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ABSTRACT 
 
A post-hoc cognitive strategies visualization tool 
for operators in command and control environ-
ments, TRACS (Tracking Resource Allocation 
Cognitive Strategies) captures the critical steps 
performed in solving a resource allocation prob-
lem like those typically encountered in mission 
planning and replanning. TRACS presents a 
human operator’s cognitive strategies in a two-
dimensional space, using axes of automation 
levels and information types. TRACS has been 
successfully used on Tomahawk strike planning 
and path planning interfaces: the cognitive 
strategies visualizations created from mission 
planning scenarios displayed clear patterns of 
behavior that could be correlated to performance. 
Although an innovative way to understand and 
monitor human operators’ strategies to solve 
multivariate, complex resource allocation prob-
lems, TRACS was previously limited to static 
environments. Thus, we developed an extension, 
TRACS 3D, which adds a third axis for time to 
the existing axes. A three dimensional represen-
tation of the operator’s cognitive strategies, 
TRACS 3D attempts to capture the temporal as-
pects of human interaction in mission planning. 
However, an early pilot application of the tool to 
Tomahawk mission replanning problems 
showed strong limitations and cumbersome 
drawbacks. Thus, “TRACS 2.5D” was devel-
oped to address these drawbacks, and is a hybrid 
tool between the original two-dimensional 
TRACS and TRACS 3D, 
 
INTRODUCTION 
 
Missile strike planning is a complex example of 
multi-attribute resource allocation, where a set 
of resources must be paired with a set of mis-
sions or goals in a manner that meets constraints 
and achieves a certain level of quality. In terms 
of strike planning for Tomahawk missiles, our 
representative domain, the missiles and associ-

ated missions are characterized by a series of 
variables. A strike planner’s task consists of 
making sure that no constraint on these variables 
is violated when a specific missile is assigned to 
a specific mission. In addition, the final solution, 
i.e. the set of mission/missile assignments, 
should be as “good” as possible, where “good” 
is often subjective or a dynamic reference that 
may change in the planning process. 
 
Previous work (Bruni and Cummings 2005; 
Cummings and Bruni 2005; Marquez, Cum-
mings et al. 2005; Bruni and Cummings 2006; 
Bruni, Marquez et al. 2006) investigated the 
creation of decision-support tools aimed at lev-
eraging human-automation collaboration to en-
hance the quality of the Tomahawk mission 
planning process. Part of this work included the 
creation of a visualization tool, TRACS. This 
tool captures the cognitive strategies imple-
mented by human operators while interacting 
with the decision-support systems. In these stud-
ies, it has been shown to be useful in identifying 
strategies, in correlation with performance data. 
 
However, these implementations and uses of 
TRACS were limited to static environments, 
where the sensor data and problem constraints 
were not time-dependent. In most command and 
control systems, this is highly unlikely to be the 
case: replanning tasks might be needed at any 
time. In the missile strike example, the need for 
replanning might be triggered by the emergence 
of an unexpected target. Such an emergent target 
may be considered to be of the highest priority, 
hence requiring a strike plan revision in order to 
include this target in the strike. Such a situation 
is an undeniably time-sensitive matter, adding to 
the complexity of the task, as the operator must 
quickly come up with a feasible plan that in-
cludes the emergent target. 
 
Previously versions of TRACS do not account 
for time, and fail to characterize time-pressure 
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related course of action or changes in strategy, 
as all data was aggregated over time. This paper 
introduces new versions of TRACS aimed at 
capturing such information, applied to the mis-
sile strike example. Their benefits and draw-
backs are discussed. 
 
BACKGROUND 
 
The matching task 
 
A typical Tomahawk Land Attack Missile 
(TLAM) strike planning process involves a 
Strike Coordinator whose main task consists in 
pairing a set of pre-planned missions with mis-
siles available aboard different launchers such as 
submarines or cruising ships. This constitutes a 
complex, multivariate resource allocation prob-
lem, where a human operator must not only sat-
isfy a set of matching constraints, usually part of 
the rules of engagement (ROE), but also opti-
mize the mission-missile assignments to mini-
mize operational costs or enhance the quality of 
the overall plan. Generally it is left to the Strike 
Coordinator to manually assign missiles to mis-
sions, taking into account the different mission 
and missiles characteristics, as well as the con-
straints du jour included in the ROE. 
 
Typical matching constraints include the naviga-
tion system (NAVSYS), the warhead, or the 
launch basket. In order to be a valid match, both 
the mission and the missile must feature the 
same characteristics in these domains. For ex-
ample, in the case of NAVSYS, if a mission re-
quires a Global Positioning System (GPS), then 
only missiles equipped with a GPS device can 
be assigned to that mission. If a missile’s charac-
teristics do not match those of the mission con-
sidered, then that missile cannot be paired with 
that mission. Such matching constraints are 
called “hard constraints”. 
 
Another set of constraints, dubbed “soft con-
straints” are less strict, and are aimed at optimiz-
ing the quality of the solution, i.e. the set of mis-
sion/missile matches. For example, each missile 
can be given a value based on the probability 
that its launch will be successful. Such probabil-
istic information is of primary importance to the 

Strike Coordinator, who may decide to only as-
sign those missiles with a high probability of 
successful launch. 
 
The StrikeView interface 
 
In an effort to decrease Strike Coordinators’ 
workload and improve the quality of the strike 
planning process, a decision-support system 
called StrikeView was developed (Bruni and 
Cummings 2005; Bruni and Cummings 2006). 
One particular implementation of StrikeView is 
shown in Figure 1. This interface allows the op-
erator to solve the problem, i.e. build a set of 
mission/missile assignments, either manually or 
with the help of the computer. 
 
Two tables at the top of the interface respec-
tively list all the pre-planned missions with their 
characteristics (such as the target to destroy in 
the mission, the launch basket the route origi-
nates from, the required navigation equipment, 
the target priority, the required warhead) and the 
missiles with their characteristics (the launcher 
they belong to, the launch basket they are in, the 
navigation system they are equipped with, the 
warhead their payload carries, the probability of 
successful launch). 
 
If the operator decides to manually solve the 
problem, she would simply select a mission 
from the mission table, then a missile from the 
missile table, and finally click on “Add Match” 
in order to add the mission/missile pair to the so-
lution, or strike plan, which is summarized in the 
central table. In order to hasten the process and 
help the operator’s decision-making, sorting and 
filtering features are implemented. Indeed, when 
a mission (respectively a missile) is selected in 
the appropriate table, the computer automati-
cally filters out those missiles (respectively mis-
sions) that do not satisfy the hard constraints, 
such as navigation system, warhead, or launch 
basket, by graying them out. 
 
The interface in Figure 1 also allows the opera-
tor to leverage the computational power of 
automation to search the solution space for as-
signments combinations. A heuristic search al-
gorithm, called “Automatch”, is embedded in 
this interface. Such algorithms follow simple 
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heuristics, or “rule of thumbs”, in order to rap-
idly explore the solution domain. Although heu-
ristic search algorithms may be sub-optimal or 
fail to find a solution, they are very rapid and 
easily understandable by a human operator. In 
the case of StrikeView, a collaborative search 
process can also be implemented: the operator 
selects an ordered list of search criteria (or heu-
ristics) from the two columns at the bottom left 
of the interface, and then asks the computer to 
search the tree of assignments following these 
criteria. For example, the Strike Coordinator 
might have been informed that all targets requir-
ing a penetrating warhead are critical and must 
be destroyed to the fullest extent. Hence, the 
Strike Coordinator might choose the criterion 
“Penetrating Missions First” at the top of the list 
of heuristics, so that the search algorithm first at-
tempts to assign missiles to said missions, before 
considering other, non-penetrating, missions. 
 
Additional decision-support tools are featured in 
this interface. Horizontal summary bars in the 
bottom center part display how many targets 

have been assigned in the current solution, with 
a breakdown by target priority. Also, a graphical 
display shows the impact of the soft constraints 
on the current assignments (Bruni and Cum-
mings 2006). 
 
The tracking tool: TRACS 
 
Because comparing different interface imple-
mentations is difficult, a post-hoc visualization 
tool was created as a means to gather better in-
sight about how the operators use these inter-
faces and how they impact overall performance 
(Bruni and Cummings 2006; Bruni, Marquez et 
al. 2006). The “Tracking Resource Allocation 
Cognitive Strategies” (TRACS) tool was de-
signed to capture the cognitive strategies devel-
oped by a human operator interacting with a de-
cision-support system in a multivariate resource 
allocation problem. In its original format, 
TRACS is a two dimensional diagram featuring 
a “Level Of Information Detail” (LOID) axis, 
and a “Mode” axis. The LOID axis categorizes 
the type of information in a hierarchical order 

Figure 1 - StrikeView, matching interface 
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(e.g. from low level sensor data, to high level 
aggregated information) used by the operator at 
each step of her strategy. The Mode axis re-
groups the different cognitive actions that opera-
tors can take while interacting with the interface, 
such as browsing or selecting data, filtering in-
formation, or backtracking. 
A typical TRACS visualization is shown in 
Figure 2. At each step of the problem solving 
process, a circle is added to the diagram in the 
cell corresponding to the type of information 
used by the operator during that step, and the 
cognitive action implemented. Successive steps 
are linked together by a line. When the same 
steps (respectively links) are visited again, the 
width of the circles (respectively lines) is in-
creased. The example of Figure 2 was built 
while an operator used the StrikeView interface. 
The operator’s cognitive strategy included sev-
eral repeated cognitive steps of combining “data 
items” and the “select” mode. It can thus be in-
ferred that the operator proceeded with a manual 
matching strategy. The strong link between that 
step and the cognitive step that combines the 
same “data item” level with the “backtrack” 
mode suggests that the user was in a cognitive 
state of exploration of the solution space. Simi-
larly, the upper part of the representation shows 
a classical pattern, but for the use of the auto-
match functionality. The operator started by 
choosing a specific heuristic for the search algo-
rithm by selecting a criterion from a list, which 
is depicted by the circle in the cognitive steps 
combining the “individual criterion” LOID and 
the “select” mode. Then the operator launched 
Automatch, which was captured by the “individ-
ual criterion” LOID in the “automatch” mode. 
Finally the resulting solution was evaluated by 
the operator: it corresponds to the “group of 
matches” LOID at the “evaluate” mode. Typi-
cally, if the solution provided by the automation 
is not acceptable, the operator can either go 
through the Automatch loop again and select an-
other heuristic, or try to tweak the solution 
manually. Extensive testing of this initial tool 
was performed with StrikeView, as well as with 
a traversal path planning interface (Marquez, 
Cummings et al. 2005). TRACS proved to be 
successful at identifying strategy patterns and 
strategies switches, and it was also possible to 
correlate the identified patterns with perform-

ance (Bruni, Marquez et al. 2006).  This version 
of the TRACS tool and its application to the im-
plementation of StrikeView is available for pub-
lic use and download at 
http://web.mit.edu/aeroastro/www/labs/halab/me
dia.html 
 

 
Figure 2 - An example of TRACS visualization 

 
TRACS 3D  
 
A main problem with the original version of 
TRACS is that its non-directed graph representa-
tion does not allow capture of temporal data. 
First, the link between any two states does not 
contain the information about which state came 
first. For example, in Figure 2, two equally cor-
rect interpretations of the graph exist. The first 
one would predict that the participant started by 
the manual matching strategy, followed by a 
strategy switch to an automated solution genera-
tion. The second interpretation would be the ex-
act opposite, where the operator started by using 
automatch and then a switch to a manual strat-
egy. In addition, the concept of aggregation 
where all visits of one cognitive step are com-
bined and represented by the width of the lines 
or the circles, does not allow for temporal dis-
crimination. The current version of TRACS does 
not capture time-induced behavioral changes, 
such as, for example, an increase in the use of 
certain cognitive steps as a temporal deadline 
approaches. 
 

Automatch 

Manual Match 
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In order to capture the time aspect of the replan-
ning situation, and therefore resolve the ambigu-
ity described above, TRACS was augmented 
with a third axis: time.  Instead of aggregating 
steps visits over time on the same circles or lines, 
by proportionally increasing their width, this 
implementation, called “TRACS 3D”, separates 
each step occurrence from the next, by display-
ing them as separate spheres and tubes along the 
time axis. Figure 3 displays an example of visu-
alization of cognitive strategies tracking using 
TRACS 3D. This figure actually corresponds to 
the same case as that of Figure 4, which was ob-
tained with the original two-dimensional 
TRACS. The sphere and tubes becomes larger 
every time the corresponding step is visited, 
similarly to the increase of width in two dimen-
sions. Additionally, TRACS 3D offers the pos-
sibility to manipulate the point of view from 
which this three-dimensional construct can be 
viewed. Zoom-in, zoom-out and panning func-
tionalities allows for total visualization control. 
 
 

 
Figure 3 - TRACS 3D, view from the top 

 
This visualization tool was evaluated by several 
subject matter experts, MIT graduate students 
and faculty, all with a background in interface 
design and human factors engineering. Although 
they all appreciated the novel visualization, they 
also all agreed that such implementation of 
TRACS in three dimensions was overly confus-
ing and cumbersome to manipulate. Overall, it 

appeared that the 3D representation did not pro-
vide an effective way to visualize and extract 
human cognitive strategies in the time-pressured, 
replanning scenario. 
Six distinct drawbacks of TRACS 3D were iden-
tified from our subject matter experts’ feedback. 
 

1. Loss of granularity and clutter. It was 
noted that as the number of steps in-
creases, their representations tend to 
come so close to each other that it 
makes it difficult to discriminate what 
sphere corresponds to what LOID, mode 
or time. The concentration of spheres is 
the result of the implementation of the 
time dimension in TRACS 3D. Indeed, 
in order to contain the overall graph in a 
reasonable size that is appropriately 
viewable on a regular 1280x1024 screen, 
the size of the unit time-increment is de-
creased every time full scale is achieved, 
which results in a periodical “shrinkage” 
over the time axis. 

 

 
Figure 4 - The original TRACS 

 
2. Loss of 2D information (occlusion ef-

fect). At times, visualizing the cognitive 
strategies in three dimensions can be 
detrimental to full perception of the 
strategies: occlusion problems were 
identified in certain views, where some 
steps’ spheres would be hidden behind 
others (see Figure 3). Similarly, short 
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links would disappear behind or within 
spheres, thus providing an incomplete 
picture of the strategy. This occlusion 
effect triggered the need to manipulate 
the orientation of the construct to gain 
awareness of hidden paths. 

 

 
Figure 5 - TRACS 3D, rotated view 

 
3. Detrimental perspective (parallax ef-

fect). A typical pitfall of perspective 
representation is the parallax error, 
where closer but smaller objects appear 
identical to larger but farther other ob-
jects. In this case, the size of the spheres 
has a very precise meaning: the time ag-
gregate of the number of visits in one 
step. The three-dimensional perspective 
may bias viewers in their evaluation of 
the size of the spheres, hence of the rela-
tive importance of some steps compared 
to others. This effect in three dimensions 
has been shown to decrease human per-
formance in size and magnitude esti-
mates compared to a two-dimensional 
case (Carswell, Frankenberger et al. 
1991; St John, Smallman et al. 
2000).This parallax effect also triggers 
the need to manipulate the orientation of 
the visualization to better compare 
spheres to one another.  

 
4. Difficulty to manipulate. Another 

drawback of the TRACS 3D implemen-
tation is the difficulty of visualization 

reorientation. The multi-axis, mouse-
controlled rotation system, coupled with 
approximate zooming features, make it a 
challenge to manipulate the observer 
viewpoint. This could cause spatial dis-
orientation (Haskell and Wickens 1993). 

 
5. Difficulty to orient oneself. Concurrent 

to the difficulty to manipulate the view, 
TRACS 3D fails to provide correct ref-
erence anchor points for an observer to 
efficiently assess their orientation on the 
three-dimensional space. In order to by-
pass the occlusion and parallax effects, 
extensive manipulation of the interface 
viewpoint is sometimes necessary. But 
since this task can be cumbersome to 
implement, we hypothesize that it draws 
significant cognitive effort, to the detri-
ment of the user’s spatial and situation 
awareness (Haskell and Wickens 1993; 
St John, Smallman et al. 2000). 

 
6. Lack of emergent temporal analysis 

feature. Subsuming the previous points 
is the fact that the three-dimensional 
representation of time does not permit 
the desired temporal analysis of the op-
erator’s cognitive process. TRACS 3D 
does not efficiently capture and repre-
sent behavioral changes that would be 
caused by time pressure. One of the rea-
sons is that the features may not be visi-
ble at all times due to occlusion, but an-
other more significant reason is that the 
lack of referential on the time axis does 
not allow the estimation of the overall 
timescale of sequences of actions. 

 
TRACS 2.5D  
 
The next implementation of TRACS was devel-
oped with the purpose of representing the time 
component of the problem more effectively, 
while specifically addressing the drawbacks 
which caused the problems with TRACS 3D. 
Dubbed “TRACS 2.5D”, this next version fea-
tures a time axis, not as a third spatial dimension, 
but as an interactive feature of the tool. The 
temporal data is therefore represented as a dy-
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namic property of the visualization as opposed 
to the spatial analogy used in the three dimen-
sional case. As shown in Figure 6, TRACS 2.5D 
displays the regular, two-dimensional TRACS 
visualization, with the addition of a timeline at 
the bottom. Similarly to the widely used time-
lines features of any commercial, video or audio 
media player, the small cursor on the timeline 
can be dragged along the horizontal axis, in or-
der to access specific moments of the scenario. 
The recording time is also displayed to the right, 
where the operator can also manually input a de-
sired time to go to. On the timeline, red triangles 
are used as time stamps, to represent each step 
visit at the time they occurred in the scenario 
(see insert in Figure 6). Figure 6 to Figure 8 rep-
resent in chronological order several instances of 
TRACS 2.5D. Note that the cursor on the time-
line goes from the left to the right, and that the 
TRACS construct is progressively building up. 
Furthermore, an additional feature of TRACS 
2.5D is the ability to select a specific timeframe 
of interest, and only the states visited during that 
period will be displayed on the graphical repre-
sentation. For example, Figure 9 shows this fea-
ture applied to the end of the scenario, and only 
the last few states are displayed.  
 
This simple timeline feature in TRACS 2.5D 
addresses the six drawbacks of TRACS 3D in 
the following manner: 
 

1. Loss of granularity and clutter. While 
states are linked to their respective time 
stamps, the temporal data does not in-
fluence the visual representation of the 
state transitions. Thus, there is no confu-
sion in terms of which LOID a state 
represents at any time. Yet clutter is still 
an issue with TRACS 2.5D, as it is pos-
sible to have to enough states to make 
the timeline difficultly usable. However, 
as opposed to the case of TRACS 3D, 
the size of the time stamps do not in-
crease with the size of the representation 
of a state. The maximum achievable 
timeline granularity is therefore signifi-
cantly higher. Lastly, the ability to select 
a specific timeframe essentially removes 
the states that take place outside of the 

period of interest, therefore alleviating 
the display clutter issue. 

 
2. Loss of 2D information (occlusion ef-

fect). Since the TRACS construct is dis-
played in two dimensions, there is no 
occlusion as depicted in TRACS 3D. 
However, since the time component is 
not fully displayed at all times, but must 
be manipulated to reach specific instants, 
earlier constructs are hidden within lat-
ter ones. It is nevertheless hypothesized 
that the ease of use of the time slider al-
lows for a better manipulation to reach 
these earlier constructs than the three 
dimension manipulation of TRACS 3D. 
Because the timeline is unidimensional, 
time stamp occlusions can only occur if 
two steps are taken very close to one 
another and the scale of the timeline is 
extremely small. Still, because the size 
of the step representation on TRACS in-
creases accordingly, the information is 
not lost and can be accessed. In addition, 
the ability to select a specific time win-
dow for investigation allows disambigu-
ating the process by only showing the 
states pertaining to that specific time in-
terval.  

 
3. Detrimental perspective (parallax ef-

fect). A parallax error is a purely three-
dimensional problem; it is therefore a 
non-issue in this two-dimensional repre-
sentation.  

 
4. Difficulty to manipulate. Slider ma-

nipulation is very common in computer 
environments, from web pages to mul-
timedia applications. Computer users do 
not generally need any training or spe-
cific “skill”, hence manipulation is not 
expected to be an issue. 

 
5. Difficulty to orient oneself. Because 

the user’s point of view does not change, 
re-orientation of the TRACS figure is 
not necessary. The time manipulation 
occurs on a one-dimensional axis, which 
is considered simple enough to provide 
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good time position awareness to the ob-
server. 

 
6. Lack of emergent temporal analysis 

features. As opposed to TRACS 3D, all 
timing data is visible at all times, and 
this allows for temporal emergent fea-
tures to appear. For example, in Figure 6, 
one can see a zoomed-in insert of the 
time line, and time stamp clusters emer-
ge. Similarly, it appears that the density 
of time stamps at the end of the run is 
significantly lower than at the beginning. 
Time stamps density thus constitutes a 
basic emergent feature of this display. 
This feature, coupled with the ability to 
visualize the time trends (either back-
ward or forward) help make the spatio-
temporal patterns apparent. On Figure 8, 
for example, one can identify three 
phases on the timeline. Firstly, a se-
quence of high frequency states shift 
followed by a short pause. Secondly, a 
single stamp preceding a long period of 
inactivity can be seen, with a few 
stamps at the end. By replaying the ac-
tion, it appears that the state visited in 
the second phase is use of the Auto-
match function. It can be hypothesized 
that the longer pause is the time used by 
the operator to evaluate the complete so-
lution obtained from automatch.  

 

 
Figure 6 - TRACS 2.5D, beginning of scenario 

 

 
Figure 7 - TRACS 2.5D middle of scenario 

 
 

 
Figure 8 - TRACS 2.5D end of scenario 
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Figure 9 - TRACS 2.5D with timeframe selection 

 
FUTURE WORK  
 
While the current installment of TRACS permits 
tracking of an individual’s cognitive strategies, 
future research is aimed at providing supervisors 
with a tool to monitor collective performance at 
the team-level. This involves two extensions of 
the TRACS tool.  
 
The first extension is the ability to predict the 
performances of an individual based on the 
strategies exhibited by TRACS. Learning algo-
rithms can provide the basis for pattern detection 
mechanisms. Distinctive cognitive patterns tend 
to indicate different individual strategies, 
thereby allowing the inference of a probable user 
performance level. Moreover, future versions of 
the tool could provide the same performance 
prediction but at a team level. This will take into 
account collaboration factors such as intra-team 
communication and distributed cognition.  
 
 
CONCLUSION 
 
The time-enabled implementations of TRACS, 
TRACS 3D, exemplifies the typical drawbacks 
of inappropriately incorporating three dimen-
sions into interface design. TRACS 3D seemed 
to be the natural way to include time along a 
third spatial axis. However, the costs of such 
visualization, in terms of clarity and interpret-

ability of the representation, considerably out-
weighed its usefulness. Rather, giving the user 
the opportunity to interact with the representa-
tion and control what they can see along one ad-
ditional dimension, as implemented in TRACS 
2.5D, is more efficient in displaying the impact 
of time on problem solving. Future research will 
explore further development of the timeline and 
its time stamps, as well as applications to team 
environments and real-time replanning. 
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