details of the display design such as color 
mappings and icon design are discussed elsewhere [13]. 

The four UAVs launched with a pre-determined mission plan, so initial 
target assignments and routes were already completed. The operator’s pri-

mary job in the MAUVE simulation was to monitor each UAV’s progress, 
replan aspects of the mission in reaction to unexpected events and in some 
cases manually execute mission critical actions such as arming and firing 
of payloads. The UAVs supervised by participants in MAUVE were capa-
ble of 6 high-level actions: traveling enroute to targets, loitering at specific 
locations, arming payloads, firing payloads, performing battle damage as-
sessment, and returning to base, generally in this order. 

Figure 3: The MAUVE Dual Screen Interface 



In the MAUVE simulations, flight control was fully automated as was 
the basic navigation control loop in terms of heading control. Operators 
were occasionally required to replan route segments due to pop-up threat 
areas so the navigation loop was only partially automated. As will be dis-
cussed in more detail next, the mission management autonomy was varied 
as an independent facto in the experiment.  

Levels of Autonomy 

Recognizing that the level of autonomy introduced in the mis-
sion/payload management control loop can significantly impact an opera-
tor’s ability to control multiple vehicles, and thus neglect, interaction, and 
wait times, we developed four increasing levels of decision support for the 
temporal management of the four UAVs: Manual, Passive, Active, and 
Super-active, which loosely correlate to the Sheridan and Verplank Levels 
[14] of 1, 2, 4, 6 (shown in Table 1). The manual level of decision support 
(Fig. 4a) presents all required mission planning information in a text-based 
table format.  It essentially provides tabular data such as waypoints, ex-
pected time on targets, etc., with no automated decision support.  It is rep-
resentative of air tasking orders that are in use by military personnel today. 

The passive LOA (Fig. 4b) represents an intermediate mission manage-
ment LOA in that it provides operators with a color-coded timeline for the 
expected mission assignments 15 minutes in the future. With this visual 
representation, recognizing vehicle states with regard to the current sched-
ule is perceptually-based, allowing users to visually compare the relative 
location of display elements instead of requiring individual parameter 
searches such as what occurs in the manual condition. 

The active LOA (Fig. 4c) uses the same horizontal timeline format as 
the passive automation level, but provides intelligent aiding. In the active 
version, an algorithm searches for periods of time in the schedule that it 
predicts will cause high workload for the operator, directing the operator’s 
attention towards them. High workload areas, or “bottlenecks,” are high-
lighted through a reverse shading technique while the rest of the colors are 
muted, but still visible. In addition to identifying areas of high workload, 
the computer also recommends a course of action to alleviate the high 
workload areas, such as moving a particular Time on Target (TOT). 

The super-active LOA (Fig. 4d) also builds upon the passive level visual 
timeline, but instead of making recommendations to the operator as in the 
active LOA, a management-by-exception approach is taken whereby the 
computer automatically executes the arming and firing actions when the 
rules of engagement for such actions are met, unless vetoed by the operator 
in less than 30 seconds (LOA 6, Table 1).  

 



Table 1: Levels of Automation 

Experiment Protocol 

Training and testing of participants was conducted on a four screen sys-
tem called the multi-modal workstation (MMWS) [15], originally designed 
by the Space and Naval Warfare (SPAWAR) Systems Center. The work-
station is powered by a Dell Optiplex GX280 with a Pentium 4 processor 
and an Appian Jeronimo Pro 4-Port graphics card. During testing, all 
mouse clicks, both in time and location, were recorded by software. In ad-
dition, screenshots of both simulation screens were taken approximately 
every two minutes, all four UAV locations were recorded every 10 sec-
onds, and whenever a UAV’s status changed, the time and change made 
were noted in the data file. 

A total of 12 participants took part in this experiment, 10 men and 2 
women, and they were recruited based on whether they had UAV, military 
and/or pilot experience. The participant population consisted of a combina-
tion of students, both undergraduates and graduates, as well as those from 
the local reserve officer training corps (ROTC) and active duty military 
personnel. All were paid $10/hour for their participation.  In addition, a 
$50 incentive prize was offered for the best performer in the experiment. 
The age range of participants was 20 – 42 years with an average age of 
26.3 years. Nine participants were members of the ROTC or active duty 

Automation 
Level Automation Description 

1 The computer offers no assistance: human must take all decision and 
actions. 

2 The computer offers a complete set of decision/action alternatives, or 

3 narrows the selection down to a few, or 

4 suggests one alternative, and 

5 executes that suggestion if the human approves, or 

6 allows the human a restricted time to veto before automatic execution, 
or 

7 executes automatically, then necessarily informs humans, and 

8 informs the human only if asked, or 

9 informs the human only if it, the computer, decides to. 

10 The computer decides everything and acts autonomously, ignoring the 
human. 



USAF officers, including 
seven 2nd Lieutenants, a Ma-
jor and a Lieutenant Colo-
nel. While no participants 
had large-scale UAV ex-
perience, 9 participants had 
piloting experience. The av-
erage number of flight hours 
among this group was 120. 

All participants received 
between 90 and 120 minutes 
of training until they 
achieved a basic level of 
proficiency in monitoring 
the UAVs, redirecting them 
as necessary, executing 
commands such as firing 
and arming of payload, and 
responding to online instant 
messages. Following train-
ing, participants tested on 
two consecutive 30 minute 
sessions, which represented 
low and high workload sce-
narios. These were random-
ized and counter-balanced 
to prevent a possible learn-
ing effect. The low replan-
ning condition contained 7 
replanning events, while the 
high replanning condition 
contained 13. Each simula-
tion was run several times 
faster than real time so an 
entire strike could take 
place over 30 minutes (in-
stead of several hours).  

Figure 4 a- d: Increas-
ing Levels of Decision and 
Action Support in Mauve 



Results and Discussion 

In order to determine whether or not the revised fan-out prediction in (3) 
provided a more realistic estimate than the original fan-out (1), the number 
of vehicles controlled in the experiment was held constant (four) across all 
levels of automation. Thus if our proposed prediction was accurate, we 
should be able to predict the actual number of vehicles the operators were 
controlling. As previously discussed, all times were measured through in-
teractions with the interface which generally included mouse movements, 
selection of objects such as vehicles and targets for more information, 
commanding vehicles to change states, and the generation of communica-
tion messages.  

Neglect time was counted as the time when operators were not needed 
by any single vehicle, and thus were monitoring the system and engaging 
in secondary tasks such as responding to communications. Because loiter 
paths were part of the preplanned missions, oftentimes to provide for 
buffer periods, loiter times were generally counted as neglect times. Loi-
tering was only counted as a wait time when a vehicle was left in a loiter 
pattern past a planned event due to operator oversight. Interaction time was 
counted as any time an operator recognized that a vehicle required inter-
vention and specifically worked towards resolving that task. This was 
measured by mouse movements, clicks, and message generations. The 
method of measuring NT and IT, while not exactly the same as [11], was 
driven by experimental complexity in representing a more realistic envi-
ronment. However, the same general concepts apply in that neglect time is 
that time when each vehicle operated independently and interaction time is 
that time one or more vehicles required operator attention. 

As discussed previously, wait times were only calculated when one or 
more vehicle required attention. Wait time due to interactions (e.g., the 
time it took an operator to replan a new route once a UAV penetrated a 
threat area) was subsumed in interaction time. Wait time due to queuing 
occurred when, for example, a second UAV also required replanning to 
avoid an emergent threat and the operator had to attend to the first vehi-
cle’s problem before immediately moving to the second. Wait time due to 
the loss of situation awareness was measured when one or more vehicles 
required attention but was not noticed by the operator. This was the most 
difficult wait time to capture since operators had to show clear evidence 
that they did not recognize a UAV required intervention. Examples of wait 
time due to loss of SA include the time UAVs spend flying into threat ar-
eas with no path correction, and leaving UAVs in loiter patterns when they 
should be redirected. 

Figures 5 and 6 demonstrate how the wait times varied both between the 
two fan-out equations as well the increasing levels of automation under 



low and high workload conditions respectively. Using the interaction, ne-
glect, and wait times calculated from the actual experiment, the solid line 
represents the predictions using (1), the dashed line represents the predic-
tions of (2), and the dotted line shows how many UAVs the operators were 
actually controlling, which was held constant at four.  

Low Workload Predictions 

Under the low workload condition, three important trends should be 
noted. Under the lower levels of automation for both the original and re-
vised fan-out equations, operator capacity was essentially flat, and a sig-
nificant increase was not seen until the use of a higher automation strategy, 
management-by-exception, was implemented. It is important to remember 
that the metric is time and not overall decision quality or performance.  
However, independent performance measures indicated that at the low 
workload level, operators were able to effectively control all four vehicles 
[16].  

The second trend of note is the fact that for the low workload condition, 
the revised fan-out model (3) provides a more conservative estimate of ap-
proximately 20% under that of the model that does not consider wait times 
(1). However, the third important trend in this graph demonstrates that for 
both (1) and (3) the predictions were much higher than the actual number 
of UAVs controlled. This spare capacity under the low workload condition 
was empirically observed, in that subjective workload measures (NASA-
TLX) and performance scores were statistically the same when compared 
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Figure 5: Low Workload Operator Capacity Predictions 



across all four levels of autonomy (lowest pair wise comparison p value = 
.111 (t = 1.79, DOF =8), and p=.494 (t = .72, DOF =8) respectively). 

Thus for the low workload condition across all levels of automation, op-
erators were underutilized and performing well. Thus they theoretically 
could have controlled more vehicles. Using the revised FO model (3) and 
under the manual, passive, and active condition, operators’ theoretical ca-
pacity could have increased by ~75% (up to 7 vehicles). Under the highest 
autonomy for mission management, predictions estimate operators could 
theoretically control as an upper limit. four times as many, ~17 vehicles 
[17]. Previous air traffic control (ATC) studies have indicated that 16-17 
aircraft are the upper limit for enroute air traffic controllers. Since control-
lers are only providing navigation assistance and not interacting with flight 
controls and mission sensors (such as imagery), the agreement between 
ATC enroute controller capacities and low workload for UAV operators is 
not surprising. 

High Workload Predictions 

While the low workload results and predictions suggest that operators 
are capable of controlling more than four vehicles in MAUVE, the results 
from the high workload scenarios paint an entirely different picture. The 
high workload scenarios were approximately double the workload over the 
low workload scenarios, and represent a worst case scenario. Performance 
results indicate that those operators with the active level of automation 
were not able to control their four UAVs effectively, but all other operators 
were wit varying degrees of success. As in the low workload condition, the 
revised fan-out model (3) is the more conservative and as demonstrated in 
Figure 6, more closely predicts the actual number of four vehicles assigned 
to each operator. Moreover, while under the low workload condition, the 
estimates of controller capacity dropped almost uniformly across automa-
tion levels by 20% for the original fan-out model. However, under high 
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Figure 6: High Workload Operator Capacity Predictions



workload, they dropped 36-67% for the model that includes wait times. 
The largest difference between conditions occurred for the active level of 
automation. In addition to the lower number of predicted vehicles, the ac-
tive condition produced statistically lower performance scores (e.g., t = 
2.26, DOF = 8, p = 0.054 for the passive-active comparison). This was at-
tributed to the inability of subjects in the active condition to correctly 
weight uncertainty parameters and is discussed in detail elsewhere [16]. 

As in the low workload results, subjects performed the best (in terms of 
time management) under the highest level of automation for mission man-
agement (super-active), with a theoretical maximum of seven vehicles. 
However, under this condition in the experiment, subjects exhibited auto-
mation bias and approved the release of more weapons on incorrect targets 
than for the passive and active levels. Automation bias, the propensity for 
operators to take automated recommendations without searching for dis-
confirming evidence, has been shown to be a significant problem in com-
mand and control environments and also operationally for the Patriot mis-
sile [18]. Thus increased operator capacity for management-by-exception 
systems must be weighed against the risk of incorrect decisions, by either 
the humans or the automation. 

Wait Time Proportions 

Figures 5 and 6 demonstrate that the inclusion of wait times in a predic-
tive model for operator capacity in the control of MUAVs can radically re-
duce the theoretical maximum limit. Figure 7 demonstrates the actual pro-
portions of wait time that drove those results. Strikingly, under both low 
and high workload conditions, the wait times due to the loss of situation 
awareness dominated overall wait times.  

This partitioning of wait time components is important because it dem-
onstrates where and to what degree interventions could potentially improve 
both human and system performance. In the case of the experiment de-
tailed in this chapter, clearly more design intervention, form both and 
automation and HCI perspective, is needed that aids operators in recogniz-
ing that vehicles need attention. As previously demonstrated, some of the 
issues are directly tied to workload, i.e., operators who have high work-
loads have more loss of SA. However, often loss of SA occurred because 
operators did not recognize a problem which could mitigated through bet-
ter decision aiding and visualization. 

 



 
  
 
 

Linking Fan-out to Operator Performance 
Results from the experiment conducted to compare (1) AND (3), the re-

vised fan-out model which includes wait times is both more conservative 
and closer to the actual number of vehicles under successful control.  
While under low workload, both the experiment and prediction indication 
that operators could have controlled more vehicles than four, the only high 
workload scenario in which operators demonstrated any spare capacity was 
with the super-active (management-by-exception) decision support. More-
over, wait time caused by the lack of situation awareness dominated over-
all wait time. In addition, this research demonstrates that both workload 
and automated decision support can dramatically affect wait times and 
thus, operator capacity.  

While more pessimistic than the original fan-out equation (1), the re-
vised fan-out equation can really only be helpful for broad “ballpark” pre-
dictions of operator capacity. This methodology could provide system en-
gineers with a system feasibility metric for early manning estimations, but 
what primarily limits either version of the fan-out equation is its inability 
to represent any kind of cost trade space. Theoretically fan-out, revised or 
otherwise, will predict the maximum number of vehicles an operator can 
effectively control, but what is effective is often a dynamic constraint. 
Moreover, the current equations for calculating fan-out do not take into ac-
count explicit performance constraints. In light of the need to link fan-out 
to some measure of performance, as well as the inevitability of wait times 
introduced by human interaction, we propose that instead of a simple 

Figure 7:  Wait Time Proportions 



maximum limit prediction, we should instead find the optimal number of 
UAVs such that the mission performance is maximized. 

 

The Overall Cost Function 
Maximizing UAV mission performance is achieved when the overall 

performance of all of the vehicles, or the team performance, is maximized. 
Consider multiple UAVs that need to visit multiple targets, either for de-
struction (SEAD missions as discussed previously) or imaging (typical of 
Intelligence, Search, and Reconnaissance (ISR) missions). A possible cost 
function is expressed in (4):  

 
C = Total_Fuel_Cost + Total_Cost_of_Missed_Targets + Total_Operational_Cost     (4) 

 
Total_Fuel_Cost is the amount of fuel spent by all the vehicles for the du-
ration of the mission multiplied by the cost of consuming that fuel. The 
Total_Cost_of_Missed_Targets is the number of targets not eliminated by 
any of the UAVs multiplied by the cost of missing a single target. The To-
tal_Operational_Cost is the total operation time for the mission multiplied 
by some operational cost per time unit, which would include costs such as 
maintenance and ground station operation costs.  This more detailed cost 
function is given in (5). 
 
C = cost_of_fuel*total_UAV_ distance + cost_per_missed_target * #_of_missed_targets  
+ operation_cost_per_time * total_time                  (5) 

 
In order to maximize performance, the cost function should be mini-

mized by finding the optimal values for the variables in the cost equation. 
However, the variables in the cost equation are themselves dependent on 
the number of UAVs and the specific paths planned for those UAVs. One 
way to minimize the cost function is to hold the number of UAVs variable 
constant at some initial value and to vary the mission routes (individual 
routes for all the UAVs) until a mission plan with minimum cost is found. 
We then select a new setting for the number of UAVs variable and repeat 
the process of varying the mission plan in order to minimize the cost. After 
iterating through all the possible values for the number of UAVs, the num-
ber of UAVs with the least cost and the corresponding optimized mission 
plan are then the settings that minimize the cost equation. As the number 
of UAVs is increased, new routing will be required to minimize the cost 
function. Thus, the paths, which determine time of flight, are a function of 
number of UAVs.  



Moreover, if a target is missed, then there is an additional, more signifi-
cant cost. When the number of UAVs planned is too low, the number of 
missed targets increases and hence the cost is high. When the number of 
UAVs is excessive, more UAVs are being used than required and thus ad-
ditional, unnecessary costs are incurred. We therefore expect the lowest 
cost to be somewhere in between those two extremities, and that the shape 
of the cost curve is therefore concave upwards1 (Figure 8). The profile in 
Figure 8 does not include the effect of wait times, and it does not take into 
account the interaction between the vehicles and the human operator.  
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Figure 8: Mission Plan Costs as a Function of Number of UAVs 

 
In terms of wait times, any additional time a vehicle spends in a de-

graded state will add to the overall cost expressed in (5). Wait times that 
could increase mission cost can be attributed to 1) Missing a target which 
could either mean physically not sending a UAV to the required target or 
sending it outside its established TOT window, and 2) Adding flight time 
through route mismanagement, which in turn increases fuel and opera-
tional costs. Thus, wait times will shift the cost curve upwards. However, 
because wait times will likely be greater in a system with more events, and 
hence more UAVs, we expect the curve to shift upwards to a greater extent 
as the number of UAVs is increased.  

In order to account for wait times in a cost-performance model, which 
as previously demonstrated is critical in obtaining a more accurate operator 

                                                      
1 Note that this claim is dependent on the assumption that the UAVs independ-

ently perform tasks. 



capacity prediction, we need a model of the human in our MUAV system, 
which we detail in the next section. 

The Human Model 
Since the human operator’s job is essentially to “service” vehicles, one 

way to model the human operator is through queuing theory. The simplest 
example of a queuing network is the single-server network shown in Fig-
ure 9.  
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Figure 9: Single Server Queue 

 
Modeling the human as a single server in a queuing network allows us 

to model the queuing wait times, which can occur when events wait in the 
queue for service either as a function of a backlog of events or the loss of 
situation awareness. For our model, we will model the inter-arrival times 
of the events with an exponential distribution, and thus the arrivals of the 
events will have a Poisson distribution. In terms of our model, the events 
that arrive are vehicles that require intervention to bring them above some 
performance threshold. Thus neglect time for a vehicle is the time between 
the arrival of events from that particular vehicle and interaction time is the 
same as the service time. 

The arrival rate of events from each vehicle is on average one event per 
each (NT+IT) segment. The total arrival rate of events to the server (the 
operator) is the average arrival rate of events from each vehicle multiplied 
by the number of vehicles. 

 
In terms of the service rate, by definition, the operator takes, on average, 

an IT length of time to process each event. Therefore assuming that the 
operator can constantly service events (i.e., does not take a break while 
events are in the queue): 

ITNT
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eventUAVsofrateArrival
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                                            (7) 

 
By using Little’s theorem, we can show that the mean time an event 

spends in the queue is: 

λµ
µ

λ

−
=Wq

 
For the purposes of our predictive model, we will assume that this wait 

time in the queue (Wq, eqn 8) includes both situation awareness wait times 
(WTSA) as well as wait times due to operator engagement in another task 
(referred to as WTQ in the previous section). 

Now that we have established our operator model based on queuing the-
ory, we will now show how this human model can be used to determine 
operator capacity predictions through simulated annealing optimization. 

Optimization through Simulated Annealing 
The model that captures the optimization process for predicting the 

number of UAVs that a single operator can control is depicted in Figure 
10. The optimizer takes in as input the number_of_UAVs, the mission de-
scription (including the number of targets and their locations), parameters 
describing the vehicle attributes (such as UAV speed), and other parame-
ters including the weights that are used to calculate the cost of the mission 
plan. The optimizer in our model (programmed in MATLAB®) iterates 
through the #_of_UAVs variable, applying a Simulated Annealing algo-
rithm to find the optimal paths plan, as described earlier. The #_of_UAVs 
with the smallest cost is then selected as that corresponding to the optimal 
setting. As previously discussed, the human is modeled as a server in a 
priority queuing system that services events generated by the UAVs ac-
cording to arrival priorities. The average arrival and service rates as well as 
their corresponding probabilistic distributions are as assumed earlier.  

We chose the simulated annealing (SA) technique for heuristic-based 
optimization. There were several benefits to selecting the SA technique 
over other optimization techniques. First, SA is a technique that is well 
suited to avoiding local minima, a property that is necessary when sub-
optimal solutions can exist whilst searching for the global optimum as is 
the case in evaluating different mission plans. Also, SA introduces ran-
domness such that the technique generates alternative acceptable solutions 
on different runs, hence allowing the system designer to seek alternative 
optimal designs when initial solutions are not feasible. Two limitations of 

(8)



SA are that problems with many constraints can be difficult to implement 
and that run times can be long. Our problem, however, is one of few con-
straints and hence their implementation was not an issue. Also, since opti-
mization takes place in mission planning stages and not in time-critical 
mission replanning, the long run times have a minimal adverse effect.  

 

 
Figure 10: Optimization Model 

 

Model Parameters, Constraints, and Variables 
The list of parameters established for the design process is presented in 

Table 2. We selected generic UAV capabilities that would be exhibited by 
small-to-medium size UAVs engaged in an ISR mission such as the Hunter 
or Shadow. Our cost function was discussed previously (5) and Table 3 de-
tails the constraints used in our model.  

 
Table 2: Optimization Parameters 
Name Unit Value 

Mission Data (includes number of tar-
gets, time on targets, and locations) - 5-10 targets 

UAV speed mi/hr 100 
UAV Endurance hr 5 
UAVs launch location Cartesian 0,0 
Cost_per_missed_target $/target 1500 
Cost_of_fuel_per_min $/min 10 
Cost_of_operations_per_min $/min 1 
NT min 32 
IT min 0.31 

 
 

                                                      
2 Interaction and neglect times were determined using the MAUVE interface 

described previously. 
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Table 3: Constraints for Simulated Annealing 
Constraints 

• A UAV cannot visit targets for which it cannot meet the 
times on target 

• Each UAV must visit at least one target 
• UAV routes must start and end at launch locations. 
• The total distance traveled by each UAV cannot exceed a 

maximum range parameter 

Results of Simulation 
We first investigated the cost-UAV number relationship for the theoreti-

cal best case in which the human operator is “perfect” and introduces no 
delays in the system. In Figure 11, the optimized cost is plotted against the 
number of UAVs variable, with a mission plan of 10 targets. As predicted, 
the curve is concave upwards and has a global minimum where the cost is 
minimized. 

 
 
We then proceeded to include the effect of the human operator and 

hence, wait times. It was assumed that during periods of wait times, UAVs 
loitered in the same spot and therefore maintained the same geographic lo-
cation on the map. In order to demonstrate how plan complexity could af-
fect the problem, we included three scenarios in which 5, 7, and 10 targets 
were represented, as depicted in Figure 12. 

Figure 12a shows the effect of a relatively simple mission with only 5 
targets. In general, the effect of wait times on the cost curve is minimal, 
i.e., the minimum theoretical best case is equal to that with the operator 
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Figure 11: Minimum Cost versus Number of UAVs  



wait time case. This is not un-
expected, since simple mis-
sions have a rather small sensi-
tivity to wait times. The 
simplicity of the missions does 
not overburden the operator 
who is operating in a robust 
cognitive state, and can ac-
commodate the wait times 
without incurring increased 
costs. 

Figure 12b demonstrates 
how the curves can shift as a 
function of increasing task 
complexity (7 versus 5 targets). 
The cost curves between the 
theoretical best case and the 
operator wait time model 
clearly deviate and the optimal 
number of UAVs that should 
be controlled decreases from 4 
to 3 UAVs. This is primarily 
due to the fact that the wait 
times generally affect the 
longer routes where the prob-
ability of missing targets in-
creases. 

The results for 10 targets are 
shown in Figure 12c, which 
demonstrate a significant di-
vergence from the theoretically 
perfect operator model and the 
model with wait times, espe-
cially beyond 5 UAVs. Inter-
estingly, as in the case with 5 
targets, the minimum cost oc-
curs at 2 UAVs for 10 targets. 
However, in the case of 5 tar-
gets, only 2 UAVs were 
needed to meet the operational 
requirements and the operator 
could meet this demand. How-

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

 

Cost curve  
with wait 

times included 

C
os

t 

Number of UAVs 

 

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

C
os

t 

Number of UAVs 

 

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 104

C
os

t 

Number of UAVs 

 

(a)

(b)

(c)

Figure 12: Cost curves with 
(a) 5 targets (b) 7 targets, 

and (c) 10 targets 



ever, with 10 targets, 2 UAVs became the minimum cost point because of 
operator limitations, i.e., the wait times incurred by controlling more vehi-
cles became unacceptably high. Thus, at the inflection point in these 
curves, the left region is primarily constrained by operational demands, but 
the right region is dominated by human performance limitations, specifi-
cally wait times, as seen in Figure 13. 
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Figure 13: Operational Demands vs. Human Limitations in Mission Planning 

 
Another interesting trend across the predictions in Figures 12a-c is the 

relatively flatness of the curves in the left region. For example, there is 
generally a plateau in performance such that dramatic increases are not 
seen in cost until more than 5 UAVs are managed.  In the case of 5 targets 
and up to 5 UAVs under control, costs increased at a rate of 33% per addi-
tional UAV. Beyond 5 UAVs, the mission increased at a rate of 74% per 
UAV, a much sharper increase, which suggests that operator performance 
is relatively robust up to 5 UAVs, at which point the operator is saturated 
and severely limits overall mission success. These graphs demonstrate that 
the more complex mission requirements added to the cognitive load of the 
operators, thus workload had to be reduced by reducing the number of 
UAVs under control. 

In terms of the fan-out and revised fan-out equations (1 & 3), using the 
same neglect and interaction times as in the cost-based simulation model 
(Table 2), as well as the wait times derived from the queuing theory model 



(8), the predictions are seen Figure 14. While the original fan-out esti-
mated would predict a constant 11 vehicles, given the wait times that 
would build given increasing numbers of UAVs under control, such that 
the optimal control point is 5 vehicles. Interestingly this number is very 
close to what was experimentally observed in the previously described ex-
periment. 
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Figure 14: Predictions Using Cost-Based Simulation Inputs 

 
 
Meta-Analysis of the Experimental and Model-

ing Prediction methods 

Two methods for determining maximum operator capacity for supervi-
sory control of multiple UAVs have been presented, both based on opera-
tor interactions and wait times for mission tasks, as well as neglect times 
during which one or more vehicles operate autonomously. The strengths 
and weaknesses of each method will now be discussed, as well as how 
these methods could be used synergistically. 

In the first method, the original fan-out equation that related operator in-
teraction and vehicle neglect times (1) was revised to include operator wait 
times (3). An experiment was conducted to determine if the revised fan-out 
predictions more closely matched actual human-in-the-loop control scenar-
ios. The results showed that the revised fan-out model produced more con-
servative estimates when modified to include wait times caused by human 
interactions, which include interaction wait time, wait time in the queue, 
and wait time due to the loss of situation awareness.  

While this temporal-based method for computing fan-out gives more 
conservative general estimates, it lacks the cost-benefit analysis trade 
space representation that can be found through optimization methods that 

Fan-out (1) 

Revised Fan-out (3) 



provide for sensitivity analysis. For example, in the experiment, it was es-
timated that operators could control 7-16 UAVs in a low workload sce-
nario, but only 3-7 vehicles in high workload settings. The ranges resulted 
from increasing levels of automation as an experimental independent vari-
able. Because these predictions were based on experimental data (which 
were discrete across four different levels of automation), there can be no 
post-hoc sensitivity analysis, only refining the experimental method and 
running more human subject trials, which is very expensive and labor in-
tensive.  

 In comparison, optimization methods such as the example presented 
here provide not only predictions for operator capacity but also directly 
link the capacity to a system performance measure, which was cost in our 
example. By developing the estimates through the fan-out approach, there 
is only the consideration of a vaguely defined threshold for acceptable op-
erator performance. Furthermore, there is no way to directly infer how this 
human performance affects the overall system, which is actually the more 
critical variable, particularly in command and control settings. Moreover, 
while it was very expensive in terms of experimental design for human 
subjects to examine mission complexity in terms of low and high work-
load, in the cost-based simulation method, mission complexity was repre-
sented by the number of targets, which was relatively not costly to alter. 
Thus, this type of prediction method allows for more specific and detailed 
predictions for operator capacity, as well as how the external environment 
(i.e., number of targets) will affect overall mission success. 

However, while the simulation estimations provide for multivariate sen-
sitivity analysis across operator and system performance metrics, one 
drawback is the inability to directly correlate the predictions to possible 
design interventions. As previously discussed, the cost-based simulation 
links the external environment to both operator and system performance, 
but it inherently lacks the ability to parse out which system parameters 
could and should be changed to improve operator and autonomy perform-
ance.  For example, in the SA model, all wait times are included in a single 
measure, however the wait times (interaction, queuing, and situation 
awareness) fundamentally have different causes. In addition, as demon-
strated in Figure 7, the different types of wait times can have dramatically 
different values and without the ability to model and see the separate ef-
fects of different wait time sources, it is not clear what design interventions 
could occur to mitigate them (such as improved decision support or in-
creased vehicle autonomy.) 



Moreover, a cost-based simulation cannot represent the impact of spe-
cific automation strategies on operator performance. It is often assumed 
that as autonomy levels increase (as depicted in Table 1), the need for hu-
man interaction decreases, and thus lowers system wait times. However, as 
can be seen in Figure 15, these assumptions are not always accurate. In the 

experiment previously discussed, we predicted that as system autonomy 
increased, wait times due to an operator workload queue (referred to as 
wait time in the queue in the previous section) would decrease. However, 
the dotted line demonstrates what queuing wait times were actually ob-
served, and there was clearly an anomaly with the active condition that 
corresponds to LOA 4 in Table 1. Described more in detail in [16], what 
was hypothesized to be a decision support tool to mitigate operator work-
load actually degraded operator performance and caused increased, instead 
of decreased, wait times. This insight was only gained through the experi-
mental derived interaction, neglect, and wait times. Because the SA opti-
mization approach and other similar stochastic approaches assume an a 
priori distribution (both in arrival rates and service times), if such simula-
tion methods are not used in conjunction with experimentally derived data, 
results are highly speculative and lack external validity.  

This last point about the problem with assumptions highlights an inher-
ent limitation to both methods: Estimating interaction, neglect, and wait 
times. As previously discussed, for the cost-based simulation, a distribu-
tion must be selected for wait times, and presently there is little theoretical 

Figure 15: Wait Times in the Queue across Levels of Automation 



or empirical basis for doing so. In addition, interaction and neglect times 
must be selected a priori and while these could be estimated from system 
design parameters, they are highly contextual and will likely dramatically 
change with different levels of autonomy, decision support, mission com-
plexity, operator training, etc. 

Similarly, even experimentally derived interaction, neglect, and wait 
times can be difficult to measure. Unfortunately the times and the associ-
ated costs (degraded performance, etc.) are very difficult to capture in per-
formance-based simulations such as the one reported in this study. These 
difficulties have also been identified in the control of multiple ground ro-
bots [26]. Through using software that tracked users’ cursor movements 
and activation of control devices, we were able to determine on a gross 
level when a subject was actively engaged with a particular UAV, but sub-
tle transitions are difficult to capture. The use of psychophysiologic meas-
urement devices may be of use in addition to performance-based measures 
but needs significantly more investigation.  

 
Conclusions 

With the recognition that intelligent autonomy could allow a single op-
erator to control multiple vehicles (including air, ground, and water), in-
stead of the converse which is true today, there is increasing interest in 
predicting the maximum numbers of autonomous vehicles an operator can 
control. A critical system architecture question is then how many vehicles 
could one operator control? While there are other methods that could be 
used to predict this number (e.g., cognitive modeling which suffers from 
the ability to represent highly complex systems, and simulations and ex-
periments with advanced prototypes, which suffer from exorbitant devel-
opment costs), we demonstrated, through two different methods, how this 
number can be estimated by considering the temporal elements of supervi-
sory control of multiple UAVs.  

In the first method, we demonstrated that past equations of fan-out omit-
ted important aspects of human interactions with multiple UAVs. We sug-
gest an alternative equation that captures some of these aspects using wait 
times. However, these temporal approaches to measuring fan-out are lim-
ited since these results are not explicitly linked to performance. In com-
parison, we used cost-based simulation model that links operator perform-
ance to both mission costs and complexity; however, it suffers from 
problematic assumptions and an inability to highlight specific areas for de-
sign interventions. 



While each method has strengths and weaknesses, they are not mutually 
exclusive. The two approaches can be synergistic in that temporal data 
gathered experimentally for initial rough estimates such as fan-out can 
provide more valid simulation models. Predictions then made through op-
timization simulations can be furthered refined through sensitivity analyses 
and appropriately focused human-in-the-loop experiments. In this way, ef-
fects of increasing UAVs and/or system autonomy can be seen on system 
performance as well as operator performance. In terms of application, this 
iterative approach to predicting operator capacity would likely provide the 
most benefit early in the systems engineering conceptual stages when un-
manned aerial systems are still in development and uncertainty in system 
parameters is high. 
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