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Introduction 

The development of autonomous technologies that take on safety critical functions, such as 
driverless cars or surgical robots, can potentially reduce accidents and errors and improve productivity. 
However, while autonomous systems show promise for enhancing safety and productivity, previous 
research in human‐automation interaction has demonstrated that adding automation does not necessarily 
guarantee increased system effectiveness or safety. Often, automating a task within a larger system 
modifies the task by transferring the operator’s workload from one physical or cognitive resource to another, 
thereby changing the task rather than improving it (Bainbridge, 1987). Poorly designed automation that is 
not understood by operators often causes human error and reduces system effectiveness due to “clumsy” 
implementations (Lee & Morgan, 1994).  

As these systems proliferate, there is an increasing need to understand how such systems should 
be designed to promote effective interactions between one or more humans working with or around 
autonomous systems. This is especially true for safety critical settings like operators of such systems 
including medical systems, factory workers engaged in tasks with or near automation, or pedestrians and 
bicyclists operating in the same environment with driverless cars. Given the importance of promoting 
effective and safe interactions between human users and autonomous systems, designers of these systems 
need tools that allow them to determine not just which designs are effective, but how such systems fare 
under different contexts. Indeed, the ability of autonomous systems to account for context and changing 
environments is a significant hurdle that limit applications (Daily, Medasani, Behringer, & Trivedi, 2017; 
Marcus, 2018; Srinivasan, 2016). 

One often overlooked source of potential contextual design cues in autonomous systems is the 
vast amount of data generated by these systems, including those of user interactions. While machine 
learning approaches to data analysis are often touted for their importance in the operation of these cars, 
they can also be harnessed for understanding the impact of context, particularly when attempting to 
determine the effectiveness and safety of a design choice. This paper will discuss the importance of 
contextual cues in design and demonstrate how machine learning method can be adapted to determine the 
effectiveness of design features in an autonomous system.  

 
Case Study: The Tesla Human Interface 

One recent example of a major design flaw in terms of human-robot interaction is that of the 
Autopilot display in the Tesla Model S. The Tesla Autopilot is billed as a driver-assist technology, in that 
once engaged, the car can track itself automatically between lane lines, change lanes, and brake and 
accelerate as needed to move through traffic. The driver is relieved of direct control but must monitor the 
evolving driving situation both internal and external to the car, and ensure the car behaves in a safe manner. 
Figure 1 illustrates the Autopilot features. The faint blue lines on the road icon indicate that Autopilot sees 
the lane markings. The blue icon to the left of the speed indicates that TACC (Traffic Aware Cruise Control) 
is active, and holding the driver-requested speed of 28 mph. The blue steering wheel to the right of the 
speed indicates that Autosteer is engaged with slight right turn control input.  

Despite the Autopilot’s billing as a driver-assist system, human drivers with no formal training must 
not only watch outside the car for possible problems, but they are supposed to cross check what they see 
outside with the display on the inside of the car to ensure Autopilot is working as advertised. Given that this 
is a complex cognitive task with no formal training, it is not surprising that there have been multiple reports 
of Tesla crashes where drivers did not understand that the autopilot was attempting to alert them to put 
their hands on the wheel (Crowe, 2016). Figure 1 illustrates what this relatively subdued alert looks like, 
which is the small message at the bottom of the display that says “Hold Steering Wheel”. The inset of the 
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car cockpit shows the relative size of the instrument cluster, which is clearly not the most salient display in 
the car.  

Such problems where human operators of complex automated systems are confused by the 
displays and do not understand the communications from the automation are widespread, occurring in 
domains such an anesthesiology (Ruskin et al., 2013), process control (Guerlain, Jamieson, Bullemer, & 
Blair, 2002), pilots of commercial aircraft (Vakil & Hansman, 2002), and military weapons systems 
(Cummings, 2004). This problem is so well documented that it has been termed “mode confusion”, which 
occurs when an operator’s mental model differs from the automation’s behavior (Lankenau, 2002). Mode 
confusion can lead to errors when the operator responds incorrectly to the automation, thinking it is in a 
different state (Norman, 1983). 

 

 
Despite the clear link between how information is communicated via a display to a system user and 

the ability of the user to correctly interpret the system’s actions, designers of such systems still struggle to 
develop displays that promote effective interactions with relevant stakeholders. In an ideal setting, design 
of such displays focuses on developing a clear mapping between user goals and the execution of those 
goals (Norman, 1986). A key design parameter for such goal mapping dictates that those cues in a display 
(visual, aural, or haptic) be designed for saliency, i.e., making sure those environmental cues that are critical 
to decision making are available and prominently displayed (Wiener & Nagel, 1988). Moreover, such cues 
should be consistent with a user’s mental model (Wickens & Hollands, 2000).  

Significant past research has shown that contextual cues are an important aspect of user interface 
design (Cockburn, Karlson, & Bederson, 2009; Lesch, Powell, Horrey, & Wogalter, 2013; Nielsen, 1993; 
Norman, 1988; Schneiderman, 1987), particularly in safety critical systems (Feary et al., 2013; Franke, 
Daniels, & McFarlane, 2002; Wei, 2014). Moreover, understanding contextual cues is critical for developing 
accurate system requirements (Wenxin & Kekang, 2008), since desired human behaviors cannot be 
achieved if the correct cues are not identified early on in the design process. 

Thus, intended design cues for autonomous system operation, in theory, communicate information 
to the user about a system state that requires human attention and response. However, in such complex 
systems with multiple displays that include visual, aural and sometimes haptic (like vibrating seats), there 
exists inadvertent exogenous cues from the world (e.g., a cell phone vibrates in the car capturing the driver’s 
attention) or internal stimuli (reaching a state of boredom that motivates a driver to search for an enjoyable 

Figure 1: Tesla Model S Instrument Display Reminding Driver to Put Hands on the Steering Wheel 

The instrument panel below is directly behind the 
steering wheel 
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radio station) that cause operators of complex systems to miss intended design cues, and thus potentially 
put themselves, the physical systems, and others at risk. 

Given the importance of both identifying and designing the right contextual cues for autonomous 
system operation, a central design question for such systems, particularly those that are safety critical like 
cars and manufacturing or surgical robots, is how designers know which cues are the right ones to 
emphasize in a display and when? For example, how does a designer of the display in Figure 1 know that 
the message at the bottom of the display or an accompanying aural warning is likely not effective? 

Other critical related design questions include how exogenous cues influence the perception of 
intended design cues, such as road signage and other displays in the vehicle like the large map display in 
the inset of Figure 1. And while the investigation of cue interpretation of individual behaviors provides useful 
insight, designers of mass consumer products need to understand potentially large population effects such 
as the role of culture, age and experience. Thus, there is a need for a design evaluation method that can 
analyze large data sets and identify individual interaction strategies, but also the influence of potentially 
secondary variables like demographic characteristics. 

Currently, designers of interfaces for autonomous systems evaluate how well their cue selections 
match mental models and align with system needs by conducting surveys, focus groups, individual usability 
testing, and on occasion, statistical hypothesis testing which typically takes the form of A vs. B testing, i.e. 
testing two competing versions of a design to determine which display more often produces the desired 
behavior (Nielsen, 2005). While such methods contribute to a designer’s understanding, other than 
inferential testing, most of these methods are highly subjective. While useful for understanding preferences, 
subjective evaluations may not address the true effectiveness of intended design cues. 

It has long been established that people are generally not effective at determining what cues 
influence their judgments (Kraut & Lewis, 1982) (Andre & Wickens, 1995; Nisbett & Wilson, 1977; Wilson 
& Nisbett, 1978). As a result, designers who elect to use focus groups and subjective surveys to assess 
their designs for cue salience are likely to obtain inaccurate results. Moreover, while hypothesis-driven tests 
like A vs. B testing provide objective results, they are often costly to develop, and obtaining statistical 
significance can be difficult without large sample sizes. Moreover, the hypotheses are typically very narrow 
by design (Nielsen, 2005), and the ability to see the interaction of various factor effects is often lost as part 
of the focus on minimizing model error to increase model fit. 

Thus, what is needed is an analytical strategy that designers of autonomous systems can use to 
determine whether their designs are indeed capturing their planned human-system design cues, as well as 
the impact of potential interference from exogenous cues or internal stimuli. Moreover, since autonomous 
systems often generate significant amounts of data, a useful design analytic tool is one that allows industry 
engineers the ability to leverage significant amounts of data at their disposal, as well as allows them to 
more meaningfully analyze small data sets. Such an analytical approach should be able to capture both 
individualized outcomes as well as more global effects due to a design factor under consideration. Most 
importantly, such an approach should be usable and understandable by industry designers who are both 
time and budget pressured. 
 
Design Applications of Machine Learning  

A popular data analytic methodology commonly used in the design of autonomous system software 
is machine learning, which is a methodology that attempts to automate analytical model building through 
automatic discovery of regularities in data that can be used to classify the data into different categories 
(Bishop, 2006). While widely used in a number of fields like computer vision and voice recognition systems, 
in terms of designing for human interaction, machine learning is a relatively new approach. Recent 
advancements in generative design apply machine learning techniques to discover new designs through 
optimization of physical parameters (Machwe & Parmee, 1997; Yu, Pan, Matsunawa, & Zeng, 2015). 
However, no one has investigated how to extend such methods to the design and optimization of displays 
meant to promote interaction between a complex cyberphysical system and a human user. 

There has been significant work attempting to model users of technology through machine learning 
methods (see Webb, Pazzani, & Billsus, 2001) for a review), but with little to no attention paid to how such 
models can inform system design. For example, Huang, Oviatt, and Lunsford (2006) developed a user 
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model based on Machine Learning (ML) to better predict users’ multimodal integration patterns via speech 
and a pen, in order to develop a system that dynamically responded to user behaviors. However, while they 
were successful in developing a predictive model, this model was never actually applied to the design of a 
system. 

Indeed, much of the user modeling research based on ML has focused on choice preference 
modeling, which is widely used in marketing design decisions for websites worldwide. For example, in 
marketing applications, machine learning is used to design a more personalized customer or user 
experience through an interface, such as Amazon providing recommendations for other products a user 
may be interested in (Hebron, 2016). However, as Webb (2001) points out, the bulk of this research has 
focused on the modeling of individuals’ choices/preferences and that applications of machine learning for 
discovering users' characteristics, which are critical design considerations, are rare.  

This is an important distinction since the safety of autonomous system operators often depends on 
their understanding of the cues provided by the system, so understanding user preferences in safety critical 
systems is less important than understanding the users’ use of cues, both planned and unplanned. 
Moreover, because practicing engineers are interested in designing for populations of users as well as 
individual users, they need to understand how system designs can and should be tailored for different 
classes of users (e.g., experts vs. novices, older vs. younger users, etc.)  

This problem highlights another critical missing element in the past applications of machine learning 
to user modeling, which is a lack of linking user choices and behaviors to the performance of an overall 
system. Instead of predicting what products a person is likely to prefer, in systems that require human-
autonomous system interaction, a system must be able to dynamically adapt its displays through predictions 
of not just the current and likely future state of the system, but also of the human. For example, self-driving 
cars will need to dynamically determine when to display information for timely passing of control between 
a self-driving car and the driver or when to signal to a surgeon of a robotic system that a dangerous limit is 
being approached. 

Thus, models of user preferences are not enough to inform the design of such displays, but rather 
models are needed that consider the current and predicted state of the system and the world, as well as 
the ability of users to perform a task under dynamic conditions. Past research on machine learning and 
user performance modeling is limited, with some researchers focusing on developing machine learning 
models of student performance (Amershi & Conati, 2007; Stimpson & Cummings, 2014; Webb et al., 2001), 
driving performance (Pentland & Liu, 1999), and supervision of unmanned aerial vehicles (Boussemart, 
Cummings, Las Fargeas, & Roy, 2011). While these models predicted users’ performance with varying 
degrees of success, such models were not explicitly used to consider different design options, particularly 
as they relate to the performance of systems with high degrees of freedom.  

One unique aspect of autonomous systems that makes machine learning a potentially valuable 
design tool is that for most of these systems, significant data is gathered through the large number of data 
points generated by various sensors. For example, a self-driving car generates about 1 gigabyte of data 
per sec from the RADAR, LIDAR, and camera systems (Gross, 2013), including when a driver’s hands are 
on the wheel and the magnitude of his or her control inputs, as well as when the user touches every knob 
and lever inside the car. Given the enormity of such data, it is very difficult to apply traditional hypothesis-
driven statistical methods, especially after collection.  

Such traditional hypothesis-driven models, often expressed through Analyses of Variance or other 
regression derivations, inherently assume a model, as opposed to algorithmic modeling, i.e., machine 
learning, which can be used both on large complex data sets and can be a more accurate and informative 
alternative to data modeling on smaller data sets (Breiman, 2001). Taking a data-driven machine learning 
approach to the analysis of such data can determine not just user models, but also how such models can 
be explicitly linked to design decisions, which could yield results not identifiable through traditional user 
testing methodologies.  

 
The Need for Explainable Machine Learning Algorithms for Design 

Whether ML approaches can be developed to aid in design decisions for systems requiring 
significant human-autonomous systems interaction is inextricably linked to how the results of such machine 
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learning approaches are communicated to the designer. This idea of the need for “explainable artificial 
intelligence” is gaining in popularity as the applications of artificial intelligence (AI) in various systems have 
grown (DARPA, 2016). Given that machine learning techniques are deeply rooted in probabilistic reasoning, 
but knowing that humans struggle with understanding probabilistic models, even for experts (Tversky & 
Kahneman, 1974), it is important to address just how to effectively communicate the results of a ML-based 
analysis. This idea of explainable ML results is even more critical if we want to develop a method for 
engineers in the workforce to adapt in the design of autonomous systems, as they likely will have a widely 
varying understanding of how ML algorithms produce results. 

The concept of “explainability” is rooted in explanation-based reasoning and decision making. In 
explanation-based reasoning, evidence is assembled into explanatory structures representing possible 
classifications of the evidence (Pennington & Hastie, 1993). Given impoverished data, humans use 
inferential strategies to piece together a holistic picture in order to make a decision. This psychological 
construct has several implications in terms of human collaboration with ML algorithms. One is that the 
explainability must be sufficient to create a relatively complete picture for the designer, as any explanatory 
gaps could (potentially incorrectly) be automatically filled by the human. Another is that ML algorithms could 
be developed to match the explanation-based approaches used by humans, so as to be more 
understandable. Such approaches have been explored in the past (Hair & Pickslay, 1993), but modern ML 
algorithms have not incorporated these strategies. 

Even if it were well understood what the appropriate data was to describe the inner workings of ML 
algorithms, there are important considerations for what elements and what format results should be 
presented to a designer to support various design decisions. For example, the context of the task 
environment is key. ML algorithms are largely contextual (Johnson, 2014) and must be tailored to individual 
domains, as there is no one size fits all especially when attempting to model human behavior. In addition, 
the needs of designers leveraging ML algorithms will vary, as will their levels of expertise with both applying 
ML algorithms and their interpretation of results.  

There are many potential issues with ML algorithms that make their results difficult to interpret 
(Ribeiro, Singh, & Guestrin, 2016). One such case is where the data used for training is not representative 
of the test data, i.e., data set shift (Quionero-Candela, Sugiyama, Schwaighofer, & Lawrence, 2009). Other 
example cases include prior probability shift, sample selection bias, and imbalanced data. Additionally, poor 
initialization of model structures or weights (e.g., Artificial Neural Networks, or ANNs) (Denoeux & Lengelle, 
1993; Schmidt et al., 1993) or overfitting due to a lack of regularization (Moody, 1991) can result in poorly 
performing models. Failure to meet assumptions of algorithms such as i.i.d. (independent and identically 
distributed) data for Support Vector Machines (SVMs) can also result in inappropriate models (Hsu, Chang, 
& Lin, 2003). The “brittleness” of many ML algorithms due to sensitivities of not meeting the underlying 
assumptions surrounding the context and collection of data underscores the importance of explanation to 
a human decision maker, especially in attempting to make design decisions. 

Some of these errors may be observable through prediction performance when applied to validation 
or test datasets, but the identification of inappropriate models and predictions can be difficult, especially 
without significant experience in ML. Moreover, design engineers are often time-pressured and do not have 
the luxury of in-depth and time-intensive sensitivity analyses, and so often will look for a “good enough” 
solution. Without transparency in the ML algorithm’s rationale in providing a prediction, it is a challenging 
task for a human to understand a prediction and then translate that into a clear design choice.  

 
Case Study: Designing Displays for Driverless Car – Pedestrian Interaction 
 
To determine if a machine learning approach could provide additional information about contextual 

cues in a design setting, results from a previous study were reanalyzed using a machine learning approach. 
Three different displays (Figure 2) were mounted on the front grill of a simulated self-driving car to be visible 
to pedestrians passing in front of the car. They and a control condition of no display were tested in a human-
in-the-loop experiment with 55 participants that attempted to determine whether the displays were effective 
in communicating a self-driving car’s intent (Clamann, Aubert, & Cummings, 2017). Traditional hypothesis-
driven statistical analysis led to the conclusion that the displays had no effect on pedestrians’ timeliness 



 6 

(thus safety) of crossing decisions. The only demographic variables influential in these outcomes were 
participants’ ages and conscientiousness scores on the NEO-FFI-3 assessment, which rates an individual’s 
personality traits of Neuroticism, Extraversion, Openness to experience, Agreeableness, and 
Conscientiousness. Older participants tended to make more safe crossing decisions than younger 
participants, and those who were more conscientious tended to make slower crossing decisions. 

 

The results from this experiment should be interpreted in light of typical confounds such that the 
testing was done on a university campus with a relatively homogeneous sample with limited cultural 
diversity, so it is difficult to generalize these results with confidence. Moreover, the conduct of such 
naturalistic studies is very difficult, expensive, and time-consuming and car companies are not as interested 
in the design and conduct of scientifically valid studies. They simply want to know which design choices 
can lead to best outcomes, both from an objective and subjective perspective.  

Many companies including Google, Nissan, and drive.ai have said they are going to install displays 
very similar to those in Figure 2 on their self-driving cars. And whether the displays are critical to pedestrian 
safety or instill greater trust so people feel better about sharing space with them remains to be studied. 
Curiously, in interviews after the pedestrian experimental trials, only 12% of participants admitted to using 
the displays in Figure 2, but 46% said they thought such displays should be included in the design of 
driverless cars. So, while there may not be clear objective performance data supporting the use of such 
displays, subjectively they may provide value and it is still an unknown as to how long-term exposure to 
these technologies could eventually influence pedestrians’ decisions. 

So how could the data from this experiment be analyzed to provide more useful insight concerning 
contextual cues? Each person conducted 12-16 trials, which resulted in a data set of 850 observations, so 
for this kind of experiment, there was a relatively high number of data points. As a result of this data set 
characteristic, we attempted to apply machine learning algorithms to determine if there were any other 
useful relationships that could be derived from the data. It was in doing this that we realized that much more 
work is needed in determining how to apply machine learning algorithms to design problems. 

 
Difficulties in choosing the best algorithm 
 
In order to be useful in a design context, machine learning approaches to data analysis should 

have 1) strong prediction accuracy, 2) straightforward model interpretability and explainability, 3) high 
stability/robustness, and 4) fast learning capability using fewer training data points since in most practical 
cases, data can be expensive to obtain. However, such an ideal set of parameters is not easily obtained. 

Figure 2: Proposed displays to aid pedestrians in making road crossing decisions in the presence of self-driving 
cars.  

(a) Advice display for a safe 
crossing  

(b) Advice display for an 
unsafe crossing 

(c) Information display depicting 
the car’s current speed 
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There exist numerous methods in the literature for analyzing and accurately learning a predictive 
model from a complex data set (Bishop, 2006). Model complexity (both in terms of number of tuned 
parameters and interpretability) of these algorithms spans a wide range, with relatively simple models like 
k-Nearest Neighbors (k-NN) at one end of the spectrum to state-of-the-art machine learning algorithms like 
Deep Belief Networks (DBN) on the other (Figure 3). Moving from left to right in Figure 3, the models 
generally improve in their ability to characterize the underlying relationships in the input corpus of data, and 
thus represent advances in achieving high prediction accuracies. However, the increased accuracy often 

comes at a cost of complex network architecture and high dimensional operating spaces, making it hard to 
communicate the representations learned by the algorithm in a format easily understood by a human 
interpreter. This restricts their usage in tasks where interpretability of the learning model and understanding 
of the underlying patterns in the data are important outcomes, such as for system design. Also, the large 
number of hyper-parameters (like number of hidden layers, sparsity regularization, learning rate, etc.) that 
need to be manually tuned or require significant knowledge of structure and operation of these machine 
learning models additionally limits their usefulness to a machine learning layperson. 

On the other hand, less complex classification models such as decision trees and k-means 
clustering may provide insights that are more interpretable. Indeed, their popularity is highlighted by the 
fact that such clustering ML methods have dedicated packages and support available in R (open source 
programming language and software environment for statistical computing) and other programming 
languages such as MATLAB. However, it is not clear what it means to be an interpretable machine learning 
algorithm or what the tradeoff is between algorithm predictive ability and interpretability.  

For example, there exist many clustering machine learning methods (e.g., hierarchical clustering 
and partitioned clustering (see Xu & Wunsch, 2005 for a review)), and the main advantage these algorithms 
have over the more complex machine learning models like deep belief networks (DBNs) is that the metrics 
used for computing clusters are easier to understand than the complex layered network structure of DBNs. 
However, while such clustering machine learning approaches may be more interpretable, most clustering 
approaches are highly sensitive to noise, which may result in poor prediction accuracy. Although there exist 
many feature selection and feature extraction techniques (e.g., Tang et al., 2014) to reduce the model 
sensitivity to noise, using them often transforms original input data into a new feature space (such as with 
principal component analysis). This transformation changes the contextual meaning of the features being 
used, making it difficult to use the model output to draw design inferences.  

Consider the pedestrian experiment discussed previously; it is clear how age or conscientiousness 
are related to crossing decisions, in that as both go up, crossing times become more conservative. This 
relationship is harder to understand when it is a weighted linear combination of demographic variables that 
relate to particular crossing behaviors. Thus, it is difficult to find a single solution that includes all the 
characteristics of an ideal machine learning model, i.e. strong prediction accuracy, clear model 
interpretability, high stability/robustness and fast learning capability using fewer training data points.  

To illustrate the challenge of selecting an appropriate machine learning algorithm for contextual 
cue analysis, the pedestrian dataset was tested with three machine learning approaches. Specifically, 
decision trees were used to classify pedestrians’ decision times based on demographic traits and crossing 
positions (cross-walkers vs. jay-walkers) to better understand how the various displays on the car (Figure 
2) impacted crossing behavior for different types of participants. Three different popular clustering 
algorithms for creating a decision tree were tested and compared: 1) Fast and Frugal Trees (FFT); 2) 
Classification and Regression Trees (CART); and 3) Evolutionary Trees (EvTree).  

These three classification approaches differ widely in terms of model complexity (increasing from 
FFT to EvTree). Table 1 summarizes the strengths and limitations of each of the three approaches. As can 
be seen in Table 1, the differences in the way the classification trees are constructed and the relationships 
are learned create unique characteristics for each algorithm. While a designer might blindly apply one of 
these methods due to familiarity or ignorance of other approaches, these unique characteristics may impact 
the structure or interpretation of the resultant model.  

 
Figure 3: Complexity map of common machine learning models  

Deep 
Learning 

k-Nearest 
Neighbors 

Logistic 
Regression 

Decision 
Trees 

Bayesian 
Networks 

Neural 
Networks 
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As outlined in Table 1, it was not clear which one would yield the most useful results. Typically, 
people tend to favor models with a strong predictive accuracy. However, in many practical machine learning 
problems, prediction accuracy alone fails to provide any direct evidence to elucidate the stability and 
goodness of the trained model. In order to link ML to design, the results should be stable, i.e., regardless 
of which sample of the dataset was used to train the model, the results should generally be similar.  

Using each of the three decision tree algorithms in Table 1, a classifier was trained on a random 
sample of the data (training data) and each element of the remaining data sample (testing data) was 
classified using the trained model. Each of the classifiers attempted to group the participants in the 
pedestrian experiment by their personality characteristics as a function of decision times to cross in order 
to understand the impact of the different displays, which was the primary design question for this 
experiment. 
 
Table 1: Summary of the advantages & disadvantages of popular decision tree classification algorithms 

Classification Algorithm Advantages Disadvantages 

Fast and Frugal Trees 
(Gigerenzer & Todd, 1999; Luan 
et al., 2011; Bryant, 2002)    
 
Efficient and simple heuristic for 
classification tasks, inspired by 
human reasoning 

1. Computationally fast, 
compared to all the above 
mentioned decision tree 
algorithms 

2. Resultant decision trees are 
robust and less susceptible 
to over-fitting 

 

1. Do not use all possible cues 
and do not integrate 
information while building 
decision trees 

2. Since the heuristic computes 
no utility or probability to 
quantify the goodness of a 
branch split, it may lead to 
non-optimal splits 

CART 
(Therneau & Atkinson, 1997; 
Breiman et al., 1984; Timofeev, 
2004; Kim & Loh, 2011; Esmeir 
& Markovitch, 2007) 
 
Most commonly used 
classification method using GINI 
index as the splitting rule for 
building decision trees 

1. No underlying assumptions 
about the nature of the 
observations, for example, to 
be independent and 
identically distributed 

2. Results are invariant to the 
monotone transformation of 
the predictor variables, for 
example squaring a variable 
won’t change the structure of 
the decision tree 

3. Resultant decision trees are 
not sensitive to outliers 

1. Possibility of non-optimal 
splits when learning a 
problem with strong 
interdependency among the 
predictor variables 

2. Unstable decision trees; 
small variations in the 
training data set can lead to 
different tree structures 

Evolutionary Trees          
(Grubinger, 2014; Deb, 2011; 
Barros et al., 2012) 
 
A globally optimal classification 
tree built using an evolutionary 
algorithm 

1. Best suited for problems 
where multiple (locally 
optimal) solutions are 
needed; cases where the 
best solution may not 
always be realizable 

2. Useful for problems with a 
huge search space, e.g. 
finding optimal decision trees 
which is NP-hard (Zantema & 
Bodlaender, 2000) 

1. Computationally expensive 
and large memory 
requirements 

2. Random nature of the 
algorithm can yield different 
tree structures with the same 
evaluation function value 

3. Large number of parameters 
(crossover probability, 
mutation rate, no. of 
generations, etc.) that need 
to be manually tuned, 
mostly by trial-and-error 
approach.   
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Figure 4 illustrates representative trees from the three different classification methods. Each 
method classifies a pedestrian into two classes, such that Class 0 represents a cluster of pedestrians for 
whom the display on the car (Figure 2) did not matter and Class 1 represents a cluster of pedestrians who 
leveraged the information from the car’s display while making a crossing decision. The designations of E, 
O, C, and A in Figure 4 stand for extraversion, openness, conscientiousness and agreeableness which are 
the dominant personality traits of those participating in the experiment.  
 The three decision tree models vary in terms of tree structure and the type of variables used to 
cluster the data. For instance, the decision tree formed using FFTs shows that just simply being above the 
51% (median) threshold on the extraversion personality scale predicted the use of one of the displays in 
Figure 2, a finding not revealed by the hypothesis-driven ANOVA. The CART approach further subdivided 
those people between agreeableness and openness into Class 1 (people who depended on the display). 
In comparison, the evolutionary tree tended to group participants similarly to the FFT and classified 
participants that relied on the display as primarily extraverted (a score >=49 or >= 53), but this is difficult 
for some to understand, as it appears that the openness root node is the primary relationship.  

2.  While CART tends to outperform the other two approaches in prediction accuracy (for 95% training 
(Figure 5)), it is less stable compared to FFT, as variables used at the first three levels of a decision 
tree to cluster the data are different for the 95% and 65% training cases (Figure 6).  

3.  The FFT approach could be seen as a more robust decision model because of the relatively 
higher prediction accuracy and stable clusters in scenarios where training is limited. However, 
from Figures 5 and 6, we can observe that for large training sets, CART tends to outperform the 
other approaches in terms of prediction accuracy and model stability. However, its model 

a) FFT 

                                              b) CART                                         c) EvTree 
Figure 4: Three clustering approaches produce different outcomes that are not in agreement 

This process of training the model was repeated 
1000 times for each classifier. Prediction accuracy was 
calculated by averaging the number of correct 
predictions at each iteration for every classifier (Figure 
5). This process was carried out with 95% and 65% of 
the data set as the training samples (so 5% and 35% of 
the data was used for test samples). These two different 
splits were selected to study the stability of the 
classification algorithms (Figure 6). Only the first three 
nodes of the trained decision tree models were used to 
find optimal tree depth to minimize overfitting.   

Observing the results in Figures 4, 5, and 6, 
highlight the following points: 

1. The classification algorithms tend to cluster the 
data differently (Figure 4), making it difficult to 
consistently draw conclusions. 
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becomes less robust with decreases in the number of training data points, although its predictive 
accuracy is still relatively high. 

Also, the difference in the way these algorithms work can cause difficulty in interpretation of the results. 
For instance, the way the FFT method trains a decision tree makes it impossible to compare the clusters 
of multiple output classes together in one single representation. The FFT approach requires that a designer 
adopt a one-vs-all strategy, which means comparing between a large number of varied decision tree 
representations to account for all the class labels before arriving at a conclusion. For this specific example, 
three times as many decision trees had to be created for the FFT approach as compared to the CART 
approach, with an added intermediate classification interpretation step that introduces ambiguity in the 
results. 

Given these results, we elected to continue the analysis with CART as it was the best algorithm in 
terms of our four criteria of 1) strong prediction accuracy, 2) straightforward model interpretability and 
explainability, 3) high stability/robustness, and 4) fast (enough) learning capability. 
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Understanding Contextual Cues from ML Analyses 

  

Figure 5: Average performance of different classifiers on the testing data set as measured by the prediction 
accuracy 

Figure 6: Measure of clustering algorithm stability. The X-axis represents the number of decision tree splitting 
nodes, with node 1 representing the root node. The Y-axis represents the confidence estimate of using a 
particular demographic variable (N, E, O, A) for clustering. 
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 As discussed previously, the traditional approach using top-down, hypothesis-driven experimental 
methods via an ANOVA led to the conclusion that neither the displays nor the speed of the car (the vehicle 
attributes) had any global effect on decision times and the only individual attributes that were statistically 
significant were age and conscientiousness (Figure 7a). However, we can frame the problem differently 
using a ML approach in that a bottom-up, data driven approach can be taken to first determine which 
segments of the population are most affected by the designs in question, and then develop a hypothesis-
driven statistical model, e.g., a within-subjects ANOVA, on those clusters (Figure 7b). 
 
 
 
 
 
 
       
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 This data-driven approach to the problem (Figure 7b) provides us with the flexibility to account for 

individual differences, which is an important contextual cue, for the people in our analysis, as opposed to 
aggregating the data across an expected population. In typical hypothesis-driven statistical analyses, 
individual differences are treated as uncontrollable variability (Trumbo et al., 2011). The use of blocked 
designs, covariance analyses, and other related pre and post hoc tools attempt to partition and minimize 
the effect of individual differences but doing so potentially causes researchers to lose important and useful 
information (Revelle, 1993; Davies et al., 2013). We hypothesize that by using ML to preprocess the data, 
we can actually identify and leverage individual differences to account for one source of context. 

  Using the multi-stage approach depicted in Figure 7b to reanalyze the pedestrian experiment 
results described previously with CART, the new results showed that some pedestrians do leverage the 
information from their surroundings including the external display, as opposed to just relying on legacy 
behaviors suggested by the traditional approach (Figure 7a). Of the original 55 subjects, 42% of participants 
using CART predominantly relied on the displays more than any other factor such as speed of the car or 
which side of the road they were on. 

Given the novelty of self-driving cars and the fact that people have not had much exposure to new 
forms of vehicle-to-pedestrian communication, the demographic profiles of such early adopters is of great 
interest to car companies. Moreover, unlike in the traditional hypothesis-driven approach, the behaviors of 
this group of potential early technology adopters could give important insight to designers. For example, 
using the new population of early adopters identified through CART, the analysis as depicted in Figure 7b 
revealed that those who elected to cross in front of a vehicle had the fastest decision times if they used the 
Information display (which provided the vehicle’s current speed, Figure 2c), followed by those using the 
advice display (Figures 2a & 2b), and then those with no display at all. Use of the information display for 
this group resulted in statistically faster decision times (3.33s) as compared to the next fastest time for the 

Individual 
Attributes 

Vehicle 
Attributes 

Decision 
Time 

Regression/ANOVA 
model 

 

Regression/ANOVA 
model 

Vehicle 
Attributes 

Individual 
Attributes 

Decision Tree Classifier 

Decision 
Time 

Figure 7: Different approaches to data analysis: a) Treating independent variables as factors & performing 
inferential omnibus tests, b) Clustering people based on their individual attributes like personality, age and 
crossing position (cross walker vs. jay walker) in terms of which vehicle attributes they focused more on 
(display, speed or direction of the approaching car) and then performing statistical tests on these groups  

 

(a) The Traditional Hypothesis-driven 
Approach 

(b) The Bottom-Up ML Approach 
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advice displays (3.44s, p= 0.040). This translates into an extra 4 ft., on average, in terms of distance away 
from an oncoming car, which has practical significance as well.  
 

CONCLUSION 

It is crucial when designing autonomous technologies to consider carefully how such systems can 
effectively interact with both operators and other relevant stakeholders, particularly in safety critical systems 
like self-driving cars and manufacturing and surgical robots. Such systems typically generate significant 
amounts of data, but it is not clear how industry designers can account for context and leverage analytic 
tools like machine learning to gain insight from this data into the actual use of intended designs or the 
influence from external, potentially problematic cues.  

Machine learning has been used extensively for modeling user choice preferences, but little 
attention has been paid to how to use such techniques to gain new design insights into user behaviors, 
particularly in terms of understanding contextual cues, or to connect user behaviors to system performance. 
We propose that given the large amounts of data that such autonomous systems typically generate, 
machine learning could be useful if such algorithms were accurate, stable, learned relationships relatively 
fast, and were interpretable in a design context and explainable. 
 A case study was presented that highlighted the difficulties in selecting the best algorithm for the 
contextual cue analysis. Determining that CART was the best algorithm for this analysis, we 
demonstrated that applying machine learning techniques to the design data analysis can lead to 
interesting and potentially useful results that are very different from traditional hypothesis-driven statistical 
experimental designs. We are not suggesting that machine learning approaches should replace such 
scientific methods, but rather that they should be used to augment analyses. 

Future related work should include determining what makes some ML algorithms better suited for 
design problems and what core characteristics define such utility.  Moreover, given long-standing 
problems with people understanding probabilistic reasoning algorithms (Tversky and Kahneman, 1974), 
are there representations that make some ML algorithms more interpretable and explainable for industry 
users? Explainability of ML techniques is likely a multidimensional construct, and a future area of inquiry 
should be describing how and why various ML approaches may be more or less useful in the design 
context.  
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