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ABSTRACT 

A common assumption across many industries is that inserting advanced 

autonomy can often replace humans for low-level tasks, with cost reduction benefits. 

However, humans are often only partially replaced and moved into a supervisory capacity 

with reduced training. It is not clear how this shift from human to automation control and 

subsequent training reduction influences human performance, errors, and a tendency 

towards automation bias. To this end, a study was conducted to determine whether 

adding autonomy and skipping skill-based training could influence performance in a 

supervisory control task. In the human-in-the-loop experiment, operators performed 

unmanned aerial vehicle (UAV) search tasks with varying degrees of autonomy and 

training.  At the lowest level of autonomy, operators searched images and at the highest 

level, an automated target recognition algorithm presented its best estimate of a possible 

target, occasionally incorrectly. Results were mixed, with search time not affected by 

skill-based training. However, novices with skill-based training and automated target 

search misclassified more targets, suggesting a propensity towards automation bias. More 

experienced operators had significantly fewer misclassifications when the autonomy 

erred. A descriptive machine learning model in the form of a Hidden Markov Model also 

provided new insights for improved training protocols and interventional technologies. 
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INTRODUCTION 

Human supervisory control is a common control scheme for unmanned aerial vehicles 

(UAVs), during which human operators supervise high-level tasks while autonomous systems 

are responsible for local control of the UAVs. One common assumption is that advanced 

autonomy requires less training to master associated tasks, as functionalities are shifted from 

human to automation control. Indeed, one of the most popular selling points for increasing 

autonomy across a number of commercial industries is that such systems require less training 

since autonomy is doing more of the low-level control work.  

The military is increasingly attempting to reduce training time and costs, and increased 

autonomy is one possible way to do this. Because of the advanced automation onboard UAVs, 

particularly their automatic landing and takeoff abilities, the Air Force has ushered in a new 

program that allows UAV operators to skip flight training and enter UAV training with 

significantly less experience than their counterparts that attend flight school. Because of the 

onboard automation, Air Force UAV training has been reduced from 2 years to 9 months for 

these new non-pilot operators (Blacke, 2009). 

While this reduction in training time is important for minimizing costs and potentially 

getting personnel to theaters of conflict faster, it is not clear how this shift could influence human 

performance and increased error rates. More specifically, if aspects of training are deleted due to 

increased vehicle autonomy, like the elimination of learning to take off and land a plane because 

these functions are automated in a UAV, is there a potential cost in terms of UAV operator 

performance? If human training is dropped for low-level tasks that are taken over by autonomy, 

is there a link to inappropriate trust which could lead to complacency and associated errors? An 

operator’s trust in an autonomous system influences reliance on that system (Dzindolet, Peterson, 
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Pomranky, Pierce, & Beck, 2003; Moray, Inagaki, & Itoh, 2000), and so it is critical that the 

influence of increasing autonomy on inappropriate trust is also examined (Lee & See, 2004; 

Mittu, Sofge, Wagner, & Lawless, 2016). 

Deskilling has long been suspected to be a negative outcome of increased automation and 

subsequent reduced training (Bainbridge, 1983; Strauch, 2018). More recent research has 

demonstrated that there is complex interplay between inserting automation and different training 

tasks, exacerbated by operators’ aptitudes (Clegg, Heggestad, & Blalock, 2010), and the use of 

automation to augment part-task training has been called into question (Gutzwiller, Clegg, & 

Blitch, 2013). In general, it is unknown how training should be redesigned to successfully 

accommodate new task requirements in the presence of increased autonomy such that task 

performance and situation awareness are not decreased.  

This problem of determining training requirements in the presence of advanced autonomy 

is related to the function allocation conundrum, i.e., what functions should be exclusively given 

to autonomy versus exclusively humans, or possibly shared between the two. The SRKE (skill, 

rule, knowledge, expertise) model provides a framework to shed light on this problem 

(Cummings, 2014; Cummings, 2018) and is illustrated in Figure 1.  
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Figure 1. Role allocation for increasingly complex behaviors and the relationship to uncertainty (Cummings, 

2014) 

 

In the SRKE model in Figure 1, skill-based behaviors are highly practiced and automatic 

responses to stimuli, such as a pilot’s ability to keep the plane in stable flight. Once these are 

mastered, this frees the operator to concentrate on attending to rule-based behaviors that have 

clear action criteria associated with signals from the world. For example, pilots use procedures as 

instructions in response to emerging situations, such as the steps to follow when a cabin 

depressurization alert occurs. Once skills and rules are mastered, operators are then able to turn 

more cognitive resources to knowledge-based behaviors, which occur in novel situations where 

conceptual understanding of the environment is required. Expertise-based responses occur under 

the highest degrees of uncertainty, such as when a plane loses both engines and the pilot must 

determine how to safely land the airplane. Typically, only highly experienced people can become 

true experts since it takes time to be presented with such uncertain scenarios over the course of a 
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career. As depicted in Figure 1, computers currently can automate many skill- and rule-based 

behaviors in settings with adequate sensors, such as autopilot and path planning, but knowledge- 

and expert-based behaviors require judgments under uncertainty that are outside the scope of 

current systems enabled with any form of artificial intelligence.  

The SRKE framework falls in line with other research calling for a capabilities-based 

approach to function allocation, as compared to a levels-of-automation approach (see (Kaber, 

2018) for debates on this point). For example, Feigh and Pritchett (2014) lay out requirements 

for such an approach including “Each agent must be Allocated Functions That It Is Capable of 

Performing,” and “The Function Allocation Must Support the Dynamics of the Work,” which are 

similar to the discussions about humans and computer capabilities in the SRKE model.  Other 

researchers have used the skill, rule, and knowledge-based behavior approach to determine 

function allocation in the design of cockpit automation (Idris, Enea, & Lewis, 2016), as well as 

for intelligent driving applications (Wang, Hou, Tan, & Bubb, 2010). 

What is unclear in any SRKE paradigm is how much one level of successful reasoning 

relies upon adequately learning those behaviors from a lower level, especially in human 

supervisory control. For example, how much do takeoff and landing skills learned by Air Force 

pilots who fly UAVs actually benefit them when the UAV experiences a problem while landing? 

It is widely recognized that deskilling is a significant concern for operators of semi-autonomous 

systems where they still have to take over manual control at times (Ferris, Sarter, & Wickens, 

2010; Parasuraman, Sheridan, & Wickens, 2000; Wickens & Hollands, 2000). However, what is 

less known is how removing the learning of these skills due to increasing autonomy potentially 

influences possible performance degradation and potential errors in judgment. It has been well-

established that an increase in automation in supervisory control settings can lead to automation 
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bias, which is the propensity to over trust automated recommendations and not seek any 

disconfirming evidence (Cummings, 2004; Mosier, Skitka, Heers, & Burdick, 1998). It is 

possible that the insertion of automation and the reduction of training could lead to more cases of 

automation bias.  

In addition to the influence of increasing UAV autonomy on training objectives, the role 

of video game experience in these settings is also important to consider as it has been shown to 

lead to better learning (Schenk, Lech, & Suchan, 2017) and improved performance in such 

settings (Lin, Wohleber, Matthews, & Funke, 2015). In addition, trust is also a significant 

consideration as previous research has shown that people with a lack of experience can overly 

trust such supervisory control systems (Cummings, Bertucelli, Macbeth, & Surana, 2014). 

However, distrust can also be a factor in such settings (Parasuraman, Sheridan, & Wickens, 

2008), even though the automation performs satisfactorily (Cummings, Buchin, Carrigan, & 

Donmez, 2010). Thus, a study of operator training and autonomy should consider these 

influences as well. 

To this end, we wanted to explore in a simplified UAV control environment, whether the 

presence or absence of a trained skill could dramatically influence performance under two 

different levels of autonomy and reliability. We wanted to determine whether there were 

consequences of bypassing skill-based training in a UAV supervisory control task, and having 

people start with just rule-based training. To this end, we developed a test environment that 

allowed for training of operators with and without automated target search. By manipulating the 

type of training participants received in the presence (or absence) of advanced autonomy, we 

aimed to examine the criticality of skill-based training that focused on manipulating an 

unfamiliar input device, particularly in the presence of advanced autonomy. In addition, because 
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experience can influence not only trust in automated systems, but also the ability to deal with 

uncertainty in systems, we wanted to examine how novices differed from experts in this regard.  

Our hypothesis was that skipping skill-based training, as represented in the SRKE model in 

Figure 1, would have a negative effect on performance in a human supervisory control task of 

supervising multiple UAVs, which would be more pronounced in novices than experts.  

 

METHOD 

Experiment Testbed 

An experiment was designed and conducted utilizing a modified version of the Research 

Environment for Supervisory Control of Heterogeneous Unmanned Vehicles (RESCHU) 

experiment platform (Nehme, 2009). RESCHU is a Java-based discrete event simulation 

platform, which provides for testing of single operator supervision of multi-UAVs in multi-

tasking supervisory control scenarios that include navigational and imagery searching tasks. The 

interface of the RESCHU platform is shown in Figure 2. The interface features four main 

components: the payload camera view, control panel, mission timeline and map area. 

The primary purpose of the camera view displays is to conduct imagery searching tasks 

through the camera once a UAV reaches a target. The control panel provides the UAV damage 

level, which is caused by UAVs intersecting with the yellow hazard areas. A message box 

provides directives from a virtual supervisor for searching tasks (i.e., a supervisor would tell the 

operator that when he or she reaches target A, search for a red truck in the parking lot of the 

chemical plant). The timeline in Figure 2 shows the estimated remaining time of all UAV 

arrivals at waypoints and assigned targets. The map displays the area of surveillance with real-

time locations of all UAVs, hazard areas and targets. 



9 
 
 

One significant addition to this version of RESCHU was the insertion of an automated 

target recognition (ATR) system to assist in imagery search tasks. Such a system represents 

advanced autonomy that is meant to both reduce operator workload as well as training time. In 

theory, ATR systems use computer vision and machine learning techniques to automatically 

identify a target of interest, thus reducing the search time of a human operator. However, in 

practice such systems have high false alarm rates and are often problematic in actual operations 

(Ratches, 2011), which can later lead to issues with trust. 

 

Figure 2. RESCHU experiment platform operator interface. 

In RESCHU, participants with ATR assistance see the computer’s proposed target in the 

camera video feed window without any need to search for the target through panning and 

zooming. However, the ATR system was only 70% correct in its identification to simulate real-

world problems with reliability and also since previous research has indicated this is a critical 

threshold for human trust (Wickens & Dixon, 2007). For participants without ATR assistance, 

they had to search for the target through panning and zooming interactions, which were also 
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available to those with ATR if they decided they did not agree with the automated 

recommendation, which is similar to actual systems. 

In order to test the interactions between increasing autonomy and skill-based training, we 

needed a scenario where skills would be required under the lower autonomy case of no ATR, 

which would not be needed in scenarios where operators had access to ATR. To this end, we 

elected to use a new, unfamiliar input device that required dedicated training to master, 

especially in the search task, but could still be used with some on-the-job training. 

Thus, the Kensington Expert Trackball Mouse® was used as the new unfamiliar input 

device, which required operators to learn a new manual control skill vis-a-vis trackball 

manipulation. This device is much faster than a traditional mouse, and participants had to both 

adjust to the speed of movement and relearn which buttons mapped to various functions. Such an 

equipment change is reflective of real-world decisions to add hardware to a new system that 

requires a skill set which takes time to learn, but is often introduced with the expectation that 

operators will learn it on their own. 

Participants who received trackball training were given ~20 minutes of dedicated training 

in an abstract training task. None had ever used such a device prior to the experiment. An 

abstract training task was needed to allow participants to become experienced in using the 

trackball without giving them significant experience inside the RESCHU environment. Thus, we 

developed a Fitts’s Law training environment (FLTE) (Figure 3), which embodies the well-

known Fitts’s Law relationship that the movement time (MT) required to rapidly move to a 

target area is a function of the distance and the size of the target (Fitts, 1954; MacKenzie, 1995). 

Movement Time = a + b*ID  ID = log2 (D / We + 1)   (Equations 1 & 2) 
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 In these equations, ID is the index of difficulty, D is the distance to the target for 

selection and We is the effective width of the target. Coefficients a and b are the slope and 

intercept coefficients, determined through empirical tests conducted in a pilot study. In the 

training environment in Figure 3, participants conducted 6 blocks of 75 clicks each in FLTE with 

30s breaks between blocks. This protocol has been shown to effectively train people learning a 

new mouse input device to relatively stable levels of performance (MacKenzie, Kauppinen, & 

Silfverberg, 2001).  

 

Experiment Objectives and Participants 

The primary objectives for participants in this study were to direct multiple UAVs to: (a) 

search images for specific objects when UAVs reached their assigned targets as directed in the 

message box (e.g., a red car in the parking lot), (b) ensure UAVs do not encounter hazard zones 

marked in yellow in Figure 2, and (c) optimize the routing as needed. UAVs were automatically 

Figure 3. Fitts’s Law Training Environment, the 10 pixel target dot 
moves randomly across the screen. 
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assigned to a new target once a target search concluded but the assignment was often 

intentionally sub-optimal, with the underlying algorithm randomly assigning UAVs to targets, so 

participants could improve the search process.  

Participants included one group of 15 students from a US southeastern university (9 male, 

6 female, age mean = 24.1 years, SD = 4.0 years) and another group of 15 FAA Part 107 

commercial UAV pilots (13 male, 2 female, age mean = 35.1 years, SD = 10.8 years). The 

participants were all over the age of 18, with 20/20 or corrected to normal vision, no neurological 

disorders, or any physical impairments that would prevent them from using conventional 

computer input devices. The study recruited participants from campus mailing lists and flyers 

with a $25 gift card for the 1.25-hour experiment and an additional $100 gift card for the best 

performer. 

Among the participants, thirteen had little video game experience, eight participants had 

monthly gaming experience, four participants played video game several times a week, another 

three participants had weekly gaming experience, and only two participants had daily gaming 

experience, ranked on a Likert scale from 1-5. The Part 107 commercial UAV pilots in this study 

were very familiar with looking through actual UAV cameras but had no experience supervising 

multiple UAVs. 

 

Experiment Procedures 

The experiment procedure consisted of three phases. The first phase provided participants 

with different types of training, detailed in the next section. The second phase was a 15-minute 

practice session to allow participants to get familiar with the experiment interface, including the 

steps needed to engage the camera, the procedures needed to successfully search and identify 
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each target assigned, and then how to submit a final answer. This training also included the other 

elements of RESCHU including directing UAVs out of hostile areas and how to improve their 

path planning. At the end of this phase, there was a dedicated test session during which an 

evaluator ensured that each participant could successfully identify and search for a target without 

any assistance and could successfully navigate the UAVs between targets with no exploration for 

the correct interface elements. The third phase was data collection with two different 20-minute 

test scenarios per person with no change in experimental conditions.  

Participants were split into three training groups for the first phase. In the first training 

group, participants were provided with the additional trackball training described previously. The 

FLTE practice was considered as skill-based training because it was designed to decrease 

participants’ input movement speeds while searching in the camera window and thus reducing 

their overall time in the search task, which would allow them to more rapidly switch between 

targets. 

In terms of the level of autonomy, this first group labeled “skill-based with ATR” was 

given the ATR so they, on average, should have the fastest target identification times. However, 

given that their ATR was 70% reliable, which they were told, it was possible that they could 

become complacent and not recognize the automation provided a poor recommendation. Given 

that each person was presented with ten targets, in the case of the unreliable ATR, three of the 

ten were not correct identifications but the correct target was somewhere in the image. Thus, the 

presence of ATR could lead to incorrect identifications. If participants did catch the anomaly, 

given that this group had significant training in using the trackball, we expected that their search 

task times would be somewhat slower than when the ATR was correct, but still fairly quick. 



14 
 
 

The second group also had the same training in terms of the interface and the trackball 

but were not given the ATR assistance, so it was expected that this group would have longer 

times for target identification than those with ATR. Participants with no ATR would have to pan 

and zoom to find the target much more than people who had ATR. We also expected this group 

to have the fewest number of incorrect identifications, as the chance for automation bias was 

removed. This group was labeled “skill-based without ATR”. 

The last training group also had the ATR assistance but had minimal training and was 

labeled the “ATR without skill-based training” group. This group received no special trackball 

training but spent 15 minutes in the practice session acclimating to the new device. Because they 

did not have specific skill-based trackball training, we expected their search times to be the 

longest of all three groups when the ATR provided a poor recommendation, since they would be 

inexperienced at controlling the mouse while performing their two missions. However, their 

search times when the ATR was correct should be the same as those with skill-based training and 

ATR. Because of the lack of foundational training in manipulating the trackball, we expected this 

group to exhibit more instances of automation bias. 

The two testing populations, undergraduate and graduate university students versus 

people with formal UAV commercial licenses, represent novices vs. experienced operators. 

Given their commercial certification, the experienced operators, in theory, possessed 

significantly more knowledge about actual UAV operations than people who had never before 

operated a UAV. Given their time looking through UAV cameras, we expected the experienced 

operators to more easily identify targets but also detect when the automation was not correctly 

performing. In order to take this experiment to the commercial UAV operators, who were 

geographically dispersed, a mobile command center van was used (Figure 4). This van is 
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equipped with a test station and wireless communication capabilities in which the training and 

testing took place. All experiments took place in this van for both novices and experienced 

operators. 

 

Figure 4. Mobile van exterior and interior 
 

 In summary, these different experimental factors resulted in a 3 (skill-based training with 

ATR, skill-based training without ATR, ATR without skill-based training) x 2 (15 UAV 

operators, 15 novices) mixed-subject design with 2 test sessions per person that each lasted 20 

minutes (Table 1). ATR assignment and experience were between factors with a repeated 

measure on each test session. Two sessions were included to increase statistical power. The 

training lasted ~45 minutes for the two skill-based groups but only lasted ~30 minutes for the 

group that did not receive the skill-based training. Every test group supervised four UAVs, and 

were presented with ten possible targets, spaced approximately 90s apart. All participants 

experienced all 10 targets and no vehicles were destroyed in the hazard zones.  
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       Table 1 
 
       Experiment Design 

 

Conditions 
Experience 

 

Novices            Operators 
Skill-based w/ ATR  5 5 

Skill-based w/o ATR  5 5 

 ATR w/o skill-based  5 5 

 

RESULTS 

A multivariate repeated-measure 3x2 ANOVA model with a repeat on the test session and a 

significance level of 0.05 was used to analyze experiment data. Video game experience was used 

as a covariate, but age was not since it was not correlated with any of the performance metrics. 

There were two mission performance metrics, 1) overall success rates of finding targets and 2) the 

amount of time UAVs spent in hazard zones. The overall success rate was defined as the 

percentage of targets correctly identified in a test session. The amount of time in a hazard zone 

was the average amount UAVs spent transiting a hazard area. There were two other search-related 

metrics, which were time spent searching for each of the ten targets in the camera window and the 

average time other UAVs waited at their targets as they needed the operator’s attention to search 

their target window. 

When looking at performance across the three experimental conditions (skill-based with ATR 

(1), skill-based without ATR (2), ATR without skill-based training (3)), there were no statistical 

differences in overall success rates of finding targets and the amount of time UAVs spent in hazard 

zones, which were the two primary performance metrics. The video game covariate was also not 

significant. While not statistically different, participants in the ATR without skill-based training 

condition had the overall lowest error rates of 5%, while those in the skill-based without ATR 

condition were at 9% and skill-based with ATR participants were at 11%. As expected, the 
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commercial Part 107 operators had a third fewer misclassifications than the students (21 vs. 30).  

When considering all the trials, this meant that the experienced operators had an error rate of 7%, 

whereas the novices were at 10%. The highest number of misclassifications occurred in the skill-

based with ATR condition with student novices as seen in Figure 5. 

In terms of time spent searching for targets in the camera window, different combinations 

of training and autonomy had a significant effect on the average time expended in imagery 

searching tasks (F(2, 23) = 10.901, p < .001, 𝜂" = 	 .320	) and the average UAV waiting time 

(F(2, 23) = 7.539, p = .003, 𝜂" = 	 .338). This waiting time indicated how long UAVs were 

waiting at other targets for the operator to finish. Thus, it is a measure of operator efficiency in 

managing his or her attention. Table 2 details the means and standard deviations of these metrics 

for each group, including the different search times for the reliable and unreliable ATR events. 

While the video game covariate was not significant for wait time, it was for search time (p = 

.043), meaning the more experience an operator had, the less time was spent on the search task. 

Overall, for both metrics people with the ATR were faster in searching and left other UAVs 

waiting less time than those without the ATR. 
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 When looking at Tukey pairwise comparisons of the average search time, the skill-based 

without ATR group was statistically significantly slower than the other two groups (p12 = .027, 

p23 < .001), which were statistically not different. Thus, on average and as expected, people in the 

skill-based without ATR group took approximately 10s or longer to search for a target than the 

other groups with ATR. This relationship also held true for the average task waiting time (p12 = 

.006, p23 = .015), with the lack of ATR causing a 15-20s wait time, on average, for images to be 

searched. There was one single significant interaction (F(2,23) = 3.37, p = .040, Figure 6) in that 

the commercial pilots’ actions led to the longest wait times, on average 23s longer, but only for 

those commercial operators without ATR. Thus, the Part 107 experienced operators took much 

longer to identify a target when they had no ATR, even with significant trackball training. 

However, as mentioned previously, this same group also had the fewest misclassifications.  

Figure 5. Number of misclassifications for students and Part 107 certified pilots, as a function of their 
training group: 1. Skill-based with ATR, 2. Skill-based without ATR, 3. ATR without skill-based training 
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It is also interesting to note the difference between those people in the skill-based with 

ATR condition when it failed (30% of the time) and those in Condition 2 who never had ATR, 

especially since they had the exact same training. This large difference could be attributed to a 

fatigue effect since participants without any ATR assistance had to manually search each image, 

whereas those with ATR had less work to do for 70% of the time. There was no statistical 

difference in ages across the groups, so age was not an influencing factor.  

 

 
 

 

Conditions 
Average search time, s (M/SD) 

 

 reliable ATR      ATR not working 
Average UAV waiting time, s (M/SD) 

novice vs. experienced operators 

Skill-based w/ ATR (1) 14.1/11.9 21.1/15.8 31.1/8.9 30.4/11.2 

Skill-based w/o ATR (2)  33.6/4.7 39.1/3.3 62.1/10.0 

 ATR w/o skill-based (3) 12.9/10.9 19.2/13.1 42.4/11.1 31.1/13.2 

Table 2 
 
Efficiency metrics of average image search time and average UAV waiting time 
 
 

Figure 6. The significant interaction (F(2,23)=3.37, p=.040) between expertise and different training groups, 
where 1 = skill-based with ATR, 2 = skill-based without ATR, and 3 = ATR without skill-based training. 
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When examining the raw counts of correct versus incorrect classification for each image 

searched, for participants with ATR (Conditions 1 and 3), when the ATR was correct, there was 

a 96% likelihood that the participants correctly identified the target. However, when the ATR 

was wrong, 30% of the time, the correct identification rate dropped to 79%, demonstrating a 

clear propensity towards automation bias (χ2 = 29.3, p < .001). As illustrated in Figure 5, these 

mistakes were made primarily by students in the skill-based with ATR condition who simply 

agreed with the automation and did not look for evidence to the contrary. Interestingly, there 

were several instances (4%) where the ATR was correct, but participants disagreed and found 

another incorrect target. Only five people made this mistake, and all but one was in the Skill-

based with ATR student group.  

In summary, the statistical analysis results revealed that regardless of the presence of 

advanced autonomy in the form of ATR or the fidelity of the training, participants’ performance 

results were no different in terms of overall mission performance. However, experienced 

operators made fewer errors, as expected, but when they were not assisted by ATR, they also 

took the longest to search for targets, causing the longest system delays.  

These results provide significant insight into the overall behavior trends of participants 

across the experimental factors but do not provide any information on how or why people took 

specific actions or made mistakes. What is needed is an analytic method to accompany 

traditional inferential statistics that not only bridges this gap but also gives clear design guidance 

either for new technologies or training interventions. We believe the hidden Markov modeling 

technique can provide such benefits, described in more detail in the next section. 

 

 



21 
 
 

Evaluating Supervisory Control Performance Through A Machine Learning Approach 

Given that experiments with realistic testbeds often do not show clear performance 

advantages through traditional inferential testing, it is worth exploring if there are other analytic 

techniques that can provide additional insight.  Previous research has indicated that the 

application of hidden Markov models, a machine learning modeling approach, can provide 

greater insight into operator strategies, particularly in terms of supervisory control environments 

like RESCHU. Indeed, a previous hidden Markov model analysis of a similar RESCHU 

environment was able to determine that despite having three different types of vehicles under 

their control, operators tended to cluster the vehicles into two categories, thus reducing their 

cognitive complexity and workload (Boussemart, Cummings, Las Fargeas, & Roy, 2011).  

A Hidden Markov Model (HMM) is a stochastic model that describes a Markov 

process with some states and variables that are not observable (Rabiner & Juang, 1986). While 

system states and state transitions are observable for Markov models, in a Hidden Markov 

Model, system states are not directly observable (thus are ‘hidden’), and the only observable 

variables are emission probabilities determined by hidden system states. HMMs have been used 

previously to develop human operator behavior models (Boussemart & Cummings, 2011; 

Pentland & Liu, 1999; Suzuki et al., 2005), but none of these previous efforts attempted to 

investigate the impact of different training and autonomy paradigms on operator image 

searching. 

An HMM can represent both higher-level human operator behavioral states and lower-

level operator interactions with human supervisory control systems. The observable emissions 

are determined by clusters of lower-level interactions between operators and an interface, for 

example when people click on an interface button. The clustering of related behaviors forms the 
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hidden states of an HMM, which then suggest operator strategies. For example, an operator 

generates observable states by clicking on a button to add a UAV waypoint and then another 

button to assign a new target, but the combination of these button actions indicates that an 

operator is executing the higher-level action of navigating, which is the hidden state. 

Given that the presence of ATR affected the participants in this study in terms of search 

and wait times as well as misclassifications, we developed an HMM that represented operator 

interactions in the search camera window to determine if such an HMM could provide any useful 

insight into how operators searched the image for the correct target. There were 10,203 

observations used to build this model, with an average of 165 observations per each test session. 

To this end, Figure 7 demonstrates the HMM of operator interactions in the search window, 

which were consistent regardless of the training group or level of expertise.  

In Figure 7, operators generally exhibited two observed and three hidden states in their 

search efforts. The initial state in this task was the observed state Payload Engaged. This state 

was fully observed since operators had to right-click on a UAV–target pairing to select the 

Payload Engage function. Thus, this state indicates with no uncertainty when people began a 

search task. Once this button was selected, then the HMM model in Figure 7 reveals 3 distinct 

clusters of states with the relevant transition properties. The final state, Payload Finished, was 

also fully observed when people submitted their answer. 

 The three hidden states can be generally described as the Up state where participants 

predominantly searched up, the Lateral state where operators generally panned left and right, and 

the Zoom state people predominantly zoomed in and out on the target. These clusters are 

interesting since, for example, Up was its own state. People tended not to scan down, revealing a 

possible gap in training and understanding. Moreover, people tended to group lateral left and 
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right behaviors together and the large self-transition of 77% suggests that people had very 

inefficient search strategies. Self-transitions in HMMs indicate repetitive activity, and operators 

tended to repeat left and right camera movements, suggesting that this could be an area where 

either more training or better decision support could be helpful. 

 

Figure 7. RESCHU search task Hidden Markov Model. The red line indicates the dominant strategy for 
misclassifications and the blue dotted lines indicate the dominant strategy for correct classification.  

 

While the overall structure of the HMM is instructional in terms of how people clustered 

behaviors and where attentional inefficiencies likely reside, such a representation can also help 

diagnose problem behaviors. In Figure 7, the red dashed line shows the dominant strategy of 

people who made target misclassifications and the blue dotted line illustrates the dominant 

strategy of those people who correctly classified targets. The difference is quite stark. In 

agreement with the statistical analysis in terms of errors, people who made errors had a strong 

propensity to only look at the ATR’s recommendation and then jump straight to the answer 

submission. They did not investigate any alternatives, as indicated by the move from the payload 

engage to finish observable state. In contrast, those people who correctly identified the targets, 
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even when they were assisted by ATR, still explored their region to ensure the answer was 

correct.  

This is an important finding because while the inferential statistical analysis indicated a 

propensity towards automation bias, particularly for novices, the HMM analysis demonstrated 

how such a bias was manifested in actual behaviors. Armed with such results, designers now 

have a clear intervention in that ATR recommendations could provide a general area of a target 

instead of a specific point to reduce this bias. Another option would be to train operators to never 

simply accept a recommendation without first exploring the solution space, and also to 

specifically remember to search down in an image. Previous research has shown that HMMs 

could be used to develop automated training aids (Gombolay, Jensen, & Son, 2017), so we leave 

these areas for future work but believe these results demonstrate the utility of adding such an 

HMM analysis to any complex of human-computer study in a supervisory control setting.  

 

DISCUSSION 

Given that autonomous systems often remove the need for humans to perform low-level 

skill-based tasks and offer potentially lower training costs, there is a need to better understand 

how the removal of training for these tasks can potentially influence overall joint human-system 

performance. To this end, our goal in this study was to determine whether skipping skill-based 

training, as represented in the SRKE model, could have a demonstrable negative effect on 

performance in a human supervisory control task.  

Using both traditional inferential statistics and a machine learning analysis in the form of 

a Hidden Markov Model, operators supervising multiple UAVs who were given focused skill-

based training for an unfamiliar trackball input device did not have different search times in 
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panning and zooming a simulated camera, as compared to operators with no special training 

when the autonomy was correctly working. Thus, for this specific instance, the lack of skill-

based training did not affect people’s ability to search for a target in terms of time.  

 However, one concern with increased autonomy and reduced training is that this 

combination could lead to more mistakes, a loss of situation awareness and a tendency towards 

automation bias. This result was partially seen in this study, in that students with the most 

training and highest autonomy had the most misclassifications. So, while search times were not 

dramatically affected by differences in training and autonomy, error rates were, influenced but 

not as expected. Those people with the least training (both students and Part 107 operators) also 

had the least misclassifications, which is completely counter to our expectations. This result 

could have occurred because the additional skill-based training could have made people more 

complacent in the search task since it was highly automatic for them. When augmented with the 

HMM analysis, the lack of investigation of alternate targets was a clear contributing factor. The 

participants in the ATR without skill-based training condition were still learning to control the 

trackball while executing their searches, so this could have made them more vigilant, leading to 

the reduced misclassifications.  

One other result worth highlighting is that overall as a group, the Part 107 commercial 

UAV operators were slower at searching for targets when they had no autonomy assistance, 

however, they also had the lowest misclassification rates, especially when the autonomy made an 

error. This statistically significant search time delay potentially suggests that the experienced 

operators were more cautious in this mode, even though they received the same training as the 

novices. This also may reflect their experience with looking through UAV cameras, which is 

difficult and has been compared to looking through a soda straw (Endsley & Jones, 2004). 
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The caution of the experienced operators is in sharp contrast to the novices who, with the 

most automated assistance and the most training, exhibited a tendency towards automation bias 

in that they had the highest error rates, especially when the automation made an erroneous 

suggestion. This result suggests that novices in the ATR without skill-based training group were 

very focused on their environment, likely because they were still developing their trackball 

manipulation skill during the experiment, which made them more careful in their selections.  

So, these results are counter to our expectation that participants in the ATR without skill-

based training condition would make more mistakes. Indeed, both novices and experienced 

operators had their lowest errors in this condition suggesting that their higher workload was not a 

problem. The additional trackball skill training for the novices in the Skill-based with ATR 

condition potentially made them more complacent. However, this was not the case for the 

experienced operators.  

In part, this validates the SRKE model such that knowledge- and expert-based behaviors 

have distinct benefits and provide some level of protection against degraded system operation 

and unexpected uncertainties. However, significant work is needed to determine how much and 

what kind of training is needed to achieve these levels as well as how expertise does (or does 

not) transfer across domains.  

There are many limitations to this work. First, these conclusions are based only on the 

RESCHU application and cannot be generalized across all multiple UAV testbeds. Moreover, 

while there were 30 subjects, a larger sample size could have led to different trends. For 

example, the 10 people in the ATR without skill-based training condition could have just been 

very good at adapting to an unfamiliar input device, and so another group may struggle with 

adapting to a new device with no training. This limitation also applies to the HMM. Such models 
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work best with significant amounts of data, but it is also important to note that they also indicate 

aggregate observed behavioral trends so cannot specifically predict any individual behavior.  

Despite these limitations, there are many important lessons learned in this study which 

combined inferential statistics and a machine learning descriptive model. First, knowledge 

gained through significant experience in a similar but not exactly same domain may provide 

some protection against growing uncertainty in the form of degraded automation. More 

specifically, operators with real-world UAV experience appeared to recognize and exercise more 

caution when the automation was degraded in this multiple UAV simulation. On a related note, 

another critical result is that when the autonomy was unreliable, so were the humans that were 

novices, even despite additional skill-based training. Such propensity toward over trust and 

automation bias in autonomous systems could be extremely dangerous in safety-critical settings, 

and the reduction of training could lead to increased inappropriate trust and more cases of 

automation bias.  

Lastly, through using a descriptive machine learning model in the form of a Hidden 

Markov Model, we gained new insights into the problems with extended search time and 

misclassifications that could form the basis for new training protocols and interventional 

technologies. While more data with more people would be needed on actual systems to 

determine more prescriptive interventions, the ability to acquire interface interaction data is 

relatively straightforward with supervisory control systems in both commercial and military 

systems, such as all types of UAVs, air traffic control, self-driving cars, and cockpits of 

airplanes. The use of machine learning analytic approaches has increased significantly in the past 

few years with the explosion of “big data,” but most of these efforts look at replacing human 

judgment as opposed to aiding in diagnosing human actions and judgments. What is markedly 
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missing is a focus on what patterns could emerge from the vast amount of training data generated 

during computer-based training sessions, which represent a large part of military and commercial 

training programs.  
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