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Executive Summary 

 
The Army and more broadly, the DoD is making significant investment in increasing the 

level of autonomy on board unmanned vehicles so that mission effectiveness can increase with a 
decrease in operational and training costs. However, to date there is no principled methodology to 
understand how to measure training effectiveness for unmanned system operators, particularly in 
terms of understanding how increased autonomy could change the training requirements and how 
such changes could be assessed in advance to provide feedback for autonomy and systems 
engineers. 
 In order to address this gap in assessing the effect of increasing autonomy on unmanned 
system training evaluation, a model is needed that explicitly considers training in the context of 
different levels of cognitive reasoning by either humans or automation. Such reasoning is 
commonly referred to as skill, rule, and knowledge-based reasoning. Any modeling strategy that 
does not assess whether the human, automation, or combination of the two are meeting mission 
objectives is necessarily incomplete. This is a critical gap since autonomy capabilities are rapidly 
changing and will necessarily impact training requirements but it is not clear how and what new 
latent issues could emerge as a result.  
 To this end and in support of Tasks 1, 2a, and 3a in the original Statement of Work 
(Appendix A), a model was developed that captures training requirements, human capabilities 
and performance, and changing levels of autonomy. This model, called the Army UAS 
Autonomous System Training Model, was able to successfully replicate the numbers and rates of 
Army trainees in Shadow Unmanned Aerial Vehicle training programs. This model also 
determined that overall training time was most affected by variability in Module C training, 
which focused on UAS Ground School. These results indicate if the Army wants to graduate 
people both faster and with more predictability, they need to address why and how often people 
are being recycled, as well as the extent of Module C training variability.  

One problem encountered during the conduct of this research was representing model 
changes in vehicle autonomy over the life of current Army UAV training programs. Thus, to 
validate the part of the model that specifically addressed increasing vehicle autonomy and the 
impact on skill, rule, and knowledge-based reasoning behavior (which was Task 3b), an 
experiment was designed to be run on US Army UAV operators in a simulated multiple UAV 
supervisory control test bed called the Research Environment for Supervisory Control of 
Heterogeneous Unmanned Vehicles (RESCHU).  
  Unfortunately, the experiment was not conducted on the target population due to delays 
in administrative approval and reviews. However, other related experiments yielded important 
insights into the relationships between increasing cognitive levels of reasoning and the influence 
of autonomy. These studies indicated that there could be positive training benefit on tasks 
unrelated to the task specifically being trained to master, and that lower level skill training may 
most benefit novices. This is important because these results suggest that while there may be 
elements of negative transfer of training for experts when faced with high workload, experts also 
may have more acutely developed senses of situation awareness that allow them to make fewer 
mistakes, although they may need additional training time. These are very important finding for 
the Army in their UAS programs which retrains a high number of operators on new platforms, 
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called reclassified operators. Future work funded either through the Army or other sources, 
should investigate the generalizability of these findings and also look more closely at the 
cognitive needs of reclassified individuals. 

Another significant milestone in this effort was investigating how machine learning could 
be used to detect previously unrecognized patterns in operator strategies that could be developed 
through training, as well as possible poor design (Task 2b). Also using the RESCHU test bed, the 
results demonstrated that indeed, the use of Hidden Markov Models yielded critical insight into 
those strategies adapted by people in the supervision of multiple UAVs. This research 
demonstrated that such models could be used to both identify strategy patterns not immediately 
observable as well as diagnose where strategy inefficiencies caused periods of high workload. 
This research could be groundbreaking in that such models clearly capture where human 
strategies may not align with those of system designers, highlighting either design or training 
inefficiencies. 
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Introduction 
A recent Government Accountability Office (GAO) report highlighted critical Army 

Unmanned Aerial Systems (UAS) training shortfalls, with 84% of UAS units meeting less than 
half of annual minimum training goals in FY2015. The report concluded that without revising its 
strategy to address its training shortfalls, the Army risks continuing to train at levels below Army 
goals (United States Government Accountability Office, 2017). Moreover, with the increase in 
both the number of Unmanned Aerial Systems (UAS) used by the Army, as well as the like 
increase of onboard autonomy for Unmanned Aerial Vehicles (UAVs), significant changes 
operations and training methods will be required.  

In order to aid the Army in determining where inefficiencies and chokepoints in current 
UAS training pipelines exist, as well as how increasing autonomy could affect future training 
programs, a model was developed for predicting changes in training of UAV operators as the 
autonomy onboard the vehicles increases. The original proposal for this effort contained three 
tasks (the original Statement of Work is included in Appendix A). The first section of this report 
discusses this model in detail (Task 1), as well as the results from a parallel study that 
investigated the validity of the feedback model in a simulated task environment (Task 3b). This 
report concludes with a discussion of an effort investigating whether machine learning models 
can be used to identify training gaps (Task 2b). 

Model Development  
 The addition of autonomous capabilities onboard unmanned systems shifts the role of the 
human from a hands-on operator to a supervisor that monitors relayed (and often delayed) sensor 
data via the control station user interface. It is essential, however, that the operator understands 
the interfaces, functions, and limits of the system such as to avoid automation bias and confusion 
(Lee & Moray, 1992; Parasuraman & Manzey, 2010). Insufficient training has led to numerous 
human-machine error-induced accidents (Tvaryanas, 2006), which potentially could have been 
avoided if training requirements aligned with requirements for proper human-machine 
collaboration.  

Blitch (2007) tested the effect of operator automation assistance on UAS maneuvering 
skills in a Predator simulator and found that trainees who received automation assistance 
performed poorer when given a novel landing task. This finding suggests that training will need 
to be adapted to provide a broader understanding of the system when increasing autonomy is 
inserted into supervisory control systems. Case reports in other domains have found that 
introducing automation into production lines has decreased the initial training time for operators, 
but increased the amount of on-the-job (OJT) training received (Brown & Campbell, 2000). 
Mitchell, Yadrick, and Bennett (1993) designed and validated a decision support system (DSS) 
using historical Air Force training data that was used for planning training requirements but did 
not address the impact of new capabilities or increasing autonomy. 

For several decades, many researchers have hypothesized how future training programs 
should better prepare operators of unmanned system for typical operations, as well as contingency 
situations (Liu, 1997; Singh, Tiwari, & Singh, 2009; Tsang & Vidulich, 2003). There is 
disagreement between whether the implementation of autonomy increases (Sarter, Woods, & 
Billings, 1997; Wiener & Curry, 1980) or decreases (Amalberti, 1999) the training time and 
requirements for operators. Models, such as the one described in this work, aim to set the 
foundation for understanding the impact of autonomy on operator behaviors that are then linked 
to training requirements. 

Current UAS operator training  
 The U.S. Army Shadow and Gray Eagle UAS operator training programs were selected 
as the case studies since they share a well-structured set of objectives and training syllabi, and 
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also are mature programs with more than 15 years of training for the Shadow and 5 years of 
training for the Gray Eagle. The crew of the Shadow, which conducts intelligence, surveillance, 
and reconnaissance (ISR) missions, consists of an aircraft operator (AO) and payload operator 
(PO). The role of the AO is to set mission waypoints and monitor the trajectory of the aircraft, 
while the PO’s role is to monitor and control the aircraft payload.  

A relatively small tactical unmanned aerial vehicle (UAV), the Shadow can be launched 
and recovered without a constructed runway. The Gray Eagle is a larger UAS and requires a 
runway for take-off and landing and requires the AO to manually taxi the aircraft from a Ground 
Control Station (GCS). Also an ISR UAS, the Gray Eagle can carry weapons but is used less in 
the U.S. Army due to its upfront and operational costs and take-off/landing constraints. 

 
Figure 1. UAS operator training program for the U.S. Army. The modules are listed next to the 
phase boxes, along with descriptions. 
 

Figure 1 represents the multi-phase process of U.S. Army UAS operator training. The 
first step towards graduation is to complete a Phase 1 - Common Core program (represented in 
blue in Figure 1). Phase 1 training occurs primarily in a classroom setting and consists of flight 
safety, navigation, mission planning, aerodynamics, and aviation regulation. Phase 1 lasts just 
over two months and includes three modules composed of sets of lessons, tasks, and exams to 
measure trainee proficiency. Upon graduation from Phase 1, trainees move into Phase 2 where 
they receive platform-specific training for either the Shadow or the Gray Eagle, which consists of 
a 5-module, 3-month course, or 7-module, 6-month program, respectively.  

The aforementioned modules are comprised of lessons that have a discrete number of 
tasks that trainees must complete before being able to train with their units. The tasks may occur 
throughout multiple lessons within each training phase. Tasks vary in duration, setting, and 
complexity depending on the phase and module. For example, learning Federal Aviation 
Administration (FAA) regulations occurs in Phase 1 since all operators will work in the same 
regulatory environment, while performing a simulated launch and recovery flight takes place 
during the platform-specific Phase 2 training within the simulator module. 

Linking operator behaviors to training 
 In order to understand how operator behaviors in various modules could be translated 
into training requirements, the Skills, Rules, and Knowledge (SRK) framework (Rasmussen, 
1983) was applied. The SRK framework was created as a model for understanding how systems 
should be designed such that information displays align with human perception and cognition 
information processing requirements. The resulting taxonomy is a three-tiered continuum that 
abstracts the ways in which human operators reason and interact with machines.  

Phase 1 - 
Common Core

(~9 Weeks)

Module A - Unmanned Scout Operations

Module B - Aviation Regulatory Training

Module C - UAS Ground School

Phase 2 - 
Shadow

(~12 Weeks)

Phase 2 - Gray 
Eagle

(25 Weeks)

Module A - System Overview

Module B - Unmanned AO/Mission PO Systems

Module C - Simulator Flights

Module D - Flights

Module A - Introduction to the Gray Eagle UAS

Module B - Mission Systems

Module C - Simulation

Module D - Flightline

Module E - Capstone Exercise

Module E - Emplace/Displace

Module F - Instrument Training

Module G - Situational Training Exercise
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Skill-based behaviors are defined as those that are highly automatic and lowest on the 
cognitive continuum, and thus serve as the best candidate behaviors for machines to perform 
(Cummings, 2014). An example of a Skill-Based Task (SBT) in UAS training is target tracking, 
which requires the PO to keep the UAS camera sensor locked onto a target using a trackball. This 
task is psycho-motor driven and highly automatic.  

Rule-based behaviors are next highest on the cognitive continuum and are those that 
require the operator to follow prescribed procedures or checklists. Rule-Based Tasks (RBT) are 
common in U.S. Army UAS training operations, such as reviewing pre-flight checklists in a 
logical order before every flight. Tasks such as UAS emergency procedures require human 
judgement and reasoning, which embody knowledge-based behaviors, the highest on the SRK 
framework. These behaviors are the most abstract and require planning under the presence of 
uncertainty to reach a desired goal.  

Scenarios that are novel, uncertain or have unpredictable exogenous variables influencing 
planning and decision-making fall under the Knowledge classification (Cummings, 2014). An 
example of a Knowledge-Based Task (KBT) would be planning how to react to an unpredictable 
meteorological event. While the operator may resort to underlying Rules to aid in the decision 
process, the abstract planning of how to apply Rules requires a higher level of cognition, i.e. 
Knowledge-based reasoning.  

Prior work has since adapted the SRK framework to many aviation applications. Kilgore 
and St-Cy (2006) investigated the potential of using the SRK framework for analyzing an air 
traffic control (ATC) rerouting task. The analysis involved the systematic segmentation of the 
rerouting task into sub-tasks that could have one, or a combination of operator behaviors, 
depending on the complexity of the situation. Fleming and Pritchett (2016) found that with 
systems of multiple levels of automation, humans are needed for KBTs for abstract decision 
making and deciding when automation does not need to be used. Their findings align with 
Cummings’s (2014) assertion that the best candidates for automation are SBTs and some RBTs 
due to the limited uncertainty in performing rehearsed, psycho-motor actions and procedures. For 
increasingly autonomous system training operations, it is essential that operator behaviors be 
linked to training to understand where future autonomous capabilities could or should be 
implemented to leverage the strengths of the system and the human operator, and to what end this 
will affect overall training requirements.  

To better understand the cognitive complexity associated with UAS operations, each of 
the Shadow and Gray Eagle operator training tasks was categorized as SBT, RBT, and/or KBT. 
Some tasks include multiple operator behaviors, such as reacting to emergency scenarios, which 
potentially requires SBT, RBT, and KBT. Table 1 gives a sample breakdown of how tasks that 
constitute a lesson can be categorized using the SRK framework. Figure 2 shows an example of 
key words that assist in identifying a specific operator behavior, or set of operator behaviors, for a 
task. For SBT, the task description should describe some physical interaction with vehicle 
controls or equipment. RBT, which make up the majority of UAS operator tasks, require 
procedures that the trainees are required to follow. KBT are more abstract and require complex 
reasoning to react to high levels of uncertainty. Tables linking all tasks to operator behaviors, 
such as Table 1, were completed for all training phases in Figure 1. 

Figure 3 shows the percentages of SBT, RBT, and KBT across each of the operator 
training phases. The allocation of times for SBT, RBT, and KBT were determined by analyzing 
each of the tasks for the lessons within the modules and assigning uniform times with respect to 
the total documented time of the lessons. For example, a lesson that takes 7.2 hours and has 10 
tasks is assumed to divide evenly into 0.72 hours per task. This assumption of uniform 
distribution of task time per lesson is one of the limitations of our process of linking the SRK 
framework to actual tasks for the UAS operator application. However, this was an assumption 
made in the lack of more data. Training programs that have finer detail for task training time 
within lessons would permit this assumption to be lifted.  
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Table 1. Sample Phase 2 lesson operator behavior-based task breakdown. 

Lesson – Basic Simulator Flight 

Task Operator Behavior 

Perform UAS Mission Operations R 

Prepare UAS Reports R 

Identify Data Collected by UAS R,K 

Perform Tactical UAS Launch Procedures R 

Perform Tactical UAS Recovery Procedures R 

Perform Tactical UAS GCS Power Down Procedures R 

Perform Tactical UAS Portable GCS Power Down Procedures R 

Operate Tactical UAS Mission Planning System S,R 

Perform Tactical UAS Preflight Procedures R 

Perform Radio Communication Procedures R 

Track a Moving Target S 

Respond to Inadvertent Instrument Meteorological Condition S,R,K 

Perform Radio Failure Procedures R,K 

 

 
 
Figure 2. Varying allocation of operator behaviors from task keywords. 
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Weather
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Preflight Procedures
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Figure 3. Percentages of overall training time for Skill-, Rules-, and Knowledge-based tasks across 
various phases of training. 
 

Using this uniform time allocation method, it was determined that the distribution of 
SBT, RBT, and KBT fractions of the overall Phase 2 platform-specific training times were 
comparable. In both of the Phase 2 training programs, emphasis is on following procedures 
(RBT) while in the GCS and basic skills (SBT) to control the aircraft alongside the automation. 
Knowledge-based reasoning was primarily present during emergency, target identification, and 
weapons release (for the Gray Eagle) tasks, which occur during simulation exercises.  

The categorization of these tasks into these different levels of abstraction allow for a 
more principled and objective assessment of what trainees in a UAS program need to master prior 
to graduation. This categorization is a key step in model development, which is explained in the 
next section. 

Autonomous System Training Model (ASTM) 
 In order to capture SBT, RBT, and KBT as well as the influence of increasing autonomy, 
a model was developed called the ASTM (Autonomous System Training Model). Figure 4 
represents a generic version of this model, which incorporates training requirements, the 
influence of increasing autonomy, both training and operational errors, and trainee attrition.  

The primary output variable of ASTM is time to train, given that the Army wishes to 
optimize training both in time and resources. Thus, all variables that constitute the model must be 
framed in the context of time. So, in the training requirements section that specifically accounts 
for those SBTs, RBTs, and KBTs in various training modules, these tasks would be represented 
by how much time it takes to train people to master them. The training requirements section also 
accounts for the resources required to conduct this training such as instructors and classrooms, 
but again, they are represented temporally, so that, for example, more instructors would translate 
into a decrease in training time. 

In the ASTM, trainees leave the training process in one of two ways, they successfully 
graduate or they fail. If they fail, trainees then have two options, they can recycle for remedial 
training or they are permanently removed from training. However, even after successful training, 
graduates’ operational performance is considered in the model if they experience significant 
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operational errors. This is a critical feedback loop as commanders can track operational errors and 
notify the training departments when they see repeated problems during actual operations. In 
theory, increased operational errors should increase overall time to train for humans, assuming no 
technology is introduced to reduce errors. 
 Indeed, during interviews of USMC Shadow operator in Yuma, AZ who participate in 
joint training between USA and USMC, it was revealed that prior to FY14, dead reckoning 
training had been removed from the syllabus as it was deemed not necessary. Once these newly 
trained Shadow operators reached the field, they began to have so many problems in basic 
navigation tasks, that the commanding officers of various squadrons insisted that the training be 

reinstated, which occurred in FY15. This feedback prompted the inclusion of the operational 
performance feedback loop in ASTM. 

One unique aspect to ASTM is that it can account for new technology insertions or 
improvements because of the skill, rule, and knowledge-based task representation (as outlined in 
the previous section). Because these increasingly complex behaviors can be executed by humans 
or autonomous agents, they provide a mechanism to explicitly study how increasing autonomy 
could affect training programs.  

For example, in current UAS navigation training, there exists multiple modules to teach 
map reading, the use of the specific tools to plan paths, fuel computations, etc. This training 
includes significant SBTs and RBTs that take significant time to train. So if a new form of 
artificial intelligence was introduced for the task of path planning, all those SBTs and RBTs could 
theoretically be dropped from the training program, thus speeding up training. 

The Army UAS Application of ASTM 
In order to demonstrate how ASTM could be used to model Army UAS systems, the 

Army UAS (AUAS) ASTM was designed using a System Dynamic (SD) model. SD is a 
modelling method for understanding non-linear behavior of complex systems by taking advantage 
of causal feedback loops and stocks and flows (Forrester, 1961; Sterman, 2000). Various 
modelling approaches could be used to frame an ASTM model, but we elected to use the SD 

Figure 4: The general Autonomous System Training Model that incorporates training requirements, 
the influence of increasing autonomy, both training and operational errors, and trainee attrition. 
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approach for Army UAS training programs due to its ability to capture quantitative and 
qualitative parameters (Cummings & Clare, 2015), such as operator behaviors, as well as its 
batching capability (Mikati, 2010). Moreover, the foundation of SD is centered around modelling 
the continuous, time-dependent behavior of a system (Sterman, 2000). Since training occurs as a 
continuous flow of batches that respond to causal relationships, SD modelling is well suited to 
capture the rate of trainees moving throughout a training program. 
 Prior work has shown that SD models can be applied to human-machine systems with 
accuracy (Clare, 2013; Gao, 2016; Gao, Clare, Macbeth, & Cummings, 2013; White, 2003). One 
problem with SD models, however, is that they are deterministic in nature and must take into 
account averages of parameters. In addition, SD models are poor at managing parameter 
variability (Brailsford, Desai, & Viana, 2010; Cummings & Clare, 2015), which makes them 
most applicable for understand average behaviors, which is reflective of the training environment 
we are modelling. 

One goal of the AUAS ASTM is to model how the number and type of tasks and training 
time affect the number of UAS operator graduates and overall training times in the context of 
operator behaviors. Given that the overall training time for an individual is directly impacted by 
both the number of tasks and the requirements of the tasks, the AUAS ASTM needed to capture 
the impact of alterations in training programs on training time, including the recycling and 
attrition rates of trainees.  

However, the inputs and outputs of ASTM depend on the nature of research questions, 
i.e., ASTM can generate the number of classrooms needed for given class sizes and training times 
as an output. Conversely, if the Army wants to investigate how quickly people could be moved 
through the system given a fixed number of resources, then the output would be class size. But 
for the purposes of this effort, the focus will be on modeling the output of a training program in 
terms of graduates, given a fixed number of classrooms, instructors etc, 

To construct and validate this implementation of the AUAS ASTM, two datasets were 
used. The first, UAS operator training data from FY14, was used to initially design and 
parameterize the model and the second, data from the same UAS operator training program in 
FY15, was used for model validation. The primary difference between these 2 data sets is that the 
FY15 Phase 1 training program was reduced by ~1.5 weeks and the FY15 Shadow training 
program was reduced by ~2 weeks. Thus, an effective confidence builder for AUAS ASTM will 
be that it can accurately capture the change in the data set, which significantly different from the 
data used to build the model. 

The general structure of the AUAS ASTM can be seen in Figure 5. The stocks (box 
variables) represent the trainees that move through training. Flows that connect the stocks are 
controlled by rate equations and are derived from parameters that are linked with causal arrows. 
Trainees move from one stock to the next as designated by the direction the flow arrow is 
pointing and the value of the rate. 

The rate in which trainees flow between stocks is controlled by parameters that make up 
rate equations. SD models, such as AUAS ASTM, are time-dependent models that calculate new 
data points every time step, which is constant throughout the entire simulation. The AUAS 
ASTM calculates the flow rates via Euler integration method with 0.03125 week time steps, 
which was selected by testing the sensitivity of the model to varying time steps. It was 
determined that time steps less than 0.03125 weeks showed no variation in model outputs, and, 
thus, would serve as an accurate selection (Sterman, 2000). 
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Figure 5. General structure of the AUAS ASTM with units noted in parentheses. The Repeating 
Module Structure arrow and valve represent the repetition of the Module Training Time and 
Module Training Tasks sections for the respective number of modules within a training program. 

 
The structure of the AUAS ASTM is made of five distinct sections (Figure 5): Training 

Modules, Required Training Resources, Module Training Tasks, Module Training Time, and 
Trainee Outputs. The Training Modules, Module Training Time, and Module Training Tasks 
sections are repeated for each of the modules that are in the training syllabus. Inputs to this 
application of AUAS ASTM include the average number of trainees per group, frequency of new 
trainee group arrival, tasks per module, and module training times. The AUAS ASTM includes a 
number of variables including number of resources (classrooms and instructors), the number of 
graduating trainees, the number of recycled trainees, the number of discharged trainees, the 
number of retrain/reclass trainees, and the total training time.  

The Training Modules section is made up of trainees that are moving through the training 
program. The Required Training Resources section provides the user with the ability to plan and 
calculate the number of classrooms and instructors required to match the number of trainees. The 
Module Training Tasks contains the tasks that the trainees must complete in each module. Those 
training tasks are converted into training time in the Module Training Time section. Finally, the 
Trainee Outputs section gives a breakdown of how many trainees successfully completed training 
as well as those that did not meet satisfactory requirements. 

To account for the number of trainees that successfully graduate, AUAS ASTM estimates 
percentages for all possible trainee outcomes in each FY, including recycled, discharged, and 
retrain/reclass. Trainees that are recycled are those that are required to go back and repeat training 
from the beginning of the phase with an incoming trainee group. This occurs due to unsatisfactory 
performance on the tasks or missing too many days due to illness or personal issues. The 
discharged output are trainees that are dismissed from the U.S. Army due to negligence toward 
superior officers, legal issues, or repetitive attempts at graduating without meeting satisfactory 
requirements, which are a very small number.  
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The retrain/reclass output is reserved for trainees that are sent to train in other divisions 
of the U.S. Army. The graduating operators are the remaining trainees left after the recycled, 
discharged, or retrain/reclass outputs have been subtracted from the trainee group size. The 
training times for each of the modules are calculated by taking the total number of tasks per 
module (the Module Training Task section in Figure 5) and converting those tasks to training 
time (the Module Training Time section in Figure 5). Appendix B details specific elements and 
computations of AUAS ASTM flows. 

AUAS ASTM Results & Validation 
 The purpose of the AUAS ASTM model is to understand how the selection of tasks, 
number of modules, and flow of people (including retraining needs and attrition) impact training 
times and the number of graduates from the training program. In order to validate that such a 
model is an effective training planning tool, we needed to measure the model’s performance 
against real world data.  

For the Army UAV training data, AUAS ASTM generates the number of graduates over 
one fiscal year in ~4 week intervals, which is equal to the frequency of new trainee group 
arrivals. The Army’s monthly class start date drives the need for a batch modelling process. A 
single fiscal year (FY) was chosen as the primary metric of interest because U.S. Army UAS 
operator training operations are funded by Department of Defense (DoD) budgets. These budgets 
change on a FY basis and in doing so, can alter the demand for the number of UAS operators and 
the amount of time that can be spent to train UAS operators. Thus, by modelling only one FY at a 
time, the political impact on the number of trainees and training requirements is reduced. Two 
validation data sets were provided from FY14 and FY15. 

The training data for both FYs provides details into the number of graduating, recycled, 
discharged, and retrain/reclassed trainees for both Phase 1 and Phase 2.  Since the phases 
represent two distinctly different training programs, we elected to use two different model 
representations. Phase 1 results are depicted in Figure 6, which shows the actual graduation rates 
for FYs 2014 and 2015 (solid lines) as well as the predicted graduation rates as determined by 
AUAS ASTM (dotted lines), demonstrates that the model accurately represents the numbers of 
graduates.  

 

 
Figure 6. ASTM performance for Phase 1 graduates in FY14 and FY15. 
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To adapt the ASTM to run for FY15 data the structure remained the same, but the values 
of the number of tasks, SRK behavior to task allocation, output percentages, average incoming 
trainee group size, and time per SBT, RBT, and KBT were modified to match that of the FY15 
syllabus, which changed from the FY14 syllabus and led to a change in the total training time. 
Many of the tasks between FY14 and FY15 were the same, but some tasks, such as dead 
reckoning, were added to the training requirements for FY15 due to trainees struggling to 
navigate in GPS-denied environments.  

The maximum deviation of the FY14 data is 16.1% during weeks 12-14, and for the 
FY15 data the maximum deviation is 23.4% in weeks 30-32. These deviations between the 
number of operational graduates and predicted number of graduates are due to the fluctuating 
sizes of UAS operator trainee groups. Demand for UAS operators to fly missions alters over time, 
which is reflected in the numbers of incoming students. The model assumes constant incoming 
class numbers, leading to some model error. 

At the end of the annual cycle, the AUAS ASTM error was 4.84% in FY14 and in FY15, 
2.02%. The ASTM was also able to adapt to changes in the training program as illustrated by the 
model’s ability to accurately reflect the decrease in Phase 1 output in 2015, driven by changes in 
the tasks (and thus in the required operator behaviors) and overall Phase 1 training time.  
 For Phase 2, the ASTM performed well, but not quite as well for Phase 1 (Figure 7). For 
the Shadow operators, ASTM’s average errors were 0.17% and 4.31% for FY14 and FY15, 
respectively. However, the maximum deviations were 29.5% and 10.4% for FY14 and FY15, 
respectively. The percent error for Phase 2 Gray Eagle number of graduates was 1.30% for FY14 
and 5.59% for FY15, with maximum deviations of 17.4% and 43.9%, respectively.  

 
Figure 7. AUAS ASTM performance for Phase 2 Shadow and Gray Eagle graduates in FY14 & 15. 
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Table 2. Percent error between actual vs. model outputs for FY14 & FY15 UAS operator training  

ASTM Output FY14 FY15 

Phase 1 – Common Core Recycled 0.63% 13.41% 

Phase 1 – Common Core Discharged 6.25% 16.5% 

Phase 1 – Common Core Retrain/Reclass 0.80% 13.22% 

Phase 1 – Common Core Graduates 4.84% 2.02% 

Phase 2 – Shadow Recycled 1.56% 8.73% 

Phase 2 – Shadow Discharged 1.71% 8.75% 

Phase 2 – Shadow Retrain/Reclass 6.50% 9.00% 

Phase 2 – Shadow Graduates 0.17% 4.31% 

Phase 2 – Gray Eagle Recycled 1.72% 2.88% 

Phase 2 – Gray Eagle Discharged 0.50% 2.89% 

Phase 2 – Gray Eagle Retrain/Reclass 5.14% 0.00%* 

Phase 2 – Gray Eagle Graduates 1.30% 5.59% 

 * The 0% error reported for Phase 2 – MQ-1C Retrain output in FY15 is due to no trainees 
retrained/reclassed that year. 

 
Additionally, the high maximum deviations in both the Phase 1 and Phase 2 graduates are 

likely partially attributed to the difference in expected training time and operational training time. 
While the Army’s UAS operator training syllabus specifies an expected time to complete the 
program, actual completion times are affected by holidays and various disruptions in daily 
schedules. In addition, the size of the trainee groups that move through the module stocks in the 
AUAS ASTM is constant, as it is an average group size calculated from the entire FY. 
Operationally, the size of the trainee groups fluctuates throughout the year due to demand for 
UAS operators and the number of Soldiers completing basic training. As discussed previously, 
one of the downsides to using SD is the required averaging of parameters instead of sampling 
from a distribution.  

AUAS ASTM Sensitivity Analysis 
  For developers of training programs, it is important that the parameters that most 
influence training efficacy are highlighted. To this end, a sensitivity analysis is necessary for any 
model to understand where potential errors are present and where the boundaries exist for model 
adaptation. An essential step towards validating any human-systems performance model is to 
analyze the performance of the model when exogenous parameters fluctuate due to uncertainty 
(Forrester & Senge, 1980; Sterman, 2000). A sensitivity analysis addresses the question of how 
uncertainty in estimated parameters affect the final model output (Sterman 2000).  

For the AUAS ASTM, a numerical sensitivity analysis was chosen to measure model 
robustness under +/-10% univariate perturbations of the exogenous parameters, which are those 
parameters that are constant values and do not have other parameters influence them. 
Perturbations less than this did not capture the variability in training time since due to the discrete 
time steps in which the ASTM runs (0.03125 weeks). The +/-20% sensitivity tests resulted in 
identifying the same variables that were identified with the +/-10% test.  
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 Two plots for FY14 are shown in Figures 8 and 9 for the percent change in the total 
number of graduates from FY14 Phase 1 (Figure 8) and the graduation time of the first fully 
trained FY14 Phase 1 group (Figure 9) caused by the perturbations. These variables were selected 
for the deeper analysis since the Army is interested in increasing their training throughput, and so 
overall number of graduates and training time reflects this desire. Phase 1 is highlighted here 
since it is the core stage that affects all training pipelines, but sensitivity models were constructed 
for both phases. 

Perturbations of task parameters resulted in no significant change in the number of Phase 
1 graduates. However, as seen in Figure 8, perturbing the Average Phase 1 Monthly Group Size, 
Phase 1 Recycling Percentage, Average Phase 1 Rollover Group Size, Phase 1 No Show 
Percentage, Phase 1 Retrain/Reclass Percentage, and Phase 1 Discharge Percentage parameters 
was found to alter the number of Phase 1 graduates. The Average Phase 1 Monthly Group Size 
was found to be the most sensitive parameter (~ +/- 8% of the modeled FY14 number of 
graduates), while the Phase 1 Recycling Percentage was determined to provide the second most 
variability (~ +/- 3% of the modeled FY14 number of graduates).  

The likely reason the Average Phase 1 Monthly Group Size had the greatest impact is that 
this parameter controls the number of people that enter the model, i.e. the batch size. By altering 
this parameter, the size of the trainee groups will be altered accordingly. Less obvious, however, 
was the importance of the recycling percentage. Recycling is a common training occurrence in 
that when a trainee fails a module, they are given an opportunity for remediation. In FY14 for 
example, approximately ~20% of incoming students required some level of remediation in the 
form of recycling. This number of recycled trainees in any given year is much greater than the 
number discharged or reclassed.  

This is an extremely important finding in the AUAS ASTM model application in that 
while it is important to accurately represent the number of incoming students, the model is highly 
sensitive to fluctuating recycling rates, which are not well studied or understood. Very little data 
exists to connect the recycling rates to the course content, which in our experience was anecdotal. 
However, most instructors we spoke to also complained about the time needed for remediating 
the recycled students. It is clear from the modeling effort that recycling represents a significant 
source of uncertainty both in the model and likely in real life, thus more work is needed in both 
stabilizing the recycling rates and determining the root causes of such recycling to achieve a more 
predictable output of graduates. Remaining percentage and group size parameters in this 
sensitivity analysis were found to have less than +/- 2% effect on the modelled FY14 number of 
graduates.  

The second sensitivity analysis plot in Figure 9 shows the impact on the time of the first 
graduating group for Phase 1 in FY14. Parameters that most influenced the training time were 
numbers of tasks and average time to complete tasks, with the number of tasks in Module C 
(Ground School) having the greatest effect on the overall training time (~ +/- 4.25-4.5% of the 
FY14 Phase 1 training time). During this module, all of the lessons are made up of RBT, thus, the 
Phase 1 Module C Rule-Based Task Fraction and Phase 1 Module C Week: Rule parameters had 
the same ~ +/-4.25-4.5% impact on the FY14 Phase 1 training time. The perturbation of the 
remaining task and time parameters resulted in little variation in the total Phase 1 training time. 

It is important to note that Figure 9 represents the variability in the training time output as 
a result of perturbing a particular variable. Thus, the variation in Phase 1 Module C rule based 
tasks demonstrates that if trainees struggle in this phase, this will likely cause much more 
variability in overall training times. Other than Phase 1 Module C, only Phase 1 Module A rule 
based tasks also appeared to significantly affect training times. This is an important finding as it 
provides clear guidance to training development personnel as to where their quality improvement 
efforts would provide the greatest benefit. 
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Figure 8. Percent change of total number of FY14 Phase 1 graduates with a +/-10% perturbation of 
exogenous variables. Parameters not in the plot had no effect. 
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Model Conclusion 
 An adaptable method for modeling the training of operators of autonomous systems has 
been designed and initially validated for UAS operator training operations. The current version of 
the ASTM has the capability of predicting numbers of graduates and training times with changes 
in the numbers and types of tasks, number of incoming trainees, and fractions of attrition, retrain, 
and graduating graduates. This model has the potential to allow training designers to proactively 
determine how changes in resources like classroom size, number of instructors, and attrition rates 
affect overall training projections. However, further data and applications are required that 
include the number of operational instructors, classrooms, and training equipment. 
 Through the application of the ASTM to a specific Army application, the Phase 1 and 2 
training programs for UAS operation (called the AUAS ASTM), the modeling approach was 
validated with FY14 and FY15 training data, although the Phase 1 model was more accurate than 
the Phase 2 model. Given these results, a more in-depth sensitivity analysis demonstrated that 
overall throughput numbers are most affected by how many people start each class, but also by 
the numbers of people requiring remediation (known as recycling). Overall training time was 
most affected by variability in Module C training, which focused on UAS Ground School, 
especially for rule based training. These results demonstrate that if the Army wants to produce 
people both faster and with more predictability, they need to address why and how often people 
are being recycled, as well as whether Module C training is causing significant variability in their 
process.  
 The unique element of ASTM is how it links operator behaviors to training through the 
SRK framework. Classifying tasks taught during training can aid developers of operator training 
programs to better understand the types of tasks that could and should be trained and their 
influence on training throughput and resources. Additionally, this method allows designers of 
unmanned system operator training programs to use the SRK taxonomy as a way to identify 
where autonomy has the potential to influence future system development (through which SRKs 
are automated), as well as what tasks could and should be left for human operators.  
 As the Army inserts more autonomy in UAS, such as automated path planning, one 
question that is raised is how should training programs be adjusted to provide the best, but most 
efficient, level of training?  By understanding which SRK tasks the automation affects, the AUAS 
ASTM could then demonstrate how the addition or reduction of tasks due to new technology 
introduction affects overall training throughput and time. However, this approach highlights one 
important limitation to the ASTM model, which is that the SRK tasks are considered to be 
independent and module-based.  

For example, if a new technology is added that replaces a set of skills and rules required 
of a human, like automated path planning, the current AUAS ASTM model simply assumes that 
all related human training requirements are zeroed out and there is no effect on error rates. The 
original ASTM model in Figure 4 does recognize there could be a relationship with various SRK 
tasks and errors, however given that no such data was available for the AUAS ASTM, it does not 
currently reflect this. 

One important related question is whether the removal of a particular group of tasks due 
to automation of autonomy ultimately negatively affects the operator because they miss 
fundamental training? So in the case of automated path planning, if mission planning training is 
shortened because of the addition of an automated path planner, do operators miss out on 
important skills that would have added to their overall core base of knowledge? While anecdotal 
stories from the USMC concerning the problems with dead reckoning discussed earlier would 
suggest that there could be, there is no current data that explicitly links SRKs to autonomy, and 
ultimately operator performance. 

In order to address this gap in the modeling process, we elected to design and conduct an 
experiment to potentially begin to address the relationships between autonomy, training of SRK 
tasks, and error rates, which is discussed in the next section.  
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Elucidating the Relationship between SRK Training and Autonomy 
 

One common assumption is that advanced autonomy allows less training to occur, as 
functionalities are shifted from human to automation. While the general ASTM model allows for 
errors to be introduced into the model because of this potentially flawed assumption, there is no 
existing data to inform how such changes could cause increased error rates. It is not clear whether 
skill-based training is a fundamental requirement for developing more global situation awareness 
that could be needed in the advanced knowledge and expert stages of reasoning (Cummings, 
2014). In one step to help address this gap which also would directly inform the model developed 
in the previous section, an experiment was designed to test how the presence or absence of skill-
based training affects operator performance, especially in the presence of advanced automation, 
which in this case was Automated Target Recognition (ATR).  

In this experiment, ATR is defined as an automated computer vision system that searched 
a predefined area to find a suspected target and present this target to an operator for either 
confirmation that the correct target was found, or the operator has the ability to search for what he 
or she felt was the right target. 

The basic experiment design included dividing subject groups into those that received 
skill- and/or rule-based target search training in a multiple UAV control task. These groups also 
would experience the presence or absence of ATR in a target search task. The goal was to see 
how different levels of training would affect human performance given different levels of 
automation. One reason many agencies state that increased automation is beneficial is that, in 
theory, it should reduce training costs since there are one or more functions that automation takes 
over. However, there is some military evidence that shows that there can be tangible performance 
costs when shortcuts in training occur.  

The USAF recently demonstrated that its UAV pilots perform best when they have 
received just 2 years of regular flight training in addition to their UAV flight training, as opposed 
to those who receive no flight training. The group with basic flight training performed even better 
than seasoned pilots with thousands of hours who transitioned to flying UAVs after multiple tours 
of duty in actual aircraft (United States Air Force Scientific Advisory Board, 2011). These young 
drone pilots receive significant basic training as actual pilots that will never be used as drone 
pilots, but such training provides them with situation awareness and perhaps confidence that they 
would not have received otherwise.  

But this same USAF study also demonstrated that too much experience also carried a 
negative benefit, likely due to a concept known as the negative transfer of training. It is possible 
that if a person has too much experience in another domain, that this training can interfere with 
the ability of the person to learn new training correctly in a similar domain (Dahai, 
Blickensderfer, Macchiarella, & Vincenzi., 2008). Thus, the goal of any training program should 
be to train to the optimal level, as there can be too little or too much. And also, it is best to select 
a group of trainees that will not experience negative transfer of training. 

In the experiment for this effort, training was designed to be shorter for those subjects 
with just rule-based training than those with skill- and rule-based training. Given the two different 
levels of automation in the search task and the results seen in the USAF study, we should see 
higher task performance with both skill- and rule-based training, as opposed to just rule-based 
training, regardless of the presence of ATR. Indeed, those people with skill and rule-based 
training should achieve peak performance with ATR since they should have increased cognitive 
capacity since automation is reducing their workload by helping them find targets. 
  We elected to introduce a nested variable into this experiment which was whether the 
ATR was correct or not.  Automation complacency is a known problem for operators supervising 
UAVs (Cummings, 2004), thus it was important for us to determine if automation bias existed, 
and if there was any interaction between type of training and degraded autonomy. 
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The last experimental factor we wanted to represent was that of knowledge-based 
reasoning. Given that knowledge-based reasoning is linked to experience (Rasmussen, 1983), the 
only way we could represent this level of “training” would be to use people with significant 
experience in UAVs and compare their performance to people without significant experience.  It 
was our original intent to use Army UAV operators vs. college students to represent this 
condition, since the groups are approximately the same age.  

The details of the experimental design are summarized below. 

Experimental Design  

Hypotheses 
1. Participants without ATR will experience the highest workload and correctly identify 

fewer targets, but those that receive skill + rule training (as opposed to just rule training) 
will have higher situation awareness as measured through correct responses to a 
secondary workload metric (chat messages), and fewer incorrect target identifications. 

2. The subject groups that receive only rule training with ATR will demonstrate the least 
workload levels via utilization, and but will incorrectly identify more targets as a function 
of automation bias when the ATR fails. 

3. The best performance in terms of correct targets identified will be seen by the group that 
has Skill+Rule training but with ATR (which should reduce workload). 

4. Army personnel should perform better in terms of higher situation awareness and target 
identification since they are actual UAV operators and have advanced basic knowledge. 

a. One caveat to this hypothesis is that there are no true experts in the control of 
multiple UAVs from a single ground station, which is the testbed used in this 
experience. Thus, there is the possibility that novices could do better than the 
Army personnel due to negative transfer of training. 

Statistical Model 
The original experiment was designed as a between-subjects 2x3(2)x2 statistical model, 

which represents knowledge groups x ATR quality nested in autonomy training x trial, 
described below: 
• Knowledge groups = people with UAV experience vs.  those without, i.e., Army UAV 

operators vs. college students 
• Autonomy training = skill- + rule-based search training w/o ATR, skill- + rule-based 

search training w/ ATR, rule-based search training w/ ATR. This condition represents 
varying autonomy with varying training. There is no rule-based training w/o ATR since 
for the purposes of this experiment, rule-based training only exists when ATR is present. 

• ATR quality = This variable represents working vs. a failed ATR. In all factors with an 
ATR, 70% of the ATR-enabled identification were true positives, and 30% were false 
positives. In this experiment, the ATR always found something, so there were never any 
misses or false negatives. This is a nested condition since it only applies to the two 
factors with ATR. 

• The last factor was trial number, where each subject experienced the same experimental 
conditions for another session. This was included to increase statistical power. 

 
Dependent variables would be overall number of targets correctly identified, subjective 
workload, utilization (percent busy time), average time spent searching for targets, response 
time to chat messages (as a secondary workload metric), and correctness of responses to chat 
messages (a situation awareness proxy). In addition, given the presence of faulty ATR, for 
those people with ATR, the number of incorrect identifications as compared to those people 
with no ATR would likely yield important insight into the effect of automation bias. 
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Participants 
The original experiment was designed for 12 Army personnel and 12 college students 

that theoretically have different levels of knowledge due to their backgrounds. The goal was 
to have 8 people per autonomy training block (half Army UAV operators/half college-aged 
students). 

Testbed 
The software that this experiment uses is called RESCHU (Research Environment for 

Supervisory Control of Heterogeneous Unmanned vehicles). This test bed, described in more 
detail below, allows a single operator the ability to supervise multiple UAVs. RESCHU is a 

discrete event simulator that can be 
used to test operator methods and 
strategies for controlling, 
scheduling, and planning missions 
using multiple unmanned vehicles. 

Figure 10 shows a screenshot of 
the RESCHU interface with its five 
components labeled. The five 
components consist of: 1) A map of 
the simulated region in which the 
vehicles are operating in, 2) An 
image from the camera onboard the 
simulated unmanned vehicles, 3) A 
chat message board that gives up-
to-date information pertinent to the 
mission, 4) Unmanned vehicle 
status window, and 5) A schedule 
for future unmanned vehicle 

actions. The subjects of the experiment will be required to monitor the map (1), the camera 
image (2), and the chat messages (3) to assist in target search and identification. For this 
experiment, subjects will monitor four UAVs simultaneously where each have their own 
respective schedule in (5), damage assessment in (4), and camera image in (2). 

The goal of operators using RESCHU in this experimental setting is to visit as many 
targets as possible and successfully identify objects through the camera when the UAVs reach 
targets. In order to accomplish this, RESCHU essentially has two different subtasks 
embedded in its design. The first subtask is successfully navigating multiple vehicles to 
different targets in order to search the targets for the desired object of interest, which primary 
involves looking into sections 1 and 5 in Figure 10. The second subtask is then to engage the 
UAV’s camera (section 2, Figure 10) and look for a target, who is assigned by a “supervisor” 
(section 3, Figure 10), which is an actually just a bot telling the operator what to search for, 
i.e., a red car, a helicopter landing pad, etc.  

Skill vs Rule Training 
In order to test the interactions between increasing autonomy and skill and rule training, 

we needed a scenario where skills would be required under the lower autonomy case of no 
ATR, which would not be needed in scenarios where operators had access to ATR. We 
decided that the best way to experimentally control this was to use a new input device that 
required dedicated training to be good at using, especially in the search task, but could still be 
used with some on-the-job training. 

Figure 11 shows this device which is called the Kensington Expert Trackball Mouse®. It 
requires users to learn a new manual control skill in the control of the trackball which is much 

Figure 10: RESCHU Interface 
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faster than a traditional mouse, and participants 
also had to relearn which buttons map to various 
functions. This device is very unfamiliar to most 
people and requires time and effort to learn to 
use. Such an equipment change is reflective of 
real world decisions to add hardware to a new 
system that requires a skill set which takes time 
to learn.  

For this experiment, those people in the skill 
+ rule training group would be given ~20 
minutes of dedicated training to learn to use the 
Shark® mouse in an abstract training task. An 
abstract training task was needed to allow 
participants to become experts at using the 
mouse without giving them significant 
experience inside the RESCHU environment. 
Thus, we developed a Fitts’s Law training environment (FLTE) (Figure 12), which embodies 
the well-known Fitts’s Law relationship. Fitts’s law states that the movement time (MT) 
required to rapidly move to a target area is a function of the distance and the size of the 
target. (Fitts, 1954; MacKenzie, 1995) 

 
Movement Time = a + b*ID  ID = log2 (D / We + 1)        (Equations 1 & 2) 
 

 where ID is the index of difficulty, D is the distance to the target for selection and We is 
the effective width of the target. Coefficients a and b are the slope and intercept coefficients, 
determined through empirical tests conducted in a pilot study. 

In the training environment in Figure 12, participants in the skills + rule condition (with 
or without ATR) conducted 6 blocks of 75 clicks each in FLTE with 30s breaks in between 
blocks. This protocol has been shown to effectively train people learning a new mouse input 
device to relatively stable levels of performance (MacKenzie, Kauppinen, & Silfverberg, 
2001).  

People in the rule-based training group received no specific training on the new mouse, 
but were able to spend 15 minutes in the practice session (described in detail in the next 
section) acclimating to the new 
device. People who received 
mouse training also had the 
same 15 minutes of RESCHU 
training. In RESCHU, 
participants with no ATR 
would have to pan and zoom to 
find the target much more than 
people who had ATR.  

The rule-based training 
consisted of the procedures 
needed to successful search and 
identify each target assigned. 
These procedures included 
engaging the camera (which 
was different if ATR was 
present), searching for a target, 
and then the final steps for Figure 12: Fitts’s Law Training Environment, the 10 pixel 

target dot moves randomly across the screen. 

Figure 11: Kensington Expert Trackball 
Mouse ®  



 
 

22 

submitting a final answer. All participants received rule-based training, although the ATR 
condition required slightly different rules. 

Conduct of the Experiment 
The original experiment was designed to last for 60 minutes total, with 30 minutes for 

briefing and training and 30 minutes for experimental testing (2 missions, 15 minutes per 
mission).  This experiment was designed to take place in two places, Duke University for the 
student population and either Fort Bragg, NC or Fort Campbell, KY for the Army operator 
population. The Humans and Autonomy Lab has a mobile command center van (Figure 13) 
that is equipped with multiple displays and wireless communication capabilities in which the 
training and testing will take place.  Given the need to run experiments in two locations 
(Duke + an Army location), all experiments were to be run in this van using the two OptiPlex 
5050 Minis with 4GB RAM and an 
Intel Core i5-7500T processor. They are 
hooked to Samsung® displays (DM32e 
model, 32”, 1920x1080 resolution). 

Immediately following training, 
each subject would participate in two, 
15-minute simulated missions. The 
objective of these missions is to identify 
as many targets as possible. The 
subjects will supervise four UAVs 
during the missions, representing a 
future desired Army capability. In 
RESCHU, the navigation for each 
vehicle happens automatically, but the 
human must monitor each vehicle to 
make sure they do not fly into a pop-up 
threat area. They also must replan the 
routes accordingly. The chat message 
board in Figure 10 alerts the 
participants when a vehicle is 
approaching a target and to inform them 
when the camera will be online. In the 
ATR condition, subjects will be 
presented with what the automation 
believes to be the target. The error rate 
of the automation is designed at ~30%, 
which has been shown to be a problematic area for human trust of automation (Wickens & 
Dixon, 2007).  

After each test session, a brief post-experiment survey will be administered to assess 
participants’ perceived workload (Appendix E). The detailed checklists used for each of the 
three different factor levels are included in Appendix F. The training slides for the different 
conditions are in Appendix G. 

Results 
 
Unfortunately, the planned experiment did not materialize due to the inability to gain 

access to Army operators before the end of the study. However, one group of students used a 
similar protocol for a class project in the Human Robot Interaction graduate class. Instead of 
testing the trackball, they tested a vertical mouse on 15 participants in three testing groups 

(a) HAL Mobile Command Center Exterior 

(b) HAL Mobile Command Center Interior 
Figure 13: HAL Mobile Command Center 
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(normal mouse, vertical mouse with the same Fitts’s training as described above and the vertical 
mouse without training). This study demonstrated that there was a tangible benefit of training on 
multiple metrics including contingency planning, task management, and information seeking and 
filtering (Saxena & Wang, 2017). This means that those participants who had to train for a 
significant period of time on a new unfamiliar device performed better in many respects to not 
only those people who did not have any training (which is expected), but this group also 
performed better than those people who used the old, more familiar mouse. Thus, a group of 
‘novices’ with a new technology outperformed the ‘experts’ on many tasks, even though the 
experts should have been able to commit additional cognitive resources since their cognitive 
workload was lower. These results suggest that the act of training – even in a very abstract 
environment -  adds additional benefit beyond just the act of teaching a specific skill. Indeed, 
these results mirror those of the US Air Force’s study cited earlier where those people with 
training in undergraduate flight training did better than either complete novices or advanced 
experts in UAV operations. 

 It remains to be seen whether this positive effect is due to increased self-confidence 
since participants may feel more prepared for a cognitive test after having undergone recent 
training. Such increases could be attributed to a heightened state of awareness that the training 
induces, suggesting that there may be some benefit to intense warm up mental exercises. Testing 
the temporal influences of this effect are an important future area of inquiry. In addition to a 
temporal effect, it will also be important to better understand the effect of training content, i.e., is 
increased performance due strictly to additional training time or is there some element of the 
training material that is particularly important? 

One other interesting result in the Saxena and Wang (2017) study was that most of the 
performance benefits of the training were actually not for the specific search task best supported 
by intense mouse activity. Thus, the training had an unintended positive benefit for other tasks 
that required significant less mouse input. More research is needed to look at this finding in more 
detail. 

In another related study that used the same experimental test bed and protocol outlined 
previously, but that used college students and FAA Part 107 commercial UAV pilots (Cummings 
& Huang, in progress,) there were several intriguing results.   

When looking at the overall performance comparisons between the three experimental 
groups (skill + rule training without ATR, skill + rule training with ATR, rule training with 
ATR), there were no statistical differences in success rates of finding targets and successfully 
navigating the vehicles around hazard areas. However, while not statistically different, 
participants with just the rule-based training had the overall lowest error rates of 5%, while those 
with skill + rule training w/o ATR were at 9% and skill + rule training w/ ATR were at 11%.  

Commercial pilots without ATR took the longest to search each target, which was 
statistically higher than all other categories, and likely because of this delay, this caused the other 
UAVs to experience longer wait times for service. Commercial pilots without ATR took, on 
average, 10s more to search than students, and 15s more than their commercial counterparts who 
had ATR.  

These temporal results are interesting because without the help of the automation, the 
commercial pilots could not perform as quickly as their counterparts or the student pilots who had 
automated target search assistance. The student pilots without ATR performed the same as their 
peers and the commercial pilots with ATR so the student pilot group with no ATR was much 
more resilient and able to keep up. This result suggests that the commercial pilots, who generally 
had more experience with supervising real UAVs, struggled in the temporal aspects of multiple 
vehicle control when they did not have ATR. They still performed the same in terms of overall 
accuracies, but the commercial pilots without ATR just took longer. This result could be an 
indication of an element of negative transfer of training, in that because the commercial pilots 
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were not used to supervising multiple vehicles, they had difficulty with dealing with the multiple 
tasks and added workload, but only when they did not have automated assistance. 

When looking just at those people that had ATR, the FAA Part 107 pilots, who were 
higher in KBB, were almost three times more likely to correctly detect targets than the students. 
Moreover, operators with reliable ATR were 7.5 times more likely to be successful, so 
consequently people’s odds of getting a wrong answer under unreliable ATR were very high. 
Thirty percent of all operators with unreliable ATR got wrong answers, as compared to only 5% 
of errors when the ATR worked correctly. In comparison, operators with no ATR had an error 
rate of 9%. Most of the errors made in the unreliable ATR conditions were caused by student 
pilots (N=12). Only one commercial UAV pilot with reliable ATR failed to accurately complete a 
search task.  

These results clearly indicate a problem with deskilling and complacency when operators 
have too much automation, which has been shown in other supervisory control domains (Ferris, 
Sarter, & Wickens, 2010; Parasuraman, Sheridan, & Wickens, 2000). When the automation was 
only 70% reliable, so were the humans, which could be extremely dangerous in safety-critical 
settings. 

Overall, the Cummings & Huang study found that additional skill training in the presence 
of automation primarily benefited a subset of population, the novices. With both skill and rule 
training but no automation, error rates on a target search task were slightly higher as compared to 
those of people with the same training but with access to ATR. However, there was no clear 
benefit to having skill and rule training in terms of reduced errors in the presence of automation, 
and thus, a significant challenge remains in terms of preventing automation complacency and 
deskilling, especially as more automation is brought online. 
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Evaluating Training through a Machine Learning Approach 
 

For this effort, a side task to determining the best way to model training was to explore 
the utility of using a machine learning approach for training evaluation. To this end, we elected to 
use a RESCHU-derivative testbed to determine if a hidden markov modeling approach, which is a 
machine learning technique, could accurately capture operator strategies. If there is an automated 
way to determine what operator strategies are being used, then this opens the door to determine 
whether trainees are developing strategies as they should, and then indicate where such strategies 
might be inefficient.  

 

Hidden Markov Models 
 

A Markov model is a stochastic model of state transitions in the state space, where all 
state transitions are observable (Asmussen, 2008). Many studies have used Markov models to 
investigate low-level human actions (Galata, Johnson, & Hogg, 2001; Pentland & Liu, 1999). 
However, Markov models capture only low-level interactions between human operators and 
control systems, instead of high-level human cognitive states. An extension of the Markov model 
is the Hidden Markov model (HMM), which is a stochastic model that describes a Markov 
process with some states and variables that are not observable (Rabiner & Juang, 1986). While 
system states and state transitions are observable for Markov models, in a Hidden Markov model, 
system states are not directly observable (thus are ‘hidden’) and the only observable variables are 
emission probabilities that are determined by hidden system states.  

An HMM model can represent both higher-level human operator cognitive states and 
lower-level operator interactions with human supervisory control systems. For instance, in 
supervisory UAV control scenarios, hidden states of a HMM can represent operators’ strategies in 
high-level UAV tasks, and observable emissions can represent low-level interactions between 
operators and UAV control interfaces. HMMs have been used previously to develop human 
operator behavior models (Boussemart, Cummings, Las Fargeas, & Roy, 2011; Suzuki & 
Jansson, 2003; Suzuki et al., 2005), but none of these previous efforts attempted to determine 
actual strategies, particular in the control of UAVs, which is the focus of this effort.  

The SA-RESCHU experiment 
 
In order to determine if HMMs can detect UAV control strategies in a useful manner, a 

data set that included a significant set of observable interactions with a UAV system was needed. 
We elected to use a data set that was recently generated for the Navy that looked at how well 
operators could assist in the detection of potential UAV hacking events. The interface used in this 
study is called Security-Aware Research Environment for Supervisory Control of Heterogeneous 
Unmanned Vehicles (RESCHU-SA), which is a Java-based simulation platform for a single-
operator with multi-UAV supervisory control scenarios. It is a derivative of the RESCHU 
interface in the planned experiment detailed in a previous section. 

RESCHU-SA provides capability for simulating UAV GPS spoofing attacks, in which 
hacked UAVs deviate from their originally assigned path and move towards other unexpected 
destinations, and it is the operator’s job to determine if suspected path deviations are due to 
hacking or are a false alarm. Such a method of hacking detection is possible since the camera 
video feeds on UAVs are a separate one-way transmission from the UAV, while the 
navigation/GPS system is a transmit and receive system that can be relatively easily spoofed if 
not protected. Thus, the location of a UAV on a map may not be correct if it is GPS-derived, but 
the transmitted view from a downward camera is generally legitimate, so the two can be cross 
referenced. 
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The interface of the RESCHU-SA platform is shown in Figure 14. Five main components 
are featured in the interface, including the payload camera view, message box, control panel, 
timeline and map area. Specifically, the camera view displays the video stream from the payload 
camera of the selected UAV. The primary purpose of this view is to conduct imagery analysis 
tasks and to determine the actual location of UAVs for detecting potential hackings. And the map 
displays the area of surveillance with real-time locations of all UAVs, hazard areas and targets.  

In the Navy experiment, 36 participants took part with 22 males and 14 females. Age 
ranged from 19 to 34 years with an average of 25.2 and a standard deviation of 3.83 years. 
Among the participants, 18 had little video game experience, 6 participants had monthly gaming 
experience, 5 participants played video game several times a week, another 5 participants had 
weekly gaming experience, and only 2 participants had daily gaming experience. All participants 
experienced two 20 minute test sessions which generated 72 full data sets. When developing 
HMM models, one limitation is data so such relatively large data sets are critical to ensure that 
pattersn are well enough established to be detected.  

The primary objectives of operators in RESCHU-SA are to control multiple UAVs to: 1) 
determine whether UAVs are under GPS spoofing attacks, 2) perform reconnaissance imagery 
tasks of counting road intersections when UAVs reach assigned targets, and 3) ensure UAVs do 
not encounter hazard areas.  For this experiment, GPS spoofing attack events followed a pre-
defined schedule. A hacking notification appeared 10 to 20 seconds after the attack event, 
simulating an external agency detection of a possible GPS spoofing attack. However, the 
notification could be a false alarm. In fact, 50% of all notifications were false alarms. 

Operators were responsible for ensuring UAVs visited the most targets possible, which 
required them to ensure the automated path planner was correct in its UAV-target assessment. 
The RESCHU path planner for the UAVs is intentionally suboptimal, meaning that often the 
UAV paths were very inefficient, which allowed experimenters to assess how much spare 
attention participants could devote to optimize the navigation and target assignment.  

When UAVs that were not hacked reached a target, the operator engaged in an imagery 
task of counting the road intersections from the UAVs camera view at a pre-specified zoom level. 
This task represents the primary purpose of the mission which is information gathering. While 

Figure 14: The RESCHU-SA interface 
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engaging in a counting task, the operator was required to enter an answer before the counting task 
was finished. The imagery counting allowed us to assess performance based on the number of 
attempted tasks and the task correctness percentage.  

Once the operator received notifications from the system that a certain UAV was under 
possible cyber-attack, the operator could then investigate the UAV by checking the UAV camera 
view and matching it against the position of the UAV on the map. If the operator decided the 
UAV was hacked, the operator was expected to override the hacked UAV and send it home.  

The results showed 23 out of total 72 experiment sessions (32%) resulted in 100% of 
successful hack identifications, with another 24 (33%) reaching above 80% successful attack 
identification. Thus, 65% of total experiment sessions exhibited 80% correct hacking detection or 
better without having any prior formal training. In terms of incorrect hacking identifications, 12 
(17%) participants lost one or more UAVs, meaning that these UAVs were successfully hacked 
and could not be further controlled.   

For hacking events in both test sessions for each participant, 7 out of 15 events were pre-
defined as false alarms, which meant the threshold for correct notification of a problem was 47%, 
approximately a half. Out of the correct notifications, the overall success rate was 78%, and for 
the false alarms, the success rate was 84%. Thus, operators were slightly better at detecting false 
alarms than identifying correct notifications.  The second important question was what factors 
affected operators’ performance. For the three performance scores of vehicle damage, correct 
percentage intersection counts, and correct percentage of hacking events, the only variable task 
load affected was vehicle damage, where people under high workload experienced more damage 
than those in the low workload condition. 
 

Operator HMM Models 
 

Descriptive human operator models were developed using the Hidden Markov model 
(HMM) approach to investigate if and what operator strategies emerged given the parallel tasking 
of the primary information search mission and the need to address hacking events. There were 
two basic models developed, one that looks at the overall cognitive flow for how operators 
approached the entire RESCHU mission, including navigating the UAVs, engaging in the 
intersection search task at each target, and performing potential hacking analyses. Then another 
HMM was developed that looked at the hacking strategies in detail. These models are explained 
in the next sections. 

Overall	Mission	HMM	
To develop the HMMs, an unsupervised model training approach of the multi-

sequence Baum-Welch algorithm was used in model training (Rabiner & Juang, 1986). 
Then the final number of states was selected using Bayesian information criterion (BIC) 
(Schwarz, 1978) and the number of rare states (NRS) (Rodríguez-Fernández, Gonzalez-
Pardo, & Camacho, 2016) to get models with high model likelihood values with 
reasonable model structures.  The HMM models were trained from 72 different test 
sessions, using 12 observations of operator interactions with the system, as shown in 
Table 3.  

Table 3: Observable states in RESCHU-SA 
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The overall mission 
operator behavior model is 
a 7-state HMM model 
(Figure 15).  The first 
hidden state represents a 
cluster of clicks that 
represent an operator 
switching UAV-target 
assignments, which was an 
expected behavior since the 
automated target 
assignment was 
intentionally suboptimal. 

The second hidden 
state is interpreted as 
“select UAV” which is the 
same as the 7th observable in 
Table 3.  Operators would 
select this state to indicate 
that a particular UAV was 
the point of focus. 

The third state is 
interpreted as “perceive 
hacking” because only this 
state had clusters of clicks 

of “acknowledge hacking” and “ ignore hacking”, which were selections operators made 
to indicate they knew they had received a hacking notification.  

The fourth state is interpreted as “hacking detection” because it included “add 
waypoint”, “move waypoint” and “adjust zoom level” from Table 3, which usually 
occurred in hacking detection tasks just after receiving a hacking notification. Recorded 
videos helped to confirm this interpretation that operators mostly adjusted the video feed 
zoom level in hacking detections.  

The fifth state is interpreted as “optimize path” because it related to UAV 
navigation clicks, and notably had a high self-transition probability of 72%, which was 
also confirmed by recorded videos that operators tended to group path optimizations for 
multiple UAVs together.   

The sixth state was interpreted as “engage task” because this was the cluster of 
clicks where people would go into the targeting window and pan and zoom to count the 
road intersections.  

The seventh state was interpreted as “hacking decision” because it contained the 
cluster of clicks for “consider UAV hacked” and “consider UAV not hacked”, which 
were operators’ final decisions to hacking events. 

The various states in Figure 15 are colored blue and yellow to indicate two 
functional groupings. The hacking detection functional group, which is highlighted in 
yellow in Figure 15, can be clearly distinguished from the primary UAV management 
functional group, which is highlighted in blue. In fact, the blue functional management 
group is very similar to another HMM developed from a completely different experiment 
using RESCHU (Boussemart et al., 2011). In this experiment, operators just had to 

Figure 15: Overall Mission RESCHU-SA Operator Model 
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manage the paths, target assignments, and search tasks, but did not have any hacking 
detection tasks. 

This is an important finding because it demonstrates that HMMs can be used to 
potentially model humans in a modular fashion, meaning that when using the same 
interface, if a new capability it added on, new global models do not need to be built and 
that it may be sufficient to just build new models of the new functionality.  This is 
explored in detail in the next section. 

Hacking	Detection	HMM	
The 3-state hacking sub model in Figure 15 is interesting because at this 

level of abstraction, it is clear that the hacking cognitive model parallels the 
typical information process model of perception-cognition-action, in that people 
perceive a hacking event, investigate the event to determine causality, and then 
make a decision. However, this broad brush is not very diagnostic, so in order to 
gain better insight into the hacking sub-model highlighted in Figure 15, only 
those observable states that were executed from the onset of hacking notification 
to the submission of a hacking detection judgment (hacked or not hacked) were 
used to generate another HMM in the same way the first one was determined. 
This model (Figure 16) shows more detailed cognitive processes for how people 
approached the hacking detection problem. 
 
 
 
 

All the blue states inside Figure 16 are similar to those in Figure 15 and 
represent the time during a hacking event that people divided their attention to 
attend to the other UAVs not under attack. Figure 16 also demonstrates that there 
were 3 different prominent strategies in hacking detection determination.  In the 
histograms near each state, the individual clicks that make up that state can be 
seen. 

For hacking detection strategy #1 (hidden state 2), given the 
concentration of operators on adding, moving and sometimes deleting waypoints, 
these people were physically moving the UAV to a new location to cross check 
the motion of the UAV on the map against what they were seeing in the camera. 
We call this strategy “motion verification” since people were primarily focusing 
on the vehicle movement as the cue to verification. 

Figure 16: Detailed hacking detection model with click probabilities per hidden state 
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In strategy #2 (hidden state 6), people tended to add waypoint and then 
zoom their camera view to see the ground in more details. This is a more 
organized strategy as seen in the high click count, and people were much more 
focused on “landmark verification”, given their use of the camera to zoom in.  

For strategy #3 (hidden state 7), people did not really change the physical 
location of the vehicle that much, and preferred to attempt to determine if the 
vehicle was hacked by focusing on matching the target on the map to what they 
see in the camera view. We call this strategy “stay the course verification”. 

Of the three strategies, we can see that the “motion verification” strategy 
was very inefficient and took the longest since there is a 65.4% chance that 
people would keep transitioning back into this state repeatedly (this is called a 
self-transition). We know from the experiment statistics that the time 
consumption in hacking detection was negatively correlated with the hacking 
detection success rate (Pearson=-0.375, p=0.001). In contrast, “landmark 
verification” operators experienced significantly fewer self-transitions and “stay 
the course verification” operators generally committed early to this strategy and 
with few changes to the environment.  

In order to determine how well these hacking strategies helped 
individuals perform, we examined how the best performers’ strategies aligned 
with the three overarching strategies. There were two expert performers who both 
achieved perfect hacking detection and also performed well on the intersection 
tasks. Their individual hacking detection strategies, as compared to the overall 
HMM model in Figure 16 are detailed in Figure 17. 

 
 
 
 

In Figure 17, Expert A adopted strategy 3, which was to optimize target-UAV 
assignment and then use the arrival of a UAV at a target as confirmation of the geo-
spatial position. Expert A was also able to multi-task in that he continued to balance 
UAV/target assignment for other non-hacked UAVs while waiting for a potentially 
hacked UAV to get to its target.  Expert A was consistently ~0.5 standard deviations (SD) 
faster in hacking detections, but was only slightly higher that the average percentage for 
number of targets successfully hacked. 

Figure 17: Expert Strategies for Expert A (left) and Expert B (right) 
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Expert B adopted a hybrid strategy which included redirecting the UAV both to 
check its motion path but also the landmarks underneath specific waypoints. Expert B 
was very focused on the hacking task and spent very little time on managing the other 
UAVs. This resulted in hacking performance even better than Expert A, in that Expert B 
was ~1 SD faster than average operators in terms of hacking detection. However, Expert 
B scored only average on the successful number of prosecuted targets. 
 One common thread between these two experts was their video game experience. 
Both of these operators self-identified as daily gamers, and these were the only two 
participants in the entire subject pool at this highest level of video game experience. They 
were also the only participants with 100% successful hacking detection. However, while 
they were superior to others in hacking detection, they were only average to slightly 
above average in the other primary mission of prosecuting as many targets as possible. 

The strategy analysis for this effort is still underway but these preliminary results 
are very encouraging. These results showed that strategies can be mapped, and that 
inefficient as well as effective strategies can be identified. This could be very important 
for identifying whether trainees adapt effective/efficient strategies, and how the best way 
to correct any problems. Moreover, such models could provide suggestions for engineers 
for how to use automation to assist human operator, as the models indicate where people 
get bogged down, and thus the models could point to steps where time spent in hacking 
detection manipulations, especially in self-transitions, could be reduced. We are currently 
investigating the best ways to do this. 

Summary 
 The point of the HMM modelling effort was to determine if and how such models could 
be used to elucidate training behaviors. Using novices in a representative multiple UAV control 
simulation where the UAVs could be hacked, we could see that added functionality resulted in 
added states to an already known cognitive model. Furthermore, we could see that the participants 
clustered into 3 strategies, with the best performers adopting hybrid strategies. 
 These results strongly suggest that more work is needed to extend this method in real 
Army applications because not only could it identify how people are developing strategies, ether 
in training or in actual operations, but also where possible inefficiencies lie. Moreover, while the 
current models are descriptive, because they are based on user clicks, they could be turned into 
predictive models and could actual be used in error prediction. So, in this case, the computer 
could predict when an operator was executing a strategy that would likely be suboptimal and then 
notify a supervisor that intervention may be needed. 
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Overall Project Summary 
 

 This project, which broadly focused on developing better diagnostic approaches to 
identify training deficiencies as well as the impact of inserting futuristic forms of autonomy into a 
training program. To this end, the following milestones were achieved: 
 

• A midterm report was published per the statement of work in February of 2016 
(Hutchins, Clamann, Furth, & Cummings, 2016) 

• A provisional patent was filed for the Autonomous System Training Model (ASTM) that 
incorporates training requirements, the influence of increasing autonomy, both training 
and operational errors, and trainee attrition (Appendix B) 

• The ASTM was applied to Army UAS systems (Grey Eagles and Shadows). Validation 
results showed the model was more accurate for Phase 1 than Phase 2, although more 
data is needed from multiple years to further elucidate potential error sources in the 
model. The model also clearly suggested that overall training time was most affected by 
variability in Module C training, which focuses on UAS Ground School. Thus, one 
tangible result from this model is that more work is needed to improve this module both 
in terms of variability of training time and content. 

o A journal paper based on this is in development. 
o A poster was presented at an undergraduate research conference at Duke in 2016 

highlighting this work (Appendix C) 
• An experiment was designed, including all the supporting software and training material, 

to investigate the relationship between skill-, rule-, and knowledge-based reasoning in a 
multiple UAS control environment. 

• Hidden Markov Models were shown to be an effective way to represent operator 
strategies with clear indications for potential training applications. Such a model could be 
used in a diagnostic manner (i.e., identifying problems in training or identify areas where 
autonomy is needed) or in a predictive manner (identifying a poor strategy in real time 
which could be addressed before resulting in a critical error.) 

o A journal paper based on this is in development. 
• A Fitts’s Law experimental testbed was created and is being made available for any 

interested researchers on the HAL website. 
• RESCHU-SA is a freely available experimental testbed for any interested DoD-related 

researchers. 
• This research led to additional funding through ONR to further explore potential 

dependencies on skills and rules in the development of knowledge.  
• This research also partially supported the publication of this high impact paper with the 

Royal Institute of International Affairs (aka, Chatham House, the 2nd most influential think 
tank in the world). 

o https://www.chathamhouse.org/sites/files/chathamhouse/publications/research/20
17-01-26-artificial-intelligence-future-warfare-cummings-final.pdf   
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Appendix A:  Original Statement of Work 
 
Task 1: Adapt the joint human-autonomous system metric class framework described in the 
previous section to explicitly consider the evaluation of training, as well as the need for different 
levels of reasoning. 
 
The current framework only considers metrics for operation and not evaluation. Moreover, it does 
not address the need for different levels of cognitive reasoning such as skill, rule, and knowledge 
based reasoning.  By adapting the framework, a better diagnostic approach can be taken that can 
identify training concerns as they apply to the different layers of reasoning and how increased 
autonomy may be either hindering or promoting various training objectives. 
 
Task 2a: Apply the adapted framework to a generalized UAV and UGV Army application to 
illustrate how the framework can and should be utilized for training evaluation. 
 
Once the framework is adapted, developing use cases that illustrate how such a framework can 
augment training evaluation is critical for dissemination. Moreover, this task will include 
determining how such a framework can inform autonomy design through the training evaluation 
lens, which will include identifying what functions could be allocated to the automation, human, 
or both. 
 
This task will also include stakeholder engagement, i.e., Army training professionals will be 
consulted for their expertise for specific systems to gain a deeper insight into those metrics that 
are considered the most important. 
 

Task 2b: Determine if and how machine learning algorithms could be used to gain 
additional insights from the training evaluation data. 
 
Recent work in training evaluation research in computer-based training settings 
(Stimpson & Cummings, 2014; Stimpson, Buinhas, Bezek, Boussemart, & Cummings, 
2012) has determined that it is possible to leverage powerful machine learning algorithms 
(i.e., big data), to detect patterns of trainee behavior that would otherwise gone 
undetected. One sub task in this effort will be to look at the data collected in a 
representative setting under Task 2 and determine whether machine learning algorithms 
could provide insight into trainee behavior and the quality of the training program. 
 
 

 
Option Tasks 
 
Task 3a: Using the metric class framework and the results from Task 2, develop a feedback 
model of an Army UAV or UGV application that addresses how increases in autonomy across 
various functions could potentially affect training evaluation.  
 
Once the generalized approach to using the joint human-autonomous system evaluation 
framework is established and vetted with the subject matter experts, we will determine how to 
take the structure and the results from metric class framework, and develop a feedback model to 
illustrate how increasing autonomy can affect training outcomes and how this relationship can 
and should be evaluated. For example, new path planning algorithms could be inserted into either 
UAVs or UGVs which would change the level of reasoning a human would apply for navigation 
tasks. Thus, the evaluation approach would commensurately change. 
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Task 3b: Test the validity of the feedback model in a simulated task environment. 
 
In this task, we will work with Army training personnel to determine how this approach 
helps them in evaluation for both individuals as well as overall training program 
development. We also can continue iterative improvements on the assessment strategy 
and utility of the framework. 
 

***Task 4 was not funded***** 
 
Task 4a: Using the metric class framework and the results from Task 3, refine the feedback 
model to consider how changing the user interface as well as an increase in autonomy across a 
specific function could affect training evaluation.  
 
 Task 4b: Test the validity of the feedback model in a simulated task  environment. 
 
 This task will also involve working with Army personnel to determine model  changes 
as a result of changes in the interface in the presence of increasing  autonomy. 
 
Deliverables: A mid term and a final report that describe the modified metric taxonomy, the 
application of it to representative Army unmanned platforms, the analysis of the applicability of 
machine learning algorithms, and the feedback models should the option be exercised. 
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Appendix B:  AUAS ASTM Model 
 

Figure B.1 shows a detailed sample from the Phase 1 AUAS ASTM, which was designed 
using Vensim® SD modelling software. This sample from the larger AUAS ASTM has three of the 
five sections shown (Training Modules, Module Training Time, and Module Training Tasks). 
These three sections make up the core of the ASTM. 

Initially, the total number of tasks that are taught in each training module are determined 
from the training syllabus. Then, the tasks are classified into SBT, RBT, or KBT in the Module 
Training Task section, using the method illustrated in Table 1 and Figure 2. After the tasks are 
split into SBT, RBT, and KBT in the ASTM, they are converted into training times. Each set of 
SBTs, RBTs, and KBTs has their total training time per module. This is calculated in the Module 
Training Time section of the ASTM (Figure B.1) by multiplying the number of SBT, RBT, or 
KBT by the average time to train a SBT, RBT, or KBT. The resulting value is the total time to 
train all of the tasks in each module in terms of SBT, RBT, and KBT training time.  

Finally, the time to train the SBTs, RBTs, and KBTs are summed to give the total module 
training time. This total module training time parameter, Phase 1 Module (A, B, or C) Required 
Weeks of Training (Figure B.1), should match the prescribed time from the training syllabus, 
assuming the equations and average SBT, RBT, and KBT training time per module are accurate. 
Recall that there are three modules in FY14 Phase 1 training, and, thus, this procedure will occur 
three times for each module. 

The Phase 1 Module (A, B, or C) Required Weeks of Training parameter is used to 
control the rate functions of trainee groups moving from one module to the next. Since there are 
three modules in FY14 Phase 1, there are three Phase 1 Module Required Weeks of Training 
parameters, one for each module. When batches of trainee groups arrive to a module (stock) they 
will stay in that module for the duration of that module’s required weeks of training. Once that 
time has expired, the trainee groups move into the next module and the process begins again. This 
cycle continues until the trainees reach the Trainee Outputs section (Figure 4), where they will 
either graduate, be recycled, discharged, or retrain/reclassed depending on their performance. 
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Figure B.1. Sample of AUAS ASTM for Phase 1 in FY14. Shown are the Module Training 
Tasks and Module Training Times sections that control the rate functions between modules in 
the Training Modules section 



 
 

37 

Appendix C:  Developing an Application for Predicting Training Requirements as 
Autonomy Increases in a System 
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Appendix D: Provisional Patent 
 
The U.S. Army Unmanned Aircraft Systems Roadmap 2010-2035 outlines a plan to 

increase autonomy on board Unmanned Aircraft Systems (UAS) in the near future. Benefits from 
increasing autonomy onboard UAS include reduced workload and increased safety for Soldiers 
and decreased operational and training costs. However, to date, there exists no methodology for 
predicting how increasing autonomy onboard UAS will be reflected in the operator training 
process or identifying what operator abilities will be required once the advanced technologies 
have been implemented. In response, we have proposed and are developing a modeling tool that 
links required core cognitive behaviors to the time needed for training these, as well as how 
autonomous technologies influence such training.  

 Modifications to training programs, such as what will be needed with 
increasingly autonomous aerial and ground vehicles, should account for differences in how 
functions are allocated to the operator and/or the automation. We propose that these functions can 
be expressed by both human and machines as increasingly complex reasoning behaviors, 
including Skills, Rules, and Knowledge (SRK). Skill-based behaviors are sensory-motor actions 
that are highly automatic, typically acquired after some period of training. Army UASs already 
automate many skill-based behaviors, e.g., the Shadow’s autopilot keeps it in balanced flight. 
Rule-based behaviors are actions guided by subroutines, stored rules, or documented procedures. 
Knowledge-based behaviors incorporate the formulation and selection of plans for an explicit 
goal based on individual mental models.  

To explicitly link training requirements (in terms of completion time and tasks) to 
improvements in autonomous system capabilities, we have developed the Autonomous Systems 
Training Model (ASTM) that incorporates typical training metrics as well as qualitative and 
quantitative training variables. ASTM was initially conceptualized using a System Dynamics 
framework, which allowed us to include both the qualitative (i.e., cognitive reasoning) and 
quantitative variables (i.e., training capacities) that influence the training process.  

The current iteration of ASTM models the RQ-7B Shadow training process. The 
quantitative baseline for the model was developed using personnel and curriculum requirements 
from the 2-13th Aviation Regiment at Fort Huachuca, Arizona. The qualitative requirements of the 
RQ-7B training curriculum were adapted from training tasks described in the Unmanned Aircraft 
System Commander’s Guide and Aircrew Training Manual (TC 3.04-61) and the RQ-7B 
Program of Instruction (POI) for FY10 and FY14.  In the context of the manual, a training task is 
a defined and measurable activity performed in a simulator or live UAS platform during training, 
such as performing simulated aerial reconnaissance.  

We divided each of the RQ-7B 23 required training tasks described in the manual into 
subtasks and categorized them as skill, rule, or knowledge-based tasks. By linking quantitative 
training time with qualitative behaviors in the model, we can make predictions as to how shifts in 
tasking from human manual control to the domain of automation will affect required skill- and 
rule- to knowledge-based behaviors, and ultimately training time. For example, when automating 
the landing task, several skill and rule based tasks shift to the automation, but knowledge-based 
tasks still remain for the human. Such a shift places the operator in a more supervisory role, 
which requires changes to the training curriculum. A high-level view of the ASTM appears in 
Figure 1.  
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Figure 1. ASTM Overview 
 
There are four main components to the ASTM in Figure 1: Training Segments, Error 

Segments, Attrition Segments, and SRK Components. The Training Segments model Soldiers 
progressing through Common Core (i.e., classroom), Simulator, Live Flight, and Equipment 
training. The Error Segments model Soldiers held back to correct errors made in a Training 
Segment. The Attrition Segments contain Soldiers who leave the training program due to 
unresolved errors or personal reasons. Finally, the SRK Components represent specific task 
requirements that each Soldier must complete in each Training Segment. Because SRKs are 
agent-agnostic, i.e., either humans or autonomy must accomplish them, they link increasing 
autonomy to improving training efficiency.  

In addition to training efficiency in terms of time for a single platform, ASTM can be 
expanded to represent operators controlling multiple UASs simultaneously, or could be modified 
to address training programs of different types of autonomous vehicles. When fully developed 
and validated, ASTM could be used as a predictive model to investigate the impact of future 
technologies on training as well as how the insertion of different technologies and associated 
tasks in the training pipeline will affect overall throughputs.  

Figure 2 depicts the kind of predictive information that ASTM could provide in terms of 
how implementations of new technologies could affect training time for UAS operators. The 
horizontal axis depicts a timeline of likely technological advances for UASs. The vertical axis 
indicates total training time as these future functionalities materialize. The blue dotted line 
represents progress assuming a linear function that is typical of UAS development today while 
the red dotted line represents a best-case scenario with substantial improvements in artificial 
intelligence that relieve the human from the bulk of supervisory tasks. 
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Figure 2. Training Time Projection with Increasing Autonomy. The blue line represents 

progress assuming evolutionary development and the red line represents progress assuming 
revolutionary advances in artificial intelligence. 

 
 The ASTM modeling software we are developing will provide the U.S. Army 

Training and Doctrine Command (TRADOC) with the ability to assess how technology advances 
will affect training requirements and predict the effects of new training requirements on overall 
training efficiency. Moreover, such a modeling tool will also have diagnostic and design elements 
such that current training programs can be assessed to ensure they are addressing the requisite 
skills, rules, and knowledge needed, as well as indicating whether different training program 
designs are sufficient.  

 The next step in ASTM development to extend this model into an agent-based 
simulation such that this model can be turned into usable software so Army decision makers can 
explore possible future training architectures. In addition, such an extension will also allow us the 
ability to make ASTM more generalizable across different training settings for various 
autonomous technologies. Given the utility of this generalizable structure, a technology 
disclosure agreement has been filed with Duke University to allow us to move forward with filing 
for a patent or licensing opportunities.  
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Appendix E: Pre and Post Experiment Surveys 
 

ARL - Demographic Survey 
 
Please provide your information in the spaces below. 
 
Subject ID: ____________________ 
 
Age: ____________________ 
 
Gender: 
m Male 
m Female 
 
What is your visual acuity? 
m Normal Vision (20/20) 
m Corrected Vision (20/20) 
m Other (please specify)____________________ 
 
Do you have any type of color blindness? 
m No 
m Not Sure 
m Yes (please specify what type) ____________________ 
 
Current occupation: 
m Student 
m Army personnel 
m Other (please specify) ____________________ 
 
If you are a student, what program are you currently enrolled? (If non-student, skip this question) 
m Undergraduate 
m Masters 
m PhD 
m Other (please specify) ____________________ 
 
If you are a student, when is your expected graduation year? (If non-student, skip this question) 
____________________ 
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1. How often do you play computer games normally? 
m Rarely 
m A few times a month 
m Once a week 
m A few times a week 
m Daily 

 
2. Types of video games played (check all that apply):  

q First person shooter 
q Sports 
q Action/Adventure 
q Third person shooter 
q Educational 
q Survival horror 
q Puzzle 
q Role playing 
q Real time strategy 
q Beat em ups 
q Other unknown type (please explain) ____________________ 
q I have never played any video games 

 
3. How confident are you using computer programs in general? 
 
 1 2 3 4 5  

Not at all 
confident ¡ ¡ ¡ ¡ ¡ Very 

confident 
 
 
4. How do you like Unmanned Aerial Vehicles (Drones) in general? 
 
 1 2 3 4 5  

Strongly 
dislike ¡ ¡ ¡ ¡ ¡ Strongly  

like 
 
 
5. What is your experience examining aerial imagery? 
 
 1 2 3 4 5  

None ¡ ¡ ¡ ¡ ¡ Extensive 
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Questions for Session 1 
 
Subject ID: ____________________ 
 
 
1. How confident were you about visual inspection tasks during session 1? 
 
 1 2 3 4 5  

Not at all 
confident ¡ ¡ ¡ ¡ ¡ Very 

confident 
 
 
2. How do you feel you performed? 
 
 1 2 3 4 5  

Poor ¡ ¡ ¡ ¡ ¡ Excellent 
 
3. Do you feel some tasks are more difficult than others?  

m Yes 
m No 

 
4. Explain why you feel this way in the question above.  
 
  
 
5. How hard do you think you worked during this session? 
 
 1 2 3 4 5  

Minimal 
effort ¡ ¡ ¡ ¡ ¡ Extremely 

hard 
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Questions for Session 2 
 
Subject ID: ____________________ 
 
 
1. How confident were you about visual inspection tasks during session 2? 
 
 1 2 3 4 5  

Not at all 
confident ¡ ¡ ¡ ¡ ¡ Very 

confident 
 
 
2. How do you feel you performed? 
 
 1 2 3 4 5  

Poor ¡ ¡ ¡ ¡ ¡ Excellent 
 
3. Do you feel some tasks are more difficult than others?  

m Yes 
m No 

 
4. Explain why you feel this way in the question above.  
 
  
 
5. How hard do you think you worked during this session? 
 
 1 2 3 4 5  

Minimal 
effort ¡ ¡ ¡ ¡ ¡ Extremely 

hard 
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Post Experiment Survey 
 
Subject ID: ____________________ 
 
 
 
1. Do you think the training was sufficient to prepare you for the missions? 

m Yes 
m No 

 
2. How well do you feel you understand how to operate the simulation? 
 
 1 2 3 4 5  
Very poorly ¡ ¡ ¡ ¡ ¡ Very well 
 
3. Comments about the training: 
 
  



 
 

46 

Appendix F: Experiment Checklists 
 
ATR Experiment – Procedure Checklist   v2.0.5 
Participant information 
ID:   Group:  SR Without ATR Date: 

Name:  
 
CHECKLIST 
 Setup  
 Consent Form  
 Ask if subject wants a copy of the form  
 Demographic Survey  
 Camtasia turned ON  
 Change mouse settings  
 Fitts’s Test - standard mouse  
 Save Data,   
 Ask if subject has used the Unfamiliar Mouse Input 

Device before 
 

 Change mouse settings  
 Fitts’s Test – Unfamiliar Mouse Input Device – 450 

clicks 
 

 Save Data  
 RESCHU Presentation – WITHOUT ATR  
 RESCHU Practice session – WITHOUT ATR  
 Save Data  
 Test Session 1 – WITHOUT ATR  
 Save Data  
 Post session 1 survey  
 Test Session 2 – WITHOUT ATR  
 Save Data  
 Post session 2 survey  
 Fitts’s Test – Unfamiliar Mouse  
 Save Data  
 Turn Camtasia OFF  
 Reset Mouse Settings to Default  
 Post experiment survey  
 Debriefing  
 IRB Compensation form  
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ATR Experiment – Procedure Checklist   v2.0.5 
Participant information 
ID:   Group:  SR With ATR Date: 

Name:  
 
CHECKLIST 
 Setup  
 Consent Form  
 Ask if subject wants a copy of the form  
 Demographic Survey  
 Camtasia turned ON  
 Change mouse settings  
 Fitts’s Test - standard mouse  
 Save Data,   
 Ask if subject has used the Unfamiliar Mouse Input 

Device before 
 

 Change mouse settings  
 Fitts’s Test – Unfamiliar Mouse Input Device – 450 

clicks 
 

 Save Data  
 RESCHU Presentation – WITH ATR  
 RESCHU Practice session – WITH ATR  
 Save Data  
 Test Session 1 – WITH ATR  
 Save Data  
 Post session 1 survey  
 Test Session 2 – WITH ATR  
 Save Data  
 Post session 2 survey  
 Fitts’s Test – Unfamiliar Mouse  
 Save Data  
 Turn Camtasia OFF  
 Reset Mouse Settings to Default  
 Post experiment survey  
 Debriefing  
 IRB Compensation form  
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ATR Experiment – Procedure Checklist   v2.0.5 
Participant information 
ID:   Group:  R-only With ATR Date: 

Name:  
 
CHECKLIST 
 Setup  
 Consent Form  
 Ask if subject wants a copy of the form  
 Demographic Survey  
 Camtasia turned ON  
 Change mouse settings  
 Fitts’s Test - standard mouse  
 Save Data,   
 Ask if subject has used the Unfamiliar Mouse Input 

Device before 
 

 Change mouse settings  
 Fitts’s Test – Unfamiliar Mouse Input Device – 450 

clicks, 30 Clicks 
 

 Save Data  
 RESCHU Presentation – WITH ATR  
 RESCHU Practice session – WITH ATR  
 Save Data  
 Test Session 1 – WITH ATR  
 Save Data  
 Post session 1 survey  
 Test Session 2 – WITH ATR  
 Save Data  
 Post session 2 survey  
 Fitts’s Test – Unfamiliar Mouse  
 Save Data  
 Turn Camtasia OFF  
 Reset Mouse Settings to Default  
 Post experiment survey  
 Debriefing  
 IRB Compensation form  
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Appendix G: Tutorial Slides (With and Without ATR) 
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