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As the paradigm of operators supervising multiple unmanned vehicles becomes increasingly realizable, the 
impact on operator situational awareness of such a paradigm shift becomes very important. Quantifying the effects 
of alternate team configurations and system designs in terms of their impact on situational awareness is currently 
expensive, requiring time-consuming user studies. This paper presents an alternate method by which to study the 
impact on situational awareness in multi-UV control using a discrete event simulation model. A by-product of 
correctly quantifying operator situational awareness is the ability to use data to more accurately predict metrics such 
as mission performance and operator utilization. The paper also presents results from a user case study that was used 
to validate the effectiveness of using the discrete event simulation model to capture the effects on situational 
awareness as the size of the unmanned vehicle team being supervised is varied. 

 
 
 

 

INTRODUCTION 

N order to achieve the military’s future goal of one operator 
controlling multiple unmanned vehicles (UVs),  the human 
operator’s responsibility will shift from manually 

controlling vehicles to managing vehicles at the supervisory 
control level. Human supervisory control consists of  higher-
level tasking initiated by the human but delegated to the 
automation onboard the unmanned vehicles (Sheridan, 1992). 
Reduced workload afforded by supervisory control has several 
ramifications. An important and desired implication is the 
increase in operator idle time, which can be used to allow 
operator supervision of multiple vehicles simultaneously, 
hence inverting the current many-to-one ratio of operators to 
vehicles.  

The possibility of a paradigm inversion has led researchers 
to examine the capacity of single operators to supervise 
multiple unmanned vehicles (Cummings et al., 2007; Olsen & 
Wood, 2003; Ruff et al., 2002). Earlier models of operator 
interaction with multiple vehicles allowed for the estimation 
of upper-bounds for the number of vehicles that can be 
supervised. However, such models assumed a serial arrival of 
requests for interaction from the vehicles as well as efficient 
operators that respond to requests for interaction 
instantaneously.  

Since these assumptions are difficult to meet, the effects of 
having parallel arrival of requests for interaction as well as 
imperfect operators need to be accounted for.  The first of 
these, parallel arrival of requests, has been addressed in 
general in scheduling theory and more specifically in work by 
Mau and Dolan (2006). 

This paper utilizes a queuing model (Nehme et al., in 
submission) to show how the effects of imperfect operator 
situational awareness (SA) can be estimated using a 
simulation-based approach. 

 

BACKGROUND 

Although there have been several models introduced in 
the literature  (Crandall et al., 2005; Olsen & Goodrich, 2003) 
for capturing the temporal aspects of the operators supervising 
multiple unmanned vehicles, these models have generally 
lacked the capacity to capture the effects of degraded SA. One 
drawback to this earlier work is the lack of accounting for 
human interaction delays and decision making inefficiencies.  

The concept of Wait Times (WT) is an additional critical 
variable that is needed when modeling human control of 
multiple vehicles (Cummings & Mitchell, in press; Cummings 
et al., 2007). Although it is possible for human beings to 
multi-task, humans act as serial processors in that they can 
only solve a single complex task at a time (Broadbent, 1958; 
Welford, 1952). Even though it is possible for operators to 
rapidly switch between cognitive tasks, any sequence of tasks 
requiring complex cognition will form a queue and 
consequently, wait times will build (Cummings & Mitchell, in 
press; Cummings et al., 2007). Wait times can occur when 1) a 
vehicle is neglected while the operator is busy interacting with 
another vehicle, and/or 2) when an operator requires re-
orientation time while switching between vehicles, and/or 3) 
when a vehicle is neglected due to lack of operator situation 
awareness.  
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To determine the effect of wait times on an operator’s 
ability to supervise multiple unmanned vehicles, Cummings et 
al. (2007) conducted an experiment with a UAV simulation 
test bed, holding constant the number of vehicles a person 
controlled. Cummings et al. (2007) showed that by using the 
wait times measured from the experiments, more conservative 
predictions for the number of vehicles that can be supervised 
resulted. Under both low and high workload conditions, the 
wait times due to the loss of situation awareness dominated 
overall wait times. The rest of this paper will introduce a 
discrete event simulation model that allows for the capturing 
of these wait times, and for the capturing of the effects such 
wait times have on mission performance and operator 
utilization.  

 

SIMULATION MODEL 

In this section, a discrete-event simulation (DES) model 
(Nehme et al., in submission), presented in Figure 1, is 
introduced that includes a) a queuing model of the human 
operator supervising multiple UVs, and b) a component for the 
ability to measure overall system performance. 

Overview 

The DES model was constructed under the assumption 
that the operator is acting in a supervisory control mode and 
that the different vehicles in the team are highly autonomous. 
By this assumption, this model is to be used to model 
operators whose role is that of a mission manager and whose 
task is to increase the performance of the unmanned vehicle 
mission. Also, the vehicles being supervised should, for the 
most part, have a predetermined plan functioning 
independently of the human, requiring necessary operator 
interaction only for tasks that require human judgment and 
reasoning. The operator can, however, attend to a vehicle even 
if the vehicle has not generated a task that requires human 
judgment and reasoning by initiating a re-plan that could 
potentially lead to improved performance. For example, in the 
case of an unmanned aerial vehicle that is assigned a 
reconnaissance task, the operator could re-plan the 
automation-generated vehicle path to better meet timing 

constraints. 
The operator model is based on the single server queue 

architecture (Figure 2). An event in this queuing model 
represents tasks to be attended to by the operator. There are 
two main event types that are included in the model; a) events 
generated by the vehicles due to the arising of tasks that 
require human judgment and reasoning, and b) events that the 
operator induces by deciding to re-plan a vehicle’s existing 
plan. 

The operator can attend to only one event at a time and 
this is captured by the single-server architecture; any events 
that arrive while the operator is busy will have to wait in the 
queue. This model allows for the capturing of operator 
interaction with the UVs through the servicing of those events 
that are arriving to the queuing system. 

In this model, the arrival rate of vehicle-generated events 
is both a function of the rate at which events are generated by 
the vehicles as well as the timeliness by which they are 
noticed by the operator (which is a function of SA). The rest 
of this section will focus on this aspect of the operator model. 
For the definition of service times and for an explanation of 
the performance model, please refer to the complete model 
description presented in Nehme et al. (Nehme et al., in 
submission).  

Arrival Rate of Vehicle-Generated Events 

There is one event stream per vehicle. Considering just 
one of these streams, stream i, a vehicle-generated event 
arrives to the system if vehicle i  generates a task that requires 
operator judgment/reasoning and the operator notices vehicle 
i’s request. Before continuing its mission and generating other 
events, a vehicle that has already generated an event must first 
wait for operator attention; no new events corresponding to a 
vehicle can be generated while an event associated with that 
same vehicle already exists in the system. Thus, inter-arrival 
times for vehicle-generated events are the times between the 
completion of service for an event and the arrival of the next 
event. These inter-arrival times are described by a random 
variable (Λi) which has a particular probability distribution. 
The distribution of Λi is a function of two main components; 
a) the distribution of the random variable that describes the 
time following a service that it takes a vehicle to generate an 
event and, b) operator loss of SA (Equation 1). 
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iii XX *χ+=Λ                                  (1) 

 
The first term in Equation 1, Xi, is the random variable 

that describes the inter-arrival times between tasks that require 
operator judgment and reasoning. The probability distribution 
describing Xi is a function of the vehicle’s autonomy, task 
complexity, and the environment of operation. Since the 
generation of a task by a vehicle does not necessarily imply 
that the operator notices the generated task, the first term 
excludes any effects due to loss of SA. 

The second term in Equation 1, χ*Xi, represents the 
penalty due to operator loss of SA, with χ taking a value of 
zero when the operator has complete SA and higher χ 
indicating degraded SA. The effect of low SA (i.e., high χ) is 
to create additional vehicle wait time (WTSA) which increases 
Λ, due to the operator taking longer to notice the vehicle 
(Cummings et al., 2007). The χ variable is multiplied by X to 
capture the dependence of the size of the penalties due to loss 
of SA on the rate at which the vehicle generates tasks that 
require operator intervention. Vehicles that produce tasks 
infrequently are serviced less often, and are therefore more 
likely to be overlooked than vehicles that are serviced more 
frequently. 

Situational Awareness 

SA is defined as the combination of perception of elements 
in the environment, the comprehension of their meaning, and 
the projection of the their status in the future (Endsley, 1995). 

To capture SA, this model builds on an assumption that SA 
is related to operator utilization  (Endsley, 1993). When 
operators are under high levels of utilization, it is assumed that 
they are too busy to accumulate the information that is 
required to build SA. At the same time, when operators are 
under-utilized, it is presumed that due to a low level of arousal 
and complacency, they could overlook information from the 
environment, which would also lead to low SA. 

In the DES, the χ variable in Equation 1 is related to 
operator utilization through a parabolic function that is 
concave upwards (Figure 3). This implies that at both high and 
low operator utilization, χ increases according to a quadratic 

law and therefore increases Λ correspondingly. The parabolic 
relationship is inspired by the Yerkes Dodson Law (Yerkes & 
Dodson, 1908), which relates operator utilization to 
performance.  

The size of the penalties at different utilization levels is 
dependent on the exact shape of the χ curve which is 
completely defined by providing a value for 3 different 
parameters. The first of these parameters is the point about 
which the curve is centered (CP) which represents the 
utilization level where the SA penalty is zero. The second 
parameter, IP, is the width of the interval around CP which also 
has zero SA penalties (if IP is zero, then the penalty is zero 
only at CP utilization and the χ curve is a parabolic curve). 
Finally, the third parameter, SF, is a scaling parameter that 
affects the magnitude of the penalties that can be incurred. In 
the case of a symmetric curve, χ takes on the value SF at the 
0% and 100% utilization levels. 

Next, a user study was conducted and the results were 
compared to predictions from the DES model while varying 
the shape of the χ curve. The aim was to conduct a preliminary 
investigation into the usefulness of the SA model while 
varying its properties. 

  

CASE STUDY 

Predictions from the model were compared to results from 
an operator-in-the-loop experimental study simulating a 
search-and-rescue mission. The experimental study and model 
parameters are discussed below. 

Software Test-bed 

The human-UV team was assigned the task of removing 
as many objects as possible from the maze in an 8-minute time 
period. The objects were randomly spread throughout the 
maze in initially unknown locations.  However, as each UV 
moved about the maze, more of the map was revealed to the 
participant. There were 22 possible objects to collect during a 
session. 
       Removing an object from the maze involved a three-step 
process. First, a UV moved to the location of the object in the 
maze (i.e., target designation, mission planning, path planning, 
and UV monitoring). Second, the UV collected the object (i.e., 
sensor analysis and scanning). In the real world, performing 
such an action might require the human operator to assist in 
identifying the object with video or laser data. To simulate this 
task, users were asked to identify a city on a map of the 
mainland United States using Google Earth-style software. 
Third, the UV carried the object out of the maze via one of 
two exits. 

The human-UV interface was composed of a two-screen 
display (Figure 4). The maze was displayed on the left screen 
which contained the positions of the UVs and the currently 
visible objects in the maze. The right screen displayed the map 
that was used to locate the cities. When a user desired to 
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control a certain UV, s(he) clicked a button on the interface 
corresponding to that UV. The participant could then direct 
the UV by designating a goal location and/or modifying the 
UV’s current trajectory. 

Since the maze was not fully known, a UV had to choose 
between (a) moving along the shortest path of the known maze 
to its user-specified goal and (b) exploring the unknown 
portions of the maze in hopes of finding a shorter path. 

Two different versions of UV autonomy were employed 
in the user study.  In the first condition, called the no-decision 

support (NDS) condition, each UV’s goal destination was 
determined completely by the human operator. Once the UV 
arrived at its user-defined goal destination, it did not move 
again until it received a new command from the user.   

In the second condition, called the full-decision support 
(FDS) condition, each UV automatically selected a new goal 
when it was left idle (a management-by-exception level of 
automation was used). Additionally, if the user did not 
intervene, UVs automatically chose to exit the maze via the 
(estimated) nearest exit in the final 45 seconds of a session. 
The FDS condition also had one other additional decision 

support tool to assist the user in locating cities on the map (to 
“pick up” objects).  This decision support tool decreased the 
search time for a city on the map by about 5 seconds on 
average. 

Experimental Procedure 

This was a 2x4 mixed factorial study. The decision 
support conditions (NDS or FDS) was a between subjects 
factor.  UV team size was a within subjects factor; each 
participant performed the search-and-rescue mission for team 
sizes of two, four, six, and eight UVs. The order in which the 
participants used each team size was randomized and counter-
balanced throughout the study. After training on all aspects of 
the system, subjects then completed three comprehensive 
practice sessions. Following these practice sessions, each 
participant performed four test sessions (each with a different 
team size). Participants were paid $10 per hour; the highest 
scorer also received a $100 gift certificate. Thirty-two 
participants between the ages of 18 and 45 (mean 24.4 years 
old) participated in the study, 16 in each condition. 

Model Parameters 

To compare the DES model results to the human-on-the-
loop experimental results, events in the case study 
corresponding to those described in the DES model were 
identified. Five data sets were measured from the experimental 
data: 1) arrival rate of vehicle-generated events after the UV 
was serviced for a vehicle-generated event, 2) arrival rate of 
vehicle-generated events after the UV was serviced for an 
operator-induced event, 3) service times of vehicle-generated 
events, 4) arrival rate of operator-induced events, and 5) 
service times of operator-induced events. The data sets 
collected were then used to generate random distributions that 
were used by the model. 

The complete model of the human-UV team also requires 
a performance model. In the user study, the team scored points 
when an object was removed from the maze. In the NDS 
condition, this required two vehicle-generated events to occur 
(goal-assignment and locating a city).  Thus, the DES Model 
awarded a point for the servicing of every two vehicle-
generated events.  In the NDS condition, only one vehicle-
generated event (locating a city) needed to be performed.  
Thus, in this condition, the DES Model awarded a point for 
every serviced vehicle-generated event. 

  

RESULTS 

Using the random distributions generated from the service 
rates, re-planning rate and inter-arrival times, 10,000 trials 
were conducted using the DES model whose SA model was 
varied between four alternate configurations.  

The first SA model was one where the penalty was zero 
under all levels of utilization (IP=100) (Figure 5(a)). This is 
equivalent to ignoring SA in the DES model. The second 
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model was a parabolic curve that was concave upwards where 
CF was set to 50%, IP set to 0, and SF set to 0.25 (Figure 5(b)).  

This is equivalent to using a simple parabolic curve with no 
magnitude scaling, as SF is equal to 0.25 when scaling is 
ignored ((1-0.5)^2). The third model was also based on a 
parabolic curve where CF was set to 50%, and IP set to 0. 
However, in this case, the curve was scaled by setting SF to 
1.75 (Figure 5(c)). The magnitude scale factor for this 
parabolic curve was chosen by selecting the one that 
minimized the mean squared error for both performance score 
and operator utilization. Finally, the fourth model was one 
where CF was set to 50%, IP  set to 40%, and SF to 2.25 (Figure 
5(d)). This is equivalent to using a curve where the penalty for 
loss of SA is zero when operator utilization is between 30% 
and 70% and with a magnitude scaling that minimizes the 
mean squared errors. 

Effect of SA in Estimating System Performance 

The actual scores in the user study for the full-decision 
support case are compared with results from the discrete event 
simulator for each of the four different SA curves in Figure 6 
(similar profiles were found in the no-decision support case). 
The performance score mean squared error for each of the four 
SA curves was calculated (for both decision support cases). 
The SA model with no penalty performed the worst followed 
by the model with the simple parabolic curve. The two models 
with the scaling performed similarly with the model that had 
its interval of zero penalty modified performing slightly better.  

It can therefore be concluded that the inclusion of the SA 
component in the model had an overall positive effect in terms 
of performance prediction accuracies, specifically when the 
model was scaled appropriately. When the effect of low SA 
(high or low utilizations) was completely ignored, the model 
tended to over-predict performance for the 4, 6 and 8 vehicle 
conditions and under predict for the 2 vehicle condition. This 
can be explained through the model 
overestimating/underestimating the number of tasks completed 
by the operator which led to higher/lower than expected 
performance scores. Including the SA effect, which was to 
increase the inter-arrival time between vehicle-generated 
events, led to decreased performance scores (improved 
predictions) except in the 2 vehicle condition where the model 
was already under predicting performance. Also, the 
improvement in the predictions when including the SA 
component depends on any scaling and shape modifications. 
Using a simple curve with no shape or magnitude 
modifications leads to a small improvement in the predictions 
while modifying the shape and magnitude parameters is 
required to make the penalties significant and the predictions 
more accurate. 

Estimating Utilization 

Average utilization was defined to be the ratio of the time 
the operator spends interacting with vehicles (servicing 
events), to total mission time. The inclusion of the SA 
component in the model also had an overall positive effect in 
terms of utilization predictions as can be seen in Figure 7. 
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When the effect of low SA (high or low utilizations) was 
completely ignored, the model tended to over-predict operator 
utilization for the 4, 6 and 8 vehicle conditions and under 
predict for the 2 vehicle condition. Just like in the case of the 
performance score, this can be explained through the model 
overestimating/underestimating the number of tasks processed 
by the operator which leads to higher/lower than expected 
utilization predictions. Including the SA effect led to an 
overall improvement in utilization predictions. This can also 
be explained by noting that the SA model tends to have a 
regulating effect on the number of tasks processed by the 
operator. When the operator is processing too many tasks, 
utilization is high which in turn leads to low SA (as computed 
by the model). The low utilization translates into increased 
penalties which in turn lead to less tasks being processed by 
the operator. When the SA model is excluded from the DES 
model, the lack of the regulation effect leads to overly large 
utilization estimates. As was the case for mean performance 
predictions, alternate SA curves lead to different results in 
terms of improved predictions. 

 

CONCLUSIONS AND FUTURE WORK 

The queuing model was powerful in modeling the human 
operator, particularly because it models both the impact of 
workload and situation awareness. While a critical aspect of 
human performance, situation awareness has been notoriously 
difficult to model. The queuing approach demonstrates one 
way its affects can be quantified. Moreover, by matching the 
SA sub-model to the results observed from experimentation 
with human subjects, it is possible to use the DES model to 
understand human behavior.  

Since the DES model allows for alternative configurations 
in vehicle assignments, it can be used to understand the effect 
on SA as team composition is varied. Also, since the model 

allows for alternative operator strategies, the effect on SA can 
be studied while assuming different operator strategies. The 
operator strategies that have the least negative effects on SA 
can be designed for by modifying the decision support aides 
provided to the operator. 
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