

Investigating Autonomous Air Operations Centers for On-Demand Mobility Networks Victoria Chibuogu Nneji, Ph.D. Candidate

victoria.nneji@duke.edu

Summary

The concept of on-demand mobility (ODM) in aviation has gained popularity since Uber Technologies' 2016 Elevate announcement and several manufacturers proposed vehicles for high-speed intra-city air taxis. However, there are few proposals on how fleets would be operationally managed. To this end, we:

- Identified concepts of operations for ODM
- Defined key functional requirements for concepts
- Designed a predictive model of human-system performance in air operations centers for ODM

Problem Description

Traditional airlines rely on operations centers

New ODM aircraft require new fleet management functions

Vehicle Safety Functions

Maintain Safe Separation

- From other Participating Vehicles
- From Fixed and Dynamic Hazards

Maintain Vehicle Control

- Nominal and Contingency Limits Physical and Cyber
- Security

Maintain Sufficient Trip Conditions Ride Quality • Energy Vehicle Performance

- Navigation Accuracy

Pratt School of Engineering, Duke University

ODM Vehicle Concepts of Operations with **Understanding and Predicting Performance** Different Autonomy Levels in Air Operations Centers **Conduct airline case studies** for field observations and subject matter expert interviews to gather arrival and service process Revolutionary Conventional Evolutionary* data on fleet manager functional tasks 1. Passenger 1. Passenger 1. Passenger requests flight requests flight requests flight **Design a discrete event simulation** (DES) to model how tasks 2. Passenger and 2. Passenger and 2. Passenger (e.g. calls) stochastically arrive from the network, and how arrives to port pilot arrive to port pilot arrive to port environmental and internal factors affect when fleet managers 3. Pilot completes 3. System pre-3. Pilot completes pre-takeoff checks takeoff checks pre-takeoff checks Team Expertise serve each task: Attention Allocation 4. Pilot supervises 4. Pilot maneuvers 4. Aircraft takes of aircraft takeoff aircraft for takeoff Arrival Process λ Fleet Task 5. Enroute 5. Enroute Fleet Size 5. Enroute Manager Assignmen Fleet Heterogeneity

serviced serviced serviced *Evolutionary is a range of possibilities, here we consider optionally-piloted aircraft

6. Pilot calls fleet

mgr for landing

7. Pilot lands

aircraft

8. Aircraft is

Air Operations Center Functional Requirements²²

6. Aircraft pings

dispatch for landing

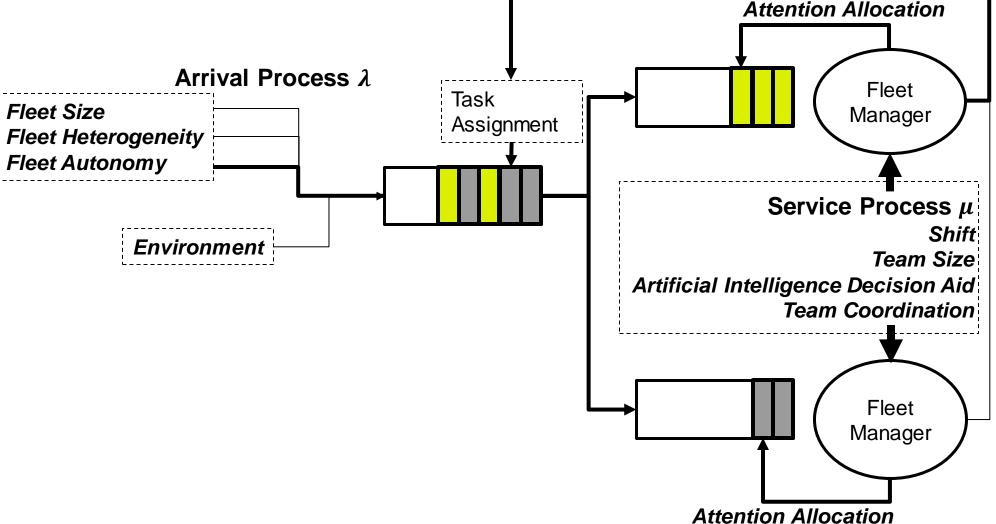
7. Aircraft lands

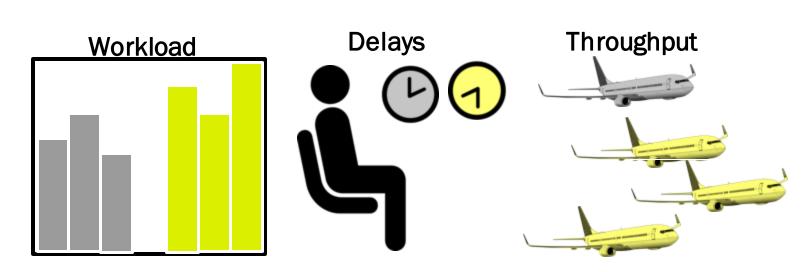
8. Aircraft is

6. Pilot calls

dispatch for landing

7. Pilot supervises


aircraft landing


B. Aircraft is

-			
	Conventional	Revolutionary	Evolutionary*
Safe	Plan flights	Monitor airspace status,	Monitor airspace,
Separation	within air traffic	command aircraft to	communicate with pilots if
from traffic	control (ATC)	unmanned aircraft system	adjusting separation
	restrictions	traffic management (UTM)	
Safe	Plan flights to	Calibrate fleet maps with	Share new information w/
separation	avoid	local infrastructure data	& between PIC to avoid
from hazards	obstructions	streams	hazards
Vehicle	Communicate	Monitor A/C (aircraft)	Monitor fleet, use AIDA if
control	with pilot-in-	sensor-actuator status, use	rerouting & communicate
	command (PIC)	artificially intelligent	w/ PIC
	if rerouting	decision aids (AIDA) if	
		rerouting	
Physical and	Verify PIC,	Monitor fleet network	Verify PIC, communicate
cyber	monitor	status, maintain command	& maintain alertness
security		authority	
Energy	Compute flight	Compute feasibility to land,	Monitor fleet, provide PIC
management	energy	ensure sufficient between	safe landing alternatives if
		re-charges	low energy
Navigation	Follow flights	Verify navigation of A/Cs on	Verify navigation w/ PIC
		approach	
Ride quality	Communicate	Monitor A/C sensors,	Monitor & provide update
	with PIC if	communicate pertinent new	information for passenger
	disturbance	info with passengers	comfort
Performance	Communicate	Monitor network,	Monitor subsystem
management	with PIC in	supervisory control if A/C	health, communicate w/
	contingency	fails, redirect resources w/	PIC if A/C fails
		AIDA	

Validate DES and tune internal and input parameters to predict how human-system performance in air operations centers may change with new ODM vehicle concepts:

Conclusion

With this DES tool, strategic, tactical, and operational decisionmakers can rapidly prototype future fleet management concepts to investigate what-if scenarios. This supports informed planning of how to staff and design air operations centers to serve on-demand mobility networks.

[1] Nneji, Stimpson, Cummings, & Goodrich (2017). Exploring Concepts of Operations for On-Demand Passenger Air Transportation. In 17th AIAA Aviation Technology, Integration, and Operations Conference (p. 3085). [2] Nneji, V. C., Cummings, M. L., Stimpson, A. J., & Goodrich, K. H. (2018). Functional Requirements for Remotely Managing Fleets of On-Demand Passenger Aircraft. In 2018 AIAA Aerospace Sciences Meeting (p. 2007)