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Abstract   Previous research has identified broad metric classes for human-

automation performance in order to facilitate metric selection, as well as under-

standing and comparing research results. However, there is still a lack of a syste-

matic method for selecting the most efficient set of metrics when designing evalu-

ation experiments. This chapter identifies and presents a list of evaluation criteria 

that can help determine the quality of a metric in terms of experimental con-

straints, comprehensive understanding, construct validity, statistical efficiency, 

and measurement technique efficiency. Based on the evaluation criteria, a com-

prehensive list of potential metric costs and benefits is generated. The evaluation 

criteria, along with the list of metric costs and benefits, and the existing generic 

metric classes provide a foundation for the development of a cost-benefit analysis 

approach that can be used for metric selection. 

X.1 INTRODUCTION 

Human-automation teams are common in many domains, such as command and 

control operations, human-robot interaction, process control, and medicine. With 

intelligent automation, these teams operate under a supervisory control paradigm. 

Supervisory control occurs when one or more human operators intermittently pro-

gram and receive information from a computer that then closes an autonomous 

control loop through actuators and sensors of a controlled process or task envi-

ronment [1]. Example applications include robotics for surgery and geologic rock 

sampling, and military surveillance with unmanned vehicles. 

A popular metric used to evaluate human-automation performance in supervi-

sory control is mission effectiveness [2, 3]. Mission effectiveness focuses on per-

formance as it relates to the final output produced by the human-automation team. 

However, this metric fails to provide insights into the process that leads to the fi-

nal mission-related output. A suboptimal process can lead to a successful comple-

tion of a mission, e.g., when humans adapt to compensate for design deficiencies. 
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Hence, focusing on just mission effectiveness makes it difficult to extract informa-

tion to detect design flaws and to design systems that can consistently support 

successful mission completion. 

Measuring multiple human-computer system aspects, such as workload and sit-

uation awareness can be valuable in diagnosing performance successes and fail-

ures, and in identifying effective training and design interventions. However, 

choosing an efficient set of metrics for a given experiment still remains a chal-

lenge. Many researchers select their metrics based on their past experience. 

Another approach to metric selection is to collect as many measures as possible to 

supposedly gain a comprehensive understanding of the human-automation team 

performance. These methods can lead to insufficient metrics, expensive experi-

mentation and analysis, and the possibility of inflated type I errors. There appears 

to be a lack of a principled approach to evaluate and select the most efficient set of 

metrics among the large number of available metrics. 

Different frameworks of metric classes are found in the literature in terms of 

human-autonomous vehicle interaction [4-7]. These frameworks define metric 

taxonomies and categorize existing metrics into high-level metric classes that as-

sess different aspects of the human-automation team performance and are genera-

lizable across different missions. Such frameworks can help experimenters identi-

fy system aspects that are relevant to measure. However, these frameworks do not 

include evaluation criteria to select specific metrics from different classes. Each 

metric set has advantages, limitations, and costs, thus the added value of different 

sets for a given context needs to be assessed to select an efficient set that max-

imizes value and minimizes cost. 

This chapter presents a brief overview of existing generalizable metric frame-

works for human-autonomous vehicle interaction and then suggests a set of evalu-

ation criteria for metric selection. These criteria and the generic metric classes 

constitute the basis for the future development of a cost-benefit methodology to 

select supervisory control metrics. 

X.2 GENERALIZABLE METRIC CLASSES 

For human-autonomous vehicle interaction, different frameworks of metric classes 

have been developed by researchers to facilitate metric selection, and understand-

ing and comparison of research results. Olsen and Goodrich proposed four metric 

classes to measure the effectiveness of robots: task efficiency, neglect tolerance, 

robot attention demand, and interaction effort [4]. This set of metrics measures the 

individual performance of a robot, but fails to measure human performance expli-

citly. 

Human cognitive limitations often constitute a primary bottleneck for human-

automation team performance [8]. Therefore, a metric framework that can be ge-

neralized across different missions conducted by human-automation teams should 
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include cognitive metrics to understand what drives human behavior and cogni-

tion. 

In line with the idea of integrating human and automation performance metrics, 

Steinfeld et al. [7] suggested identifying common metrics in terms of three as-

pects: human, robot, and the system. Regarding human performance, the authors 

discussed three main metric categories: situation awareness, workload, and accu-

racy of mental models of device operations. This work constitutes an important ef-

fort towards developing a metric toolkit; however, this framework suffers from a 

lack of metrics to evaluate collaboration effectiveness among humans and among 

robots. 

Pina et al. [5] defined a comprehensive framework for human-automation team 

performance based on a high-level conceptual model of human supervisory con-

trol. Figure X.1 represents this conceptual model for a team of two humans colla-

borating, with each controlling an autonomous platform. The platforms also colla-

borate autonomously, depicted by arrows between each collaborating unit. The 

operators receive feedback about automation and mission performance, and adjust 

automation behavior through controls if required. The automation interacts with 

the real world through actuators and collects feedback about mission performance 

through sensors. 
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Fig. X.1 Conceptual model of human-supervisory control (modified from Pina et al. [5]).  

Based on this model, Pina et al. [5] defined five generalizable metric classes: 

mission effectiveness, automation behavior efficiency, human behavior efficiency, 
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human behavior precursors, and collaborative metrics (Table X.1). Mission effec-

tiveness includes the previously discussed popular metrics and measures concern-

ing how well the mission goals are achieved. Automation and human behavior ef-

ficiency measure the actions and decisions made by the individual components of 

the team. Human behavior precursors measure a human’s internal state, including 

attitudes and cognitive constructs that can be the cause of and influence a given 

behavior. Collaborative metrics address three different aspects of team collabora-

tion: collaboration between the human and the automation, collaboration between 

the humans that are in the team, and autonomous collaboration between different 

platforms. 

Table X.1 Human supervisory control metric classes [9].  

METRIC CLASSES 

Mission Effectiveness (e.g., key mission performance parameters) 

Automation Behavior Efficiency (e.g., usability, adequacy, autonomy, reliability) 

Human Behavior Efficiency  

        - Attention allocation efficiency (e.g., scan patterns, prioritization) 

        - Information processing efficiency (e.g., decision making) 

Human Behavior Precursors 

        - Cognitive precursors (e.g., situational awareness, mental workload) 

        - Physiological precursors (e.g., physical comfort, fatigue) 

Collaborative Metrics 

        - Human/automation collaboration (e.g., trust, mental models) 

        - Human/human collaboration (e.g., coordination efficiency, team mental model) 

        - Automation/automation collaboration (e.g., platform’s reaction time to situational events 

            that require autonomous collaboration) 

 

These metric classes can help researchers select metrics that result in a com-

prehensive understanding of the human-automation performance, covering issues 

ranging from automation capabilities to human cognitive abilities. A rule of thumb 

is to select at least one metric from each metric class. However, there still is a lack 

of a systematic methodology to select a collection of metrics across these classes 

that most efficiently measures the performance of human-automation systems. The 

following section presents a preliminary list of evaluation criteria that can help re-

searchers evaluate the quality of a set of metrics. 

X.3 METRIC EVALUATION CRITERIA 

The proposed metric evaluation criteria for human supervisory control systems 

consist of five general categories, listed in Table X.2. These categories focus both 

on the metrics, which are constructs, and on the associated measures, which are 
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mechanisms for expressing construct sizes. There can be multiple ways of measur-

ing a metric. For example, situational awareness, which is a metric, can be meas-

ured based on objective or subjective measures [10]. Different measures for the 

same metric can generate different benefits and costs. Therefore, the criteria pre-

sented in this section evaluate a metric set by considering the metrics (e.g., situa-

tional awareness), the associated measures (e.g., subjective responses), and the 

measuring techniques (e.g., questionnaires given at the end of experimentation). 

Table X.2 Metric evaluation criteria.  

EVALUATION CRITERIA Example 

Experimental Constraints time required to analyze a metric 

Comprehensive Understanding causal relations with other metrics 

Construct Validity  power to discriminate between similar constructs 

Statistical Efficiency effect size 

Measurement Technique Efficiency intrusiveness to subjects 

 

The costs and benefits of different research techniques in human engineering 

have been previously discussed in the literature [11, 12]. The list of evaluation cri-

teria presented in this chapter is specific to the evaluation of human-automation 

performance and was identified through a comprehensive literature review of dif-

ferent metrics, measures, and measuring techniques utilized to assess human-

automation interaction [9]. Advantages and disadvantages of these methods, 

which are discussed in detail in Pina et al. [9], fell into five general categories that 

constitute the proposed evaluation criteria.  

These proposed criteria target human supervisory control systems, with influ-

ence from the fields of systems engineering, statistics, human factors, and psy-

chology. These fields have their own flavors of experimental metric selection in-

cluding formal design of experiment approaches such as response surface methods 

and factor analyses, but often which metric to select and how many are left to heu-

ristics developed through experience. 

X.3.1 Experimental Constraints 

Time and monetary cost associated with measuring and analyzing a specific me-

tric constitute the main practical considerations for metric selection. Time allo-

cated for gathering and analyzing a metric also comes with a monetary cost due to 

man-hours, such as time allocated for test bed configurations. Availability of tem-

poral and monetary resources depends on the individual project; however, re-

sources will always be a limiting factor in all projects. 

The stage of system development and the testing environment are additional 

factors that can guide metric selection. Early phases of system development re-
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quire more controlled experimentation in order to evaluate theoretical concepts 

that can guide system design. Later phases of system development require a less 

controlled evaluation of the system in actual operation. For example, research in 

early phases of development can assess human behavior for different proposed au-

tomation levels, whereas research in later phases can assess the human behavior in 

actual operation in response to the implemented automation level. 

The type of testing environment depends on available resources, safety consid-

erations, and the stage of research development. For example, simulation envi-

ronments give researchers high experimental control, which allows them the abili-

ty to manipulate and evaluate different system design concepts accordingly. In 

simulation environments, researchers can create off-nominal situations and meas-

ure operator responses to such situations without exposing them to risk. However, 

simulation creates an artificial setting and field testing is required to assess system 

performance in actual use. Thus, the types of measures that can be collected are 

constrained by the testing environment. For example, responses to rare events are 

more applicable for research conducted in simulated environments, whereas ob-

servational measures can provide better value in field testing. 

X.3.2 Comprehensive Understanding 

It is important to maximize the understanding gained from a research study. How-

ever, due to the limited resources available, it is often not possible to collect all 

required metrics. Therefore, each metric should be evaluated based on how much 

it explains the phenomenon of interest. For example, continuous measures of 

workload over time (e.g., pupil dilation) can provide a more comprehensive dy-

namic understanding of the system compared to static, aggregate workload meas-

ures collected at the end of an experiment (e.g., subjective responses).  

The most important aspect of a study is finding an answer to the primary re-

search question. The proximity of a metric to answer the primary research ques-

tion defines the importance of that metric. For example, a workload measure may 

not tell much without a metric to assess mission effectiveness, which is what the 

system designers are generally most interested in understanding. However, this 

does not mean that the workload measure fails to provide additional insights into 

the human-automation performance. Another characteristic of a metric that is im-

portant to consider is the amount of additional understanding gained using a spe-

cific metric when a set of metrics are collected. For example, rather than having 

two metrics from one metric class (e.g., mission effectiveness), having one metric 

from two different metric classes (e.g., mission effectiveness and human behavior) 

can provide a better understanding of human-automation performance. 

In addition to providing additional understanding, another desired metric quali-

ty is its causal relations with other metrics. A better understanding can be gained if 

a metric can help explain other metrics’ outcomes. For example, operator response 

to an event, hence human behavior, will often be dependent on the conditions 



7 

and/or the operator’s internal state when the event occurs. The response to an 

event can be described in terms of three set of variables [13]: a pre-event phase 

that defines how the operator adapts to the environment; an event-response phase 

that describes the operator’s behavior in accommodating the event; and an out-

come phase that describes the outcome of the response process. The underlying 

reasons for the operator’s behavior and the final outcome of an event can be better 

understood if the initial conditions and operator’s state when the event occurs are 

also measured. When used as covariates in statistical analysis, the initial condi-

tions of the environment and the operator can help explain the variability in other 

metrics of interest. Thus, in addition to human behavior, experimenters are en-

couraged to measure human behavior precursors in order to assess the operator 

state and environmental conditions, which may influence human behavior. 

High correlation between different measures, even if they are intended to assess 

different metrics, is another limiting factor in metric/measure selection. A high 

correlation can be indicative of the fact that multiple measures can assess the same 

metric or the same phenomenon. Hence, including multiple measures that are 

highly correlated with each other can result in wasted resources and also bring into 

question construct validity which is discussed next. 

X.3.3 Construct Validity 

Construct validity refers to how well the associated measure captures the metric or 

construct of interest. For example, subjective measures of situational awareness 

ask subjects to rate the amount of situational awareness they had on a given scena-

rio or task. These measures are proposed to help in understanding subjects’ situa-

tional awareness [10, 14]. However, self-ratings assess meta-comprehension rather 

than comprehension of the situation: it is unclear whether operators are aware of 

their lack of situational awareness. Therefore, subjective responses on situational 

awareness are not valid to assess actual situational awareness, but rather the 

awareness of lack of situational awareness. 

Good construct validity requires a measure to have high sensitivity to changes 

in the targeted construct. That is, the measure should reflect the change as the con-

struct moves from low to high levels [15]. For example, primary task performance 

generally starts to break down when the workload reaches higher levels [15, 16]. 

Therefore, primary task performance measures are not sensitive to changes in the 

workload at lower workload levels, since with sufficient spare processing capaci-

ty, operators are able to compensate for the increase in workload. 

A measure with high construct validity should also be able to discriminate be-

tween similar constructs. The power to discriminate between similar constructs is 

especially important for abstract constructs that are hard to measure and difficult 

to define, such as situational awareness or attentiveness. An example measure that 

fails to discriminate two related metrics is galvanic skin response. Galvanic skin 

response is the change in electrical conductance of the skin attributable to the sti-
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mulation of the sympathetic nervous system and the production of sweat. Perspira-

tion causes an increase in skin conductance, thus galvanic skin response has been 

proposed and used to measure workload and stress levels (e.g., Levin et al. [17]). 

However, even if workload and stress are related, they still are two separate me-

trics. Therefore, galvanic skin response alone cannot suggest a change in work-

load. 

Good construct validity also requires the selected measure to have high inter- 

and intra-subject reliability. Inter-subject reliability requires the measure to assess 

the same construct for every subject, whereas intra-subject reliability requires the 

measure to assess the same construct if the measure were repeatedly collected 

from the same subject under identical conditions. 

Intra- and inter-subject reliabilities are especially of concern for subjective 

measures. For example, self-ratings are widely utilized for mental workload as-

sessment [18, 19]. This technique requires operators to rate the workload or effort 

experienced while performing a task or a mission. Self-ratings are easy to admi-

nister, non-intrusive, and inexpensive. However, different individuals may have 

different interpretations of workload, leading to decreased inter-subject reliability. 

For example, some participants may not be able to separate mental workload from 

physical workload [20], and some participants may report their peak workload, 

whereas others may report their average workload. Another example of low inter-

subject reliability is for subjective measures of situational awareness. Vidulich and 

Hughes [10] found that about half of their participants rated situational awareness 

by gauging the amount of information to which they attended; while the other half 

of the participants rated their SA by gauging the amount of information they 

thought they had overlooked. Participants may also have recall problems if the 

subjective ratings are collected at the end of a test period, raising concerns on the 

intra-subject reliability of subjective measures. 

X.3.4 Statistical Efficiency 

There are three metric qualities that should be considered to ensure statistical effi-

ciency: total number of measures collected, frequency of observations, and effect 

size. 

Analyzing multiple measures inflates type I error. That is, as more dependent 

variables are analyzed, finding a significant effect when there is none becomes 

more likely. The inflation of type I error due to multiple dependent variables can 

be handled with multivariate analysis techniques, such as Multivariate Analysis of 

Variance (MANOVA) [21]. However, it should be noted that multivariate analys-

es are harder to conduct, as researchers are more prone to include irrelevant va-

riables in multivariate analyses, possibly hiding the few significant differences 

among many insignificant ones. The best way to avoid failure to identify signifi-

cant differences is to design an effective experiment with the most parsimonious 

metric/measure set that specifically addresses the research question.  
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Another metric characteristic that needs to be considered is the frequency of 

observations required for statistical analysis. Supervisory control applications re-

quire humans to be monitors of automated systems, with intermittent interaction. 

Because humans are poor monitors by nature [22], human monitoring efficiency is 

an important metric to measure in many applications. The problem with assessing 

monitoring efficiency is that, in most domains, errors or critical signals are rare, 

and operators can have an entire career without encountering them. For that rea-

son, in order to have a realistic experiment, such rare events cannot be included in 

a study with sufficient frequency. Therefore, if a metric requires response to rare 

events, the associated number of observations may not enable the researchers to 

extract meaningful information from this metric. Moreover, observed events with 

a low frequency of occurrence cannot be statistically analyzed unless data is ob-

tained from a very large number of subjects, such as in medical studies on rare 

diseases. Conducting such large scale supervisory control experiments is generally 

cost-prohibitive. 

The number of subjects that can be recruited for a study is especially limited 

when participants are domain experts such as pilots. The power to identify a sig-

nificant difference, when there is one, depends on the differences in the means of 

factor levels and the standard errors of these means, which constitute the effect 

size. Standard errors of the means are determined by the number of subjects. One 

way to compensate for limited number of subjects in a study is to use more sensi-

tive measures that will provide a large separation between different conditions, 

that is, a high effect size. Experimental power can also be increased by reducing 

error variance by collecting repeated measures on subjects, focusing on sub-

populations (e.g., experienced pilots), and/or increasing the magnitude of manipu-

lation for independent variables (low and high intensity rather than low and me-

dium intensity). However, it should also be noted that increased experimental con-

trol, such as using sub-populations, can lead to less generalizable results, and there 

is a tradeoff between the two. 

X.3.5 Measurement Technique Efficiency 

The data collection technique associated with a specific metric should not be in-

trusive to the subjects or to the nature of the task. For example, eye trackers are 

used for capturing operators’ visual attention [23, 24]. However, head-mounted 

eye trackers can be uncomfortable for the subjects, and hence influence their res-

ponses. Wearing an eye-tracker can also lead to an unrealistic situation that is not 

representative of the task performed in the real world. 

Eye trackers are an example of how a measurement instrument can interfere 

with the nature of the task. The measuring technique itself can also interfere with 

the realism of the study. For example, off-line query methods are used to measure 

operators’ situational awareness [25]. These methods are based on briefly halting 

the experiment at randomly selected intervals, blanking the displays, and adminis-
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tering a battery of queries to the operators. This situational awareness measure as-

sesses global situational awareness by calculating the accuracy of an operator’s 

responses. The collection of the measure requires the interruption of the task in a 

way that is unrepresentative of real operating conditions. The interruption may al-

so interfere with other metrics such as operator’s performance and workload, as 

well as other temporal-based metrics. 

Table X.3 Representative cost-benefit parameters for metric selection.  

COSTS 
 

Data Gathering 

Preparation 
Time to setup 

Expertise required 

Data Collection  

Equipment 

Time 

Measurement error likelihood 

Subject Recruitment 

Compensation 

IRB preparation and submission 

Time spent recruiting subjects 

Data Analysis 

Data Storage/Transfer 
Equipment 

Time 

Data Reduction 

Time 

Expertise required 

Software 

Statistical Analysis 

Error proneness given the required expertise 

Time 

Software 

Expertise 

BENEFITS 

Comprehensive Understanding 

Proximity to primary research question 

Coverage - Additional understanding given other metrics 

Causal relations to other metrics 

Construct Validity 

Sensitivity 

Power to discriminate between similar constructs 

Inter-subject reliability 

Intra-subject reliability 

Statistical Efficiency 

Effect Size 
Difference in means 

Error variance 

Frequency of observations 

Total number of measures collected 

Measurement Technique  

Efficiency 

Non-intrusiveness to subjects 

Non-intrusiveness to task nature 

Appropriateness for system development phase / testing environment  
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X.4 METRIC COSTS vs. BENEFITS 

The evaluation criteria discussed previously can be translated into potential cost-

benefit parameters as seen in Table X.3, which can be ultimately used to define 

cost and benefit functions of a metric set for a given experiment. The breakdown 

in Table X.3 is based on the ability to assign a monetary cost to an item. Parame-

ters listed as cost items can be assigned a monetary cost, whereas the parameters 

listed as benefit items cannot be assigned a monetary cost but nonetheless can be 

expressed in some kind of a utility function. However, some of the parameters 

listed under benefits can also be considered as potential costs in non-monetary 

terms, leading to a negative benefit.  

It should be noted that the entries in Table X.3 are not independent of each oth-

er, and tradeoffs exist. For example, recruiting experienced subjects can enhance 

construct validity and statistical efficiency, however, this may be more time con-

suming. Figure X.2 presents results of an experiment conducted to evaluate an au-

tomated navigation path planning algorithm in comparison to manual path plan-

ning using paper charts in terms of time to generate a plan [26]. Two groups of 

subjects were recruited for this experiment: civilian and military. The variability 

of responses of the military group was less than the civilian group, resulting in 

smaller error variance and larger effect size. However, recruiting military partici-

pants requires more effort as these participants are more specialized. Such tra-

deoffs need to be evaluated by individual researchers based on their specific re-

search objectives and available resources. 
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Fig. X.2 Data variability for different subject populations.  

In order to demonstrate how metrics, measures, and measurement techniques 

can be evaluated using Table X.3 as a guideline, the following sections present 
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two human behavior metrics, i.e., mental workload and attention allocation effi-

ciency, as examples for evaluating different measures. 

X.4.1 Example 1: Mental Workload Measures 

Workload is a result of the demands a task imposes on the operator’s limited re-

sources. Thus, workload is not only task-specific, but also person-specific. The 

measurement of mental workload enables, for example, identification of bottle-

necks in the system or the mission in which performance can be negatively im-

pacted. Mental workload measures can be classified into three main categories: 

performance, subjective, and physiological (Table X.4). This section presents the 

limitations and advantages associated with each measure guided by Table X.3. 

The discussions are summarized in Table X.5.  

Table X.4 Example measures of mental workload. 

MEASURES  TECHNIQUES 

Performance Speed or accuracy for the primary task Primary task 

 Time to respond to messages through an em-

bedded chat interface 

Secondary task 

Subjective 

(self-ratings) 

Modified Cooper-Harper Scale for workload Unidimensional questionnaires 

NASA TLX Multidimensional questionnaires 

Physiological Blink frequency Eye tracking 

 Pupil diameter Eye tracking 

 Heart rate variability coefficient Electrocardiogram 

 Amplitudes of the N100 and P300 compo-

nents of the event-related potential 

Electroencephalogram 

 Skin electrical conductance Galvanic skin response 

PERFORMANCE MEASURES 

Performance measures are based on the principle that workload is inversely re-

lated to the level of task performance [27]. Primary task performance should al-

ways be studied in any experiment, thus, utilizing it to assess workload comes 

with no additional cost or effort. However, this measure presents severe limita-

tions as a mental workload metric, especially in terms of construct validity. Prima-

ry task performance is only sensitive in the “overload” region, when the task de-

mands more resources from the operator than are available. Thus, it does not 

discriminate between two primary tasks in the “underload” region (i.e., the opera-

tor has sufficient reserve capacity to reach perfect performance). In addition, pri-
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mary task performance is not only affected by workload levels, but also by other 

factors such as correctness of the decisions made by the operator.  

Secondary task performance as a workload measure can help researchers assess 

the amount of residual attention an operator would have in case of an unexpected 

system failure or event requiring operator intervention [28]. Therefore, it provides 

additional coverage for understanding human-automation performance. Secondary 

task measures are also sensitive to differences in primary task demands that may 

not be reflected in primary task performance, so have better construct validity. 

However, in order to achieve good construct validity, a secondary task should be 

selected with specific attention to the types of resources it requires. Humans have 

different types of resources (e.g., perceptual resources for visual signals vs. per-

ceptual resources for auditory signals) [20]. Therefore, workload resulting from 

the primary task can be greatly underestimated if the resource demands of the sec-

ondary task do not match those of the primary task.  

Some of the secondary tasks that have been proposed and employed include 

producing finger or foot taps at a constant rate, generating random numbers, or 

reacting to a secondary-task stimulus [27]. Secondary tasks that are not representa-

tive of operator’s real tasks may interfere with and disrupt performance of the 

primary task. However, problems with intrusiveness can be mitigated if embedded 

secondary tasks are used. In those cases, the secondary task is part of operators’ 

responsibilities but has lower priority in the task hierarchy than the primary task. 

For example, Cummings and Guerlain used a chat interface as an embedded sec-

ondary task measurement tool [29]. Creating an embedded secondary task resolves 

the issues related to intrusiveness, however, it also requires a larger developmental 

cost and effort.  

SUBJECTIVE MEASURES 

Subjective measures require operators to rate the workload or effort experienced 

while performing a task or a mission. Unidimensional scale techniques involve 

asking the participant for a rating of overall workload for a given task condition or 

at a given point in time [18, 30]. Multidimensional scale techniques require the 

operator to rate various characteristics of perceived workload [19, 31], and gener-

ally possess better diagnostic abilities than the unidimensional scale techniques. 

Self-ratings have been widely utilized for workload assessment, most likely due to 

their ease of use. Additional advantages are their non-intrusive nature and low 

cost. Disadvantages include recall problems, and the variability of workload inter-

pretations between different individuals. In addition, it is unclear whether sub-

jects’ reported workload correlates with peak or average workload level. Another 

potential problem is the difficulty that humans can have when introspectively di-

agnosing a multidimensional construct, and in particular, separating workload 

elements [20]. Moreover, self-ratings measure perceived workload rather than ac-

tual workload. However, understanding how workload is perceived can be some-

times as important as measuring actual workload.  
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Table X.5 Evaluation of workload measures.  

MEASURES ADVANTAGES LIMITATIONS 

Primary  

task  

performance 

Cost: 

- Can require major cost/effort. How-

ever, no additional cost/effort required 

if already collected to assess mission 

effectiveness.  

Comprehensive Understanding:  

- High proximity to primary research 

question 

Construct Validity:  

- Insensitive in the “underload” region 

- Affected by other factors 

Secondary  

task  

performance 

Comprehensive Understanding:  

- Coverage (assesses the residual at-

tention an operator has) 

Construct Validity:  

- Sensitivity 

Cost: 

- Some level of additional cost/effort  

Measurement Technique Efficiency:  

- Intrusive to task nature (if not representa-

tive of the real task) 

Subjective  

measures 

Cost:  

- Cheap equipment, easy to administer 

Measurement Technique Efficiency:  

- Not intrusive to subjects or the task 

Cost:  

- More expertise required for data analysis 

- More subjects required to achieve ade-

quate power  

Construct Validity:  

- Inter-subject reliability  

- Intra-subject reliability 

- Power to discriminate between similar 

constructs 

Statistical Efficiency:  

- Large number of observations required 

Physiological  

measures 

Comprehensive Understanding:  

- Continuous, real-time measure 

Cost: 

- High level of equipment cost and exper-

tise required 

- Data analysis is time consuming and re-

quires expertise 

- Measurement error likelihood 

Construct Validity:  

- Power to discriminate between similar 

constructs 

Measurement Technique Efficiency:  

- Intrusive to subjects and task nature 

 Appropriateness for system development 

phase: 

- Typically appropriate only for laboratory 

settings 
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Self-ratings are generally assessed using a Likert scale that generates ordinal 

data. The statistical analysis appropriate for such data (e.g., logistic regression, 

non-parametric methods) requires more expertise than simply conducting analysis 

of variance (ANOVA). Moreover, the number of subjects needed to reach ade-

quate statistical power for this type of analysis is much higher than it is for 

ANOVA. Thus, even if subjective measures are low cost during the experimental 

preparation phase, they may impose substantial costs later by requiring additional 

expertise for data analysis as well as additional data collection.  

PHYSIOLOGICAL MEASURES 

Physiological measures such as heart rate variability, eye movement activity, and 

galvanic skin response are indicative of operators’ level of effort and engagement, 

and have also been used to assess operator workload. Findings indicate that blink 

rate, blink duration, and saccade duration all decrease with increased workload, 

while pupil diameter, number of saccades, and the frequency of long fixations all 

increase [32]. Heart rate variability is generally found to decrease as workload in-

creases [33]. The electroencephalogram (EEG) has been shown to reflect subtle 

shifts in workload. However, it also reflects subtle shifts in alertness and attention, 

which are related to workload, but can reflect different effects. In addition, signifi-

cant correlations between EEG indices of cognitive state changes and performance 

have been reported [34-36]. As discussed previously, galvanic skin response 

(GSR) can be indicative of workload, as well as stress levels [17]. 

It is important to note that none of these physiological measures directly assess 

workload. These measures are sensitive to changes in stress, alertness, or atten-

tion, and it is almost impossible to discriminate whether the physiological parame-

ters vary as a consequence of mental workload or due to other factors. Thus, the 

construct validity of physiological measures to assess workload is questionable. 

An advantage of physiological measures is the potential for a continuous, real-

time measure of ongoing operator states. Such a comprehensive understanding of 

operator workload can enable researchers to optimize operator workload, using 

times of inactivity to schedule less critical tasks or deliver non-critical messages 

so that they do not accumulate during peak periods [37]. Moreover, this type of 

knowledge could be used to adapt automation, with automation taking on more re-

sponsibilities during high operator workload [38].  

Some additional problems associated with physiological measures are sensor 

noise (i.e., high levels of measurement error likelihood), high equipment cost, in-

trusiveness to task nature and subjects, and the level of expertise as well as addi-

tional time required to setup the experiment, collect data, and analyze data. More-

over, due to the significant effort that goes into setting up and calibrating the 

equipment, physiological measures are very difficult to use outside of laboratory 

settings. 
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X.4.2 Example 2: Attention Allocation Efficiency Measures 

In supervisory control applications, operators supervise and divide their attentive-

ness across a series of dynamic processes, sampling information from different 

channels and looking for critical events. Evaluating attention allocation efficiency 

involves not only assessing if operators know where to find the information or the 

functionality they need, but also if they know when to look for a given piece of in-

formation or when to execute a given function [39]. Attention allocation measures 

aid in the understanding of whether and how a particular element on the display is 

effectively used by the operators. In addition, attention allocation efficiency meas-

ures also assess operators’ strategies and priorities. It should be noted that some 

researchers are interested in comparing actual attention allocation strategies with 

optimal strategies, however, optimal strategies might ultimately be impossible to 

know. In some cases, it might be possible to approximate optimal strategies via 

dynamic programming or some other optimization technique [40]. Otherwise, the 

expert operators’ strategy or the best performer’s strategy can be used for compar-

ison. 

Table X.6 Example attention allocation efficiency measures.  

MEASURES TECHNIQUES 

Proportion of time that the visual gaze spent within each “area of 

interest” of an interface 

Eye tracking 

Average number of visits per min to each “area of interest” of an  

interface 

Human interface-inputs 

Switching time for multiple tasks Human interface-inputs 

Information used Human interface-inputs 

Operators’ task and event priority hierarchy Verbal protocols 

 

As shown in Table X.6, there are three main approaches to study attention allo-

cation: eye movements, hand movements, and verbal protocols. Table X.7 

presents the limitations and advantages associated with different measures in 

terms of the cost-benefit parameters identified in Table X.3. 

Extensive research has been conducted with eye trackers and video cameras to 

infer operators’ attention allocation strategies based on the assumption that the 

length and the frequency of eye fixations on a specific display element indicate the 

level of attention on the element [39, 41]. Attention allocation metrics based on 

eye movement activity can be dwell time (or glance duration) and glance frequen-

cy spent within each “area of interest” of the interface. While visual resources are 

not the only human resources available, as information acquisition typically oc-

curs through vision in supervisory control settings, visual attention can be used to 

infer operators’ strategies and the employment of cognitive resources. Eye track-

ing to assess attention allocation efficiency comes with similar limitations to phy-
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siological measures used for workload assessment, which have been discussed in 

Section X.4.1.  

Table X.7 Evaluation of different attention allocation efficiency measures.  

MEASURES ADVANTAGES LIMITATIONS 

Eye movements 

(eye tracking) 

Comprehensive Understanding: 

- Continuous measure of visual at-

tention allocation 

Cost: 

- High level of equipment cost and ex-

pertise required 

- Data analysis is time consuming and 

requires expertise 

- Measurement error likelihood 

Construct Validity:  

- Limited correlation between gaze and 

thinking 

Measurement Technique Efficiency:  

- Intrusive to subjects and task nature 

 Appropriateness for system develop-

ment phase: 

- Appropriate for laboratory settings 

Interface clicks 

(human interface-

inputs) 

Comprehensive Understanding: 

- Continuous measure of subjects’ 

actions 

Cost: 

- Time consuming during data analysis  

Construct Validity: 

- Directing attention does not always re-

sult in an immediate interface action 

Subjective meas-

ures 

(verbal protocols) 

Comprehensive Understanding:  

- Insight into operators’ priorities 

and decision making strategies 

Cost: 

- Time intensive 

Construct Validity: 

- Inter-subject reliability (dependent on 

operator’s verbal skills) 

- Intra-subject reliability (recall prob-

lems with retrospective protocols) 

Measurement Technique Efficiency:  

- Intrusive to task nature (interference 

problems with real-time protocols)  

Appropriateness for system development 

phase: 

- Appropriate for laboratory settings  

 

The human interface-inputs reflect operators’ physical actions, which are the 

result of the operators’ cognitive processes. Thus operators’ mouse clicking can be 

used to measure operators’ actions, determine what information was used, and to 

infer operators’ cognitive strategies [23, 42]. A general limitation with capturing 

human interface-inputs is that directing attention does not necessarily result in an 
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immediate action, so inferring attention allocation in this manner could be subject 

to missing states. 

Verbal protocols require operators to verbally describe their thoughts, strate-

gies, and decisions, and can be employed simultaneously while operators perform 

a task, or retrospectively after a task is completed. Verbal protocols are usually vi-

deotaped so that researchers can compare what subjects say, while simultaneously 

observing the system state through the interface the subjects used. This technique 

provides insights into operators’ priorities and decision making strategies, but it 

can be time consuming and is highly dependent on operators’ verbal skills and 

memory. Moreover, if the operator is interrupted while performing a task, verbal 

protocols can be intrusive to the task.  

X.5 DISCUSSION 

Supervisory control of automation is a complex phenomenon with high levels of 

uncertainty, time-pressure, and a dynamic environment. The performance of hu-

man-automation teams depends on multiple components such as human behavior, 

automation behavior, human cognitive and physical capabilities, team interactions, 

etc. Because of the complex nature of supervisory control, there are many differ-

ent metrics that can be utilized to assess performance. However, it is not feasible 

to collect all possible metrics. Moreover, collecting multiple metrics that are cor-

related can lead to statistical problems such as inflated type I errors. 

This chapter presented a list of evaluation criteria and cost-benefit parameters 

based on the criteria for determining a set of metrics for a given supervisory con-

trol research question. Thus, a limitation of this list of evaluation criteria is that it 

is not comprehensive enough to address all issues relevant to assessing human-

technology interactions. The most prominent issues for assessing human-

automation interaction were identified through a comprehensive literature review 

[9] and were populated under five major categories: experimental constraints, 

comprehensive understanding, construct validity, statistical efficiency, and mea-

surement technique efficiency. It should be noted that there are interactions be-

tween these major categories. For example, the intrusiveness of a given measuring 

technique can affect the construct validity for a different metric. In one such case, 

if the situational awareness is measured by halting the experiment and querying 

the operator, then the construct validity for the mission effectiveness or human 

behavior metrics become questionable. Therefore, the evaluation criteria presented 

in this chapter should be applied to a collection of metrics rather than each indi-

vidual metric, taking the interactions between different metrics into consideration.  

The list of evaluation criteria and the relevant cost-benefit parameters presented 

in this chapter are guidelines for metric selection. It should be noted that there is 

not a single set of metrics that are the most efficient across all applications. The 

specific research aspects such as available resources and the questions of interest 

will ultimately determine the relative metric quality. Moreover, depending on the 
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specific research objectives and limitations, the cost-benefit parameters presented 

in Table X.3 can have different levels of importance. Thus, these parameters can 

receive a range of weights in cost-benefit functions created for different applica-

tions. Identifying the most appropriate technique for helping researchers to assign 

their subjective weights is under investigation as part of an ongoing research ef-

fort. Thus, future research will further develop this cost-benefit analysis approach, 

which will systematically identify an efficient set of metrics for classifications of 

research studies. 
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