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To study the factor of controllability for humans’ trust in autonomy in decision making, 73 participants 

used a risk-aware, autonomous planner to navigate an underwater robot in a software-simulated, resource-

limited, and risky environment. The experiment examined the association of controllability of the leg size 

of the path planner with participants’ trust, as well as the underlying reasons. The quantitative analysis 

showed no significant effect of controllability on trust. However, a verbal data analysis method, which 

systematically coded and quantified participants’ reasons for choosing their trust levels at different intervals 

during the experiment, showed that the dimension execution and control was the most frequently 

mentioned among four emerging practical dimensions of influencing factors for their trust. The other three 

included risk evaluation; training and learning; and general attitudes. The findings suggested further 

research on more aspects of controllability, especially the ones that support personal plans, from a human-

autonomy interface design perspective.

INTRODUCTION 

While autonomy of different types has been widely 

researched and applied in significant areas such as aviation, 

industry, and workplace (Zuboff, 1988), it is suggested to use 

a moderate level of decision automation in which the human 

operator is involved in the decision-making process and makes 

the final decision before the autonomy is 100% reliable and 

especially when the decisions involve lethality and significant 

consequences (Parasuraman et al., 2007). To facilitate human–

autonomy team performance for high-risk situations with a 

moderate level of decision automation, important questions 

arise such as what are the influencing factors for humans’ trust 

in the autonomy from a practical perspective and what could 

be done to help calibrate their trust? 

In particular, risk-aware autonomy makes decisions with 

explicit considerations of risk and helps humans quantify risks 

(Ono et al., 2013). A notable approach to risk-aware planning 

is based on stochastic optimization, where users specify the 

upper bound of the probability of failure of an automated 

operation (Majumdar & Pavone, 2020; Ono et al., 2015). 

However, humans may struggle to understand probabilistic 

estimates of risk (Tversky & Kahneman, 1973), and their lack 

of understanding of how autonomy maps risk estimates onto 

the real world can lead to incorrect mental models of trust that 

can ultimately hamper system performance. Meanwhile, 

autonomy may fail to operate reliably in complex, uncertain, 

and high-risk situations, in which risks are not included in the 

model, or the probability of risk is difficult or impossible to 

accurately quantify (Stimpson et al., 2017). 

Therefore, appropriate trust in autonomy has a 

significant impact on human–autonomy team performance in 

terms of reliance on autonomy in operators’ action plans. 

Trust is defined as a belief that an agent will do what is 

expected in order to help achieve specific goals (Lee & See, 

2004). Overly trusting autonomy may prevent people from 

intervening when autonomy malfunctions. For one example, 

the crew in the Royal Majesty shipwreck solely relied on an 

automated warning, even though the navigation data was 

erroneous for 24 hours (National Transportation Safety Board, 

1997). Over-reliance on Tesla’s AutoPilot is another example 

that has been shown to be deadly (Golson, 2017). Conversely, 

distrusting autonomy can increase accidents due to inevitable 

human errors (Zuboff, 1988). For example, fault protection 

software designed to prevent astronauts from calling wrong 

programs (e.g., “P01”) was rejected by NASA astronauts in 

1960s, but later led to the loss of critical data (Mindell, 2008).  

To examine trust from a human–autonomy interface 

design perspective, we look at trust at three different layers, 

including  dispositional trust, situational trust, and learned 

trust (Hoff & Bashir, 2015). Dispositional trust is a human’s 

tendency to trust or distrust autonomy and is independent of 

context. Situational trust is a type of trust that depends on the 

evaluation of the immediate situation and environment. 

Learned trust is based on humans’ knowledge and experience 

of  the past performance of the autonomous system (Lee & 

See, 2004). These three layers can evolve and change 

dynamically (Hoff & Bashir, 2015).  

Correspondingly, each of the three layers of trust has 

influencing factors, based on empirical studies (Hoff & 

Bashir, 2015). Dispositional trust is influenced by culture, 

personality, gender, age, etc., and thus is less likely to be 

changed. Situational trust depends on the real-world situation, 

which is unpredictable sometimes, and thus is difficult to be 

controlled. Learned trust is based on the system evaluation, 

which may be specified as learning three aspects of the 

autonomous system: performance, process, and purpose (Lee 

& See, 2004). Performance refers to the reliability, 

predictability, and ability of the autonomy. Process refers to 

the mechanism of the autonomy (how it works). Purpose 

refers to whether the intent of the autonomy matches the 

function. Therefore, given a system that is already built, there 

is greater chance to adjust people’s learned trust than other 

two layers through the design features of the human–

autonomy interface, such as transparency and feedback 

(Bagheri & Jamieson, 2004) and level of control (Verberne et 

al., 2012). The design features of the interface may enhance 

the communication between the autonomy and humans.  

In Norman’s recurring Seven Stages of Action (Norman, 

1988), evaluation and execution are two important processes 

in humans’ interactions with any machine interface. People 



evaluate the information of a system to form the intention to 

act. And then they change the state of the task environment 

through executing their plan with a supporting control panel. 

Given a known risky situation, controllability is expected to be 

a critical aspect of interface design that influences human 

perception and performance (Leotti et al., 2010). 

Controllability allows humans to be part of the decision 

making and make the final decision, thus likely influencing 

humans’ calibration of trust.    

To understand human–autonomy teaming in high-risk 

decisions, this study examined influencing factors, especially 

the factor of controllability, for humans’ trust in the risk-aware 

autonomy that calculates risk probability and suggests short 

paths in a risky environment. Both the trust ratings and the 

underlying reasons are important and text analysis has been 

advocated in trust research (Lee & Kolodge, 2019), so this 

study explored a mix of quantitative and qualitative analysis.  

 

METHOD 

Participants 

73 participants were from a southeastern US university 

(male N = 38; age mean = 22.8, SD = 7.1; undergrad = 64.4%, 

graduate = 26.1%, and other = 9.5%; White = 41%, Asian = 

38%, Hispanic = 11%, and Other = 10%).  

Interface of the Software Platform and Experiment Task 

The software platform developed for this study is called 

the Human–Autonomy Interface for Exploration of Risks 

(HAIER). It was played on a 21-inch screen computer with a 

mouse. The primary goal of the experiment task was to safely 

navigate an underwater robot across a risky environment filled 

with deadly obstacles. To win the bonus incentive of $100, 

participants needed to achieve the highest performance score 

possible under four constraints: (a) the shortest path possible 

should be planned; (b) participants should avoid collisions 

with the red obstacles, as any collision represented a fatal 

accident and would end the game with a zero performance 

score; (c) participants were given a risk budget of 10% for 

each test session—each leg bears some percentage of risk and 

the upper bound allowed risk for the whole mission is 10% 

(Ono, 2012); and (d) the underwater robot needed to surface 

periodically for positional updates up to 6 times. The 

performance score is subtracting the portions of overused risk 

budget, overused surfacing times, and extra path length from a 

total of 100 points. A demo of the task is on Youtube (search 

“HAIER041717”).  

In a testing trial, participants first evaluated “how risky 

the situation is” (not risky, kind of risky, and very risky) on 

the top right of the interface. Then they used the control panel 

to choose the risk level they wanted for the path leg. 

Participants in the No Control group used an interface that had 

the choice of risk level for that leg but no option of changing 

an individual leg size. An individual leg size was chosen by 

the autonomous planner based on participants’ selected risk 

level on the control panel (Figure 1). Participants in the With 

Control group used an interface with an additional option to 

select a small, medium, or large leg size. They used the 

control panel to compare path options on the map and 

confirmed a choice. Then they answered two pop-up questions 

regarding their confidence about their last path leg and their 

trust in the autonomy (“How much do you trust that the 

autonomous planner generates the best solution?”). The 

definition of trust was explained as a personal belief that the 

autonomous planner would do as it is expected to generate the 

shortest path given your choice of risk level for the leg you are 

planning.  

  

Figure 1. Interface with control of leg size (left), without (right) 

A risk budget meant that no more than 10% total in risk 

of collision should occur for trip on each map, and the risk for 

every leg planned (the path between two surfacing points) was 

based on the combined distance to the obstacles. Thus, a 

participant could choose to spread the risk out over each path 

leg planned or could use most of the risk to negotiate a single 

leg. The risk budget was a soft constraint, so overuse would 

not end the game but reduce overall performance. Similarly, 

overuse of the surfacing budget would reduce the performance 

score but not end the game. The yellow circles along the path 

showed the possible surfacing positions of the robot given a 

proposed path plan, with growing uncertainty in position 

predictions as participants planned longer legs. 

The autonomous path planner used a Dijkstra algorithm 

to generate the shortest path between the current position of 

the robot and the destination (i.e., a global planning approach) 

(Ono et al., 2015). But the execution of the path was broken 

down into several surfacing points for a position update, 

which required participants to do local planning for each path 

leg. HAIER allowed participants to choose among three risk 

levels (low, medium, and high) per leg. Given a chosen risk 

level, the autonomous planner displayed a corresponding path 

option on the map: high-risk paths were shortest possible lines 

through crowded obstacles and low-risk options tended to take 

longer paths to stay away from obstacles. Thus, the journey 

from start to finish included a series of legs between surfacing 

points. The task was complex because the shortest paths were 

sometimes riskier because of more obstacles in the center of 

the map; the detours were less risky, but then the overall path 

lengths were longer. In addition, due to unpredictable ocean 

currents, the robot could drift from the planned path when 

traveling under the water, resulting in a potential collision 

with nearby obstacles. The shorter the leg the robot took under 

the water each time, the less uncertainty of its location when 

surfacing, yet taking too many short legs could prevent the 

vehicle from finishing within six legs. The whole game was a 

balance of gains and potential losses in the presence of 

uncertainty. The unpredictable drifting, together with the 

requirement of controlling risk budget consumption, surfacing 

https://youtu.be/nL-WVc01qXw


times, and path length, made this a judgment an uncertainty 

decision process (Tversky & Kahneman, 1973). 

Procedure 

Recruited from a campus advertisement, the participants 

were paid $15 for the 60-minute experiment, with a $100 

bonus for the top performer. After signing a consent form, a 

demographic survey, and a risk propensity survey, participants 

received training (5-10 minutes) prior to each testing trial by 

hearing the experimenter introduce each element on the 

autonomy interface and the performance goals, and then 

practiced path planning until they finish the training map and 

their questions are answered. Two testing trials started when 

participants verbally confirmed they felt ready for testing, 

each for 5-15 minutes. Screen recordings of the last testing 

trial were replayed for a recall interview, followed by a post-

experiment online survey and a debriefing.   

Measures of Trust 

Trust was measured in two ways. First, after planning 

each leg but before the resulting surfacing location was 

revealed, a pop-up question asked participants to report “how 

much do you trust that the autonomous planner generates the 

best solution?” on a 5-point Likert scale (1 = no trust at all, 5 

= complete trust). Each map took 5 to 8 legs to finish, so 

participants rated their trust levels 5 to 8 times.  

Second, when replaying a screen capture video to 

provide a specific context for retrospective verbal protocol 

analysis, the experimenter orally asked participants why they 

chose the trust level at each leg during the testing session. 

Following the interview, participants listed their trust 

strategies in an open-ended essay question in an online survey, 

“How did you choose your trust [levels] toward the 

automation?” This question aimed to capture the kinds of 

influencing factors for trust that participants developed based 

on their interactions with the autonomy.  

The Likert scale data used a t-test for data analysis, and 

the qualitative written responses were systematically coded, 

with details in the following section.  

Qualitative Data Coding 

The analysis of participants’ reasons for trust used 

Geisler’s verbal data analysis method (Geisler, 2003). A 

typical procedure of this method includes (1) segmenting 

participants’ written reasons into T-units (minimal terminable 

meaning units) (Hunt, 1965), (2) developing mutually 

exclusive categories of themes for the T-units, (3) having two 

independent coders code the T-units by judging which 

category each T-unit falls under, (4) calculating the inter-rater 

reliability, (5) refining the categories by merging overlapping 

ones, splitting double meaning ones, or specifying definitions, 

(6) repeating steps 3-4-5 until the inter-rater reliability is over 

90%, and (7) illustrating the categories, their frequency, and 

sometimes the change of frequency over time. This method 

transforms text data into quantities and visualizations, helping 

researchers explore the text content themes, relationships, and 

change patterns over time. Geisler’s verbal data analysis 

method is consistent with and capitalizes on protocol analysis, 

content analysis, conversation analysis (Koschmann, 2013; 

Zemel & Koschmann, 2013). In this study, after five rounds of 

repeating steps 3-4-5, the final coding had a simple agreement 

of 97% inter-rater reliability at the dimension level and 93% at 

the category level, with a Kappa = .96.  

The segmentation of 73 participants’ responses resulted 

in 155 T-units (No control group = 90, With control group = 

65), which then were used to develop the data-driven bottom-

up codebook (the hyperlink shows the full codebook) using 

Saldana’s coding method (Saldaña, 2012). Based on the 

relations of the categories and literature, 16 categories were 

grouped into five dimensions, as described below.  

General attitude (GA). This dimension consists of 

statements that only describe participants’ general trust 

tendencies that are independent of the context, similar to 

dispositional trust (Hoff & Bashir, 2015).    

Training and learning (TL). This dimension consists of 

responses about becoming familiar with the autonomy: 

understanding the algorithms and definitions, learning the past 

performance of the system, and gaining experiences with the 

autonomy. Specifically, participants mentioned the length of 

interaction experiences, mechanisms of how the autonomy 

works, and overall impressions of the autonomy’s past 

performance. These factors pertain to adequate knowledge of 

the autonomy and can be enhanced accordingly to potentially 

induce informed trust. Therefore, they are grouped under the 

dimension of training and learning.  

Execution and control (EC). This dimension includes 

categories pertaining to participants’ action plans with the 

autonomy, and how human–autonomy interface supports 

participants in carrying out their action plans. The choice of 

risk levels and leg sizes are two major control options in 

HAIER, and their combinations result in different path options 

on the map. Therefore, categories that are related to the choice 

of risk levels, leg sizes, and path options, are grouped under 

the dimension of execution and control. The choice of risk 

levels is associated with the appearance of proposed paths, 

their comparisons with users’ envisioned routes, and the 

remaining risk budget. The choice of path options sometimes 

involves evaluation statements about the paths, including 

specific aspects (e.g., the direction of the path and leg size) 

and overall or emotional comments regarding the paths (e.g., 

“the generated path was strange or frustrating”).  

Risk evaluation (RE). All statements related to risks are 

grouped under the dimension of risk evaluation due to the 

diverse statements about risks in the data and the salient role 

of risk in trust in autonomy in the literature (Hoff & Bashir, 

2015; Stimpson et al., 2017). The dimension of risk evaluation 

is related to situational trust because of its focus on the 

environment and context (Hoff & Bashir, 2015), specifically, 

deviations from planned paths, size of yellow circles regarding 

uncertainty in future surfacing locations, number of obstacles, 

and overall perception of danger. The dimensions of EC and 

RE are closely related because risk evaluation accompanied 

path evaluation and influences path choice. The categories 

mentioned under this dimension mainly illustrate what 

participants perceive as risk and what influence their risk 

perception (Norman, 1988).  

Other. Only one response went astray from the question 

of whether this participant trusted the autonomous planner or 

what reasons influenced the trust and was coded as other. 

https://drive.google.com/file/d/1UWg97S3okwdJysPKJcdYzGYjmuegNirI/view
https://drive.google.com/file/d/1UWg97S3okwdJysPKJcdYzGYjmuegNirI/view


RESULTS 

Quantitative Data Analysis 

Since each map took at least five legs to finish and N 

started to decrease at leg six, GLM repeated ANOVA used 

mean trust ratings per leg for the first five legs as a within-

subject variable and Control as a between-subject variable, 

and the results was statistically insignificant (F(1,132) = .05, p 

= .83). Then we averaged all 5-8 ratings of trust rating to get 

one mean score for each map (i.e., the sum of the 5-8 trust 

ratings divided by the number of legs for that map) to do a t-

test on Control, the difference in mean trust between No 

Control (M = 3.37, N = 74, SD = .79) and With Control (M = 

3.70, N = 60, SD = .78) was also insignificant (t(132) = .16, p 

= .88).  

Qualitative Results: Verbal Data Analysis 

Using a bottom-up approach, four dimensions emerged 

from the verbal responses of people’s strategies in choosing 

their trust in autonomy and are listed in order of decreasing 

frequency: execution and control (EC), risk evaluation (RE), 

training and learning (TL), and general attitudes (GA). Figure 

2 shows the frequency of each dimension. At a more specific 

category level, Figures 5-8 show the frequency of categories 

in each dimension.  

For the dimension of GA (No Control = 13, With Control 

= 5, total = 18), Figure 3 shows that people in both groups 

indicated trust and distrust in autonomy. But none in the With 

Control group said that they were unsure, maybe because the 

leg size control helped reduce this uncertainty.  

For the dimension of TL (No Control = 15, With Control 

= 9, total = 24), people in both groups showed similar focus 

on the planner’s past performance and their comprehension of 

planner’s mechanism (Figure 4). Only participants in the No 

Control group reported that interaction length/familiarity with 

the system is an influencing factor with the system.   

For the dimension of RE (No Control = 21, With Control 

= 14, total = 35), Figure 5 shows that deviation, probability 

circle, obstacles, and distance to the target are all potential risk 

elements. People were most concerned about robots’ deviation 

from the planned path, especially in the With Control group. 

For the dimension of execution and control (No Control = 40, 

With Control = 36, total =76), Figure 6 shows that the highest 

number of participants commented about whether the 

proposed options matched personal ideal plans.   

 
Figure 2. Frequency of dimensions by groups 

 
Figure 3. Frequency of categories in the dimension of general attitudes 

 

 
Figure 4. Frequency of categories in the dimension of training/learning 

 
Figure 5. Frequency of categories under the dimension of risk evaluation  

 
Figure 6. Frequency of categories in the dimension of execution/control 

DISCUSSION 

This study contributes to trust literature in three 

innovative ways. First, instead of using narrative imaginary 

scenarios, a software testbed was developed to provide 

contextual experience for better validity, in which participants 

interacted with an autonomous path planner to complete a path 

planning task with interval performance feedback. Second, 

instead of using a nondirected and overall trust scale one time, 

this testbed used a pop-up question to measure context-

specific trust multiple times throughout the experiment. Third, 

this study delved into the reasons for trust ratings by using a 

bottom-up data-driven approach to systematically code and 

quantify participants’ verbal responses on their trust strategies 

toward the autonomy, allowing for insight into additional 

germane influencing factors and participants’ interpretation of 

controllability.  

Trust was measured dynamically in two ways: Pop-up 

Likert-based trust level at each interval and a qualitative 

written summary of the strategies used for their trust ratings. 

The Likert data analysis showed that the controllability of the 

leg size was not a statistically significant factor for trust in the 

autonomous planner. However, the qualitative data analysis of 

the written trust strategies produced four dimensions of 

factors: execution and control, risk evaluation, training and 

learning, and general attitudes. The dimension of EC was 

shown to be the most critical in participants’ awareness 

regarding trust, based on its high frequency. Specifically, the 

category whether system options matched personal plans was 

the most critical factor in this dimension (Figure 6). A possible 

explanation for the insignificance of controllability in the 

quantitative analysis is that people may want more 

controllability than just controlling the leg size. The follow-up 

qualitative data analysis indicated that the participants wanted 

the type of control for the path planner to generate options 

matching their personal plans and results. This insight is 

important since trust may be built for these types of 



interactions by the autonomy aligning with human 

expectations, not just good performance. This need for more 

research on the role of user preferences and user interfaces on 

trust in autonomy (Hoff & Bashir, 2015). Also, it is critical to 

understand fundamental expectations as well as what can be 

done to move humans away from biased or incorrect 

expectations through appropriate training and learning.  

The dimension of EC differs from the influencing factor 

of system performance because EC focuses on whether the 

human–autonomy interface provides supporting controls for 

humans to take actions, while system performance focuses on 

the result alone. Control of actions is an important means to 

achieve desired human–autonomy teaming performance.   

This study also demonstrated that design features for risk 

evaluation and risk perception may be critical for calibrating 

trust, and specifically on the visual aids for risk evaluation 

(Spiegelhalter, 2017), such as the risk budget bar and the 

yellow circles estimating possible future vehicle locations. 

High risk perception may relate to low trust in autonomy when 

controlling a robot on Mars (Stimpson et al., 2017). Research 

on risk representation has the potential to fill the gulf of 

evaluation (Norman, 1988) in human–autonomy interface 

design. Risk representation through quantified risk budget 

(Ono, 2012) is novel and require additional research on its 

influence on risk perception and desired controllability.  

Training and learning about systems’ process, 

performance, and purpose of a system (Lee & See, 2004) are 

not the system per se, but a procedure that is separate from 

these aspects of the system and may also help calibrate trust. 

Working with a given system may be the case in many 

human–autonomy interaction scenarios in the real world. 

When participants came, the HAIER system development was 

finished. What can be changed is to facilitate participants’ 

learning of the autonomy’s performance and mechanism, as 

well as practicing to become better at working with the 

autonomy, preferably considering each individual’s 

knowledge and skill base.  

Though measuring an individual’s trust level toward a 

system has been studied widely (Hancock et al., 2011; Jian et 

al., 2000), knowing the underlying reasons for trust and 

implementing strategies to calibrate trust is equally important, 

or even more so, but less studied (Lee & Kolodge, 2019). This 

study found both context-specific and generalizable reasons 

for trust. Context-specific reasons (e.g., lack diversity of path 

options) are necessary to improve the specific design of the 

human-autonomy interface to facilitate human–autonomy 

teaming (DeCostanza et al., 2018). The generalizable 

dimensions were practical reasons for the trust that could be 

implemented through personnel selection, training and 

learning of the system, risk information display, and 

controllability of the actions on the interface. Guided by 

general findings, context-specific and individualized design 

(DeCostanza et al., 2018) may be explored further for human-

agent teaming with moderate level design autonomy.   
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