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TASK-BASED INTERFACES FOR DECENTRALIZED MULTIPLE 
UNMANNED VEHICLE CONTROL 

Andrew S. Clare* and Mary L. Cummings† 

Enhanced autonomy in Unmanned Vehicles (UV) has given human operators 

the ability to move from teleoperation to supervisory control of single vehicles, 

and now multi-vehicle coordination. This research seeks to leverage task-based 

interfaces, where the human operator guides a fleet of decentralized UVs via 

high-level goals as opposed to individual vehicle control. In such decentralized 

control architectures, each vehicle computes its locally best plan to accomplish 

the mission goals with shared information. The results of two experiments are 

described where 62 participants performed multi-UV missions in an existing de-

centralized multiple unmanned vehicle simulation environment under increasing 

task load. Results suggest that a system which uses a task-based interface and 

decentralized control algorithms may be robust to task load increases by mitigat-

ing operator cognitive overload. 

INTRODUCTION 

A future concept of operations for controlling Unmanned Vehicles (UVs) is one of a single, 

operator supervising multiple, heterogeneous (air, sea, land) UVs.
1
 Many modern UVs can 

execute basic operational and navigational tasks autonomously and can collaborate with other 

UVs to complete higher level tasks, such as surveying a designated area.
2, 3

  Numerous automated 

path-planning and scheduling algorithms have been developed recently to aid operators with 

scheduling tasks for multiple UVs.
4-10

 In the presence of unknown variables, possibly inaccurate 

information, and changing environments, however, automated scheduling algorithms do not al-

ways perform well. Though fast and able to handle complex computation far better than humans, 

computer optimization algorithms are notoriously “brittle” in that they can only take into account 

those quantifiable variables identified in the design stages that were deemed to be critical.
11, 12

 

Thus, human management of automated planners is crucial and operators will need to compre-

hend a large amount of information while under time pressure to make effective decisions in dy-

namic environments. 

One significant concern in this concept of operations is the potential high workload for the 

operator, and possible negative performance consequences. Previous research in human supervi-

sory control of multiple unmanned vehicles has shown that under centralized, vehicle-based con-

trol, increasing task load can lead to operator cognitive overload and performance degradation.
13, 

14
 To address this concern, we seek to leverage task-based interfaces, where the human operator 
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only guides the high-level goals of the team of UVs (as opposed to guiding each individual ve-

hicle), and a decentralized control architecture, where each vehicle computes its locally best plan 

to accomplish the mission goals with shared information. As opposed to a centralized algorithm, 

where all decisions are made by a single agent, the decentralized framework is robust to a single 

point of failure, since no single agent is globally planning for the fleet.
15

 Plans can be carried out 

even if communication links with the human operator are intermittent or lost. The architecture is 

scalable, since adding additional agents also adds computational capability.
16

  

The set of experiments described in this paper investigates whether task-based decentralized 

control can mitigate cognitive overload under increasing task load.  The rest of this paper is orga-

nized as follows. The Experimental Test Bed section describes the multiple unmanned vehicle 

simulation environment with a task-based control interface and decentralized algorithms for ve-

hicle routing and task allocation used in this research. The Methodology section describes the set 

of experiments run with different task loads to compare operator workload and system perfor-

mance.  Finally, the results of the experiments are analyzed and conclusions are drawn. 

EXPERIMENTAL TEST BED 

This effort utilized a collaborative, multiple UV simulation environment called Onboard Plan-

ning System for UVs Supporting Expeditionary Reconnaissance and Surveillance (OPS-USERS), 

which leverages decentralized algorithms for vehicle routing and task allocation. This simulation 

environment functions as a computer simulation but also supports actual flight and ground capa-

bilities.
17

 All the decision support displays described here have operated actual small air and 

ground UVs in real-time. 

Operators controlled multiple, heterogeneous UVs for the purpose of searching the area of in-

terest for new targets, tracking targets, and approving weapons launch. All targets were initially 

hidden, but once a target was found, it was designated as hostile, unknown, or friendly, and given 

a priority level by the user. Hostile targets were tracked by one or more of the vehicles until they 

were destroyed by a Weaponized Unmanned Aerial Vehicle (WUAV). Operators had to approve 

all weapon launches. Unknown targets were revisited as often as possible, tracking target move-

ment.  A primary assumption was that operators had minimal time to interact with the displays 

due to other mission-related tasks. Icons represent vehicles, targets, and tasks, and the symbols 

are consistent with MIL-STD 2525
18

. 

 

Figure 1. The Map Display. 
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Provided with intelligence via a text messaging “chat” box, the operator had the ability to re-

designate unknown targets or create search tasks for emergent targets. The primary interface used 

by the operator is a Map Display, shown in Figure 1. Operators had two exclusive tasks that could 

not be performed by automation: target identification and approval of all WUAV weapon 

launches. Operators created search tasks, which dictated on the map those areas the UVs should 

specifically search. Operators also had scheduling tasks in that they dictated when certain tasks 

should occur. These were performed in collaboration with the automation such that when the 

planner recommended schedules, operators accepted, rejected, or modified these plans. 

A task-based, decentralized implementation was chosen for the planner to allow rapid reaction 

to changes in the environment.
15

 The decentralized task planner used in OPS-USERS is the Con-

sensus Based Bundle Algorithm (CBBA), a decentralized, polynomial-time, market-based proto-

col that can generate new schedules on the order of seconds.
16

 The human operator provides high-

level task-based control, as opposed to more low-level vehicle-based control, by approving which 

tasks should be completed by the vehicles. The list of operator-approved tasks is referred to as a 

strategic-level plan.   

In such architectures, operators do not directly individually task a single vehicle. When appro-

priate, the decentralized task planner can modify the tactical-level plan (at the vehicle level) 

without human intervention, which includes changing the task assignment without affecting the 

overall plan quality (i.e., agents switch tasks).  The CBBA algorithm is able to make these local 

repairs faster through inter-agent communication than it could if it had to wait for the next update 

from the human operator.  The architecture is scalable, since adding additional agents also adds 

computational capability, and the decentralized framework is robust to a single point of failure, 

since no single agent is globally planning for the fleet.
16

     

Operators were shown the results of the scheduling algorithm through a decision support inter-

face, called the Schedule Comparison Tool (SCT), shown in Figure 2. The display showed the 

high-level performance metrics of each schedule, as well as unassigned high, medium, and low 

priority tasks that could not be completed by one or more of the vehicles. If the operator was un-

happy with the automation-generated schedule, he or she could create new tasks or ask the auto-

mation to prioritize a particular task, in effect forcing the decentralized algorithms to re-allocate 

the tasks across the UVs. Details of the interface design and usability testing are provided in pre-

vious research.
19

 

 

Figure 2. The Schedule Comparison Tool (SCT). 
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METHODOLOGY 

Task load is defined as the level of tasking that an operator is asked to perform.  In contrast, 

operator workload is defined as the mental resource demand experienced by the operator as a 

function of task load.
20

 We hypothesize that under increasing task load, operators controlling a 

team of UVs can avoid high mental workload (cognitive overload) by manipulating the strategic-

level plan of the UVs with the assistance of decentralized planning algorithms.  The human op-

erator provides high-level task-based control, as opposed to more low-level vehicle-based con-

trol, since the operator cannot directly individually task a single vehicle. 

To examine this hypothesis, we compared results from a previous moderate task load study 

with 31 participants,
21

 to a new high task load experiment with 31 different participants. Both 

studies had the same objective to search for new targets, track those targets, and destroy hostile 

targets with 3 heterogeneous UVs and a WUAV, and all scenarios lasted 10 minutes.  To provide 

additional control for task load in each study, operators were prompted to view automation-

generated schedules as seen in Figure 2 at prescribed intervals of either 30 or 45 seconds.  Chang-

ing the rate of prompts to use the SCT modulates the task load of the operator, such that 30s rep-

lan intervals induce higher workload than the 45s intervals. These intervals have been validated in 

a previous study.
21

 The replanning prompt was given through the green illumination of the replan 

button (Figure 1) and an aural replan alert sounded when a schedule was available that the auto-

mation deemed better than the current schedule. This Replan Prompt Interval served as one of the 

independent variables in the two experiments. 

Increasing Task Load Levels between the experiments served as the other independent varia-

ble, with a high and a medium task load experiment.  The high task load experiment had double 

the number of targets as the medium (20 vs. 10), 11 of which were hidden from the UVs at first 

and became available to be found throughout the scenario.  In addition, the UVs traveled 5 times 

faster in the high task load experiment and operators received 71% more chat messages that either 

provided intelligence information updates or Situational Awareness (SA) questions requiring op-

erator response. The average number of tasks required to be done per minute for the 4 scenarios 

(two task load levels at two replan intervals) are shown in Table 1, showing that the high task 

load experiment had 90% higher task load than the medium task load experiment. 

Table 1. Average Tasks Required Per Minute Across the Four Scenarios. 

Task Load Level 
Replan Prompt 

Interval (s) 

Average Tasks 

Required Per 

Minute 

Medium 
45 3.96 

30 4.05 

High 
45 7.30 

30 7.90 

 

In order to familiarize each subject with the interfaces in Figures 1 and 2, a self-paced, slide-

based tutorial was provided, which typically took subjects approximately twenty minutes to com-

plete. Then, subjects had a ten-minute practice session during which the experimenter walked the 

subject through all the necessary functions to use the interface and to develop schedules before 
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accepting them. Each subject was given the opportunity to ask the experimenter questions regard-

ing the interface and mission during the tutorial and practice session. 

Each subject experienced the different Replan Prompting Intervals in a counterbalanced and 

randomized order to control for learning effects. The total subject population of both experiments 

consisted of 62 subjects: 44 men and 18 women.  Ages ranged from 19 to 67 years with a mean of 

25.3 years and standard deviation of 7.7 years. 

RESULTS 

An Analysis of Variance (ANOVA) model was used for parametric dependent variables (α = 

0.05). For dependent variables that did not meet ANOVA assumptions, non-parametric analyses 

were used. 

Workload Metrics 

Workload was measured via a utilization metric (i.e., percent busy time) because utilization 

has proven to be sensitive to changes in workload in similar multiple tasking, time-pressured sce-

narios.
22, 23

 Operators were considered “busy” when performing one of the following tasks: creat-

ing search tasks to specify locations on the map where UVs must search for targets; identifying 

targets by looking at the imagery and designating a target type and priority level; approving wea-

pons launches on hostile targets; chat messaging with the virtual, remote command center; and 

replanning in the SCT.  

As expected, there was a significant difference in utilization between the Task Load Levels 

(F(1, 120) = 252.732, p < 0.001) and also a significant difference between the Replan Prompting 

Intervals, F(1, 120) = 4.312, p = 0.040.  Operators were working harder under higher task loads, 

as shown in Figure 3, with a 48% difference between the medium and high Task Load Level ex-

periments.  It should be noted that despite task load nearly doubling, operators never achieved 

complete cognitive overload (defined for this paper as 100% utilization, or percent busy time) 

during the mission, with a maximum utilization of 89.8%. Thus, even though their task load in-

creased by 90%, their workload only increased by 48%. 

Finally, operators provided subjective ratings of their workload after each scenario on a Likert 

scale from 1-5.  The average rating was 2.8 in the medium task load experiment and 3.6 in the 

high task load experiment, a significant difference with non-parametric testing (p < 0.001).  These 

results confirm that operators recognized that they were working harder under higher task load. 

 

Figure 3. Utilization Over Increasing Task Loads. 
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System Performance Metrics 

The mission performance dependent variables included two weighted performance scores, a 

Target Finding Score (TFS) and a Hostile Destruction Score (HDS) that accounted for differences 

in available targets and different speeds and distances covered by the UVs in the two different 

experiments.  Equations 1 and 2 show the formulas for calculating the TFS and HDS respectively: 

 
  

  
 
   

   
   

 
  (1) 

 
  

  
 
      

   
   

 
  (2) 

Where: 
 n = Total Number of Vehicles 

 v = Speed of Vehicles 

 T* = total number of targets available in simulation (10 in medium task load, 20 in high task load) 

 H* = total number of hostile targets available in simulation (5 or 10 targets) 

 T = total number of targets found during simulation 

 H = total number of hostile targets destroyed during simulation 

 fi = Time in seconds that target i was found (set to 0 if never found) 

 ai = Available time = MAX(time target was designated as hostile via chat; time target was uncloaked) 

 di = Time in seconds that a hostile target was destroyed (set to 0 if never destroyed) 

These new metrics were developed to measure the combined human-computer system’s effi-

ciency at either finding or destroying targets.  The metrics represent the average distances tra-

veled to find or destroy a target, normalized by the target density of the scenario.  A lower score 

indicates better performance in either finding targets or destroying hostile targets.  The results for 

both TFS and HDS are shown in Figure 4, showing that there were significant decreases in per-

formance with higher task load.   

 

    (a) Target Finding Score (TFS)                (b) Hostile Destruction Score (HDS) 

Figure 4. System Performance Metrics Over Increasing Task Loads. 

Significant differences were found in TFS for both Task Load Level (F(1, 120) = 128.334, p < 

0. 001) and Replan Prompting Interval (F(1, 120) = 15.363, p < 0.001). There was also a signifi-

cant interaction effect for TFS between Task Load Level and Replan Prompting Interval, F(1, 

120) = 17.935, p < 0.001.  This is a notable result, in that the TFS improved significantly when 

moving from the 45 second Replan Prompting Interval to the 30 second Replan Prompting Inter-
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val in the medium Task Load Level experiment, but the same results did not occur in the high 

Task Load Level experiment.  A comparison of the data from the 30 and 45 second Replan 

Prompting Interval scenarios in the medium Task Load Level experiment showed that operators 

found fewer targets in the 30 second Interval scenario (51% vs. 62% for the 30s and 45s intervals 

respectively), but the average time to find those few targets was lower (79 seconds into the simu-

lation on average compared to 156 seconds). Operators in the 30s interval found targets early in 

the simulation and did not find many more later on, while operators in the 45s interval continued 

to find targets throughout the simulation. This difference in the average time to find a target did 

not occur in the high Task Load Level experiment because of the higher target density (20 targets 

vs. 10 targets, which caused the average time to find the target to drop to ~110s). 

For HDS, there was a significant difference between Task Load Levels (F(1, 120) = 39.637, p 

< 0.001), but no significant differences between Replan Prompting Intervals (F(1, 120) = 0.079, p 

= 0.779).  While the task load was a primary performance driver for HDS, the rate at which the 

replanning requests alerted the operator did not affect performance. This is expected since there 

were fewer destroy events as compared to search events. 

As expected, performance scores decreased with higher task load.  The TFS decreased on av-

erage 42% from the medium to high Task Load experiments and HDS decreased 30%.  While 

these are fairly substantial performance decrements, it should be considered that again, task load 

increased by 90%, so there was not an associated linear decrease in performance. A previous ex-

periment with centralized, vehicle-based control has shown average decrements of 28% in mis-

sion performance and 32% in system performance efficiency over an increase in task load of only 

43%.
13

 Thus, the task-based, decentralized control showed comparable performance decrements 

to centralized, vehicle-based control despite a more than double increase in task load. 

CONCLUSION 

A set of experiments was conducted to determine whether a task-based control interface and a 

decentralized UV architecture could mitigate cognitive overload and performance degradation 

under increasing task load.  Under task-based, decentralized control, a human operator provides 

high-level control by approving which tasks should be completed by the team of vehicles without 

directly individually tasking a particular vehicle. Then the decentralized network of vehicles 

chooses how to allocate the approved tasks among themselves and can make tactical-level 

changes on their own, such as switching tasks. The architecture is scalable, since adding addition-

al agents also adds computational capability, and the decentralized framework is robust to a sin-

gle point of failure, since no single agent is globally planning for the fleet.     

Experimental results showed that with a task-based, decentralized control system, increasing 

task load by 90% led to an operator workload increase of only 48%.  The increase was not as 

dramatic as might be expected from almost doubling the task load of the operator.  Also, cogni-

tive overload (defined for this paper as 100% utilization, or percent busy time) was not seen, sug-

gesting that a task-based, decentralized control system may be robust to high task load situations.  

Additionally, with the 90% increase in task load, system performance decreased by only 30-42%, 

so there was not an associated linear decrease in performance. 

These results have important implications for the types of interfaces and algorithms that 

should be employed in future UV systems. A task-based, decentralized control system can possi-

bly achieve superior workload mitigation under high task loads with comparable system perfor-

mance as compared to a vehicle-based, centralized control system.  Preventing high workload 

situations in a command and control environment is crucial for maintaining system performance 

and preventing costly or deadly errors.  Also, the scalability and robustness to failure of decentra-
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lized networks will be essential for larger fleets of coordinated UVs in the future.  Task-based 

control interfaces and decentralized algorithms for vehicle routing and task allocation hold signif-

icant promise for future human supervisory control systems. 
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