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Executive Summary 
 

Pedestrian deaths are on the rise with 6,227 estimated for 2018, the highest since 1990. 
Distractions such as walking while looking at electronic devices are the third leading cause of fatalities 
and one study has shown that injuries from distracted walking have increased 81% since 2005. The 
introduction of self-driving cars could further complicate this problem as illustrated by the death of a 
pedestrian caused by an Uber self-driving car in 2018. To examine how well an electronic alerting device 
installed on a smartphone could prevent distracted pedestrians from making unsafe or risky crossings, an 
experiment was conducted in an actual controlled field setting. Using a smartphone with a remotely 
controlled alerting systems, thirty participants performed thirty crossings each while walking and playing 
a game on the smartphone. In addition to just-in-time alerts, two-thirds of participants were presented 
with early and late alerts which constituted 80% and 90% alarm reliabilities.  

Out of 900 crossing events, 20% of crossings were risky or unsafe, with the bulk of these 
happening when a smartphone-based alert was given at a time that allowed participants to have just 
enough time to safely cross. When the alert was late, the percentage of unsafe crossings were just 2% of 
the total number of crossings, but 33% of all late crossing attempts. More than 18% of participants 
exhibited underestimation bias and thought the car was farther away than it really was. These numbers 
align with other observational research studies looking at typical pedestrian behaviors.   

Half of the participants were Americans and half were Asians, and the Asians statistically had the 
highest number of risky crossings in the presence of oncoming cars when compared to Americans. Even 
though Asians as a group were more likely to attempt risky crossings while engaged in distracted 
walking, they also trusted the alert less when it generated early and late warnings. A machine learning 
decision tree model illustrated that the best odds for safe crossings were those people who scored lower 
than average on a neuroticism scale of a personality test and tended to stop more than 2.25’ from the 
road’s edge. Asians with higher than average neuroticism scores who stopped less than 1.75’ from the 
road were twice as likely to put themselves in an unsafe crossing situation. 

These results suggest that culture plays an important role in the use of technological interventions 
meant to promote positive behaviors and that a solution effective in one setting may not generalize to 
other cultures. Moreover, technology interventions like smartphone-based alerts do not produce 
substantially safer pedestrian behaviors than those observed in populations without such tools. While the 
subject pool was small in this study and more research is needed in larger populations, this research 
suggests that that there may design criteria that can be elucidated from such use of machine learning 
classification methods in concert with controlled experiments. 
 

 
Introduction 
 

Pedestrian deaths have steadily risen in the past two decades with approximately 6000 people 
killed annually in 2016 and 2017 (National Center for Statistics and Analysis 2018). Recent estimates for 
2018 pedestrian deaths indicate the highest number to date since 1990, at 6,227, which is an increase of 
four percent over 2017 (Retting 2019). The top three causes of these fatalities are speeding, failing to 
yield, and distractions such as electronic devices (Swanson, Yanagisawa et al. 2016, Schaper 2017). One 
study has shown that injuries from distracted walking have increased 81% since 2005, with those 16-25 
years old affected the most (Nasar and Troye 2013). In one observational study in Seattle, approximately 
30% of all pedestrians observed performed a distracting activity while crossing (Thompson, Rivara et al. 
2013). The introduction of self-driving cars could further complicate this problem as the death of a 
pedestrian caused by an Uber self-driving car in 2018 (Laris 2018) illustrates the difficulties these cars 
have in sensing people outside the car.  
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With recent advances in electronics, car manufacturers are developing active impact protections 
for pedestrians to lessen the severity of impact such as hoods that raise up to prevent head injury and 
external airbags. However, preventing such collisions is preferable and to that end, several researchers 
have proposed developing a communication network that would alert a pedestrian to one or more 
oncoming cars. Such systems could take the form of a vehicle-to-pedestrian (V2P) alerting system or even 
an infrastructure-to-pedestrian alerting system where either the vehicle or a camera mounted on a 
streetlight, for example, could communicate directly through a smart phone with both visual and audio 
cues.  

Several research groups are developing V2P systems that allow cars to directly communicate 
their presence to pedestrians or vice versa (Bagheri, Siekkinen et al. 2014, Bai and Miucic 2018). Other 
researchers have hypothesized that adding sensors to infrastructure at intersections can be used to 
communicate with smartphones of distracted pedestrians (Schewbel 2018). Yet another group of 
researchers has proposed alerting distracted users of unsafe conditions through smartphone cameras 
(Wang, Cardone et al. 2012).  

While such devices could, in theory, help to mitigate pedestrian accidents and fatalities, whether 
such benefits can be achieved in practice are less clear. Research has shown people often tend to ignore 
emergency alerts from their mobile phones (Kar and Cochran 2016). Moreover, alert fatigue, which 
occurs when people are desensitized to frequent alerts, routinely occurs in safety-critical settings such as 
healthcare (Ancker, Edwards et al. 2017) and aviation (Wald 2010).  Drivers of cars have shown a 
propensity to mistrust alarms when there are too many false alarms (Zabyshny and Ragland 2003). So, it 
is likely that pedestrian alerting systems embedded in either infrastructure or mobile devices would also 
be ignored. Indeed, preliminary pedestrian research has shown this to be the case (Rahimian, O’Neal et al. 
2018).  

Given that alerting systems are not perfect, especially when detecting moving vehicles at short 
distances, it is not clear if a smartphone alert would be helpful for distracted pedestrians and how the 
degree of reliability of such V2P systems could influence pedestrian adoption. To this end, an experiment 
was conducted in an actual controlled field setting with pedestrian participants approaching a road 
crossing while performing a secondary data entry task on a smartphone, detailed in the next section. 

 

Figure 1: The experimental roadway at the North Carolina Center for Automotive Research. The 

intended crossing point for each pedestrian is marked with an X, and the position of the car for the 

early, just-in-time, and late alerts are marked with E, I, and L respectively. The positions of the support 

team are also marked in the legend. 



 3 

Method 
 

Participants 
 

Thirty participants (18 male, 12 female) between the ages of 19 and 57 yrs (Mean (M)=27.1 yrs, 
Standard Deviation (SD) = 7.7 yrs) were recruited through listserves and flyers in the local Garysburg, 
NC area as well as the Raleigh-Durham metro area. Half of the participants were US citizens and half 
were from Asia (9 China, 5 India, 1 Saudi Arabia). There were 10 American males, 5 females and 8 Asian 
males, 7 females. They were paid $25 for their effort. In terms of texting on their cell phones while 
walking, 70% reported that they occasionally or frequently engaged in this behavior, and 37% reported 
they would text while crossing a street. All participants had 20/20 or corrected to normal vision and no 
mobility impairments 

 
Test Environment 

 

In order to determine how different reliabilities of smartphone alerts influenced pedestrian 
crossing decisions when an oncoming car was detected, we elected to design and run a controlled 
experiment in an actual outdoor setting, the first reported experiment of its kind. Most pedestrian studies 
are observational or self-report, or a combination, primarily due to the difficulties in controlling both 
vehicle and foot traffic (e.g., Papadimitriou, Lassarre et al. 2016). Self-reports of pedestrian behavior have 
been shown to be biased towards positive behaviors such as traffic rule compliance (Deba, Strawderman 
et al. 2017) so it is often difficult to capture realistic behaviors.  

Some pedestrian studies have used immersive simulators (e.g., (Feldstein, Dietrich et al. 2016, 
Rahimian, O’Neal et al. 2018) to simulate pedestrian crossings, however, it is difficult to generalize such 
results to actual crossings since distance estimation in such environments consistently underestimates real 
world distances (Proffitt 2006). In one study, pedestrians in a simulator collided with vehicles in 59% of 
trials despite a warning, suggesting such underestimation bias (Rahimian, O’Neal et al. 2018).  

In order to produce the most ecologically viable results, we conducted our pedestrian crossing 
experiments on a controlled roadway environment closed to the public, the North Carolina Center for 
Automotive Research. In additional to a typical racecar track, this facility includes roads that resemble 
two lane roads found in typical suburban America (Figure 1). Over the two months of testing, we used 
two cars each day of testing to provide a potential vehicle-to-pedestrian conflict every 1-3 minutes. These 
cars included a green 2017 Audi A4 sedan, a white 2017 Toyota Camry SE, a white 2018 Toyota Corolla 
LE, a silver 2017 Toyota Corolla LE, a beige 2018 Ford Focus, and a white 2018 Hyundai Elantra. 

The goal of this experiment was to specifically examine how pedestrians, who were distracted by 
their smart phones, behaved in a road crossing scenario when an alert of varying reliability warned them 
of a possible collision. To this end, we designed a smartphone app installed on a Huawei Honor 6X with 
Android 7.0 Nougat OS to provide an environment that replicated a texting task. Pictured in Figure 2a, we 
designed a simple maze game that participants would play while they walked towards the intended 
crossing point (C in Figure 1). Thirty mazes were generated on 12x12 grids and randomly presented for 
each of the 30 trials participants would experience. Participants had to determine which of the lettered 
paths was the shortest, and then enter then correct sequence of letters that led from the start to the goal. 
When the alert was triggered, the phone’s interface changed to the image in Figure 2b and remained until 
cleared by an Experimenter. The phone played an audible alert, four rapid honks (spaced approximately 
.25s apart) from a 2007 Pontiac G6, recorded externally. This alert played in the earbuds worn by every 
participant and it also vibrated with the standard Huawei Honor alert vibration.  
 

Procedure 
 

Once the IRB-approved consent form was signed, participants filled in a demographic survey as 
well as a NEO™ Five-Factor Inventory-3 (NEO-FFI-3). The NEO-FFI-3 is a brief but comprehensive 
assessment of five personality domains, including neuroticism, extraversion, openness to experience, 
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agreeableness, and conscientiousness. Previous similar research has shown that people with higher 
conscientiousness scores cross faster than those with lower scores (Clamann, Aubert et al. 2017). 

Participants were then shown how to play the maze in Figure 2a and practiced 3-5 games to 
become comfortable with walking and playing the maze. 
Then each participant’s starting point S was determined by 
having them walk and play the maze such that the alert 
occurred ~2 ft from the edge of the road (the X in Figure 1). 
The starting distance varied per subject and generally took 
two practice trials to determine. The general walking path 
area was outlined with cones and safety tape to ensure 
participants did not substantially veer from the intended 
path. In addition, they were always followed by the 
Protector to ensure their safety (Box 4 in Figure1), and two 
cones were set up at the road’s edge to ensure participants 
would not step into the roadway (Figure 3). 

Thus, for each trial, a participant would start 
somewhere in the vicinity of point S (Figure 1) and then 
walk towards the road as depicted in Figure 3 while playing 
the maze. In most trials, the alert was set to trigger at Point 
C in Figure 1 when the car was 185ft away, which gave the 
participant a 5s gap to cross the road (J in Figure 1). This 
just-in-time/distance was selected given that a healthy 
adult pedestrian can cross a single lane of traffic in ~2.7s 
(Federal Highway Administration 2012), coupled with the 
fact that texting on a phone increased crossing time by 

Figure 3: A pedestrian walking towards 

the road, looking down at a smartphone. 

Participants were prevented from walking 

into the road by the cones and following 

experimenter. 

Figure 2: The Android smartphone applications: (a) maze game (left) and (b) alert warning for an oncoming 

car (right) 
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1.87 additional seconds in a large-scale pedestrian observation study (Thompson, Rivara et al. 2013).  
The cars held a constant speed of 25 mph when in the vicinity of the pedestrian using cruise 

control, and the drivers were in radio contact with each other and with the other safety monitors on the 
track, marked in Figure 1. Three safety personnel were always on the track. Figure 1 depicts an additional 
monitor located at Point 5, who signaled the car was approaching the curve and the person who activated 
the alarm in a wizard-of oz style to ensure correct timing for the early, just-in-time, and late alerts, the 
App Alert Activator, was located at position 3.  

 
Experiment Design  
 

Participants were assigned to one of three reliability conditions, which were 80%, 90%, or 100% 
alert reliability. These levels were selected since previous related research has indicated human trust is 
sensitive to these reliability levels (Ross, Szalma et al. 2008, Wiegmann, Rich et al. 2010) and they also 
reflect real-world reliability results for such systems, e.g., (Wang, Cardone et al. 2012, Liu, Pu et al. 
2015). In the 80% and 90% trials, alerts could come either early or late, and were counterbalanced. False 
alarms were not within the scope of this study. Participants in the 80% condition experienced either a late 
or early alert 6 out of 30 trials, and 3 out of 30 for the 90% condition.  

The Early alert activated at 260ft, which gave the pedestrian a 7s gap (E in Figure 1), and the Late 
alert occurred at 110ft leading to a 3s gap (L in Figure 1), which would be an extremely unsafe situation 
with a high likelihood of collision. In order to control for the precision needed in signaling the alerts at the 
precise early/just-in-time/late distances, a wizard-of-oz technique (Kelley 1984) was used where an 
observer initiated a signal to the phone which activated the alert. 

As a participant approached the road as picture in Figure 3, the red octagon alert in Figure 2b was 
triggered by the App Alert Activator, along with the audio and vibration alerts. The car was in view for 
the late and just-in-time alerts, but not in the case of the early alert. While participants were expected to 
stop when alerted, some kept going until they reached the cones with the tape across them. Once 
participants stopped, they were immediately asked if they would have kept going regardless of the alarm. 
They were also asked if they thought the alarm was on time, early, or late. Then each participant would go 
back to their unique starting position and repeat this 29 more times with breaks as needed. Once they 
were finished with all the trials, participants filled out a survey asking about their likely use of such a 
device in the real world, thanked, and then compensated. Each experiment took 60-90 minutes. 

Each participant executed 30 trials, leading to 900 test sessions. The design was between-subjects 
across the three levels of reliability. Measured variables included participants’ answers as to whether they 
would have continued despite the alert, their assessment of the reliability of the alarm, whether they 
stopped when the alert triggered, and how far they stopped from the road’s edge (measured to the nearest 
half foot). 
 
RESULTS  
 

Unsafe and Risky Crossings 
 
 

The first question examined was how many trials would have resulted in an unsafe or risky 
crossing. Trials were labeled as unsafe if participants had a late alert and reported that they would still 
cross, or if they kept walking even after the alert told them to stop. Risky crossings were assigned to 
people in the just-in-time alarm group who reported they would have still crossed as well as those who 
kept walking after the alert was triggered. While participants were split evenly across the three reliability 
groups (300 observations in each), there were only 45 early trials and 49 late trials. Table 1 details the 
results from these 900 trials. 
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Figure 4 illustrates how many late crossings were unsafe (33%) and how many just-in-time 

crossings were risky (20%), as a function of gender and nationality (unsafe base = 49, risky base = 806). 
A Chi square test for risky crossings was significant (χ2 = 14.3, p < .0001) but not significant for unsafe 
crossings (𝛼 =0.05). Asian males had the riskiest crossings, followed by Asian females, with American 
females as the least risky. Using a two factor ANOVA with nationality and gender as the factors and the 
total number of risky crossings per participant, nationality was significant (F(1,29)=5.72, p = .024) but 
gender was not.  

Understanding whether participants actually perceived the different timing of the alerts sheds 
light on the results in Figure 4. To this end, participants were asked immediately after every trial whether 
they thought the alert was early, late or on time. Those with early alerts had the most aligned perception 
with only 11% of trials perceived incorrectly (seen as either on time or late). For those with just-in-time 
group (the bulk of the trials), 17% were seen as early with 10% seen as late. This is important since the 
people who perceived the alert as early exhibited an underestimation bias. Lastly, those in the late group 
perceived the alerts to be early 2% and 49% correct of the time respectively, both of which could be a 

deadly underestimation bias and partly explains why there was such a big percentage of people in the late 
condition willing to cross. Taken together, 72% of participants were correct in their assessment of alert 
timeliness, but 18.4% demonstrated an underestimation bias that could have put them in danger. 
 

 

Safe Risky Unsafe 

Early 45 0 0 

Just-in-time 645 161 0 

Late 33 0 16 

Figure 4: Risky and unsafe potential pedestrian crossings across gender and nationality 
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Table 1: The number of safe vs. risky vs. unsafe crossings as a function of time of arrival 
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Trust and Reliability 
 

To further assess participants’ 
perceptions of alert reliability, at the end 
of the experiment, participants were asked 
to estimate the overall reliability of the 
smartphone alerting systems. While there 
was no statistically significant difference 
between the three reliability groups 
considering nationality, the median 
estimate of people in the 80% reliability 
condition was that the system was 85% 
correct, while those in the 90% condition 
felt the system was, on average, 88% 
correct, and people in the perfect 
reliability condition felt the system to 
only be 90% correct.  

When asked on a 7-point Likert 
scale how much they trusted the alert (1 = 
do not trust at all and 7 = completely 
trust), taking reliability, nationality and 
gender into account using an analysis of 
variance model, reliability is a statistically 
significant factor (F(2,29) = 6.14, p = 
.009). Moreover, as illustrated in Figure 5, 
there is a significant interaction between reliability and nationality (F(2,29)=4.13, p = .033), suggesting 
that Asians more accurately aligned their trust with the system’s actual reliabilities. 

Overall, 60% of participants felt they would use this alert app frequently. When people were 
asked whether they preferred the smartphone alert to their own judgment on a 7-point Likert scale, 43.4% 
of participants preferred the judgement of the app, 26.7% trusted their own judgment more and 29.1% 
thought they were equivalent. This relationship was particularly strong for older participants. Age 
significantly and strongly correlated with this judgment assessment (𝜌= .546, p = .002), meaning older 
people were more likely to rely upon the app for correct alerts. 

There was another strong correlation between the number of risky crossing per person and their 
neuroticism score ((𝜌= .506, p = .006), which means that those people with higher neuroticism scores 
made more risky crossings. People higher in neuroticism have a tendency to experience unpleasant 
emotions easily, such as anxiety and have been shown to be more distracted while driving (Johansson and 
Fyhri 2017) and to exhibit unsafe crossing behaviors (Zheng, Qu et al. 2017). 
 
A Decision Tree Model 
 

Given these inferential results, it is critical to understand how they relate in order to provide 
tangible and actionable recommendations to designers of both connected cars (with and without drivers), 
as well as designers of pedestrian crossings. To this end, a Classification and Regression Trees (CART) 
decision tree model was constructed since such trees are not sensitive to outliers, important in this 
relatively small data set (Loh 2011). Moreover, such an approach has been effective in modeling other 
pedestrian crossing data (Cummings and Stimpson 2019). 

To this end, the unsafe and risky crossings from the earlier analysis were combined to form the 
target variable of safe vs. risky, and the features included nationality and neuroticism scores, as the 
inferential analysis showed them to be important variables. Thus, there were 726 safe and 177 risky 
crossings. A third feature, stopping distance, was added since people sometimes stopped before an alert or 

Figure 5: Average trust ratings (+/- 1 standard 

error) for 80, 90, & 100% alert reliabilities for 

Americans versus Asians.  
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kept walking after the alert, and this distance could signal a person’s willingness to take risk. Using 
crossvalidation (10 folds), this model yielded an overall accuracy of 83.3%. 

Figure 6 illustrates the resulting decision tree with 9 nodes. Each of the terminal nodes with a 
number represents the safe/risky crossing ratio for the combination of features (higher number means 
higher likelihood of safe crossing). For example, those with Neuroticism scores under 21.5 and stopping 
distances of more that 2.25 ft were 48 times more likely to have a safe crossing.  Conversely, Asians with 
a neuroticism score of over 21.5 and a stopping distance of less than 1.75 ft were twice as likely to put 
themselves in an unsafe situation. A neuroticism score of 21.5 occurs at the midpoint of typical 
neuroticism scores as measured by the Baltimore Longitudinal Study of Aging sample (McCrae and 
Costa 2004). 

 

DISCUSSION 
 

This study originally intended to look at the behaviors of pedestrians crossing a road while 
texting on a smartphone that would also alert them to the presence of an oncoming car, with varying 
degrees of reliability. While not originally planned, an opportunistic experimental factor emerged in the 
form of comparing Americans with an equal number of participants from Asia. Indeed, this cultural 
difference is one of the strongest results of this study. 

In looking at the number of potentially unsafe crossings (Figure 1), 20% of crossings were risky 
or unsafe, with the bulk of these happening when an alert was given at a time that allowed participants to 
have just enough time to safely cross. When the alert was late, the percentage of unsafe crossings were 
just 2% of the total number of crossings, but 33% of the late crossing attempts. More than 18% of 
participants exhibited underestimation bias and thought the car was farther away than it really was. These 
numbers of risky crossings align with other observational research studies looking at typical pedestrians, 
21% of observed crossings at an intersection in Brisbane Australia were risky (King, Soole et al. 2009), 
20% of crossings in Seattle were against the light (Thompson, Rivara et al. 2013), and 21% of pedestrians 
in Vancouver, Canada committed pedestrian road-crossing violations at high-incident pedestrian injury 
intersections (Cinnamon, Schuurman et al. 2011). 

 Asians statistically had the highest number of risky crossings in the presence of oncoming cars 
when compared to Americans. The highest number of risky crossings for an individual male was 21 out of 
30 while the highest for an individual female was 20 out of 30 and both were Asian. While other 

Neuroticism

Nationality

Distance

2.3

.5

5.4

Distance

47.7

3.7

Figure 6: Decision tree analysis demonstrating neuroticism scores were a strong predictor of safe vs. 

risky crossings, with nationality and stopping distances as relatively equally-weighted factors. The 

terminal nodes with a number represent the safe/risky crossing likelihood of that particular group. 

>21.5 

<21.5 

>2.25’ 

<2.25’ 

American 

Asian 

>1.75’ 

<1.75’ 
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pedestrian studies have reported that males engage in more risky behaviors that females (Zhu, Zhao et al. 
2013, Deba, Strawderman et al. 2017), this study did not find any statistical differences in actual 
behaviors, likely due to low numbers and a bimodal distribution in Asian women, in that they either had 0 
risky crossings or 8-20. One of the more curious findings is that even though Asians as a group were 
more likely to attempt risky crossings while engaged in distracted walking, they also trusted the alert less 
when it generated early and late warnings. So even though Asians appropriately increasingly distrusted 
the alerting system as it performed less reliably, this did not deter them from making more risky 
crossings.  

The CART decision tree (Figure 6) sheds further light on the nature of risky crossings and 
demonstrates that the most potentially risky crossings occurred for Asians who scored above 21.5 on the 
NEO-FFI neuroticism scale, especially those who were willing to walk within 1.75 feet of the roadway’s 
edge. The best odds for safe crossings were those people who scored lower on the neuroticism scale and 
were more conservative in their stopping distance of greater than 2.25 ft. The CART analysis also 
illustrates the strength of the neuroticism variable, which contributed the most to the model. In a previous 
study, neuroticism was also associated with more unsafe pedestrian crossings and a lack of attention for 
Chinese people (Zheng, Qu et al. 2017), with raw scores very similar between the two studies. 

These results indicate a strong cultural influence in pedestrian attitudes towards crossing, which 
has been seen in other studies. In a field observation study in China, 66% of pedestrians crossing an 
unmarked roadway did not look for oncoming vehicles (Zhuang and Wu 2011). Other studies have noted 
Chinese pedestrians who use mobile phones while crossing unsignalized intersections are at higher risk 
than those with no phones (World Health Organization 2015, Zhang, Zhang et al. 2017). 

China is not the only country, of course, to have such problems. In one observational study in 
France, 42% of crossings occurred against the light compared to just 2% in Japan. Researchers 
hypothesized that this difference was due to the Japanese concern about the opinions of others whereas 
the French have less need for social approval (Pelé, Bellut et al. 2017). Even within the US, there are very 
different cultural behaviors in pockets of society that lead to higher pedestrian injuries and fatalities 
leading one researcher to comment, “developing effective pedestrian crash reduction strategies in ethnic 
neighborhoods may deserve further study (Zegeer, Henderson et al. 2008).” 
 While not part of the formal experiment, more than two dozen Chinese and Indian faculty and 
students were asked to comment on these results. All agreed that the results reflected their personal 
experiences, both in the US and in their respective countries. The most common explanation put forth is 
that Asians tend to look at road crossings as negotiations in their countries as opposed to rule-driven 
events in America. Several commented that they viewed a crossing more as wading into traffic as 
opposed to crossing in a guaranteed space.  

More research is needed to examine these theories in more detail but understanding these 
divergent viewpoints is needed in order to inform both vehicle and infrastructure design in the future. As 
cars with more automation increasingly move into various cultures, it is not clear that software designed 
in Silicon Valley that models rule-abiding pedestrians in the US will perform in the same way if deployed 
to a country in Asia, France, or any other number of countries. In addition, the creation of safer, more 
protected pedestrian spaces in countries where people routinely ignore crossing signals and warnings is 
another area of needed research. 

Lastly, these results call into question the use of alerts on a smartphone meant to stop people from 
walking into traffic. This study falls in line with a number of other simulator studies that show alerts on 
mobile phones are not particularly useful and may encourage maladaptive behaviors and an overreliance 
on alerts (Rahimian, O’Neal et al. 2018, Rahimian, O’Neal et al. 2018). It should be noted that overall in 
this study, people trusted the alert app more than they did their own judgment, even when the app 
generated late alerts. This study demonstrates just how critical the timing is for these devices and if such 
alerts are even a second late, the results could be fatal. 

Putting visual alerts on the vehicles has not produced particularly encouraging results (Clamann, 
Aubert et al. 2017), so the electronic warning approach may not be not the best. To this end, another 
group of researchers tried the analog approach of simply painting “Heads Up, Phones Down” near 
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intersections. This intervention produced statistically significant less texting, but compliance eroded over 
time, suggesting a type of risk homeostasis, (Barin, McLaughlin et al. 2018). Clearly, more research is 
needed to find solutions, both in terms of technology and infrastructure design, to help mitigate what will 
be a growing problem.  
 
Limitations 
 

There are a number of limitations that should be considered in evaluating these results. The 
CART model accuracy was 83.3% suggesting that other unmeasured variables could have improved the 
predictive accuracy. In addition, this experiment generated a small number of unsafe and risky trials (177) 
versus 723 safe trials from 30 participants. This results in a somewhat unbalanced data set. Such field-
based controlled experiments are extremely difficult to conduct which inherently limits the numbers of 
participants. Access to large data sets of actual crossing behavior could significantly advance knowledge 
in this area, which has also been recently noted by the National Transportation and Safety Board (NTSB 
2018). 

Another limitation is that in each of these experiments, only a single person attempted a crossing. 
Especially in urban environments, clusters of people often cross and the presence of other people can 
dramatically influence the behaviors or others. Previous research has demonstrated that when pedestrians 
are in a group, they tend to exhibit more aggressive behavior (Wang, Wu et al. 2010), perhaps akin to a 
herd mentality, so it remains to be seen how these results would change as number of pedestrian 
increased. In addition, participants were cooperative in this study, but recent research suggests that if and 
when driverless cars become more commonplace, pedestrians could game these vehicles given that they 
know they will be programmed to be safe and potentially conservative in urban settings (Millard-Ball 
2018). Thus, non-cooperative behaviors also need further study. 
 
CONCLUSION 
 

Globally, pedestrian deaths account for almost a quarter of all traffic related deaths and are also 
increasing (World Health Organization 2018). In the US, pedestrian fatalities now account for 
approximately 16% of all motor vehicle crash-related deaths (Retting 2018), with an 81% increase in 
injuries to distracted pedestrians since 2005 (Nasar and Troye 2013). These increasing injury and fatality 
rates are concerning given that cars, in theory, have more safety devices on them today than ever before. 
Moreover, with increasing worldwide focus on autonomous self-driving vehicles, it is not clear that such 
advanced technology can account for vulnerable users such as pedestrians. It is not clear how much 
pedestrian risk will be increased with the arrival of more automated vehicles and what could be done to 
mitigate such risks when these cars are more commonplace. 

This research effort demonstrated that in a group of 30 participants who were given smartphone 
aural and visual alerts of varying reliability while engaging in distracted walking, only 2% exhibited a 
tendency towards unsafe crossings, while 18% tended towards risky crossings. These results parallel 
similar observational studies. Asians, representing half the test population, were statistically more likely 
to engage in risky crossing behavior despite developing accurate trust models of the alert reliability. This 
was particularly true for Asians with higher than average neuroticism personality scores. 

These results suggest that culture plays an important role in the use of technological interventions 
meant to promote positive behaviors and that a solution effective in one setting may not generalize to 
other cultures. Moreover, technology-focused interventions are currently not producing solutions that are 
effective, especially across different cultures. While the subject pool was small in this study and more 
research is needed in larger population, this research suggests that that there may design criteria that can 
be elucidated from such use of machine learning classification methods in concert with controlled 
experiments. In this experiment, whether people stopped at or before approximately two feet from the 
road’s edge predicted that would likely have a safer crossing. Such a threshold could be critical for the 
designers of autonomous cars that need to prioritize the tracking of multiple entities in congested 
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environments. Those pedestrians that move, for example, inside two feet with constant or increasing 
velocity or acceleration can become high priority entities to track. 

More research is needed to determine such thresholds, including variations due to culture, road 
and sidewalk design, and proximity to particularly vulnerable populations, i.e., high school and college 
campuses with higher number of people like to engage in distracted walking. However, given that cars 
like Teslas and Waymo’s self-driving vans already collect this information at levels researchers never 
could, allowing non-partisan researchers to access this data and develop safety-based models to be shared 
across all manufacturers would help prevent future fatalities.  
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