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With the rise of new space missions such as NASA’s Dragonfly that will include a nuclear-
powered rotorcraft for exploring Saturn’s icy moon, Titan, as well as deep space missions that 
cannot rely on solar power, new risk assessment strategies are needed that balance the need 
for safety against the impracticality of lifetime testing. Risk assessments for existing nuclear 
technologies and, more broadly, safety-critical systems can widely vary in approaches and 
outcomes, with significant cultural influences. Some safety-critical systems like driverless cars 
and surgical robots have been authorized to operate with little or highly questionable risk 
assessments. Others using well-established probabilistic-based risk assessment methods such 
as those used for Stirling-based convertors for Radioisotope Thermoelectric Generators have 
struggled to convince relevant agencies that risk is acceptable. Case studies show that risk-
averse oversight groups tend to rely more on concepts of heritage for technology risk 
assessments, which is the existence of either observed data from actual or similar operational 
systems. While reliance in heritage may reduce risk, it can result in incremental, evolutionary 
technologies instead of revolutionary ones, in effect stifling innovation. This notion of heritage 
can also lead to a misperception of acceptable risk under the guise of a regulatory concept 
termed equivalence, which allows new technologies to be fielded based on erroneous technical 
comparisons, much like the Boeing 737 MAX. More work is needed to understand the 
interplay between probabilistic-based risk assessments, notions of equivalence and heritage, 
and the culture of oversight agencies. 

I. Nomenclature 
A, B =  material constants 
CTF  = cycles to failure 
Nf = number of cycles-to-failure 
σα = fully reversed fatigue strength 

II. Introduction 
It has long been the ambition of humanity to stretch the outer limits of our understanding of the solar system and 
galaxies beyond. To meet these ambitious goals, NASA and other space agencies will need to develop more innovative 
technologies capable of overcoming challenges inherent to these missions, including human adaptability to long 
duration missions, the need for more autonomous spacecraft and terrestrial exploration devices, as well as long-
duration power sources that do not rely on solar power. Risk is an inherent part of space missions, and space agencies 
must determine not whether to take risks, but rather where and how to take them so they can be managed more 
effectively [1].  

To this end, NASA has been developing next-generation space power systems such as the dynamic Radioisotope 
power system (DRPS). While NASA has relied on static power systems for nearly 70 years in the form of radioisotope 
thermoelectric generators (RTG), a DRPS attempts to improve RTG fuel efficiency and decrease mass through Stirling 
and Brayton cycle heat engine technology as the basis of the converters. However, one risk-related issue that arises in 
the development of such systems is how to develop a testing program that can provide acceptable risk estimates for 
technologies that cannot be fully tested either in their operational domains or for the expected life of the system.  
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To address the need for improved risk assessment approaches and technologies, NASA encourages agencies to 
follow established probabilistic risk assessment (PRA) approaches or even create new risk analysis techniques [2-4]. 
PRA techniques are well-established across a number of NASA applications such as assessing the risk and 
consequences of a spacecraft’s propellant leak, launch failure, and human-system interactions [5], but also in other 
applications like assessing health-patient safety [6] and in the assessment of nuclear reactor design weaknesses, where 
PRA was first devised [7]. 

However, there are issues with PRA, particularly with new, innovative technologies like DRPS. The performance 
lifetimes of these systems are expected to be long at 17 years [8]. Current testing and PRA approaches are very 
expensive and extremely time intensive. For example, traditional statistical methods used to validate system reliability 
of .9 at 15 years with a confidence of 90% for an RPS would take 2.9M hours of system demonstration without failure. 
Given these constraints, the Radioisotope Power Systems Project (RPSP) Office and the Johns Hopkins University 
Applied Physics Laboratory (APL) developed a new derivative PRA process called RILT (Risk Informed Lifetime 
Modeling) process to determine the target, nature, and extent of testing required for the demonstration of acceptable 
RPS reliability [8]. 

Unfortunately, while the computation of risk may seem like an objective process, PRAs often carry significant 
subjective elements, not the least of which is interpreting probabilistic results and determining safe thresholds, which 
are notoriously difficult decisions for humans to make [9-11]. Given the subjective aspect of risk assessment, it is not 
uncommon for various groups to debate whether a given risk assessment approach is correct or the best candidate for 
a particular application. For instance, alternatives to PRA include the examination of trade studies for relevant 
technologies and convening technical peer reviews with those not immediately involved with the project under 
evaluation [12]. 

Similarly, RILT is a relatively new risk assessment technique and may not be readily accepted across NASA or its 
partners and subcontractors. DRPS has yet to fly on any space mission, and without a convincing risk analysis, it will 
not be flown. To further examine these issues, this paper investigates those factors that influence the acceptance of a 
new risk analysis technique like RILT, what issues can arise while introducing a new risk analysis technique, and what 
can be done to mitigate these issues to allow for the cautious development of innovative technologies.  

III. Risk Informed Lifetime Modeling 
RILT is a hybrid risk assessment methodology that combines physics of failure modeling with traditional 

probabilistic risk assessment modeling, informed by past flight data, if available, and expert judgement [8]. Physics 
of failure modeling is an approach that assesses a system’s reliability by simulating models of failure based on well-
documented phenomena such as fatigue, fracture, wear, and corrosion. According to RILT’s developers, “by providing 
a failure model through which millions of hours of testing can be simulated, RILT, specifically its inherent Bayesian 
treatment of evidence, allows for evaluation of effects of pseudo-life test data on life predictions. This means that 
parameters that drive uncertainty in the simulation environment can readily be identified and targeted for actual life-
testing [8].” 

To illustrate an application of RILT, take the need to determine the lifetime performance of piston flexure bearings 
within a Stirling generator [8]. In the case of DRPS, Stirling generators use the heat of decaying radioisotopes and 
low temperatures of space to expand and compress gases to drive an alternator. The flexure bearing supports the 
longitudinal movement of the Stirling converter linear alternator while limiting the alternator’s radial motion. One 
likely failure mode evaluated through RILT is the rate of fatigue until failure of the flexure bearings resulting from 
use over a system’s lifetime.  

The equation used to model the lifetime performance of the flexure bearing under various levels of stress, that is the 
number of cycles performed by the bearing until failure, is presented in Eqn. 1, known as the S-N curve, where the 
stress amplitude, σα, or the reversed fatigue strength of the bearing is directly related to the number of cycles-to-failure 
(Nf) as well as material constants A and B. 

 

 σα = ANfB                          (1) 
 

Equation 1 can be linearized and Bayesian regression applied to estimate the distributions of A and B material 
constants. Reorganized to make the cycles-to-failure the dependent variable and the fatigue strength of the material 
the independent variable, Eqn. 1 becomes:  

 

logNf = !
"

 log σα - !" logA                     (2) 
 

Cycles-to-failure for metal used in the bearing can then be computed as a function of stress amplitude (Table 1), 
and probability density functions can be computed for A and B, which are parameters representing material constants. 
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In this way, RILT estimates the maximum stress that the flexure bearings can withstand during the lifetime of the 
generator, as well as the uncertainty associated with these parameters. 

 
 

 

 
 

The purpose of RILT is to use Bayesian probabilistic risk assessments and accelerated testing data in order to 
identify and target those variables and operational regimes that are primary risk drivers. Accelerated testing is a 
process by which designers attempt to simulate, over a relatively short period of time, the conditions that a part, 
component, assembly, or an entire system will experience throughout its anticipated service life. It is an element of 
reliability engineering meant to discover and eliminate failure modes, and is commonly used across many industries, 
particularly for electronic components [13] and materials [14]. 

Accelerated testing provides data for risk assessment, and NASA has long used such testing for space vehicle 
components [15, 16]. Accelerated testing informs, but does not replace probabilistic risk assessment, e.g., [17]. Data 
from accelerated testing allows managers to build appropriate levels of trust and confidence in such models, which 
then feeds a risk assessment which considers data and input from multiple sources. 

Figure 1 illustrates the relationship between RILT and accelerated testing in the context of data fidelity and system 
abstraction. In an ideal world, the best risk assessment for any technology would be based on real data taken from 
actual parts and components, working in an operational integrated system. Given the complexities surrounding nuclear 
space power including cost and remote operations, it is simply not possible to perform such an ideal risk assessment. 
As depicted in Fig. 1, if data from an identical system is not available, often risk assessments are based on data from 
similar systems [18].  

The existence of either observed data from actual or similar operational systems is a concept NASA refers to as 
“heritage,” depicted in Fig. 1. Proposals for new systems that can point to heritage in parts, components, and systems 
are typically seen to be less risky and more likely to succeed [19]. In domains outside of NASA, a related notion of 
equivalence between two similar technologies often forms the basis for regulatory certifications [20]. 

For systems, components, or parts without such heritage in an operational setting, more data is needed to accurately 
assess risk. Accelerated testing, as discussed previously, can help fill this gap and as depicted in Fig. 1, can span 
testing across parts, components, and even potentially systems. Data gathered from physical testing forms physics-
based models that can be used to estimate future states through probabilistic models. The fidelity of such estimates 
depends on the data gathered and how well that data can generalize to unseen or predicted states. Such approaches 
have a significant limitation in that there is typically an assumption of linearity. It is possible that underlying behavior 
in such systems is non-linear, and thus any model with linearity assumptions, like RILT, will be inherently flawed. 

Based on publicly-available literature, in Fig. 1 RILT is depicted as having significant overlap with accelerated 
testing, which is a stated characteristic of this approach [8]. RILT uses similar physics-based modeling approaches as 
accelerated testing, a commonly-accepted risk assessment strategy. However, a hallmark of RILT is that it relies 
heavily on probabilistic data for performance estimates at the part and component level, i.e., its “inherent Bayesian 
treatment of evidence [8],” which then allows for more targeted testing for the larger system. 

In Fig. 1, RILT is depicted as straddling the lower data fidelity levels while spanning system abstractions from 
concepts through components. RILT can rely on some actual observed data, but as is depicted in public literature, it 
is a tool to identify critical testing regimes using significant probabilistic analyses. However, given the propensity of 
decision makers to trust observed data from actual or similar operational systems, i.e., heritage, it is very likely that 
the lack of such data lowers the trust in RILT results due to the higher uncertainty in predictions. 

One strength of RILT that can easily be overlooked is that of all the risk assessment data generation methods 
depicted in Fig. 1, it is the only one designed to capture data for examining conceptual system designs. Because RILT 
can capture a wide array of probabilistic scenarios, it has tremendous value in allowing for the exploration of potential 

Table 2: Summary statistics of model coefficients 
and cycles-to-failure (CTF) at 500 MPa 

Parameter Mean SD 
A 1.588e+03 1.803e+01 
B -9.453e-02 1.2473-03 

CTF 2.037e+05 1.081e+04 

Table 1: Example S-N Data  
Stress Amplitude, 

MPa 
Cycles-to-

failure 
948 222 
834 992 
703 6004 
631 14130 
579 43860 
524 132150 
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risk for various concepts of operations informed by real data where such data exists. Thus, it allows for the mixing of 
observed and estimated data to allow for state space exploration not available through the use of other methods.  

While RILT and other more probabilistic approaches to risk assessment may be seen as less data-driven and 
problematic, it is simply often not possible to gather the gold standard of data from actual or similar operations. Indeed, 
this is a significant problem for NASA managers who would like to field futuristic space explorations missions where 
current power systems simply are not adequate [21], including the new Dragonfly mission. This conundrum highlights 
a classic problem in engineering in that major breakthroughs in engineering cannot happen without taking some risk 
[22], and often agencies tend to avoid risk instead of managing it, which ultimately suppresses innovation [23].  

To this end, the next section examines both current and futuristic systems in terms of risk assessment to further 
examine how NASA and other agencies think about risk and how to mitigate negative outcomes in the adoption of 
new risk assessment strategies. 

IV. Risk Assessment Comparison for Actual and Prototype Technologies  
To better understand how different approaches to risk assessment can affect the final decision to deploy a 

technology, Fig. 2 illustrates assessment strategies for various operational and prototype technologies, and the 
associated system abstraction level. Each technology will be discussed in more depth in the next sections, but they 
include a mix of NASA and other technologies to provide perspective.  

A. Deployed Systems 
 

As discussed previously, the best risk assessment data for proposed technologies comes from systems that currently 
exist, or are very similar. The case of the Mars InSight lander in the upper right of Fig. 2 demonstrates how this notion 
of heritage can influence NASA decisions. InSight (Interior Exploration using Seismic Investigations, Geodesy and 
Heat Transport) is a JPL lander designed to study the crust, mantle, and core of Mars. It was one of three designs 
proposed under the 2010 Discovery competition. The other two were the JHU-APL Titan Mare Explorer (TiME) for 
exploration of a large methane-ethane sea on Titan and Goddard Space Flight Center’s Comet Hopper (CHopper), 
which would have orbited and repeatedly landed on Comet Wirtanen. 

These three systems were partially developed through an initial round of funding to determine which would go on 
to full development. Both TiME and Chopper proposals included a DRPS system, the Advanced Stirling Radioisotope 
Generator (ASRG), which was incentivized by NASA in the competition. NASA will often incentivize particular 
technologies in order to advance their Technology Readiness Level (TRL). Despite this incentivization, the solar-

System 

Component 

Part 

Concept 

Observed data 
from actual 
operations 

Purely 
probabilistic 

data estimates 

Some observed data 
informs probabilistic 

estimates 

Observed data 
from similar 
operations 

TRUST 
UNCERTAINTY 

Accelerated 
Testing 

RILT     Data Fidelity 

Fig. 1: The risk assessment relationship between system abstraction, data fidelity, and testing. 

Equivalence   Heritage 
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powered InSight was the winner of this competition, in part because the risk was lower as solar-powered flight has 
significant heritage. At that same time, the ASRG faced significant technical challenges [24].  

While solar power has high heritage as a power system for space vehicles, nuclear-powered RTG systems have 
flown in space many times. In 2004, JPL successfully proposed a derivative of an older RTG design in the form of the 
Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) to power the Mars Science Laboratory Curiosity 
rover. This MMRTG was selected over a Stirling-based DRPS, which in theory would have been more efficient. The 
MMRTG was selected primarily due to its heritage with similar thermoelectric couple designs and materials from 
earlier RTGs that flew on Viking and Pioneer missions. Recall that a Stirling-based system introduces a new moving 
part discussed in the earlier RILT example, so it is considered a more radical departure from earlier RTGs, where the 
MMRTG is a more conventional design. This similarity gives the MMRTG heritage, with an assumption of lower risk 
and higher trust, which is why it is positioned in the upper right corner of Fig. 2. 

NASA is not the only agency that needs to predict long-term nuclear power performance in remote environments, 
the US Navy also has similar issues for ship and submarine power sources. Recently, the US Navy began using life-
of-the-ship (LOS) reactors, which are designed to power a ship or submarine throughout its service life without 
refueling, which could mean 33-40 years of continuous operation [25]. Such a design change is expected to save the 
Navy, and thus US taxpayers, millions of dollars, but the use of LOS reactors raises safety concerns. A core design 
feature of LOS reactors is that the reactor is sealed, which means that the fuel and pressure vessel that contains critical 
coolant cannot be directly tested and inspected. The act of refueling often reveals problems that otherwise would not 
have been revealed because the reactor is opened [26]. Without this periodic refueling event, LOS reactors will not 
have additional inspections that could reveal manufacturing defects that appear in operation. 

Because LOS design and testing protocols are classified, there is very little information in the public domain about 
such systems, but it is known that accelerated testing has been conducted at the Advanced Test Reactor (ATR) at 
Idaho National Laboratory (INL) for low-enriched uranium (LEU) fuel to be used in the LOS reactors. These tests 

have included irradiation of LEU fuel up to ten years to simulate fuel aging onboard a ship [27]. 
Based on these tests, the Navy has elected to move forward with the LOS reactor in one class of submarines with 

plans for additional applications [25] even though, like NASA, they cannot test the LOS systems in actual conditions 
for the lifetimes of the reactors, and there is no heritage for comparison. As depicted in Fig. 2, the Navy can only rely 
on accelerated testing of components, not even the entire system, in its risk assessment of LOS reactors. Because of 
the classifications around these systems, it is not entirely clear how much of the accelerated testing data relies on 
actual data or on more probabilistic approaches like RILT. However, it is likely that national security needs and the 
Navy’s significant nuclear power experience and impressive safety record from the past 70 years influenced the 
decision to move towards a potentially riskier nuclear power source.  

System 

Component 

Part 

Concept 

Observed data 
from actual 
operations 

Purely 
probabilistic 

data estimates 

Some observed data 
informs probabilistic 

estimates 

Observed data 
from similar 
operations 

US Navy 
LOS Reactor 

      Data Fidelity 

Fig. 2:  Comparison of deployed (bold) and prototype (italics) systems published risk assessment strategies 
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The last deployed system to be compared is that of surgical robots. While not a system that relies on nuclear power, 
it is very much a safety-critical system that can directly cause human harm. Presumably, no such technology would 
be deployed without a very thorough risk assessment, but as will be illustrated, the concept of heritage also occurs in 
medical device certification, with potentially bad outcomes.  

The most common surgical robot is the da Vinci robotic surgical assistant, manufactured by Intuitive Surgical, 
which allows surgeons to remotely manipulate very small surgical tools through teleoperation. The da Vinci is 
considered a medical device and was the first of its kind, requiring FDA certification. The approval was granted in 
2000 through the 510(K) process [28], which is an expedited certification process similar to NASA’s concept of 
heritage. Medical devices are held to a lesser regulatory standard if they can show equivalence to an existing 
technology. Intuitive claimed equivalence to existing laparoscopic surgical technologies, which saved significant costs 
and development time. 

Unfortunately, the decision to certify da Vinci based on its equivalence to laparoscopic surgery, in retrospect, may 
have been hasty. In 2014, Intuitive set aside $67 million dollars for settlements for over 3000 product liability claims 
with at least 52 pending lawsuits across 22 states [29]. Healthcare experts are calling for more safeguards in such 
systems [30], and the FDA even recently admitted problems with robotic surgery, and issued a safety communications 
warning doctors and patients about using such devices for cancer-related surgeries [31].  

The FDA likely failed to accurately assess the risk of this new technology, the first of its kind. The FDA decided 
existing data for a similar system (laparoscopic surgery) would suffice in its risk assessment of robotic surgery, but in 
doing so, failed to understand that the two actually have very little in common. Thus, there was an illusion of 
equivalence, and this case demonstrates what can go wrong with an overreliance on heritage. The FDA could learn 
from NASA how to combine PRA approaches with existing data from similar systems to develop more comprehensive 
risk assessments. Correspondingly, all agencies that subscribe to an equivalence/heritage mantra (including NASA, 
the Department of Defense and the FAA) should be especially careful to accurately determine actual equivalence 
between parts, components, and systems in risk calculations. 

B. Proposed Prototype Systems 
 

The previous case studies highlight deployed technologies that were assessed, for better or worse, to have 
acceptable risk levels for deployment. Against this backdrop, it is instructive to examine prototype technologies that 
have not yet been deployed, but are in some stage of development and testing, so risk assessments are underway. 

Recall from the earlier discussion that Stirling-based convertor technologies are elements of dynamic radioisotope 
power systems with no system flight heritage to claim. The major difference between RTG systems and DRPS with 
Stirling convertors is a moving piston. There have been various efforts attempting to mature this technology [24], and 
as discussed previously, NASA incentivized proposal teams with DRPS technology in the past. However, to date no 
DRPS system has flown in space and there are no planned missions, although the technology is still in development, 
which is why it is listed on Fig. 2 as a prototype technology. 

NASA still very much needs more efficient nuclear space power for long duration space missions, so to this end, 
they are working with the Department of Energy (DOE) to develop the eMMRTG, a next-generation enhanced 
MMRTG which promises improvements over the MMRTG, including increased power across the system’s lifecycle 
as well as an extended life from 14 to 17 years [32].  Since the technology is still under development and has not yet 
flown, the risk assessment is not complete. What will be interesting to follow is whether some element of heritage will 
be claimed for this system. The thermocouples in the eMMRTG are going to be replaced with new skutterudite (SKD)-
based couples, and thus a new part will be added without heritage [33]. As a result, the eMMRTG will be on par with 
Stirling-based RPS systems in that the majority of the system has heritage, save for one critical component. It remains 
to be seen how the probabilistic risk assessment for the new SKD-based eMMRTG will be conducted and if there will 
be important lessons learned for Stirling-based technologies in terms of satisfactory risk assessments. 

The final futuristic comparison that sheds new light on issues of risk assessment for emerging technologies is that 
of driverless cars. While also not a nuclear power technology, they are a safety-critical technology, with over a $100 
billion dollars invested [34], and their use of probabilistic data in risk assessments is significant. Moreover, the 
prevalence of software in such systems is high, which are issues NASA is increasingly facing for future missions. 
Driverless cars are in development today by both traditional car manufacturers as well as on-demand transportation 
service providers like Uber and Waymo. The technology that enables cars to drive themselves includes GPS 
technology with detailed on-board mapping for navigation, and a combination of sensors that provide a world model 
for actuation decisions, which can include millimeter wave radar, camera vision, a laser detection and ranging (aka, 
LIDAR) [35, 36]. At the heart of decision making in these cars is a significant reliance on machine learning, often 
called deep learning, which makes probabilistic associations between observed and expected behaviors to determine 



7 
 

car behaviors. Such cars are still in various stages of development and after a pedestrian was killed by an Uber 
driverless car undergoing testing, there have been increasing calls for improved testing and more regulation [37]. 

What constitutes “good enough” testing to begin driverless cars operations is still a question of intense debate. 
RAND has said that such cars need to drive at least 275 million miles fatality free to be considered on par with human 
drivers [38]. In 2018 Waymo drove the most miles of any company, at 1.2 million [39], far short of the RAND 
estimates, so there has been a growing clamor in the automotive world to allow for substitutions of simulated data to 
demonstrate vehicle safety, e.g., [40, 41]. Driverless car companies are taking the position that the best risk assessment 
technique available to demonstrate to the public that the cars are safe is through simulation since it is not possible to 
drive the 275 million miles to gain statistical evidence in a reasonable amount of time. 

One way to approach this conundrum is to develop simulations that incorporate physics-based models of vehicle 
dynamics so that a virtual car respects the laws of physics, such as how a car would depart a virtual road if it took a 
corner too fast. Then, individual sensor capabilities must be simulated including the physical dynamics of each sensor 
(e.g., how a LIDAR sensor responds in rain) as well as how this information would be transmitted to the deep learning 
algorithms that then make choices for how the car should behave. These simulations must also include representations 
of other drivers, including their abilities to perceive various events and then act accordingly.  

Such integrated simulations that faithfully represent vehicle dynamics, sensor capabilities, and driver behavioral 
models are extremely complex and very expensive. No company to date has publicized any data to indicate how valid 
such simulations are. In the case of physics-based worlds like power generation, measured data from actual operations 
can be compared against computer-based simulations at very low levels of detail. While some actual data in driverless 
car simulations can be compared at the component level such as GPS capabilities, it is extremely difficult to validate 
a driverless car simulation because of the inability to faithfully represent or include every variable that leads to a 
critical event. In these systems, the inherent dynamics are so complex that exhaustive verification of any validation 
methods is beyond any set of tools available today [42, 43]. 

Other researchers have taken the view that more abstract simulations that embed probabilistic reasoning and risk-
based approaches for holistic system safety estimates can help to determine problem areas, especially for low-
probability edge cases. Such approaches resemble PRA techniques used by NASA. However, these researchers are 
quite clear that such simulations should be used for initial testing for problem identification, which should be followed 
by real-world road-based testing [43]. Still others claim that a reductionist approach to testing is the best path forward 
such that a form of accelerated testing called “importance sampling” can predict statistically how an automated vehicle 
would perform in everyday driving situations. These researchers claim that “just 1,000 miles of testing can yield the 
equivalent of 300,000 to 100 million miles of real-world driving [44].”  

Despite the abundance of simulations proposed in the autonomous vehicle community, the lack of regulatory 
oversight [20] means that there is no consensus on what constitutes a “good enough” set of tests to demonstrate safety. 
This is particularly critical since deep learning approaches embedded in such systems have been criticized as deeply 
flawed [45], with an inability for human designers to effectively interpret results that likely contain bias and data 
overfitting [46]. 

While many simulation approaches used in driverless car testing bear resemblance to NASA’s use of accelerated 
testing, the primary and critical difference is that in NASA’s space power testing, hardware is the primary focus of 
such testing while in autonomous vehicles, software and the use of machine learning algorithms is the primary test 
concern. There are few, if any, parallels in terms of any heritage-like sense of confidence for driverless cars, which 
have not been fielded in the military, a typical proving ground for cutting-edge technology like drones. Despite the 
lack of consensus about driverless car testing and no existence of heritage, at least three states feel that the technology 
is ready, with California, Arizona, and Florida authorizing driverless car companies to begin commercial operations, 
although none have yet to do so.  

This case is relevant to the issues surrounding risk assessment of nuclear space power because it demonstrates that 
there are much more questionable probabilistic-based risk assessment techniques applied to safety-critical systems 
with significantly less hard data for comparison than those used by NASA and affiliated agencies like DOE. It begs 
the questions as to why some safety-critical systems, like driverless cars and surgical robots, can be authorized to 
deploy with highly questionable risk assessments, while others with significant potential to advance science, like the 
Stirling-based convertors, struggle to convince relevant agencies that risk is acceptable? The next section will contrast 
and compare these industries in terms of risk assessment and provide recommendations for what could be done in the 
future to improve the risk assessment process. 
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V. Discussion 
When looking across the technologies highlighted in the previous case studies, there is a complex relationship 

between lower-level engineers developing new or improved technologies, the agencies that oversee these projects, 
and the stakeholders who use and are affected by this technology. Figure 3 illustrates the conceptual ideal relationship 
between these entities. In a perfect world, technology developers generate a product that meets the desires of customers 
with minimal negative impact on peripheral stakeholders, mediated by an oversight agency that balances risk through 
certification and/or regulation to achieve safe use of the technology. 

Take the Navy LOS case, in which the developers (the Naval Nuclear Propulsion Program, a joint effort between 
the DOE and Department of the Navy) have produced a derivative nuclear power technology that reduces costs without 
sacrificing mission performance, which is what the operational Navy desires. While this decision has not made all 
stakeholders happy [26], the oversight agency (National Nuclear Security Administration) has determined that the risk 
is low enough, likely due to the Navy’s perfect safety record [25] and their undersea operational environment. 

Figure 4 demonstrates what can happen when an oversight agency aligns to either side of the fulcrum, where on one 
side (a) technology developers are put at an advantage, and on the other side (b), they are at a disadvantage. As will 
be discussed more in the following sections, the recent Boeing crashes and robotics surgery systems are representative 
of the (a) case, while the Stirling-based convertors fall into the (b) case. 

A. Oversight agency alignment with technology developers 
 While too much regulation can have the unintended effect of stifling innovation [23], when an oversight agency 
favors technology developers, as seen in Figure 4(a), then stakeholders affected by the technology can be at a 
disadvantage. The FAA’s laxness in oversight of Boeing’s 737 MAX certification has been raised as a significant 

contributor to two fatal crashes in Indonesia and in Ethiopia [47, 48].  In this particular example, the FAA delegated 
certification authority to Boeing, in effect allowing Boeing to self-certify their own aircraft. As depicted in Figure 
4(a), this clearly puts passengers’ interests at a disadvantage, and can be seen as a risk-seeking approach. 

Another practice that can cause the risk balance to shift in favor of technology developers is allowing expedited 
certification processes to occur based on equivalence, as in the case of the FDA 510(k) process for the FDA in robotic 
surgery. While such practices are meant to reduce the regulatory burden and promote innovation, when new 
technologies are considered equivalent to older ones without a principled analysis of the potential differences, 
stakeholders in the form of patients suffer. Indeed, Boeing streamlined its 737 MAX certification process with claims 
of equivalence to the older 737 without new computer-based augmentation systems. Both the robotic surgery and 

Oversight Agency 

New Technology 
Developers  Stakeholders 

Fig. 3: Oversight agencies balance risk tradeoffs between technology developers and primary stakeholders 
and in a perfect world, equilibrium is achieved. 

Risk Tradeoffs 

Fig. 4: Ramifications of misalignment of oversight agencies in new technology development. 
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Boeing 737 MAX cases highlight that claims of equivalence between systems where one system has an entirely new 
software element deserves much more scrutiny. 

In terms of NASA applications, when considering the role of oversight for space technologies, Congress oversees 
NASA’s budget and the NASA Office of the Inspector General oversees NASA’s program management [49], although 
recently the House Science, Space and Technology Committee has said it would like to have more oversight of various 
NASA projects [50]. There is no regulatory agency, per se, that NASA must directly answer to, but because its 
missions often relate to other agencies like the Nuclear Regulatory Agency and the FAA, NASA is indirectly affected 
by their regulations. Because NASA faces different pressures than product development companies, alignment of 
NASA-related oversight groups with risk-seeking technology developers tends not be the problem, but rather the 
opposite, discussed in the next section. 

B. Oversight agency alignment with stakeholders 
While NASA must ultimately answer to Congress and the public, lower-level oversight of specific missions 

typically falls to the Directorate sponsoring a mission, with the Inspector General’s office providing higher-level 
oversight. Thus, for any proposed mission, the relevant Mission Directorate provides immediate oversight, often 
through expert-based committees. While the ultimate customer of such missions is the greater science community, the 
immediate stakeholders include all the centers and agencies involved, as well as the public-facing NASA headquarters. 
 NASA has faced continued budget pressure over the years and a fiscally-constrained high-visibility environment 
puts pressure on NASA to not have any incidents, which can lead to an aversion to risk. The increasing need for 
certainty in mission success, and the complex bureaucratic layers of NASA management can cause oversight 
committees to often take the most conservative path. The concept of heritage is a key element of this conservative, 
risk-averse path and over time, it is likely that the notion of heritage has become even more rooted. While heritage is 
supposed to be just one of many considerations in the selection of new mission concepts, it has become the Catch-22 
for DRPS in that if such systems never fly, they can never gain heritage, which is a strong predictor for flying. 

As illustrated in Figure 4(b), when oversight agencies shift the balance of risk tradeoffs towards stakeholders with 
heritage, and away from technology developers, the results can disfavor innovation and promote the status quo. Thus, 
it is a significant uphill battle for a technology like DRPS with no spaceflight heritage and a reliance on probabilistic 
testing to be accepted as a legitimate power supply option. This seems to be the case for the Stirling-based DRPS 
technologies, which continue to be passed over or replaced for proposed missions [24]. The only way for new DRPS 
technologies to be used in space missions, or for any newly developed NASA technology to achieve some operational 
use, is for the oversight agency to gravitate towards the balance point of proactively trading risk instead of the 
reactionary approach of minimizing risk.  

The next logical questions would then be, “What influences an oversight agency to move either left or right?” The 
case studies presented earlier suggest that familiarity between technology developers and oversight agencies (aka 
regulatory capture [51]), and technical complexity beyond the capabilities of the oversight agency are significant 
influences. In addition, public opinion, budget and schedule pressures, the political party in power, agency culture, 
and media attention also play a role in how much risk is traded by an oversight agency. As evidenced in the case 
studies, it is paramount that oversight agencies and groups are aware of this potential bias so as to mitigate it.  

VI. Conclusion 
With the desire to develop a more comprehensive space exploration strategy, new advances in materials, control 

technologies, and power systems will require similar advances in testing and risk assessment, especially for long-
duration missions. To this end, a relatively new risk assessment approach, RILT is a hybrid risk assessment 
methodology developed to assess dynamic RPS technologies critical for future spaceflight. It relies on accelerated 
testing and expert judgement for selecting testing and evaluation parameters. RILT is designed to promote risk-
informed decisions while efficiently managing resource-intensive testing. It is not a substantially different approach 
than other NASA PRA-based risk assessment strategies, and similar strategies are used in many other domains. 
Despite this similarity, DRPS systems that use RILT as a risk assessment tool do not appear to be accepted in the 
space power community as a legitimate option. 

This effort has shown that other fielded technologies have similar testing pedigrees when compared to RILT so this 
suggests that there are many additional factors that influence whether a technology is perceived as safe enough to 
further develop for deployment. This disparity can be attributed to many factors, one of which could be the lack of 
exposure to such a method, and to mitigate this factor, more work could be done to publish additional results from this 
approach, both internally and externally through professional societies.  



10 
 

Another likely significant factor is whether an oversight agency examining RILT is risk seeking or risk averse. 
Oversight groups that are risk averse tend to rely more on concepts of heritage for technology development, which 
ultimately results in incremental, evolutionary technologies instead of revolutionary ones, in effect stifling innovation. 
On the other hand, oversight agencies that are risk seeking tend to gravitate toward a concept of equivalence, which 
allows new technologies to be fielded even if they only share a small percentage of similarity with an older system 
that has been in use for some time.  

It is important to note that there is a fine line between heritage and equivalence. It would be very easy for an engineer 
to make an argument that only one small part of a new system is changed compared to the old, and thus claim heritage, 
but in fact, is really claiming equivalence. So, what is actually a risk-seeking behavior is masked as a risk-averse 
choice. NASA and other safety-critical technology developers and regulators need to be particularly watchful for the 
subtle change from heritage to equivalence, especially in terms of software changes, as recent history for the Boeing 
737 MAX has demonstrated how dangerous this can be.  

NASA is looking towards a future of long-duration space missions where they will need next-generation nuclear 
space power systems that provide higher fuel efficiencies. This move will require NASA to move beyond its reliance 
on solar power and static radioisotope thermoelectric generators. However, because of NASA’s strong reliance on 
heritage systems and difficulties in coming to consensus on acceptable testing data, technologies like the DRPS will 
continue to struggle to gain endorsement, and ultimately scientific discoveries will suffer.  

Moving forward, more work is needed to determine how to best support oversight agencies both in NASA and 
across the government to ensure they understand their risk trade space in order to make true risk-informed decisions. 
For the future of long-duration space missions with increased mission complexity, developing new ways of thinking 
about risk assessment and mitigation is critical, as well as ensuring oversight agencies understand their alignment 
tendencies in the risk assessment process.  
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