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Abstract—As new technologies are introduced into rail 

operations, models are needed to represent the task load of 

operators to identify periods of extreme workload that could be 

mitigated through technological interventions. To this end, a 

computational model is described to quantitatively simulate 

freight rail operator workload to understand the impacts of 

inserting intelligent automation on different crew configurations. 

A detailed task analysis served as the basis for identifying tasks 

performed during transit. Utilizing task characteristics and 

operating conditions as inputs, a discrete event simulation was 

designed to predict human operator workload. Results show that 

during heavy traffic conditions, the presence of automation can 

impact locomotive engineer performance more than the presence 

of a freight conductor in a short-haul freight rail setting. However, 

under typical conditions, assistance may not be as beneficial for 

human operator performance. 

 
Index Terms— human performance modeling, discrete event 

simulation, freight rail operations, automation, workload 

I. INTRODUCTION 

HE U.S. rail transportation industry has a long history of 

introducing new technologies to meet evolving demands. 

Innovations such as advanced signaling technology and 

automated methods for tracking and distributing cars on 

complex networks of tracks have helped to improve safety by 

deterring many accidents. They have also facilitated smaller 

crew sizes and increased workload on crews [1]. 

Today, human factors are the leading causes of train 

accidents in the United States [2]. Despite this fact, rules 

proposed by the Federal Railroad Administration (FRA) in 

2016 suggest that safety is significantly improved when the 

primary operator has another human in the locomotive [3]. 

Presumably, safety will also be positively impacted when the 

Congressional mandate set in 2008 for all major railroads to 

integrate automation in the form of positive train control (PTC) 

is fully enforced [4]. 

Simultaneously, companies like GE Transportation have 

been selling cruise control systems to become a standard for 

energy management, appealing to the US Environmental 

Protection Agency [5]. PTC essentially acts as a back-up 

monitor of unsafe track conditions and initiator of emergency 

braking, which is needed since humans are poor at monitoring 

tasks [6]. Combining such systems could provide a form of 

autopilot like those of self-driving cars. However, previous 

research in human-automation interaction has demonstrated 

that additional automation does not necessarily guarantee 

increased system effectiveness or safety [7], [8]. Often, 

automating a task within a larger system modifies the task by 

transferring the operator’s workload from one physical or 

cognitive resource to another, thereby changing the task rather 

than eliminating one [9]. Poorly designed automation can 

contribute to errors and reduce system effectiveness due to 

implementations that increase cognitive workload.  

Workload is of interest in rail operations as the job of human 

operators in transportation increasingly involves changing 

demands in cognition and decision making as manual labor is 

more often allocated to machines [10]. Cognitive workload is 

the “level of attentional resources required to meet both 

objective and subjective performance criteria, which may be 

mediated by task demands, external support, and past 

experience” [11]. While the importance of workload is clear, 

numerous challenges remain in objectively measuring 

workload [12]. 

To this end, this research presents a task workload modeling 

approach commonly found in aviation settings, applied to 

freight rail operations. Developed using objective task time 

data collected during observations of train crews and analytical 

data collected from interviews with 18 subject matter experts 

(SMEs), the Simulator of Human Operator Workload (SHOW) 

represents locomotive crew workload under numerous 

operating conditions and task loads. SHOW extends previous 

efforts by developing a computational model to better 

understand how workload is affected by the introduction of 

automated technologies, as well as how these advanced 

technologies could or should inform crew configurations. The 

ultimate objective of SHOW is to provide various stakeholders 

with a tool to investigate potential staffing and technology 

architectures in conceptual design phases. 

II. LITERATURE REVIEW 

With increasing automation in the freight rail domain, it is 

important to understand how operator workload may be 

affected by introducing new technologies. Previous work in the 

rail domain includes the development of a hierarchical task 

network to abstractly represent workload [13]. Researchers 

have synthesized cognitive task analyses of engineers [14], 
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conductors [15], and dispatchers [16]–[18] and summarized the 

results in concept maps. They then verified the accuracy of the 

maps through interviews with subject matter experts (SMEs) 

and used the concept maps to develop an abstraction hierarchy 

[19], representing specific tasks and generalized functions 

executed by engineers and conductors for safe and effective rail 

transport. 

This hierarchical task network provided valuable insight into 

the causes of operator workload. However, given the insertion 

of new technologies into rail operations, an additional 

modeling method is needed that allows for concept evaluation 

across different operating conditions, especially as such 

changes could significantly impact operator workload and 

system performance. Mathematical models represent one such 

analytical approach that can calculate human operator 

workload across different conditions and time scales [20].  

Research in human supervisory control [21], human-

machine interaction [22], air traffic control [23] have suggested 

time-on-task as a reliable estimation of workload. Time-on-

task is defined as the duration an operator’s attentional 

resources are actively used to meet functional requirements. 

Wierwille and Eggemeier [12] suggest that time-on-task 

estimations can reveal areas of heightened workload that may 

be missed in other forms of assessment. Cummings and 

Guerlain [24] and Donmez, Nehme, and Cummings [25] 

extended the use of task time data by incorporating a utilization 

metric as a means of objectively measuring high and low 

workload. This utilization metric is defined as percentage of 

time an operator spends on task performance out of total 

operation time. Maximum utilization is 100%, at which point 

there no additional capacity available for a human operator to 

allocate toward accomplishing tasks.  

When utilization levels are too high, operators may be too 

busy to accumulate the information required to maintain 

situation awareness (SA). Similarly, when operators are 

underutilized, they could overlook information from the 

environment due to low engagement, also leading to poor SA. 

Levels of utilization below 30% have been associated with poor 

performance due to boredom and distraction while a 70% 

utilization threshold has been used to indicate the upper bound 

of optimal workload [26]–[29]. For over a century, researchers 

have used the Yerkes-Dodson inverted-U theory to 

conceptualize the relationship of workload levels to 

performance where performance declines during extreme 

workload periods of under- or over-utilization [25]. The goal 

for transportation systems in general, and rail operations 

specifically, is to optimally man crews such that each operator 

is moderately utilized. 

Because of the temporal nature of shift work experienced by 

rail crews, we chose to develop a workload model through 

discrete event simulation (DES). DES has been used for years 

in modeling manufacturing [30], health care services [31], and 

military operations [32]. It allows designers to realize areas that 

cause undesired delays in their systems. However, in railway 

operations DES has only been used in some studies to model 

the utilization of infrastructure, without explicit consideration 

for human factors [33]–[35]. The rail industry needs an 

approach to modeling workload of train crew, with a special 

emphasis on the role of supporting humans with new 

technologies. With pending changes in operational practices, 

including the insertion of various forms of automation, 

stakeholders need a tool for rapid exploration of various crew 

workload and tasking models. Such a tool could answer 

questions like how is locomotive engineer performance 

affected by automation and how might performance change 

without a freight conductor? 

This paper describes the design, validation, and analysis of a 

functional DES of freight rail operations to model crew 

workload called SHOW. Using DES is advantageous as it 

allows for a time-based representation of human processes at a 

task-level. Therefore, we began this modeling effort by 

collecting time-on-task data of real freight rail operations. 

III. EMPIRICAL DATA COLLECTION 

Cognitive task analyses were conducted through direct 

observation, and structured and unstructured interviews with 

SMEs aided in identification and categorization of in-cab crew 

tasks. Using present-day operations as a baseline, a typical in-

cab crew can include a team of two or single-person operations, 

with the engineer as the primary operator. Based on a 

framework proposed by Subrahmaniyan et al. [13] that 

generalized functions to represent work performed by the 

engineer and conductor, a core set of tasks were defined as 

shown in Table I. 

The work of the engineer is more than just maneuvering the 

locomotive control system. It also requires paying attention to 

the environment, in-cab displays, and radio communications 

with dispatch to maintain situation awareness and plan several 

miles in advance. On the other hand, the work of the conductor 

is to supervise the train conditions on the ground at terminal 

points and remain attentive to the engineer while the train is in 

motion in the case of an emergency. When the conductor 

engages in planning, monitoring inside, or exception handling 

tasks, they function as a backup to the engineer since tasks of 

those type are primarily allocated to the engineer who has been 

trained to handle them as a single operator. 

We directly observed locomotive engineers for two 2.5-hour 

ride-alongs at a private Canadian regional railroad that operates 

with single-person crews. During the observations, our team 

noted a description and time for each task observed (e.g., 

blowing horn, 00:15:11-00:15:16). In total, approximately 50 

tasks were logged per hour. 

The ride-alongs were followed by structured interviews with 

our first set of seven SMEs: five in the railroad’s operations, 

training, dispatch, and regulations along with two labor union 

representatives from a Canadian Rail United Transportation 

Union chapter. Experience across all personnel ranged from 3 

to 20 years. Video recordings from ride-alongs were reviewed 

to identify times spent on each observable and partially-

observable task performed throughout different phases of the 

shift (e.g., communicating, paperwork). 

Interviews following observations provided clarification of 

tasks observed during normal railroad operations. At the 

Amtrak Training Center in Wilmington, Delaware, additional 
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structured interviews were conducted with a second set of 

SMEs, four trained operators since their operations allow 

engineers to operate alone in the locomotive cab during short-

haul shifts [36]. We observed engineer task performance in 

three physical locomotive cab simulators and one trainee class 

to supplement our dataset. 

TABLE I. TYPES OF FREIGHT RAIL CREW TASKS 

Task Type Description 

Monitoring Inside Maintaining attentiveness to informational 

displays and the engineer's performance to 
maintain a safe operation 

Monitoring Outside Maintaining attentiveness to warnings and 

environmental conditions that may affect 
operations 

Communicating & 

Coordinating 

Filtering through relevant information for 

the operation and communicating 
information that may impact the macro-

level network of operations 

Paperwork Reviewing and recording operating 

conditions 

Exception Handling Attending to unexpected or unusual 

situations that must be handled to continue 
with the trip 

Planning Ahead & 

Generating Expectations 

Maneuvering locomotive control system 

for throttle, braking and other subtasks in 
anticipation for oncoming dynamic motion 

requirements 

Maintenance-of-Way 
Interactions 

Maintaining situational awareness of other 
crews along the track 

Temporary Speed 

Restrictions 

Recalling information issued on track 

bulletins and adapting to updates while 
train is in motion 

Signal Response 

Management 

Maintaining attentiveness to direction from 

track signaling system and responsive to 
proper control system within a safely 

allotted time 

One important result from these observations was the 

elucidation of different phases of operation. A phase is defined 

by a change in operational behavior which drives either 

different tasks for an operator, or substantially different 

frequencies of tasks. From the cognitive task analyses and 

observations, we identified three phases for freight rail 

operators: startup, full motion, and yard.  

The startup phase includes the first 30 minutes of an 

engineer’s shift in the train. Startup includes tasks supporting 

regulatory requirements, such as communicating with dispatch 

and testing the emergency braking system so, just as in the real 

world, there is a chance that a task comes in last minute that 

takes longer than expected to complete.  

During full motion the engineer drives the locomotive to its 

destination and this typically is the longest phase of the trip. 

The final phase, the yard phase, is the source of the highest rates 

of accidents [37]. 

IV. DESCRIPTIVE MODEL DEVELOPMENT 

The results of these cognitive task analyses of the engineer 

and conductor functions were used to construct a descriptive 

temporally-based task model of crew responsibilities, 

including frequencies and durations. For this case study, we 

gathered estimates from an average of the observed times per 

task type under typical conditions and the “most likely” times 

reported by SMEs. For heavy traffic, we used the upper 3-

quantile of times, including the “pessimistic” times reported by 

SMEs. We created a table of estimated time the locomotive 

engineer spent on each type of task for each 10-minute interval. 

These were aggregated to represent 5-hour short-haul shifts. 

The results from this descriptive model were validated by 

subject matter experts for four defined scenarios that described 

workload of an engineer working alone or with a conductor 

during typical or high traffic conditions under both crew 

complements. One such scenario is presented in Fig. 1. 

In Fig. 1, the scenario of an engineer operating alone under 

typical conditions is presented. Task times are described over 

10-minute time ranges. The three markers labeled Full Motion 

beginning in the first 30 minutes, Traffic beginning at minute 

200, and Yard approaching the final 30 minutes represent 

changes in tasks and frequencies of tasks. For example, the 

Traffic event represents the train approaching other vehicles on 

the track. 

To better associate the nine task types in Table I with mission 

goals for freight rail that would ultimately be affected by 

operating conditions, we simplified the structure of engineer 

tasking to six. We organized Planning Ahead and Generating 

Expectations, Signal Response Management, Temporary 

Fig. 1. Percent of engineer utilization in a one-person crew in 10-minute intervals over a 5-
hour shift during the typical condition. 
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Speed Restriction Management, and Maintenance of Way 

Interactions under the higher-level task of Motion Planning. In 

Motion Planning, the engineer performs many lower level tasks 

to meet the higher-level goal of moving the train forward 

toward its destination efficiently. Motion Planning is unique to 

the engineer and cannot be directly reallocated to the 

conductor. The model shows that almost half, 46%, of the 

engineer’s workload can be attributed to motion planning. 

Motion planning involves manipulating the locomotive control 

system and preparing in advance for mechanisms required to 

move the train towards a destination. Monitoring the displays 

within the cab makes monitoring inside an important secondary 

task that accounts for 22% of their total time on task during the 

5-hour shift. 

In this scenario that represents typical operations over a 5-

hour period, typical of short-haul lines, the engineer is 

responsible for fulfilling all onboard tasks, and Fig. 1 shows 

that utilization ranges between 18% and 78%, with an average 

of 37% utilization. In this scenario, the engineer spends 20 

minutes above 70% and 80 minutes below the 30% utilization 

threshold. With descriptive results, we generated data 

distributions and developed a predictive model in an iterative 

design and validation process depicted in Fig. 3 and further 

explained in the next section on SHOW. 

 
Fig. 3. Diagram of SHOW development and validation. 

V. SIMULATOR OF HUMAN OPERATOR WORKLOAD 

The Simulator of Human Operator Workload (SHOW) 

models human operators and assistive agents as serial 

processors of complex tasks and records the basic units of key 

performance metrics through the time it takes them to 

accomplish these tasks. The simulation begins when the first 

task arrives in the system (based on a stochastic arrival 

distribution) and then is assigned to an operator’s queue based 

on the operator’s functional capability to handle that type of 

task. Operators include humans (i.e. conductor and/or 

engineer) and automated agents (i.e. PTC and/or cruise control 

technologies). Tasks can queue, awaiting operator availability 

for servicing. In the process of service, the task may be 

interrupted by another task of higher priority [14] and thus 

returned to wait in queue due to preemptive priority scheduling, 

which models multitasking with rapid serial switching. Finally, 

the task exits when it is completely serviced or is expired.  

The process of a task flowing through the freight rail 

simulation is illustrated in Fig. 2. At any point in this process, 

the task may expire before service, at which point it departs the 

system. A task may also drop if the phase changes or the trip 

ends while it is waiting in a queue. For example, at 30 minutes, 

no additional startup tasks can enter the queue and engineers 

must complete any tasks already in the queue before they can 

begin full motion phase.  

The simulation allows tasks to have different arrival rates 

and expiration times by phase as appropriate. This is intended 

to mimic real-world operations, where types of tasks may differ 

between phases. For example, a maintenance of way 

interaction task would only arrive in the latter two phases of a 

trip. These task types were consistently categorized for both 

engineers and conductors. Tasks within each type of course 

vary and are represented by the random distribution of times. 

The sources of system stochasticity are task inter-arrival and 

operator service times which are random observations 

generated from probability distribution functions. Each 

replication in a simulation run pulls from the random 

distributions, which simulates the variability of event times. 

Operator service times on tasks are simulated to increase by 1% 

each hour to model the impact of fatigue as demonstrated in the 

linear function from Hursh, Redmond, Johnson, Thorne et al. 

[38] that found reciprocal cognitive performance capacity 

New task 

arrives

Can be 

serviced by 

multiple 

operators?

yes

Send to operator with 

smallest queue

Operator 

idle?

no

New task of 

higher 

priority?

no

Interrupt and return 

current task to queue

Service new task

New task 

departs

yes

Enqueue task

Task waits
Task 

unexpired?

no

no

yes

yes

Fig. 2.  SHOW process flow from task arrival to departure from freight rail operator system. 
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decays over consecutive hours of wakefulness.  

More simulated trips provide a more robust set of results 

although the simulation’s processing time will increase [39]. 

SHOW tracks several different statistics as shown in Table II, 

computed for each human operator across replications. 

 Utilization, the principal measure, is used as a proxy for 

workload. The simulation records the utilization for each 

operator throughout the shift and results are reported in 10-

minute intervals. This output can be used to validate the 

simulation model output data when compared to the empirical 

data structure. The expired/completed tasks and average wait 

time outputs provide additional statistics to infer system 

performance metrics of effectiveness and efficiency. 

SHOW is an online tool (apps.hal.pratt.duke.edu/show) that 

can be used by any interested party to model any rail platform, 

with the assumption that the modeler knows the tasks and at 

least basic estimates of time of task performance. The platform 

allows a person to input default tasks, times, and allocations to 

represent their own operational settings (Fig. 4). We generated 

default probability distributions from the whole set of original 

task arrival and service time estimates (Table III). 

Fig. 4. Screenshot of SHOW user interface.  

VI. SIMULATION VALIDATION 

The validation process establishes the model as a reasonable 

reflection of the real system it attempts to simulate [40]. First, 

the stand-alone simulation software SHOW, developed in C++, 

was verified with Rockwell Automation’s off-the-shelf Arena 

version 14.7 package. Then a three-step validation process for 

our given short-haul freight rail case study, was followed: 

1. Statistical comparison with descriptive model for 

external results validation 

2. Subject matter expert review for face validation 

3. Sensitivity analysis for internal validation 

To validate the output from the overall simulation model, a 

Kolmogorov-Smirnov statistical goodness-of-fit test was 

performed to determine if its data closely compared to that of 

the actual system described. The test failed to reject the null 

hypothesis (α=.05) that the samples from the descriptive and 

predictive models were drawn from populations with identical 

distributions during the Full Motion phase of the shift. D=.2917 

(< Dα), p = .216. 

The second step involved gathering qualitative feedback from 

SMEs with experience in freight rail operations, which were 

seven freight rail original equipment manufacturers, 

researchers, and actual locomotive operators, both current and 

retired. The SME review qualitatively supported the model’s 

results, including that conductors experienced overall lower 

workload than engineers. SMEs also attested to operators 

experiencing heightened workload during the final phases of 

shifts.

 

Output Statistic Description Purpose 

Utilization Time on task divided by 

total (10 min) time 
interval 

Workload measure 

Expired/Completed 

Tasks 

Tasks that were not versus 

tasks that were completed 

by the operator 

Identify which tasks 

are more likely to be 

missed; throughput 

Average Wait Time Average time each task 

waited in the operator’s 

queue 

Identify which tasks 

spend the most time 

waiting 

TABLE II. SIMULATION OUTPUT STATISTICS 

TABLE III. DEFAULT TASK ARRIVAL AND SERVICE TIME DISTRIBUTIONS 

Task Phase Arrival 

Rate (task 

/minute) 

Traffic 

(0,1) 

Service 

Time 

(minutes) 

Monitoring 
Inside 

Start 
Up 

Exponential 

(𝝺=1/3.5) 

0 Exponential 
(μ=.133) 

Full 
Motion 

Exponential 

(𝝺=1/2.67) 

0 

Yard Exponential 

(𝝺=1/2.67) 

0 

Monitoring 

Outside 

Start 

Up 

Exponential 

(𝝺=1/9) 

0 Exponential 

(μ=.15) 

Full 

Motion 

Exponential 

(𝝺=1/5) 

1 

Yard Exponential 

(𝝺=1/1.75) 

0 

Communicating 
& Coordinating 

Start 
Up 

Exponential 

(𝝺= 1/1.05) 

0 Triangular 
(min=.033, 

max=.2167, 

mode=.085) 
Full 
Motion 

Exponential 

(𝝺=1/10) 

1 

Yard Exponential 

(𝝺=1/1.33) 

0 

Paperwork Start 

Up 

Exponential 

(𝝺=1/6.67) 

0 Uniform 

(min=.05, 
max=1.5) Full 

Motion 

Exponential 

(𝝺=1/20) 

1 

Yard Exponential 

(𝝺=1/3.33) 

1 

Exception-
handling 

Start 
Up 

Deterministic 
(2x, by 10 and 

20) 

0 Lognormal 
(μ=.98, 

𝞂2=1.39) 

Full 
Motion 

Exponential 

(𝝺=1/3000) 

1 

Yard Exponential 

(𝝺=1/3000) 

0 

Planning Ahead 

& Generating 

Expectations 

Start 

Up 

Exponential 

(𝝺=1/15) 

0 Exponential 

(μ=.33) 

Full 

Motion 

Exponential 

(𝝺=1/5) 

1 

Yard Exponential 

(𝝺=1/2.5) 

0 

Maintenance of 
Way (MOW) 

Interactions 

Full 
Motion 

Exponential 

(𝝺=1/600) 

1 Uniform 
(min=.167, 

max=2.5) Yard Exponential 

(𝝺=1/60) 

0 

Temporary 

Speed 

Restriction 

Full 

Motion 

Exponential 

(𝝺=1/30) 

1 Uniform 

(min=0, 

max=5) 
Signal Response 

Management 

Start 

Up 

Exponential 

(𝝺=1/30) 

0 Uniform 

(min=.5, 

max=2) Full 

Motion 

Exponential 

(𝝺=1/10) 

0 

Yard Exponential 

(𝝺=1/15) 

0 

 

http://apps.hal.pratt.duke.edu/show/
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In general, those with careers directly involving freight rail 

operations found the results of both locomotive engineer and 

freight conductor to be like their own experiences. However, 

some researchers with experience studying workload in 

experimental controlled labs of physical cab simulators were 

surprised that utilization levels were reported to be lower than 

they imagined. So, the SMEs encouraged that we share the 

model with new stakeholders to expand our dataset and support 

SHOW’s applicability to more freight rail operations since 

SHOW has the flexibility to computationally simulate over 

2360 trillion settings of shift time, traffic level, and human- and 

automation-assistance that are too time-intensive and 

expensive to test in physical simulators with human volunteers. 

Finally, a sensitivity analysis was performed to discover 

which model factors may significantly impact key performance 

indicators (KPIs). The goal of the analysis was to investigate 

how levels of variation in parameters impacted the deviation of 

average utilization, wait time, throughput rate, and expiration 

rate output measurements from the baseline results.  

Our analysis revealed that variations in inter-arrival time 

significantly changed mean results for utilization and 

throughput rate. Variations in service time significantly 

changed mean results for utilization. And only extreme 

variations in traffic parameters significantly changed mean 

utilization and throughput rate. In contrast, no variations within 

+/-20% in the fatigue parameter significantly changed any 

KPIs. Overall, our three-step validation process built 

confidence in the model’s real-world usefulness [41]. 

VII. SIMULATION ANALYSIS 

To demonstrate the utility of SHOW, we used the short-haul 

freight rail validated model in Fig. 1 to conduct a comparative 

analysis of operator workload for eight concepts of operations 

system reconfigurations. Our objective was to identify in the 

case of one engineer operating a locomotive, which 

combinations of human and automated assistants could yield 

better performance for the system. 

Four levels of assistance and two types of conditions were 

defined (Table IV). With no assistance, the engineer is 

responsible for all tasks alone. Human assistance refers to an 

onboard freight conductor who can offload signal response 

management, monitoring inside, and planning tasks from the 

engineer. We defined automated assistance as integration of 

positive train control (PTC) and cruise control [42] 

technologies. Under the automated assistance concept, PTC 

could handle emergency braking, signal response, and 

monitoring inside tasks, while cruise control could handle 

planning ahead and generating expectations tasks with 

negligible service times. The all assistance category means that 

the engineer was supported both by the conductor and 

automation. For any shared tasks represented in SHOW, the 

engineer was the primary operator but if the engineer was 

occupied with a task and a new task arrived, the task was routed 

to the conductor’s queue, and then to automation’s queue if the 

conductor was unavailable. 

Typical conditions represent normal operations as observed 

and validated. Heavy traffic conditions represent a worst day 

an operator may have with respect to traffic events, leading to 

overall high task load, defined as 3.5 times the typical task 

arrival rates and validated by the SMEs. A penalty function (1) 

was defined to identify how the locomotive engineer’s 

performance may be influenced by levels of human and 

automation assistance during typical and heavy traffic 

conditions. Donmez et al. [25] found that extreme workload 

yielded inefficiencies in operator attention and degraded 

human supervisory control system performance. The 

thresholds for potential decrements in performance (penalties) 

are marked at 30% and 70% utilization based on results from 

previous experiments [26]–[29]. At those points, a penalty 

value (0,1] was computed along a slope of -1 for low workload 

and +1 for high workload. 
TABLE IV. DESIGN OF EXPERIMENTS 

Experiment Levels 

Assistance Condition 

1 None Typical 

2 All Typical 

3 Automation Typical 

4 Conductor Typical 

5 None Heavy Traffic 

6 All Heavy Traffic 

7 Automation Heavy Traffic 

8 Conductor Heavy Traffic 

For each 10-minute interval recorded in the simulation, the 

following algorithm generates a penalty value according to the 

penalty function we define below: 

 
This penalty function (Fig. 5) approximates the Yerkes-

Dodson theory which establishes performance as an inverted 

parabolic function of workload. In this inverse and linear 

approximation, penalty is a function of utilization (proxy for 

workload). The cost function assumed an equal linear penalty 

for low and high workload, as previous research [25] 

demonstrated that this approach effectively matched observed 

conditions. 

 
Fig. 5. The penalty function of operator utilization. 

We applied this function across 1000 replications to analyze 

the distribution of the results for each of the eight experiments 

presented in Table IV. A one-way analysis of variance was 
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used to determine whether the penalty values from extremely 

high workload under high traffic conditions differed when the 

locomotive engineer was alone, supported by all assistance, 

supported by automation only, or supported by human only 

(Fig. 6). Assumptions of normality and homogeneity of error 

variance were met.  

The analysis showed significant differences among the four 

groups of 1000 data points, F(3,3996) = 49.9, p < .001. An 

engineer under high workload assisted with a combination of 

automation and human support exhibited the best performance 

in terms of penalty (M=2.69, SD=1.63), somewhat lower 

performance with automated assistance only (M=2.71, 

SD=1.61), poorer performance with human assistance only 

(M=3.21, SD=2.18), and worst performance without any 

assistance (M=3.55, SD=1.95). Post-hoc Tukey’s honest 

significant difference tests showed that engineer performance 

during no-assistance operations differed significantly (p < 

.001) from each of the other three settings. The difference 

between all- versus automated-assistance was not statistically 

significant (p=.76). 

 
Fig. 6. Mean penalty values with comparison intervals (α=.001) for high 

workload experienced by engineer in heavy traffic condition with each level of 
assistance. “None” level of assistance was significantly different from every 

other level. 

While, on average, all assistance led to better performance 

under the high workload condition, the simulation results show 

that the presence of automation with or without the conductor 

made much more of a difference (p < .0001) than with the 

conductor alone (p=.0003). 

However, under typical low workload conditions, any form 

of assistance led to significantly higher penalty values as shown 

in Fig. 7. A one-way analysis of variance was used to determine 

whether penalty values differed when the locomotive engineer 

was alone, supported by all assistance, supported by 

automation only, or supported by human only. Assumptions of 

normality and homogeneity of error variance were met. 

The analysis showed significant differences among the 

groups of data. F(3,3996) = 75.77, p < .001. A lone engineer 

exhibited the best performance based on the penalty score 

(M=10.25, SD=1.48), somewhat lower performance with 

human assistance (M=10.96, SD=1.48), poorer performance 

with automation (M=11.06, SD=1.41), and worst performance 

when assisted with both human and automation (M=11.09, 

SD=1.41). Post-hoc Tukey’s honest significant difference tests 

showed that engineer performance during no-assistance 

operations differed significantly (p < .001) from each of the 

other three configurations, but the differences between all- 

versus automation (p=.69), all- versus human-assistance 

(p=.04), and automation versus human-assistance (p=.10) were 

not statistically significant. So, in simulated operations, under 

typical low task loading, engineers working alone performed 

better than with any assistance, while under heavy traffic 

conditions, engineers working with automation (with or 

without human assistance) had the best performance of the 

tested conditions.  

Interestingly, the average penalty acquired under typical low 

workload conditions (M=10.84) was significantly higher than 

under high workload conditions (M=3.04). In referring to the 

penalty function (1), this may be attributed to extended periods 

of time at or below 30% utilization during the shift. It should 

be emphasized that these interpretations are strictly just for this 

set of operations and the model would need to be calibrated for 

each specific application. 

 
Fig. 7. Mean penalty values with comparison intervals (α=.001) for low 

workload experienced by engineer in typical conditions with each level of 

assistance. “None” level of assistance was significantly different from every 
other level. 

VIII. DISCUSSION & CONCLUSION 

SHOW was developed as a discrete event simulation to 

model rail operators in various operating conditions to 

investigate various staffing and technology architectures. We 

gathered empirical data from the railroad industry and 

validated a short-haul freight rail model using SHOW through 

statistical goodness-of-fit tests, subject matter expert review, 

and sensitivity analyses. 

As with any model, there are several limitations based on the 

scope of our analyses. First, SHOW only models the specific 

tasks and traffic densities selected by the modeler, including 

the associated distributions and parameters. Thus, any result 

will not accurately reflect all freight rail scenarios. Second, the 

model does not yet incorporate the possibility for human error 

in processing tasks. This addition is currently in development. 

Third, we did not model possible new tasks generated from 

coordinating with human and/or automation assistance. The 

simulation needs predictive validation before decisions can be 
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more confidently drawn from the prospective analysis 

presented here. Finally, the model does not account for some 

human factors such as the hours of sleep prior to the shift that 

could impact performance. Investigating how robust the 

homeostatic linear representation of cognitive decay due to 

fatigue across different rail operating conditions would be a 

useful contribution. 

SHOW is not meant to be a fine-grained model of an 

individual’s response, rather a systems-level response for 

planning future system architectures. Comparing performance 

across alternative short-haul system configurations in SHOW, 

we found that the impact of automation on performance may 

be more helpful than a freight conductor at moderating 

locomotive engineer workload during heavy traffic conditions. 

However, that same automation could be detrimental to 

operator performance in a typical short-haul freight rail 

scenario. 

With companies already installing automation and making 

decisions about the future workforce [43], a simulation model 

like SHOW can aid in the investigation of potential 

implications of human- and automated- assistance on the 

primary operator's workload across operating conditions. 

Particularly in the setting of freight rail operations, as 

automation increases, we expect boredom and the associated 

reductions in human performance to also increase [27], [44]. 

PTC, combined with other technologies like energy 

management cruise control systems can provide efficiencies 

that lead many railroads to believe that the second crewmember 

is unnecessary [45]. The results from this application of SHOW 

to a short-haul case study demonstrate that we cannot take a 

blanket approach to improving safety conditions. Further 

consideration is required to identify when and how adaptive 

levels of automation could be implemented to modulate 

workload and optimize human performance across different 

phases and operational conditions. 

Future research is needed to better understand the 

unexpected challenges that different types of automation and 

human assistance may bring to a primary operator's 

performance. For example, the presence of assistance may lead 

to new tasks that we failed to model in this first iteration. 

Moreover, given increasingly capable automated systems, 

another consideration is shifting the engineer off-board to 

remotely control one or more trains at a supervisory level. 

When thoughtfully designed, human supervisory control has 

been shown to be beneficial to system performance in similar 

operational settings with adaptive automation [46].  

Limitations were identified in our approach, but we designed 

SHOW to allow any person to perform their own simulation 

analysis with any railroad operations even if operators are 

modeled to handle a specific set of tasks. The validation 

strategy demonstrated that SHOW is a potentially useful tool 

for modeling operator workload in freight rail environments 

that can simulate operations to allow for study of potential 

future system changes. 
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