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Abstract— With recent regulatory changes that allow for 
commercial unmanned aerial vehicle (UAV) operations, there 
has been increasing interest in using UAVs, aka drones, for 
delivery of medical care, especially in rural areas. Previous 
work has focused on Automated External Defibrillators (AEDs) 
for people in possible cardiac arrest, but there are potentially 
many other emergency medical interventions that could be 
made more readily available through drones. One such use 
includes treatment for opioid overdoses, which could be 
significant given the current US opioid crisis. While drone 
delivery of blood has been established in Africa between medical 
professionals, there are no established applications of drones 
delivering emergency medical interventions for use by 
bystanders due to technical issues in the safe operation of drones 
in the air and in accessing and using the medical devices on the 
ground by laypersons. 

This paper examines how such a drone system should be 
designed in order to promote safe and effective operations for 
all stakeholders. This complex system design problem should be 
addressed at both local and global levels. At the local level, new 
theories and applications of human-technology interaction 
should be developed considering the need to promote safe and 
efficient human interaction between bystanders and drones 
delivering emergency medical interventions. Resulting models 
will need to consider how affordances can be designed into the 
technology given the use by untrained bystanders. Given that 
these emergency drones will need to be remotely supervised, the 
global aspect of this research should focus on the development 
of a drone supervision/dispatch capability, which will include 
interacting with the layperson who initiated the emergency call 
and determining how to integrate new network optimizations 
models so that dispatchers can understand when and where to 
dispatch drones and/or ambulances. 
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1. INTRODUCTION 
With the recent explosion in the availability of small 
unmanned aerial vehicles, aka drones, including regulatory 
changes that allow for commercial drone operations, there 
has been increasing interest in using drones for medical 
applications. In 2015, NASA teamed with Flirtey, a small 
drone company, to deliver medical supplies in Southwest 
Virginia [1]. In 2016, Flirtey also demonstrated their ability 
to deliver insulin and first aid kits to medical professionals 
[2]. More recently, a group in Switzerland demonstrated the 
ability of hospitals to exchange laboratory samples via drones 
[3] 

Previous examples showed, through one or a handful of 
flights, that delivery of medical cargo by drone is possible. 
Despite these demonstrations, there has been no established 
use of drones for delivery in the US, medical or otherwise. 
The only established drone medical delivery service in the 
world today is happening in Rwanda, where Zipline has 
performed about 1,400 deliveries of blood [4] and projected 
it will start similar operations in Tanzania in 2018. In these 
deliveries, parachutes or tethers were used for the actual 
deliveries to a trained receiving team on the ground below. 

A few researchers have proposed extending this idea of 
medical supply delivery to transport of Automated External 
Defibrillators (AEDs) for people in suspected cardiac arrest 
[5, 6]. The basic idea is that a person witnessing a subject 
experiencing a sudden loss of consciousness, possibly 
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indicating cardiac arrest, can call 911 who simultaneously 
initiates EMS and drone/AED launch. Cardiac arrest is the 
most time sensitive emergency in medicine since brain cell 
death starts to occur after about 3 minutes of cessation of 
heart activity, so getting the heart restarted with a 
defibrillation shock as quickly as possible is essential. 
Current EMS/first responder performance, however, has 
achieved no better than about 10% survival at 30 days 
without neurologic impairment, making cardiac arrest one of 
the deadliest conditions in all of medicine. These statistics 
have not improved despite 30 years of work.  

Experience with AEDs in controlled spaces, particularly 
airplanes and casinos, has shown that survival can be 
increased to 40-70% if AEDs are used. Since a drone could 
reach a victim faster than an ambulance or first responders 
(police, fire) in some locations where witnessed cardiac arrest 
occurs, a strategically-located drone-AED system offers the 
possibility of a breakthrough in our ability to save lives 
following sudden cardiac arrest. The societal/public health 
impact thus has the potential to be huge, eventually saving 
tens of thousands of lives each year at the national level.  

Moreover, to be cost effective for individual communities to 
add this capability to their current EMS system, scalability 
and the degree of care enhancement provided by the drones 
needs to be explored. For example, a network of drones that 
could deliver AEDs could also deliver additional emergency 
medical interventions in similar time critical situations such 
as naloxone nasal spray, which is a narcotic antidote used 
when opioid overdose results in respiratory distress. Opioid 
overdosing, from heroin or prescription medications is a 
national epidemic and the main driver of drug overdose 
deaths [7]. Recent research has shown that laypersons with 
naloxone kits who witness an opioid overdose can help 
reduce opioid overdose mortality [8]. Making naloxone nasal 
spray and other similar emergency treatments available in 
such a timely and directed manner could significantly 
improve opioid overdose outcomes. 

There is a clear need for improved and timely emergency 
care, especially in rural areas or highly congested urban 
settings, where drone delivery of emergency medical 
interventions like AEDs and naloxone nasal spray could 
make a tangible difference. However, to date there have been 
no studies on how such systems should be designed to 
consider the interactions with laypersons in these settings, or 
how 911 dispatchers would or should make decisions to send 
a drone in addition to an ambulance. This paper looks at a 
framework on how such a drone system should be designed 
in order to promote safe and effective operations for all 
stakeholders, including a predictive model on where and 
when an opioid overdose could occur, to further elucidate the 
effect of a drone system on a single medical complaint.  

Understanding that drones could play an important role in 
emergency medical interventions, it is imperative that we 
move beyond conducting eye-catching demonstrations to a 
principled and comprehensive research program to fully 
understand the options for and implications of developing 

and deploying such safety-critical systems. To this end, 
several important questions arise including: 

1. How should the drone delivery system interact with 
the laypersons or bystanders who would become the 
medical providers on scene? Bystanders may feel 
responsible for providing time-sensitive life-saving 
care, which could cause undue stress. The delivery 
of the medical supplies through the approach and 
landing sequence with rapidly rotating blades on the 
drone could cause a high stress situation with 
potential for injury, and not all bystanders will be 
comfortable in such environments.  

2. How would a predictive model of opioid overdose 
locations and frequencies inform selection and 
stocking of drone stations? One assumption has 
been that drone stations would be based in the same 
locations as the ambulances themselves, or evenly 
distributed within a geographic area.  However, 
predictive modeling of incidences of overdose could 
challenge that assumption by considering seasonal 
to diurnal variation of opioid users’ movements. 
Since moving a drone site may be easier than an 
ambulance garage, this could improve the efficacy 
of drone usage without requiring as large an increase 
in number of drones themselves.   

3. How should 911 dispatchers be supported who must 
make the decision between initially sending a drone 
and an ambulance or just an ambulance? Such 
dispatchers will need decision support software that 
helps them understand if and when to send a drone 
in an emergency, and how and when to follow up 
such responses with ambulance dispatch. Moreover, 
in many settings like during a natural disaster, there 
will be times when there are more emergency 
scenarios than either available drones or 
ambulances. So, how to prioritize the assignment of 
drones and ambulances to first response calls should 
be a critical future consideration. 

 

2. PREVIOUS DRONE EMERGENCY MEDICAL 
INTERVENTION RESEARCH 

A recent study examined EMS response times in urban, 
suburban, and rural areas using data from nearly 1.8 million 
patient encounters [9]. This study highlighted that while 
average response times from a 911 call to responder on-scene 
arrival was 7 minutes, the median time more than doubled to 
14 minutes in rural settings. In these regions, which 
accounted for 4% of the overall volume of calls, 10% of 
people waited approximately 30 minutes. Another study 
showed that traffic congestion in urban and highway settings, 
on average, added approximately 10 minutes to emergency 
response times [10]. Delayed EMS response times have been 
associated with worse patient outcomes in trauma, 
cardiopulmonary arrest, severe bleeding, and airway 
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occlusion patients, with higher mortality rates in rural 
settings [11] [12, 13]. 

Out-of-hospital cardiac arrest (OHCA), aka sudden cardiac 
arrest that occurs in the community, is one of the most time 
sensitive emergencies requiring fast response times. OHCA 
affects over 350,000 victims annually in the United States, 
with an average overall survival rate of 8.3-10.6% [14, 15]. 
Survival is highest in OHCA patients who are given electrical 
defibrillation (a “shock” delivered by an AED device) 
following the cessation of heart activity, and the best survival 
occurs when defibrillation is provided within 3-5 minutes 
[16]. Every minute that elapses after arrest without 
defibrillation is associated with a 10% decrease in absolute 
survival rates [17]. Even with a relatively rapid response time 
of 8 minutes, a typical goal for EMS services across the 
country, survival remains extremely poor.  

Previously, only a single group has conducted scientific 
research in OHCA with drone delivery, using repeated trials 
to determine how actual drone AED flight distances and 
response times compared with ambulance response times [6]. 
Using data from EMS response times of prior OHCAs, 18 
flights were conducted over distances that ranged from 15-
8927m, with total time from dispatch to drone arrival ranging 
from 1-12 minutes. Drones were reported to be statistically 
faster overall than ambulance response times. While this 
study provides an important proof of concept, it did not 
address the larger system issues, including the impact on 911 
dispatch, how interactions with bystanders could be 
supported and it only looked at a single medical indication 
when drones could be used.  

Neither the Claesson et al. (2017) or Boutilier et al. (2017) 
study addressed either the time it takes to determine whether 
to send a drone or an ambulance alone, nor did they consider 
the time it takes for a bystander to safely approach a drone, 
remove the medical equipment, and then apply it in an 
appropriate manner.  Future efforts should extend this 
research by addressing the added time at the beginning of the 
dispatch process, as well as in the therapeutic stage where 
bystanders access and properly use the medical devices 
brought by the drones and increase the medical indications 
which drones should be considered for. No published 
research to date has investigated how actual bystanders 
would interact with such technology that is inherently very 
dangerous (primarily due to the spinning blades). Moreover, 
none have addressed how the initial decision would be made 
to send an ambulance alone versus sending a drone first, with 
a following ambulance. Indeed, the problem is really one of 
staggered dispatch, which requires new forms of optimization 
and planning.  

 

3. OPIOID OVERDOSE 
Opioid overdose, which can lead to complete cessation of 
breathing, is another example of an extremely time sensitive 
condition that if not treated within minutes, can lead to severe 

neurological damage and death. The opioid overdose crisis 
has been declared a public health emergency and is currently 
the leading cause of death for Americans under 50 years of 
age. Over 33,000 people died as a result of opioid overdose 
in 2015, a number that has doubled in just 8 years [18]. The 
generic drug naloxone is an opioid receptor blocker that can 
completely prevent brain damage and death if given promptly 
(within minutes) following cessation of breathing by 
overdose victims. Increasing access to naloxone for opioid 
overdose rescue is one of the US Department of Health and 
Human Services’ three priority areas for responding to the 
opioid crisis [19].  

The nasal preparation of naloxone comes in a single, pre-
filled, pre-measured dose that is fast acting, easy for a 
bystander to administer with very few risks and no adverse 
effect in people who have not taken opioid drugs. Thus, 
suspicion of the cause is enough justification for treatment 
without the need for complex diagnosis. Despite the urgency 
of the problem and the ease, safety, and success of treatment, 
only 8% of US counties had established overdose education 
and naloxone distribution programs in 2014, and only 13% of 
counties with the highest overdose mortality rates had such a 
program (Lambdin, 2017) even though bystander 
administration of intranasal naloxone spray is associated with 
significantly increased odds of recovery compared with no 
application [20, 21]. 

 

4. CHALLENGES IN SUPPORTING 
LAYPERSONS 

Most existing literature on untrained bystanders providing 
medical care in acute illness is in relation to CPR and AED 
use. Public location AEDs are available and only require a 
bystander perform four simple steps: turn the device on, 
apply the electrode pads to appropriate locations on a 
patient’s bare chest, and press a button to deliver a shock if 
the AED device advises “shock needed”. A study of mock 
cardiac arrest found that untrained sixth-grade children were 
only modestly slower at applying AED treatment than trained 
professionals [22].  

Studies have shown that bystander use of AEDs in locations 
where static (fixed location) AEDs are available remains very 
low [23]. In the U.S., only 4.5% of bystanders use an AED 
before EMS arrival on the scene [24]. Preliminary studies 
have indicated that although bystanders with prior CPR 
training are reassured by the simplicity of an AED device and 
find it contributes to resuscitation attempts, others may feel 
additional distress, particularly without prior CPR and AED 
training [25, 26]. In one study examining bystander 
interaction with publicly available AEDs, providing 
customized emergency operator assistance reduced user 
errors [27], so given the complexity of retrieving medical 
devices from a drone, such as the naloxone spray, such 
assistance will likely be critical. Moreover, the number of 
bystanders at the scene [28], as well as their relationship to 
the patient [29], can all affect the final outcomes. 
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Bystanders administering naloxone intranasal spray to an 
overdose victim will first need to retrieve the medication 
from the drone, and it is not yet clear how the drone should 
be designed to ensure safe interactions with laypeople. 
Moreover, these bystanders may need reassurance that they 
will not hurt the victim and assistance with determining how 
and when to administer a second dose or providing additional 
caregiving after treatment while waiting for the arrival of 
EMS. Indeed, all bystanders attempting to provide 
emergency care through the assistance of a drone will likely 
need some level of coaching and thus how to bridge the gap 
between making a 911 call and working with a drone and a 
drone dispatcher is an area that needs significant research.  

 

5. CHALLENGES IN A 911 DISPATCH 
SUPPORT SYSTEM  

A key challenge moving forward with drone emergency 
medical deliveries will be providing 911 dispatchers 
additional decision support in understanding when to 
dispatch a drone and ambulance as opposed to just an 
ambulance in an emergency. This support takes the form of 
optimal allocation of medical resources (a limited number of 
available drones and ambulances) to specific emergency 
locations in a time critical manner. There may be multiple 
such locations that need services at any point of time. Each 
location may have just one patient and a bystander, or a 
patient and several bystanders, or even tens of patients and 
bystanders.  

In many cities, the number of medical resources like 
ambulances and paramedics is substantially smaller than the 
number of patients who require immediate care. Furthermore, 
a drone can only provide initial assistance to a 
patient/bystander, as an ambulance will still need to be 
dispatched to each emergency location. Thus, the use of a 
drone cannot replace an ambulance, but rather decrease initial 
response time. Finally, multiple 911 dispatch centers may be 
concurrently involved in responding to a set of emergency 
scenarios depending on the geospatial spread and magnitudes 
of any large-scale emergencies.  

Therefore, 911 dispatchers will need decision support that 
identifies whether a particular type of drone should serve an 
emergency location before an ambulance, and b) which 
available EMS truck/squad should serve which location(s) in 
what sequence. Both these decision support problems have to 
be solved as efficiently and robustly as possible, keeping in 
mind that a dispatch delay of even a minute may lead to 
increased likelihood of patient death, and that such operations 
occur in highly uncertain scenarios with limited and/or 
unreliable information.  

While there is no published work to date on a system that 
optimizes both drone and ambulance allocation, there are 
examples of each system independently. With respect to 
ambulance allocation, substantial work has been reported in 
the context of decision support systems to aid the emergency 

dispatchers [30-32]. However, these works are either 
restricted to purely simulation-based validation of the 
developed systems or employ ad-hoc or post-hoc analyses to 
identify effective ways of designing such systems.   

Significant work has looked at supporting operators in 
allocating unmanned aircraft/drones in resource allocation 
tasks, particular under time pressure which is a significant 
characteristic of the 911 dispatch task (e.g., [33-40]) While 
this work can inform the ambulance and drone dispatch 
problem, very little research has looked at integrating the 
allocation of air and ground assets to support dispatchers in a 
way that adds very little to their already high workload [41].  

The objective of such a system should be to minimize the 
estimated times to serve all the emergency locations, possibly 
weighted based on the criticality or magnitude of the 
emergencies at certain locations. Here, service time includes 
both the time to reach a given location and the time to assist 
the patients in a location depending on their number, medical 
conditions, the availability of bystander(s), and the mode of 
interacting with the bystander(s). In addition, multiple 
sources of uncertainty in these decision support problems will 
need to be considered. These sources include the current 
locations and availabilities of the resources, supplies on the 
drones, traffic conditions, and the extent of the emergencies, 
i.e., the number and medical conditions of the patients and 
the number of bystanders. All of these affect the problem 
formulation, rendering them stochastic in nature with random 
decision variables, and random objective function and 
constraint coefficients.  

New emergency services requests may come while the 
allocated resources are completing their services. Sometimes 
such requests cannot be predicted in advance, and may, 
therefore, require fast, dynamic reallocation of resources, 
suggesting the use of a decentralized framework to solve a 
stochastic optimization problem. Any resulting decision 
support system should also be consistent with the fact that 
any 911 dispatch center is only responsible for allocating a 
fixed number of resources within a fixed service region and 
needs to communicate on a per demand basis with other 
dispatch centers if more resources are required to address the 
current emergency scenarios. 

Boutilier, Brooks et al. 2017 looked at the number and 
location of drones needed to reduce the response time for 
AEDs in OHCA in both high and low population densities 
using historical geo-coded data of OCHA locations. Aiming 
for a conservative estimate, they found that an appropriate 
drone network in a congested urban environment could 
reduce response time by an average of 3 minutes, and in a 
rural environment, 10 minutes. However, they looked at fixed 
locations for their drone bases, and didn’t consider seasonal 
or other effects that might change the optimal location. 
Compared to cardiac events, opioid overdoses can tend to 
occur in clusters, both geographically and temporally 
depending on factors ranging from pay-period cycles to a 
tainted supply of an illicit source of heroin cut with a higher 
potency narcotic leading to a mass overdose event on a 
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particular street corner. 911 systems currently deal with such 
clusters on an expert-level historical analysis basis, 
dynamically staging ambulances closer to known overdose 
areas to reduce response time, such as parking ambulances 
outside of large stadium sporting events. Predictive modeling 
of these events and clusters could allow for much more 
efficient resource allocation that is responsive to time-
dependent variation, or other factors that develop out of the 
model analysis.  

Lastly, one very important consideration in the development 
of such a system is that it should be tested with actual 911 
dispatchers. This then would allow for direct comparisons 
with existing EMS Computer Aided Dispatch programs to 
determine objective workload impact as well as subjective 
feedback from the actual dispatchers. Designing such a 
decision support system with the active and continuous 
feedback of stakeholders is critical so that this technology can 
be more easily transitioned into operational settings. 

 

6. CONCLUSION 
There has been great interest in the use of drones to provide 
emergency medical interventions. Indeed, the previously 
mentioned Claesson et al. (2017) article that demonstrated 
drones flights could provide faster response than ambulances 
was the second most read article for the flagship medical 
journal, Journal of the American Medical Association 
(JAMA) in 2017 [42]. While an important initial step, for 
such systems to become a reality, much more work is needed 
beyond just demonstrations that provide a proof-of-concept. 
Significantly more principled research is needed at both the 
global dispatch and local levels of drone medical deliveries 
to bystanders to ensure such operations are safe, feasible, and 
scalable across communities ranging from small, rural with 
low population-to-area ratios to large densely populated 
urban areas. 

At the local level predictive modeling of opioid overdose 
events or clusters can inform regional resource allocation. 
Designs of the drones themselves will need to take into 
account the actual mechanics of naloxone spray delivery to 
anxious and untrained bystanders, and a method to instruct 
them on how to deliver the medication and care for the patient 
until trained providers can arrive.  

At the global level, 911 dispatchers are going to have to 
determine when to send a drone in response to an emergency 
call and how to follow up this initial response with an 
ambulance to provide follow-on care and transport to a 
medical facility. Such decision support requires advances in 
resource allocation and optimization algorithms that consider 
a dynamic and under-resourced environment, as well as the 
development of an interface that is easily understandable by 
911 dispatchers that adds minimal workload. 
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