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Abstract—One increasingly relevant security issue for un-
manned aerial vehicles (UAVs, aka drones) is the possibility
of a Global Positioning System (GPS) spoofing attack. Given
existing problems in current GPS spoofing detection techniques
and human visual advantages in searching and localizing targets,
we propose a human-autonomy collaborative approach of human
geo-location to assist UAV control systems in detecting GPS
spoofing attacks. An interactive testbed and experiment were
designed and used to evaluate this approach, which demon-
strated that human-autonomy collaborative hacking detection
is a viable concept. Using the Hidden Markov model (HMM)
approach, operators’ behavior patterns and strategies from the
experiment were modeled via hidden states and transitions among
them. These models revealed two dominant hacking detection
strategies. Statistical results and expert performer evaluations
show no significant difference between different hacking detection
strategies in terms of correct detection. The detection strategy
model suggests areas of future research in decision support tool
design for UAV hacking detection. Also, the development of HMM
models presents the feasibility of quantitatively investigating
operator behavior patterns and strategies in human supervisory
control scenarios.

Index Terms—Unmanned aerial vehicle (UAV), cyber-attack
detection, human geo-location, human supervisory control, hid-
den Markov model (HMM), strategy classification.

I. INTRODUCTION

UNMANNED aerial vehicles (UAVs) have significantly
increasing use in commercial and military applications.

The continued growth in numbers and functionalities of UAVs
have been accompanied by many security, privacy and regu-
latory concerns. One common security concern is UAV GPS
spoofing, in which attackers deceive GPS receivers by provid-
ing counterfeit GPS signals in order to override UAV naviga-
tion systems and redirect UAVs to unexpected destinations [1],
[2]. A well-known such incident garnered public attention in
2011 when a RQ-170 Sentinel UAV was captured using GPS
spoofing attacks [3]. Therefore, successfully detecting GPS
spoofing attacks is important for UAV control systems.

Understanding that human vision has advantages in complex
searching and localizing tasks [4]–[6], we demonstrated a
human-autonomy collaborative approach through geo-location
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in that humans can assist autonomous systems in the detection
of possible GPS spoofing attacks on UAVs. In this study,
this approach was evaluated via an experiment, which was
designed and conducted using the Security-Aware Research
Environment for Supervisory Control of Heterogeneous Un-
manned Vehicles (RESCHU-SA) platform [7], extension of
the platform from [8]. Experiment sessions simulated human
supervisory multi-UAV control scenarios with potential UAV
GPS spoofing attacks. Operators were able to successfully
detect hacking events that 65% of total experiment sessions
exhibited at least 80% correct hacking identifications. We
also discovered that operators with significant video game
experience were the best performers in hacking detection [9].

While this initial study demonstrated that human operators
could successfully identify UAV GPS spoofing attacks through
geo-location, given that such research has never before been
conducted, our goal is to better understand what strategies
emerged as novices attempted to determine if they had been
hacked. To this end, it was advantageous to develop human
behavior models to investigate operator behavior patterns, both
in the execution of their primary task of supervising UAVs,
and in attempting to thwart hacking attempts. Such models
could be particularly useful as they could highlight training
problems or interface design anomalies. Lastly such models
could be used to develop predictive decision support tools
that could assist human operators, particularly under areas
of high workload and stress. The rest of this paper presents
our efforts to develop strategy models of humans supervising
multiple UAVs and determining whether a UAV had been
hacked through human geo-location.

II. BACKGROUND

A. UAV GPS Spoofing Detection
Remotely controlled UAVs typically rely on an embedded

navigation system known as the Global Positioning System
(GPS), which provides accurate localization information in-
cluding position, velocity and time for UAV GPS receivers.
GPS receivers can calculate precise latitude, longitude, height,
and speed based on received satellite signals. However, GPS
receivers are vulnerable to GPS spoofing attacks, in which
GPS receivers are attacked by counterfeit signals generated
from GPS spoofers [10]–[14]. Many autonomous GPS spoof-
ing detection methods have been proposed in recent studies
[11]–[17]. However, false alarms and detection failures still
exist while applying autonomous GPS spoofing detection [10],
[11], [15]. Therefore, more research is needed to improve
autonomous detection systems.
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Fig. 1. An example of GPS reported locations on the map.

UAVs are commonly equipped with both a GPS navigation
system and payload camera, whose signal is independent of the
UAV GPS signal. Thus, if these two signals are independent,
the payload camera view can be used as a reference to assist
autonomous detection systems in detecting UAV GPS-spoofing
attacks. Based on the precondition that UAV payload camera
views can provide the unbiased surrounding scene of UAVs,
we propose that human operators can act as supplementary
sensors and assist autonomous system to detect UAV hacking
attacks through the comparative human geo-location method.

In human geo-location, an operator can compare the non-
tampered video feed from the UAV payload camera to the
potentially falsified GPS reported location on the map. This ap-
proach allows operators to detect inconsistencies, which indi-
cate potential hacking attacks, between the location interpreted
from the camera view and the GPS location reported on the
map. In theory, such cross referencing could be accomplished
automatically through autonomous localization and sensor-
fusion techniques (e.g., [18], [19]), but these have not been
very successful [20], particularly in military applications [21].

Based on feature integration theory, the first stage of human
vision obtaining information from targets is the preattentive
stage, in which a human observer can gather basic information
about a target even before the observer become conscious
of it [4]. Thus, human vision can process target information
efficiently in complex environments. Human observers also

Fig. 2. Human supervisory multiple UAV control architecture [22].

tend to choose areas that maximize information of the target
in a salience-driven visual search strategy [5]. In addition, the
direction discrimination threshold of human vision has a low
average of 1.8 degrees [6], which suggests human observers
can precisely detect small changes in target movement ori-
entation. Considering these human visual advantages, human
operators can potentially assist in UAV localization and detect
potential UAV GPS spoofing attacks.

An example of human geo-location in UAV GPS spoofing
detection is shown in Figure 1. The GPS reported location of
the UAV is shown as the blue dome on the map in the upper
right. If the UAV is under attack, the operator will observe
the scene below the UAV through the camera, which would
be different from the surrounding environment of the GPS-
reported location on the map; e.g., as in the upper left camera-
view in Figure 1. If the UAV is not under attack, the operator
will observe the scene below the UAV, as in the upper-right
camera view in Figure 1, matching the reported location. When
a GPS-spoofing attack is confirmed, the operator can prevent
losing the hacked UAV by overriding the physical controls.

B. Modeling Operator Behavior

The human geo-location approach to hacking detection
is an example of a common UAV control scheme which
incorporates human supervisory control, in which a human
operator monitors a multi-UAV system, intermittently navi-
gating UAVs, and conducting other higher-level tasks [23].
The hierarchical architecture of a human supervisory UAV
control loop of single operator with multiple UAVs is shown in
Figure 2 [22]. In this architecture, multiple parallel outermost
loops represent the highest-level control of managing missions
and payloads by human operators. The inner loops represent
lower-level navigation and flight controls by autonomous sys-
tems or operators. This architecture can be introduced with
various levels of automation. The successful control of higher-
level operator loops depends on the success of lower-level
autonomous system loops. In this study, we assume that human
operators keep higher-level decision-making processes, and
autonomous systems are in charge of lower-level UAV control
and navigation operations [22].

In supervisory control settings where humans are super-
vising one or more autonomous systems, human operator
behavior models are needed for multiple reasons:
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Fig. 3. The RESCHU-SA experiment platform interface [7].

1) To investigate general operator behavior patterns, in
order to determine if observed behaviors match the
expected behaviors,

2) To investigate operators’ strategies, in order to identify
points of inefficiency or error,

3) Study both endogenous and exogenous factors that im-
pact operator behavior patterns such as video game
experience and task load,

4) Study how automation can improve operators’ perfor-
mance and success rate in task performance, including
the use of predictive operator behavior models.

In terms of the hacking detection supervisory control setting
we consider, we need a way to determine strategies that
operators develop in their attempts to detect and mitigate
hacking attempts, and how to improve upon those strategies
that could include the use of automated decision support.

One problem with the generation of such models is that
while interactions between a human operator and a supervisory
control system can be directly observed through human phys-
ical interaction with an interface, such observations cannot be
directly associated with a human thought, goal, plan or strat-
egy. In order to develop operator models that link actions and
behaviors to plans, goals, and strategies, we need a method that
abstracts low-level physical interface interactions into higher
operator behavioral states and strategies. We believe that a
hidden Markov Modeling approach provides the foundation
to do this, as described in the next section.

C. Markov Modeling Approaches

Markov models are widely-used to capture stochastic evo-
lution of state transitions in the state-space [24]. Many studies
have used Markov models to investigate low-level human
actions [25], [26]. However, Markov models only capture

observable interactions between human operators and control
systems, which may not accurately reflect operators’ high-
level behavioral states. Therefore, Hidden Markov models,
which are an extension of Markov models, could be a useful
alternative in this regard.

A Hidden Markov Model (HMM) is a two-layer stochastic
model that describes a Markov process with a higher layer
of indirectly observable system states and a lower layer of
observable emissions from each state. The HMM formalism
is widely used in machine learning, especially in speech
recognition [27] and development of human operator behavior
models in driving [28]. HMMs using an unsupervised ap-
proach to model training have been shown to provide more
accurate operator behavior models over supervised learning
approaches [29], [30]. Because an HMM model can present
higher-level operator behavioral states using hidden system
states based on lower-level operator interactions with a super-
visory control system like a UAV ground control station, the
HMM was selected as the modeling framework for this effort.

III. DATA GENERATION

In order to develop models of operator behavior in the
UAV supervisory control environment with potential hacking
events, user interactions with such a system were needed to
provide the underlying training data. To this end, we developed
the Security-Aware Research Environment for Supervisory
Control of Heterogeneous Unmanned Vehicles (RESCHU-
SA) (now freely available to interested parties) [7], [8], [31].
RESCHU-SA is a Java-based simulation platform for a single-
operator with multi-UAV supervisory control scenarios. It pro-
vides the flexibility to design multi-tasking scenarios including
both navigational and imagery analysis tasks. Moreover, this
platform provides capability for simulating UAV GPS spoofing
attacks, in which hacked UAVs deviate from the originally
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assigned paths and target unexpected destinations, along with
real or false notifications that simulate autonomous GPS
spoofing detection systems.

The interface of the RESCHU-SA platform is shown in
Figure 3. Five main components are featured in this interface,
including the payload camera view, message box, control
panel, timeline and map area. Specifically, the camera view
displays the video stream of the surrounding environment
beneath the selected UAV. The primary purpose of this view is
to conduct imagery analysis tasks and can be used to determine
the actual location of UAVs for detecting potential hacking
events. The map displays the surveillance area with real-time
locations of all UAVs, hazard areas and targets.

A. Experiment Design
To collect enough data to develop operator models, a set of

experiments was conducted using RESCHU-SA. The primary
objectives of operators using RESCHU-SA are to control
multiple UAVs to: 1) determine whether UAVs are under GPS
spoofing attacks, 2) perform reconnaissance imagery tasks of
counting road intersections when UAVs reach assigned targets,
and 3) ensure that UAVs do not encounter hazard areas.

Given that a previous study demonstrated that the task load
can significantly impact an operators performance, and thus
strategies [8], task load was the only controlled experimental
variable in this experiment. Two objective task load levels,
high vs. low, were introduced, and each participant had both
task load scenarios in the experiment. In the low task load
scenario, operators navigate three UAVs with six targets and
six hacking notifications, including three real hacking notifi-
cations and three false alarms. In the high-task load scenario,
operators navigate six UAVs with nine targets and nine hacking
notifications, including five real hacking notifications and four
false alarms. To simplify the hacking detection, no notification
miss was introduced in the experiment that all real hacking
events come with notifications.

In RESCHU-SA, operators are responsible for safely nav-
igating UAVs to targets. Hazard areas can appear and disap-
pear randomly, which require replanning the vehicle around
these threat areas. In the experiment, GPS spoofing attack
events with notifications followed a pre-defined schedule but
appeared to randomly occur while an operator navigated the
UAVs. Once an operator received a notification that a certain
UAV was under possible cyber-attack, the operator could
then investigate the potential UAV hacking by checking the
UAV camera view and matching it against the position of
the UAV on the map. Although UAV position drifts may be
caused by GPS-degradation, we assumed that all position drift
were caused by GPS spoofing attacks to simplify the hacking
detection scenarios in this experiment.

When UAVs that were not hacked reached a target, the
operator engaged in an imagery task of counting the road
intersections from the UAV’s camera view at a pre-specified
zoom level. This task represents the primary purpose of
the mission, which is information gathering. The imagery
counting task was participants’ primary work load task, and it
allowed us to assess their performance based on the number
of attempted tasks and the task correctness percentage.

Fig. 4. Histogram of the hacking detection success rate.

TABLE I
THE CONFUSION MATRIX OF HACKING DETECTION DECISIONS IN

DIFFERENT NOTIFICATIONS

Real hacking
notification

False alarm
notification

Decision of considering
UAV was hacked 224 40

Decision of considering
UAV was not hacked 63 207

B. Experiment Subjects and Procedure

Thirty-six participants took part in this experiment, includ-
ing 22 males and 14 females. Age ranged from 19 to 34
years with an average of 25.2 and a standard deviation of
3.8 years. Among all participants, 18 participants had little
video game experience, 6 participants had monthly gaming
experience, 5 participants played video game several times
a week, another 5 participants had weekly gaming experi-
ence, and only 2 participants had daily gaming experience.
The experiment procedure consisted of four main sections
including a self-paced tutorial section, a practice section, a
test section, and a debriefing section. Specifically, in the test
section, each participant finished 2 test sessions, including a
counterbalanced high and a low task load scenario. Thus, we
had 72 test sessions and collected data from all these sessions.

C. Experiment Results

In this experiment, 23 out of total 72 test sessions (32%)
resulted in 100% of successful hack identifications, while
another 24 (33%) reached above 80% successful attack iden-
tification. Thus, as shown in Figure 4, 65% of total test
sessions reached 80% correct hacking detection or better
without having any prior formal hacking detection training.

Specifically focusing on the difference between real hacking
notification and false alarms, as shown in Table I, out of all
287 (224+63) real hacking notifications across all participants,
the overall success rate was 78% (224÷287), and for all 247
(40+207) false alarms, the success rate was 84% (207÷247).
In other word, the type one error (false positive, operators
considered UAV not hacked with real hacking notification) was
22% (63÷287), which was slightly higher than the type two
error (false negative, operators considered UAV hacked with
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Fig. 5. Boxplot of hacking detection success rate based on different video
game experience.

false alarm notification) of 16% (40÷247). Thus, operators
were slightly better at detecting false alarms than identifying
real hacking notifications.

Task load, as a major experimental factor, only affected
UAV damage level (MANOVA F(1,31)=32.93, p<0.001), al-
pha=0.05), but it did not affect any other performance met-
ric. However, the video game experience covariate had a
significant effect on participants correct hacking detections
(F(1,31)=4.652, p=0.039), as shown in the boxplot in Figure 5.
This means that the more video game experience, the higher
the chance of a correct hacking detection. Not surprisingly,
seven participants who lost UAVs had no video game expe-
rience, and the other 5 who lost UAVs ranged from some to
moderate gaming experience. Participants with daily gaming
experience did not lose any UAVs and were 100% correct in
hacking identification.

These statistical results of our experiment provide high-
level understanding of the factors that impacted operators’
performance. However, we need to further investigate the
underlying nature of why such factors had certain effects
on performance. In addition, operators’ hacking detection
strategies cannot be inferred via statistical results. Therefore,
human operator models are needed for further investigating
operators’ behavior patterns and detection strategies in such
UAV supervisory control scenarios.

IV. HMM MODEL STRUCTURE, TRAINING AND
SELECTION

As discussed previously, human operator behavior models
can illustrate operators behavior patterns and strategies in high-
level tasks. Considering that HMMs can infer hidden higher-
level operator behavioral states from observable lower-level
interactions between the operators and autonomous systems,
HMMs were chosen for modeling the observable behaviors
from the RESCHU-SA experiment.

A. HMM Model Structure

Based on the classic notation of HMM, the HMM can be
formally defined as a tuple [32]:

H = {S, V,A,B}.

TABLE II
OBSERVATIONS (EMISSIONS) OF HMM MODELS FROM RESCHU-SA

EXPERIMENT INTERFACE

Index 1 2 3 4

Observation Add
waypoint

Move
waypoint

Delete
waypoint

Move
endpoint

Index 5 6 7 8

Observation Switch
target

Engage
task

Select
UAV

Confirm
notification

Index 9 10 11 12

Observation Ignore
notification

Consider
UAV

hacked

Consider
UAV not
hacked

Adjust
zoom level

Here, S = {S1, S2, ..., SN} represents N different hidden
states, V = {V1, V2, ..., VM} represents M different observa-
tions. Also, A = {aij} is a N × N transition probability
matrix, where aij = P{St+1

j |St
i}, i, j = 1, 2, ..., N , and

B = {bik} is a N ×M emission probability matrix, where
bik = P{Vk|Si}, i = 1, 2, ..., N , k = 1, 2, ...,M . In addition,
both aij , bik ≥ 0. In HMM models, each hidden state can
be considered as a cluster of observations with different
weights, which are emission probabilities. The system states
(or operator behavioral states, in this paper) transfers among
hidden states based on the time sequence, and the probabilities
of switching from the current state to the next state are the
transition probabilities.

B. HMM Model Training and Selection

The first step in the HMM model training process is state
space reduction. In RESCHU-SA, every key stroke and mouse
action were recorded in log files, along with the system
status. In a HMM, the hidden higher-level behavioral states
are clusters of operators’ actions, so the interaction data should
be aggregations of observations based on a pre-defined state
reduction grammar. In this manner, there were 12 possible
places for operators to click in RESCHU-SA, which yielded
12 observations, as presented in Table II.

The multi-sequence Baum-Welch algorithm, an unsuper-
vised model training method was used in model training [33].
HMM model training results were then selected (number of
hidden states) using the Bayesian information criterion (BIC)
[27], [34] and the number of rare states (NRS) method [35]
to achieve both high model likelihood values and reasonable
model structures. Models with the lowest BIC values are
preferred. The BIC criterion balances the increase of model
complexity, which is caused by the increase of the model
features, by penalizing the number of free parameters in
the model training process. The NRS method maintains the
simplicity and interpretability of a descriptive model by mon-
itoring all rare states whose occurrence frequency are lower
than a certain threshold value, which is usually 5%. Generally,
HMM models without any rare state are preferred. When BIC
curves are monotonically decreasing, the NRS method can
suggest the model with the highest number of hidden states
with no any rare state.
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Fig. 6. The general human operator behavior HMM model.

Fig. 7. Emission probabilities for the HMM model capturing general
operator behavior.

V. GENERAL OPERATOR BEHAVIOR MODEL

Understanding that task load did not affect operators’ overall
performance and success rate in hacking detections and im-
agery tasks, the general operator behavior model was trained
using data from both high and low task load scenarios. As
shown in Table II, the general operator behavior HMM model
was trained using observation sequences with 12 different

observations. Based on the model selection process described
previously, the HMM model with 7 states had the lowest BIC
value. Also considering the 7-state model did not have any
rare states and the HMM models with 8 or more states had at
least one rare state, the general operator behavior model was
determined to be a 7-state HMM model, as shown in Figure
6. The interpretation for each hidden state was determined by
the emission probabilities, shown in Figure 7.

The first state was interpreted as “Manipulate Target”
because it was mainly a cluster of observation 4 (Move
endpoint), 5 (Switch target), and 7 (Select UAV), which were
directly related to UAV target manipulations. The second state
was interpreted as “Hacking Detection” because this was
the only state that had significant emission to observation
12 (Adjust zoom level), which indicated a typical operation
of using a UAV’s camera to compare against the map. The
third state was interpreted as “Select UAV” because its only
major emission was observation 7 (Select UAV). The fourth
state was interpreted as “Manipulate waypoint” because it
was a cluster of observation 1 (Add waypoint), 2 (Move
waypoint), 3 (Delete waypoint) and 7 (Select UAV), which
were directly related to waypoint management. The fifth state
was interpreted as “Engage Imagery Task” because its only
major emission was observation 6 (Engage task), indicating
people were executing the intersection counting task. The sixth
state was interpreted as “Hacking Decision” because it was
the only state that had major emissions to observation 10
(Consider UAV hacked) and 11 (Consider UAV not hacked)
which were decisions to hacking events. The seventh state
was interpreted as “Initiate hacking detection” because it was
the only state that had emissions to observation 8 (Confirm
Notification) and 9 (Ignore Notification) which indicated the
initiation of hacking detections.

The general operator behavior model represents the operator
behavioral states in navigating UAVs, conducting imagery
search, and dealing with potential hacking events. The first
interesting fact shown in the model is that the UAV navigation
(highlighted in blue) and hacking detection (highlighted in
orange) functional groups can be distinguished clearly. The
transitions between these two function groups represent the
probabilities of switching functional groups in operator be-
havioral states. This distinction shows that operators typically
conducted tasks either in UAV navigation or hacking detection,
reflecting that operators were switching between two primary
objectives of navigating the UAVs and detecting hacking.

Interestingly, a previous study on the original RESCHU
platform, which only dealt with the navigation of the UAVs
and did not have any hacking considerations [30], exhibited
just four similar states to those blue states in Figure 6. This
is an important finding since it means that the addition of a
new set of tasks did not dramatically change the underlying
states, rather the added functionality of hacking detection
simply added more states. This suggests that at least in
some supervisory control environments, that functions may
be modeled in a modular fashion, which would reduce the
workload in adapting older models as new functions are added.

In addition, the general RESCHU-SA model in Figure 6
shows some potential inefficiencies in operators’ behavior
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TABLE III
OBSERVATIONS (EMISSIONS) OF THE HACKING DETECTION STRATEGY

HMM MODEL FROM RESCHU-SA EXPERIMENT INTERFACE

Index 1 2 3 4

Observation Add
waypoint

Move
waypoint

Delete
waypoint

Move
endpoint

Index 5 6 7 8

Observation Switch
target

Engage
task

Select
UAV

Perceive
hacking

Index 9 10

Observation Detection
decision

Adjust
zoom level

patterns. In the navigation functional set of states, the first state
of “Manipulate Target” and the fourth state of “Manipulate
Waypoint” have high self-transition probabilities. These high
self-transition probabilities indicate that once operators entered
these two behavioral states, operators tended to conduct re-
peated operations. For instance, the participant who repeated
manipulating targets the most (91 times comparing to the
average of 35 times), was enmeshed in the “Manipulate target”
state and actually had a low overall performance score of 236
(comparing to the average of 303). These repeated operations
indicate potential inefficiencies that could be improved with
future designs for the UAV supervisory control interface.

Two hidden states, “Hacking Detection” and “Initiate Hack-
ing Detection”, in the hacking detection functional group also
revealed potential problems with self-transitions. Based on
statistical analyses, the time consumption in hacking detection
was negatively correlated with the hacking detection success
rate (Pearson=-0.375, p=0.001). Thus, this fact implies that the
longer the person spent investigating a potential hacking event,
the less likely a successful detection would occur. This result
was curious because as people gather more information, they
should increase their probability of successful detection. This
results then led us to develop more detailed HMMs about just
operators hacking detection strategies in order to shed more
light about this unexpected result. These more specific HMMs
are detailed in the following section.

VI. HACKING DETECTION STRATEGY MODEL

The HMM in Figure 6 provides an overall view into how
operators approached the overall tasks of navigating the UAVs
in support of their primary reconnaissance missions, while
also dealing with hacking events. However, since this model
does not provide enough detail about just exactly how people
formed strategies for dealing with the hacking events, we
elected to just focus on those operator interactions from the
beginning to the end of each hacking event. Overall there were
15 such hacking events per participant. The resulting hacking
detection model was trained based on 10 observations instead
of the original 12 observations, as shown in Table III. In the
revised model training, original observations of “Confirm noti-
fication” and “Ignore notification” were combined to “Perceive
hacking”, and “Consider UAV hacked” and “Consider UAV
not hacked” were combined to “Detection decision”.

Fig. 8. The operator hacking detection strategy model.

Fig. 9. Emission probabilities of the hacking detection strategy model.

As shown in Figure 8, the obtained hacking detection
strategy model is a 6-state HMM based on the similar model
selection process as used for the general operator behavior
model. The interpretation for each hidden state was determined
by the emission probabilities shown in Figure 9. Although
the observations were slightly different, the interpretation
criteria were similar to the general behavior model. The six
hidden states were interpreted as 1) the start state of Perceive
Hacking; 2) Select UAV; 3) Adjust Target; 4) Engage Imagery
Task; 5) Adjust Waypoint; and 6) the end state of Hacking
Decision. The 56.8% transition from the End state to the
START state represents overlapping hacking detections. This
means once operators finished a hacking detection, roughly
half of operators then went on to solve another hacking event
that occurred almost coincidentally with the current event.
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Fig. 10. Master participant strategies in hacking detection strategy model.

A. Hacking Detection Strategies

Two major behavioral state transitions (aka operation flows)
in the hacking detection HMM model can be observed based
on transition probabilities, as shown in Figure 10. Such transi-
tions are considered as detection strategies because they start
from the START state, in which operators perceived hacking
events, to the END state, in which operators determined de-
tection results. The first major flow, indicated by blue arrows,
has one single intermediate state of “Adjust waypoint” between
the start and the end state. The second major flow, indicated
by red arrows, has two intermediate states of “Adjust target”
and “Select UAV” between the start and the end. These two
major operation flows suggest two dominant hacking detection
strategies, termed “waypoint-oriented strategy” and “target-
oriented strategy”.

In the waypoint-oriented strategy, operators tended to ma-
nipulate UAV waypoints, including adding and moving way-
points, to detect hacking events. In this hacking detection
strategy, to investigate the potential differences in the scene
between the camera view and the surrounding map area,
operators typically either manipulated or introduced way-
points. Operators who used this strategy typically fixated on
comparing the effects of turning the UAV and the appearance
of the ground in the camera feed to that expected while turning
on the map. This can be considered a dynamic strategy as
motion was a key element in the determination of location.

In the target-oriented strategy, operators tended to directly
switch UAV targets to detect hacking events. In this strategy,
operators were typically focused more on the specific land-
marks that the UAVs would fly over, such as unusual intersec-
tions or buildings. This can be considered a static strategy as
operators would wait until the UAV reached a place of interest
to make a hacked or not hacked decision. Both strategies
revealed inefficiencies, primarily through the self-transition

TABLE IV
PARTICIPANT CLASSIFICATION BASED ON DIFFERENT HACKING

DETECTION STRATEGIES

Index Strategy Number Percentage

1 Waypoint strong
dominant 10 27.8%

2 Waypoint weak
dominant 7 19.4%

3 Target weak
dominant 11 30.6%

4 Target strong
dominant 8 22.2%

probabilities. For example, in the waypoint-oriented strategy,
62% of people stayed in this state, repeatedly adding, moving,
and deleting waypoints. Similarly, 37% of people repeatedly
redirected vehicles to other targets, suggesting an inefficient
target selection process. These actions suggest inefficiencies
that potentially could be made better with advanced decision
support, which is an area of future work.

The occurrence frequency and percentages of the waypoint-
and target-oriented strategies for each participant was obtained
by applying the hacking detection HMM model to each
participant’s data using the Viterbi algorithm [27]. Based on
the occurrence percentage of the adjust waypoint and adjust
target states, participants were classified into different hacking
detection categories. As shown in the Table IV, participants
were classified into four categories, including 1) waypoint
strong dominant strategy; 2) waypoint weak dominant strategy;
3) target weak dominant strategy; and 4) target strong dom-
inant strategy. The population of each strategy category was
approximately one fourth of the total participant population.

Another repeated-measure multi-variate ANOVA model
with a significance level of 0.05 was used to analyze the
impact of different hacking detection strategies on participants’
performance and hacking detection success rate. In this rm-
MANOVA model, strategy categories were considered as
a between-subject factor. The rm-MANOVA model showed
that different hacking detection strategies did not affect the
overall participants’ performance (F(3,27)=0.754, p=0.530),
their hacking detection success rate (F(3,27)=0.086, p=0.967),
and their imagery counting task success rate (F(3,27)=1.528,
p=0.230). Thus, when examining the aggregate group, no
strategy dominated in terms of performance. However, given
that the only operator who had perfect performance were the
two operators with daily game experience, we examined their
strategies in detail in the next section to shed more light on
which strategies could potentially produce the best outcomes.

B. Master Participant Hacking Strategies

Developing separate HMM models for the two master
participants was not possible due to the limited data, how-
ever, operator state paths can provide a map of individual
strategies. As shown in Figure 10, the two dominant hacking
detection strategies are highlighted separately to represent the
two master participant strategies. The red path represents the
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first master participant’s operation flow, and the blue path
represents the second master participant’s operation flow.

As depicted in Figure 10, the master participants represented
the two dominant strategies shown in the hacking detection
model of Figure 8. The first master participant exhibited the
target-oriented strategy, spending an average of 81.1 seconds
in each hacking detection (overall average for target-dominant
people was 100.3 seconds). The second master participant
exhibited the waypoint-adjusted strategy, spending an average
of 50.5 seconds in each hacking detection (overall average for
waypoint-dominant people was 81.8 seconds). The two master
participants demonstrated the two dominant strategies shown
in the model for all participants and both master participants
achieved 100% detection, so there is no clear dominant strat-
egy in terms of quality of final decision. However, there was a
clear difference in speed with the waypoint-oriented strategy
taking, on average, 30s less to accomplish, which can be seen
in the two strategies in Figure 10 where the Target-oriented
strategy has an additional state. This is a practically significant
number as intervening as quickly as possible in the middle of
a hacking event is paramount. So, while this analysis reveals
no dominant strategy in terms of detection a hacking event,
it does suggest that the waypoint-oriented strategy is likely
to lead to faster results, which could be very important in
prosecuting actual events.

VII. CONCLUSION

The human operator behavior models in this study present
the feasibility of investigating operator behavior patterns and
strategies in conducting supervisory control tasks through
the use of HMMs. From operator behavior models, we can
investigate factors that potentially impact operator behavior
patterns and their higher-level strategies. Observed strategies
from a single HMM can provide engineers and researchers a
practical approach to investigating human operators’ strategies
in human supervisory control scenarios.

The general behavior model, derived using RESCHU-SA-
based experiments, shows seven major human operator behav-
ioral states for supervision of UAVs that could be subject to
hacking events. In this model, two functional groups emerged,
including a hacking detection group with three behavioral
states and a UAV navigation group with four states. Operators
generally switched between functional groups as demands
dictated, i.e., when a hacking event emerged, operators moved
from the navigation flow to the hacking flow, indicating that
such functions could be seen as modular.

A 6-state hacking detection strategy model allowed us to
investigate operator hacking detection strategies in detail. Two
major strategies can be observed from the model, including
waypoint-oriented and target-oriented strategies. Based on
statistical results, different hacking detection strategies did
not affect operators’ overall performance and success rate in
hacking detection. Although no single best hacking detection
strategy emerged in terms of quality, one strategy was superior
in terms of time to correct decision.

Although this geo-location approach for UAV hacking de-
tection is still in an experimental stage, these initial results

suggest that such an approach could enhance the security
of future supervisory unmanned vehicle control systems if
hacking notifications are provided. Considering no hacking no-
tification misses were introduced in this experiment, as a future
study we will investigate the potential effects on operators’
performance and detection strategies if the autonomous system
fails to provide notifications. In addition, certain limitations
still exist in our HMM method, including limited model
training data and required experimenter subjective judgment in
hidden state interpretation, which is a fundamental issue for all
unsupervised machine learning approaches. Current research is
underway to determine how to make such model interpretation
more straightforward as well as improve sensitivity analysis
methods to reveal weaknesses in employed assumptions.

These descriptive operator behavior models highlight the
fact that even effective strategies can be inefficient. Further
work is needed to determine why people adopt different
strategies and whether additional assistance can be used to
improve operators’ strategies, either through training or a
decision support system. Finally, the development and uti-
lization of predictive behavior models can contribute to the
future development of real-time guidance systems, which
monitor operators constantly and provide real-time operational
guidance.
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