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Abstract— Human supervisory control (HSC) is a widely used
knowledge-based control scheme, in which human operators
are in charge of planning and making high-level decisions
for systems with embedded autonomy. With the variability
of operators’ behaviors in such systems, the stability of an
operator modeling technique, i.e., that a modeling approach
produces similar results across repeated applications, is critical
to the extensibility and utility of such a model. Using an
unmanned vehicle simulation testbed where such vehicles can be
hacked, we compared two operator behavioral models from two
different experiments using a hidden Markov modeling (HMM)
approach. The resulting HMM models revealed operators’
dominant strategies when conducting hacking detection tasks.
The similarity between these two models was measured via
multiple aspects, including model structure, state distribution,
divergence distance, and co-emission probability distance. The
similarity measure results demonstrate the stability of modeling
human operators in HSC scenarios using HMM models. These
results indicate that even when operators perform differently
on specific tasks, such an approach can reliably detect whether
strategies change across different experiments.

I. INTRODUCTION

Human supervisory control (HSC) [1] has been widely
utilized in various human-automation collaboration scenar-
ios, including remote surveillance, search, rescue applica-
tions [2]. In HSC scenarios, human operators interact with
autonomous systems to receive and send high-level decision
commands, such as path management for single-operator
multi-drone control systems [3], [4].

Many challenges and potential problems exist in HSC
scenarios [5], including how to achieve optimal operator per-
formance and maintain effective problem-solving strategies
[6]. While improving operators’ strategies is critical, they
are not directly observable as there are only intermittent
interactions between operators and HSC control interfaces.
Thus, operator behavioral models are needed to investigate
and improve operators’ control strategies.

Understanding that the descriptive and predictive quality
of an operator behavioral model is directly related to the
quantity and quality of the training data [7], the variability
of operators’ behavior patterns and the limited amount of
collected actions in an HSC setting makes it difficult to
interpret results from repeated scenarios. Thus, the stability
of a behavioral modeling technique is critical for inves-
tigating operators’ strategies in HSC scenarios, especially
for engineers trying to find critical points of intervention.
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In this paper, we demonstrate the stability of the hidden
Markov modeling approach in HSC scenarios by utilizing
multiple similarity measurements to compare HMM models
developed from known HSC scenarios.

This paper is organized as follows. Section II provides the
background of HMMs and several HMM model similarity
measurement metrics. Section III describes the human-in-the-
loop experiment design for two different experiments using
the same interface, while Section IV presents the result-
ing operator behavior HMM models. The HMM similarity
measurement results are illustrated in Section V. Section VI
concludes this paper with a detailed discussion and potential
future research directions.

II. BACKGROUND

Many operator behavioral modeling techniques with dif-
ferent mathematical representations have been proposed [8]–
[10]. Hidden Markov models have been utilized to investigate
operators’ strategies in many HSC scenarios since they
focus on modeling the interactions and cooperation between
operators and digital systems [11], [12]. An HMM has a
two-layer structure, including a hidden state layer and an
observation layer [13]. Thus, a weighted cluster of operators’
actions can be considered as an abstract behavioral/functional
group, which can be represented by a hidden state. Similarly,
an HMM observation can represent an observable interaction
between operators and interfaces of autonomous systems.

The HMM structure can be defined as a tuple [14]:

λ = {S,O,A,B}.

In such a notation, S = {S1,S2, ...,SN} represents N different
hidden states, while O = {O1,O2, ...,OM} represents M dif-
ferent observations. Transition and emission probabilities of
an HMM model connect its hidden states and observations.
A = {ai j} is a N×N transition probability matrix, in which
ai j = P{St+1

j |St
i}, i, j = 1,2, ...,N, and B = {bik} is a N×M

emission probability matrix, in which bik = P{Ok|Si}, i =
1,2, ...,N, k = 1,2, ...,M, with both ai j,bik ≥ 0. In an HMM
model, the current system state transfers among hidden states
sequentially based on a transition probability matrix. As
mentioned above, each hidden state in an HMM model can
be considered as a combination of weighted observations,
which are represented by the emission probability matrix.

The robustness of an operator behavioral modeling tech-
nique highly depends on the degree of variance of operators’
performance and the quantity of operators’ action data [15].
In order to present the stability of a modeling technique,



measurements are necessary to show to similarity level be-
tween models. Many HMM similarity measurement methods
have been proposed for various applications, including the
investigation of HMM development, HMM classification,
and sensitivity tests on HMM model parameters [16]–[18].

In addition to the direct comparison of state interpretations
and model structures between HMM models, two HMM
model similarity measurement methods have been utilized
to quantitatively investigate the similarity between HMM
models, including the divergence distance [19] and co-
emission probability distance measure [18]. Specifically, the
divergence measure focuses more on the probability aspect
of different HMM models applied to the same given data
sequences, while the co-emission measure emphasizes on the
quantitative distance between HMM model vectors in a high
dimensional space. While there has been no such application
of similarity metrics to models that represent human behav-
ioral states, we propose that similar similarity measurement
results can demonstrate the stability of modeling operators’
strategies across HSC scenarios using HMM models.

We define HMM stability as a model’s ability to produce
similar results across repeated applications with different
operators. Because of significant human variability due to
individual differences, operator models are difficult to gener-
alize across repeated applications of the same HSC interface.
For example, when a drone operator supervises his or her
system, task-based models of an operator are likely to differ
widely between two or more people. Moreover, such models
can vary widely when a person operates a drone one day and
then again on a separate day. If a model fails to generalize
when applied to different people or even under slightly
different conditions, such a model will not be useful outside
very narrow circumstances. To this end, we explored how
stable the HMM approach is in an HSC context when applied
to different sets of people.

III. EXPERIMENT - DATA GENERATION

Two human-subject experiments were conducted using
the Security-Aware Research Environment for Supervisory
Control of Heterogeneous Unmanned Vehicles (RESCHU-
SA) experiment platform to collect operators’ action data
for developing operator behavioral models. The RESCHU-
SA is a simulation-based experiment platform for a single-
operator with multi-UAV supervisory control scenarios [20].
It provides multi-tasking scenarios, including both UAV
navigational and imagery analysis tasks. This platform can
also simulate UAV GPS spoofing attacks, in which a hacker
system generates counterfeit GPS signal to deceive UAV
operators and navigate hacked UAVs to unexpected desti-
nations, along with real or false system notifications.

The interface of the RESCHU-SA platform is shown in
Figure 1. Operators mainly focus on two components during
the experiment, including the map area and the payload
camera view. The map area, which occupies the majority
of the interface on the right, displays the surveillance area
with real-time information of all UAVs, targets, and hazards
areas. Operators manage and navigate all UAVs on the

Fig. 1. RESCHU-SA experiment platform interface

map, avoiding all hazard areas. The underlying UAV-target
assignment algorithm is intentionally suboptimal, requiring
the operator to pay attention and fix suboptimal assignments.
Suspected GPS spoofing attacks are signaled to operators
through a pop-up window. Once an operator receives a
notification of a potential hacking attack, the operator then
investigates by checking the UAV payload camera view and
matches it against the position of the UAV on the map.

In general, three different high-level tasks are assigned to
operators using the RESCHU-SA interface, including 1) the
navigation task - to ensure all UAVs avoid with hazards areas,
2) the imagery task - to perform reconnaissance tasks in the
payload camera view when UAVs reach assigned targets, and
3) the hacking detection task - to determine whether UAVs
are under GPS spoofing attacks. Specifically, in hacking
detections, we assume that false alarms and detection failures
exist in the autonomous detection system [21], [22], and the
experiment platform provides both situations for operators.
Utilizing human visual advantages, we have proposed that
humans can assist an autonomous system in determining if
it has been hacked by investigating the potential differences
between the location interpreted from the camera view and
the GPS reported location on the map [23]. Two similar
RESCHU-SA experiments were conducted to collect opera-
tors’ action data for developing operator behavioral models.

A. The First Experiment

The first experiment was conducted to determine 1)
whether human operators could assist autonomous detection
systems in determining UAV hacking events, 2) what general
hacking detection strategies were exhibited by operators, and
3) whether different objective task load levels could affect
operators’ performance and strategies. The full experiment
details and results can be found in other publications [23],
[24]. In this experiment, 36 participants performed two test
scenarios at a high and a low level of tasking, counterbal-
anced across participants. Participants’ performances were
not statistically different between the two different task load
levels.



B. The Second Experiment

A second experiment was conducted to evaluate the utility
of HMM-based operator behavioral models for reducing
operator inefficiencies in hacking detection tasks and to
investigate the potential use of such models in providing
additional assistance for operators in hacking detection tasks.
While there were multiple conditions in this experiment,
this paper will examine just the data set that replicated the
conditions of the first experiment. In this portion of the
experiment, 45 participants, completely different from the
first experiment, completed the same scenario with the same
experimental settings.

Between these two experiments, participants’ performance
in the three major tasks mentioned in the previous section
was directly compared using t-tests with a significance level
of al pha = 0.05. The statistical analyses show a marginally
significant difference in the hacking detection success rates
between the two experiments (p = 0.092 > 0.05), and a
statistical difference between the success rates in imagery
task identification (p = 0.027 < 0.05) and the UAV damage
levels caused by encountering hazards areas (p < 0.001)
present statistical differences. Given the same experimental
settings and different groups of participants in these ex-
periments, we considered that the differences in imagery
and navigation task performance were likely caused by the
variance of participants’ subjective strategies. Recall that
there was no difference in performance when the same
participants repeated the first experiment.

Thus, in the following sections, we focus on developing
operator behavioral models of the hacking detection task
from these two experiments and comparing models to in-
vestigate the similarity between operators’ strategies and the
stability of this HMM modeling technique in HSC scenarios.

IV. OPERATOR BEHAVIORAL MODELS
Participants’ actions, including keystrokes and mouse ac-

tions, were collected in both experiments and categorized as
one of ten observations, as shown in Table I. With a focus on
studying aggregate operators’ strategies in hacking detection
tasks, we developed two hacking detection HMM models
based on detection tasks data sequences.

TABLE I
HMM OBSERVATIONS FROM THE RESCHU-SA INTERFACE

1 Add waypoint 2 Move waypoint 3 Delete waypoint

4 Move endpoint 5 Switch target 6 Engage task

7 Monitor UAV 8 Perceive hacking 9 Detection decision

10 Adjust zoom level

Both models were trained using the multi-sequence Baum-
Welch algorithm, which is an unsupervised HMM training
method [25]. HMM model training results were selected
based on the number of hidden states using the Bayesian In-
formation Criterion (BIC), which balances the increase of the
model complexity by penalizing the number of free model

parameters [26]. Thus, the resulted models are expected to
achieve both high model likelihood fitting on training data
and reasonable structures.

A. The First Experiment Operator Hacking Detection Be-
havioral Model

The first operator hacking detection behavioral model was
developed using detection observation sequences from both
scenarios of the first experiment since they were statistically
not different. As shown in Figure 2, the resulting model is
a 6-state HMM model with a “Start” and an “End” state.
In all hacking events, suspected hacking notifications are
provided by the system, and an operator must clear a screen
indicating that he or she has seen this alert, which indicates
the start status of a detection event. Similarly, operators’ final
decisions as to whether the UAV was actually hacked indicate
the end status of a detection event. Thus, the state transitions
in Figure 2 beginning from the “Start” state and ending at the
“End” state illustrate operators’ behavioral paths for hacking
events.

Each state can be described as a weighted cluster of the
ten observations, and such a weighted combination can be
visualized as emission probabilities using a histogram, shown
in Figure 3. Different states were interpreted based on their
different dominant observations. The state interpretations
in Figure 2 are 1) the “Start” state, in which operators
received hacking notification; 2) “Monitor UAV”, in which
operators predominantly monitored the camera view of the
selected UAV; 3) “Adjust target (manage UAVs)”, in which
operators reassigned a UAV’s target because the pairing was
suboptimal; 4) “Engage task”, in which operators engaged
in imagery counting tasks; 5) “Adjust waypoint (navigate
UAVs)”, in which operators changed the moving trajectory of
the selected UAV to make it pass over something of interest
on the ground which would be salient in the payload camera;
and 6) the “End” state, in which operators reported their final
decisions on hacking events. The occurrence frequency and
percentage of all hidden states are also calculated by applying
the HMM model to the original training data sequences using
the Viterbi algorithm [27].

According to the state transition probabilities, two major
operational paths representing operators’ dominant behav-
ioral flows in hacking detections can be observed. The
first path starts at the “Start”, passes through the “adjust
waypoint” and ends at the “End” state. This path demon-
strates a possible detection strategy of manipulating UAVs’
trajectories to proactively investigate the potential difference
between the UAV camera view and its GPS reported loca-
tion during a hacking event using human geo-location. The
second path also starts at the “Start”, passes through “adjust
target” and “monitor UAV”, then ends at the “End” state.
This path indicates a reactive strategy where people waited
for UAVs to approach interesting points. They also typically
completed the secondary task of managing UAVs’ assigned
targets while waiting.



Fig. 2. The first experiment operator hacking detection behavioral model

Fig. 3. The emission probabilities of the first HMM behavioral model

B. The Second Experiment Operator Hacking Detection Be-
havioral Model

The second operator hacking detection behavioral model
was developed using detection observation sequences from
the second experiment as discussed previously. The resulting
second behavioral model is also a 6-state HMM model, as
shown in Figure 4, with similar “Start” and “End” states. The
interpretation of each state was also determined based on its
emission probabilities, shown in Figure 5 using histograms.
Although the emission probabilities of each hidden state
in the first model (Figure 2) are slightly different than the
corresponding hidden state in the second model (Figure 4),
both models share the same overall structure.

The second model presents different major operational
paths as compared to the first model. The dominant strat-
egy in this model starts from the “Start”, passes through
“monitor UAV” and “adjust waypoint”, then ends at the
“End” state. Other slight differences in state transitions,
especially the transitions related to the “monitor UAV” state,
can also be observed. Participants in the first experiment
behaved somewhat differently than participants in the second
experiment, even with the same experimental conditions.

Fig. 4. The second experiment operator hacking detection behavioral model

Fig. 5. The emission probabilities of the second HMM behavioral model

As a consequence, the first model clustered slightly dif-
ferent observations with different weights for each hidden
state as compared to the second model. Thus, variations in
participants’ actions in different experiments caused slight
differences between these two HMM behavioral models.

However, while it seems there are only slight differences in
these two model structures, we need more objective methods
that allow us to compare the similarity between two different
models. While the basic inferential statistics tell us the
performance was different between these two experiments,
it is not clear whether the difference was due to divergent
strategies or differences in individual variability. Thus, hav-
ing a more objective comparison of similarity in strategies
can help to elucidate this difference. To further quantitatively
compare these models, specific similarity measurements were
applied to both models in the following section.

V. SIMILARITY MEASUREMENTS BETWEEN
OPERATOR DETECTION MODELS

Inspection of the visualizations between these two HMM
detection behavioral models with their emission histograms
is seen in Figures 2 and 4, which provides an initial, albeit
subjective measure of similarity. One objective interpretation,



however, is in the sheer number of states that emerge from
the Bayesian Information Criterion (BIC) model selection
process. In both cases, a 6-state HMM model structure was
suggested for both detection models by the BIC analysis.
While this metric provides some confidence in model simi-
larity and stability, additional analyses are needed to account
for both the state and transition probability similarities. The
next sections will provide such analyses.

Fig. 6. State occurrence distributions of applying both detection HMM
models respectively on the combined data set from both experiments

A. Hidden State Occurrence Distribution Comparison
To further quantitatively measure the similarity between

HMM models, the Viterbi algorithm was utilized to generate
hidden state sequences across the combined data set, which
includes the data from the first experiment and the data
from the first scenario of the second experiment. Then the
two HMM models mentioned in the previous sections were
applied to this combined data set to determine the likelihoods
of state occurrence, as shown in Figure 6.

These distributions provide a more quantitative compari-
son as opposed to a simple visual inspection, where it can
be seen that between the two experiments is the ∼ 5− 6%
different in the waypoint and target adjustments. In addition,
comparing to the hidden state occurrence percentage shown
in Figure 2 and 4, Figure 6 presents similar distributions with
∼ 5−6% differences in percentage for both models respec-
tively. Considering variations in different operators’ hacking
detection strategies under the same experimental conditions,
these slight differences between detection behavioral models
seem reasonable and acceptable. Thus, the similarity of the
hidden state occurrence distributions between both HMM
models demonstrates the stability of using HMM models in
similar HSC scenarios.

B. Divergence Distance Measure
To measure the similarity between the HMM models from

a probabilistic aspect, the divergence distance measure was
developed based on the concept of divergence and cross-
entropy [19]. The divergence distance between two HMM
models is defined as:

DKL(λ1‖λ2) =
1
M
(log(P(O|λ1))− log(P(O|λ2))) (1)

Here λ1 is the first HMM model developed from the
first experiment, while λ2 is the second HMM model de-
veloped from the second experiment. In addition, O =

TABLE II
THE DIVERGENCE DISTANCE MEASURE BETWEEN TWO HMM MODELS

1st experiment model vs 2nd experiment model

data set M
1st experiment
model

2nd experiment
model DKL(λ1‖λ2)

log(P(OM |λ1)) log(P(OM |λ2))

1st ex-
periment

data
4315 −9.6116×103 −1.0676×104 0.2466

2nd ex-
periment

data
2534 −5.8314×103 −6.3351×103 0.1988

both ex-
periment

data
6849 −1.5443×104 −1.7011×104 0.2289

1st experiment high task load model vs low task load model

data set M
high taskload
model

low taskload
model DKL(λh‖λl)

log(P(OM |λh)) log(P(OM |λl))

high
taskload

data
2537 −5.5460×103 −5.9369×103 0.1541

low
taskload

data
1778 −3.9639×103 −4.0468×103 0.0466

both
taskload

data
4315 −9.5099×103 −9.9837×103 0.1098

{O1,O2, ...,OM} represents the observation sequences, and
M is the total number of observations. Hence, log(P(O|λ ))
is the log-likelihood value of an HMM model fitting on a
given data set O.

To increase the confidence of the similarity measurement,
different combinations of the original data sets were utilized
for the divergence distance measurement between both detec-
tion behavior HMM models. To this end, the first experiment
data and the second experiment data were tested using the
divergence measurement respectively, then the combination
of the experimental data was tested separately.

In order to provide a more objective view of the similarity
and model stability, a baseline for the divergence measure
is needed. Given no significant differences in participants’
performances in the first experiment between their two
scenarios and the fact that the same group of participants
executed both, we believed that the behavior patterns in
these two subsets of different task load scenarios should
be the most consistent. Thus, the HMM behavioral models
developed from these two subsets share the same model
structure of a 6-state HMM shown in Figure 2. Similarly,
these two scenario behavioral models, labeled as high task
load model λh and low task load model λl , were tested on
different combinations of the subsets.

Understanding that the divergence value will converge
with over 1200 observations for HMM comparisons of simi-
lar model complexity [19], we are confident in the divergence



value calculations since all combinations of data sets contain
over 1500 observations. Table II lists all values for the cal-
culation of the equation (1), including the number of obser-
vations, M, the log-likelihood value of the first HMM model
applied on a given data set O, log(P(O|λ1)) or log(P(O|λh)),
and the log-likelihood of the second HMM model applied on
the same data set, log(P(O|λ2)) or log(P(O|λl)).

The difference between these two HMM behavioral mod-
els is smallest for the two scenarios from the first experiment
(0.1098) when compared to the difference between the
models from the two different experiments (0.2289). This
is what we would expect since the same people performed
the two scenarios in the first experiment, whereas different
people performed the same mission in the second experiment.
Another interesting result from Table II is examining the
second experiment data across the first and second experi-
ment models, where the divergence value from the second
experiment data was the least among these three values.
So, the variance of the underlying patterns in the second
experiment data is slightly less than the first experiment
data, which means the first experiment participants had less
stable general strategies. Also, the comparison between two
scenario models shows that the difference was the least for
the low task load scenario data, which contains less variance
than the high task load scenario data. Understanding that
smaller divergence values indicate higher consistency, our
hypothesis that the first experiment would have a higher de-
gree of similarity was correct, although this analysis indicates
that this experiment also produced more variable models.

C. Co-emission Probability Distance Measure

Another similarity measurement of the co-emission prob-
ability distance that focuses on the geometrical distance
aspect was also used to investigate the similarity between
detection models and to compare results with the divergence
distance metric. The co-emission probability of two models
also presents the generalizability of the models on across
given data sets [18]. The co-emission probability of two
HMM models is defined as:

A(λ1,λ2) = ∑
OM∈O

Pλ1(OM)Pλ2(OM) (2)

Similarly, λ1 represents the first detection HMM model and
λ2 represents the second detection HMM model. OM is a
sub-sequence of all observation sequences O. Thus, Pλ (OM)
represents the probability of an HMM model fitting on a
given data sequence OM .

Using the co-emission probability, the similarity between
two HMM models, λ1 and λ2, is defined as:

S(λ1,λ2) = A(λ1,λ2)/
√

A(λ1,λ1)A(λ2,λ2) (3)

Such a similarity measurement follows the calculation of
cosine similarity, which is represented using a dot product
and magnitudes of two vectors:

similarity = cosθ =
A ·B
‖A‖‖B‖

=
∑

n
i=1 AiBi√

∑
n
i=1 A2

i ∑
n
i=1 B2

i

(4)

TABLE III
THE CO-EMISSION PROBABILITY DISTANCE MEASURE BETWEEN TWO

HMM MODELS

1st experiment model vs 2nd experiment model

Data set A(λ1,λ2) A(λ1,λ1) A(λ2,λ2) S(λ1,λ2)

1st ex-
periment

data
1.2812×10−4 8.5447×10−4 1.9418×10−5 0.9946

2nd ex-
periment

data
1.6038×10−4 1.0613×10−3 2.4409×10−5 0.9965

both ex-
periment

data
2.8850×10−4 1.9157×10−3 4.3827×10−5 0.9957

1st experiment high task load model vs low task load model

Data set A(λh,λl) A(λh,λh) A(λl ,λl) S(λh,λl)

high
taskload

data
2.6331×10−4 1.8615×10−3 3.8577×10−5 0.9826

low
taskload

data
1.1222×10−4 7.7597×10−4 1.7389×10−5 0.9661

both
taskload

data
3.7553×10−4 2.6375×10−3 5.5966×10−5 0.9774

Similarly, the co-emission probability distance measure-
ment was tested on the same combinations as with the diver-
gence distance metric. A baseline was also created using the
two scenario behavioral models, λh and λl as mentioned in
the previous section, and two different task load data sets in
the first experiment. The similarity distance results between
various HMM models, S(λ1,λ2) and S(λh,λl), according to
the equation (3) are listed in Table III.

Based on the definition of the cosine similarity, a similarity
value of 1 means two tested models share the exact same
structure, and a similarity value of 0 indicates orthogonality
or decorrelation between two models. The high similarity
between two HMM behavioral models is indicated by the
similarity values, which are all close to 1, shown in Table
III. Thus, the co-emission probability measure results support
the high similarity level between HMM models. However,
different from the divergence distance results, the difference
between the two task load scenario models are slightly larger
than the difference between the two experiment models
in the co-emission probability measure. Thus, given that
the co-emission probability represents the generalizability
of models, the models for the people that repeated the
experiment are less generalizable than the models from the
different groups. So, while precisely capturing the underlying
behavioral patterns from the training data, the scenario
models have limited generalizability across other data sets
generated with similar settings.

Like the divergence distance comparison results, the vari-
ation between both models is the smallest for the second ex-
periment data among all data sets. Such a similar calculation




