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Transportation analysts are inundated with requests to apply popular machine learning modelling techniques to data sets to 
uncover never-before-seen relationships that could potentially revolutionize safety, congestion and mobility. However, the 
results from such models can be influenced not just by biases in underlying data, but also through practitioner-induced biases. 
To demonstrate the significant number of subjective judgments made in the development and interpretation of machine 
learning models, we developed Logistic Regression and Neural Network models for transportation-focused data sets including 
those looking at driving injury/fatalities and pedestrian fatalities. We then developed five different representations of feature 
importance for each data set, including different feature interpretations commonly used in the machine learning community. 
Twelve distinct judgments were highlighted in the development and interpretation of these models, which produced 
inconsistent results. Such inconsistencies can lead to very different interpretations of the results, which can lead to errors of 
commission and omission, with significant cost and safety implications if policies are erroneously adapted from such 
outcomes. 
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1 INTRODUCTION 

With rapid advances in data analytic tools, machine learning techniques are increasingly being used to study 
large data sets in order to reveal underlying and potentially unknown patterns that would not likely otherwise be 
discovered. However, such techniques are coming under increasing scrutiny with widely publicized flaws in 
machine learning (ML) applications like racial bias in criminal recidivism predictions [1] and IBM’s failure to 
effectively use Watson in healthcare diagnostics [2]. These and other similar events have led to increased calls 
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for artificial intelligence regulation [3] and warnings from major companies that AI presents significant risks to 
company products and reputations [4]. 

Research efforts are increasing to identify and correct bias in ML datasets [5], as well as making outputs 
more explainable [6] or interpretable through sensitivity analyses likes counterfactual explanations [7]. However, 
while such efforts are important, there has been substantially less focus on examining those subjectivities and 
biases that can be introduced into ML models through the many seemingly small choices that modelers make 
when developing predictive models. Machine learning results can be greatly affected by the subjectivity of the 
ML practitioner, where the practitioner subjectively selects the ML algorithm and is associated parameters for 
a specific data set. Either this person or perhaps other people then interpret the results. As depicted in Figure 
1, when combined with biases that can be inadvertently introduced due to underlying sample selection bias 
(e.g., [8, 9]), these practitioner-induced subjective biases introduced into a machine learning modeling process 
can make resulting conclusions vary widely.  

Little work has studied this practitioner-induced subjectivity problem in order to understand its causes, 
influences, and methods for avoidance. This paper contributes to the growing body of literature on ML bias and 
subjectivity through a case study where two transportation data sets are analyzed with two different machine 
learning techniques of low and high complexity (logistic regression and neural networks). While there are many 
other types of machine learning models that could be used (e.g., see Figure 2 and [10]) these models were 
selected since they represent increasing model complexity and are both commonly used. 

Using both a large and small transportation data set that include various features to predict driver and 
pedestrian injuries and fatalities, the results of these models are compared with one another, as well as with 
different possible interpretations. The results demonstrate that both the type of model and feature interpretation 
method can produce different results in terms of model performance and assessment of feature importance. In 
addition, examples of practitioner interpretations are included that span novice to expert which exemplify how 
experience can modify one’s interpretation of the results. These outcomes, which highlight the more than ten 
opportunities for subjective decisions in model construction, suggest that more work is needed in looking at how 

Figure 1: Depicted by a dashed line, sources of human bias in any machine learning modeling process including human 
subjectivity in model and parameter selection as well as sample selection bias coming from the data. 
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such subjective modeling and interpretation choices affect the suitability of machine learning models in support 
of decision making. 

This paper is organized as follows: Section 2 illustrates sources of subjectivity by applying a logistic 
regression and then a neural network analysis to a large transportation data set, including analyses of model 
performance and different possible interpretations of feature weights. Section 3 repeats the logistic regression 
and neural network analyses on a small data set, include feature weight interpretations based on different levels 
of experience. Section 4 concludes with a comparison of the results between the two dataset analyses and a 
discussion of the number and nature of subjective choices made in the development and interpretation of 
models, which can have very real negative implications in practice. 

2 A LARGE TRANSPORTATION DATA SET ANALYSIS 

The first data set analyzed used the Highway Safety Information System1 (HSIS), a roadway-based data 
repository that provides crash and fatality data that include a large number of roadway, infrastructure and traffic 
variables. It was developed by the Federal Highway Administration (FHWA) to help highway engineers to make 
better decisions on roadway and infrastructure design. For the purposes of this effort, the classification target 
variable was whether a driver was seriously injured or killed (1) vs. no serious injury (0).  

The feature selection process for the HSIS data set represents a significant subjective decision point. There 
were 248 features that could be selected in HSIS but using them all would likely result in data overfitting and a 
loss of generalizability. We first choose a set of variables that typical transportation engineers would want to 
answer with a large data set, which is “What road and infrastructure design elements most influence serious 
road accidents?” We also based our feature selection on previous research that has shown additional elements 
like driver age, poor weather, and the vehicle type are also significant predictors of fatalities [11, 12]. This 
resulted in 16 HSIS variables, as depicted in Table 1. Appendix A1 provides the exact categories and units for 
each of these variables. 

The data was collected in 3 separate files, which include accident, road, and vehicle files, and the files were 
linked using road keys, mileposts and accident keys. There were 968,371 accidents in the original data, but 
53,481 records were dropped due to more than three predictor variables missing as well as a missing target 
variable. For those accident records with missing variables (N=660,675), a k-nearest-neighbor method was 
used to impute the missing values. K was initialized at 400 for records missing one, two, and three variables 
respectively. After selection and imputation, the final data set resulted in a total of 914,890 accidents. 

 

                                                
1 https://www.hsisinfo.org/  

Figure 2: Complexity map of common machine learning models. 



4 

Such complexity is typical of such large data sets but also represents potential sources of error. Two-sample 
Kolmogorov-Smirnov tests were performed on the original and cleaned data to examine whether the cleaned 
data still followed the distribution of the original data. Moreover, the resulting data set was imbalanced, in that 
there were 23,949 fatal / severe observations and 890,941 non-severe observations. Thus, there are only 2.62% 
positive observations, which is also typical for such large data sets describing extreme events like deaths in 
healthy populations. This imbalance in the data is important when evaluating such models, and this issue will 
be revisited in a later section. 

As mentioned previously, Logistic Regression (LR) and Neural Network (NN) analyses were both used to 
model the relationship between the injury severity and selected variables in Table 1. The following sections 
demonstrate how the two models performed and what insights were gained.  

Table 1: Variables selected for the HSIS data set, including the associated number. Gray shading indicates a potential road 
design variable. 

Speed 
Limit (1) 

Avg. Annual 
Daily Traffic 

(2) 

Access 
Control 
Type (3) 

Left 
Shoulder 
Width (4) 

Right 
Shoulder 
Width (5) 

Number of 
Lanes (6) 

Median 
Width (7) 

Section 
Length (8) 

Light (9) Weather 
(10) 

Driver Max 
Age (11) 

Driver Min 
Age (12) 

Vehicle 
Type (13) 

Sobriety 
(14) 

Urban vs. 
Rural (15) 

Lane 
Width (16) 

 
 

2.1 Logistic Regression Model 

Logistic Regression (LR) is a classification modeling approach that predicts a categorical variable from a set of 
predictor variables, also known as features. In binary LR, the variables/features attempt to predict a 
classification of 1 or 0 using a sigmoid function as depicted in Figure 3. The features vector is notated as 𝑥, and 
𝜷 is a vector of regression coefficients corresponding to each feature. Scaler 𝛽$ is a bias term that shifts the 
sigmoid function left or right. An accurate LR model is one that has a high success rate for predicting both 
fatalities and non-fatalities. However, in the case of this HSIS data set, if a model predicted every observation 
to be negative (non-fatal), the overall accuracy would be 97.38%, since there is only a 2.62% occurrence of 
fatalities. Thus, to develop an accurate model we must first select the statistical threshold to determine what 
constitutes a 0 or 1, without skewing the predictive results to just one class.  

To determine the threshold, we determined where the true positive rate (TPR) and overall accuracy curves 
cross, beyond which the TPR falls exponentially. This led to a threshold of 0.0234, resulting in a model accuracy 
of 72.63%, with a TPR of 71.14%. However, for imbalanced data sets with binary outcomes like this data set, 
model accuracy is often not a good indicator of model performance [13]. Another potential method that can be 
used to assess model performance, especially for imbalanced data, is examining the area under the Precision-
Recall curve [14].  

Similar to Receiver Operator Characteristic (ROC) curves that plot true positive against false positive rates, 
precision-recall plots incorporate additional information.  Precision is defined as the ratio of true positives to the 
sum of true and false positives. Recall is defined as the ratio of true positives to the sum of true positives and 



5 

false negatives. This area under the curve equalled 0.1290, which suggests that the model is correctly 
classifying samples it predicts as fatalities, but may miss many classifications (Figure 4). 

 

Figure 3: Logistic Regression Function 

 

 

Figure 4: Precision-recall curve of the LR model. The baseline is the percentage of fatalities for the global dataset. 

Table 2: Feature weight results of LR for HSIS, * indicates significance at p < 0.0031, which uses a family-wise error 
correction rate of α/16, where α= 0.05 

Feature 
 

1 2 3 4 5 6 7 8 
Weight 0.0280 -3.8286 0.0158 0.8704 -0.0052 -0.3087 -1.4184 1.8336 
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Exp(W) 1.0284 0.0217 1.016 2.3879 0.9948 0.7344 0.2421 6.2564 
p-value 0.5522 0* 0.6124 0* 0.9610 0.0277 0* 0* 
Sig. Odds 
Ratio 

 45.9979  2.3879   4.1304 6.2564 

Feature 9 10 11 12 13 14 15 16 
Weight 0.7460 -0.1598 0.5811 0.4164 2.0926 1.6240 -0.7059 -0.1879 
Exp(W) 2.1085 0.8523 1.7879 1.5164 8.1064 5.0733 0.4936 0.8287 
p-Value 0* 0* 0* 0* 0* 0* 0* 0.0171 
Sig. Odds 
Ratio 

2.1085 1.1733 1.7879 1.5164 8.1064 5.0733 2.0257  

 
Given that the LR model is acceptable, although not particularly strong, we then needed to understand how 

the different 16 features in Table 1 contributed to the overall model. Table 2 lists the weights, exp(weights) and 
p-values. Those variables with a p value less than 0.0031 were considered significant. Because LR models 
produce regression coefficients for each feature that are log odds, taking the exponential of the coefficient 
weights estimates the expected change in the log odds of the target variable per unit increase in the 
corresponding predictor variable, holding the other predictor variables constant. Take, for example, variable 8 
in Table 2 which is the section length. A one-unit increase in this variable increases the odds of a fatality by 
6.2564 (6.2564:1). The weights less than zero decrease the odds of a fatality by 1/exp(W), so Table 2 details 
all the odd ratios accounting for those features with positive and negative weights. 

Determining which features are the most important is a subjective decision, with different decision criteria 
producing different results. One common interpretation is that all those features that are statistically significant 
should be in the mode, and in this case, 11 different variables mattered the most (Table 2). In answer to the 
research question, “What road design variables are the most important?” the answer would be left shoulder 
width (feature 4), median width (more is better [15], feature 7), and section length (feature 8, roads with longer 
consistent sections have more accidents), which has been seen in previous research [16]. While previous 
research has shown that increasing the shoulder width generally leads to less fatalities [17], this data set was 
slightly biased in the opposite direction.  

So, if a transportation engineer wanted to know what road and infrastructure design features mattered the 
most in preventing fatalities, it appears that with this model, section length is the most important (with the highest 
odds ratio). Ultimately, the choice of what variables are the most important has to be made by the practitioner, 
and budgetary and complexity constraints could drive threshold selection. Understanding that real dollars are 
at stake when making such decisions, and given that the LR model was not particularly strong due to the lower 
model accuracy, developing another model based on the very popular machine learning approach of neural 
networks can be investigated for comparison. This approach is detailed in the next section. 

2.2 Neural Network Model 
Neural networks (NNs) are often used to classify outcomes, similar to LR, but instead of a direct input and 
output computation, NNs contain layers where an input layer feeds hidden layers to develop a system of 
weighted connections that produce a classification at the output layer (as in Figure 5). Each unit in the hidden 
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layer and output layer contains an activation function 𝑓(∑𝑤 ∙ 𝑖 + 𝑏), where 𝑖 is a vector of input variables, 𝑤 is 
a corresponding weight vector, and 𝑏 is the bias. The activation function could be a sigmoid, hyperbolic tangent, 
or rectified linear unit function. Assembly of the activation functions allow for representation of high-order 
nonlinear relations. Such models must first be trained on a subset of the overall data set and in the training 
process, all parameters in the network must first be initialized to make the first forward propagation. Then, the 
cost (deviation between output and a true result) is calculated. After that, parameters are adjusted to minimize 
the deviation between model predictions and the desired outputs. This process is repeated until overall model 
accuracy cannot be improved.    

 

 

Figure 5: Illustration of a Neural Network 

Due to their multi-layered complicated structure, NNs can be very powerful and can represent non-linear 
high-order relationships. However, interpreting NN models can be very difficult. Unlike LR models, there are no 
individual weights associated with the features. Since the weights are distributed across the network, ultimately 
partial feature weights combine in an unknown non-linear manner to contribute to the overall model [18]. Thus, 
interpreting features important in a NN can carry significantly more subjectivity, as depicted in Figure 1, than 
with LR. This will be illustrated in a later section. 

In order to develop a NN2 for the same data set described earlier, we first initialized parameters of the neural 
network, including:  

                                                
2 The neural nets in this paper were all developed using MATLAB R2018b and the Pattern Recognition toolbox.  
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• Input: The input layer included 16 variables which included categorical, ordinal, and continuous data 
(Appendix A.1). 

• NN structure: For the hidden layer size (number of neurons in each layer), we selected 10 but 
examined up to 100, which did not make a difference in model performance.  

• Output: The output layer consisted of a single node to predict 0 (non-fatal accident) or 1 (Serious 
injury or fatal accident). 

• Tests Ratios: When training a NN, the data must be divided into three sets such that the first set, the 
training set, is iteratively used for backpropagation, the second set is for validation used to avoid 
overfitting, and the third set is the final testing set, used only once. The final ratios used in this effort 
were 68% for training, 12% for validation, and 20% for testing.  

During the training process, network weights were randomly initialized. In each backpropagation iteration, 
the cross-entropy loss was calculated, and the model generated a gradient towards the direction the parameters 
were adjusted. Similar to LR, the outputs from the NN model needed a threshold to determine the positive and 
negative predictions which was 0.0259, resulting in a model accuracy of 71.84%. As with the LR model, the 
area under the precision-recall curve was calculated and equaled 0.1604 as shown in Figure 6. So, while the 
overall model accuracy was slightly worse than the LR model, the area under the precision-recall curve was 
slightly better. 

 

Figure 6: Precision-recall curve of the NN model. The baseline is the percentage of fatalities for the global dataset. 

2.2.1 Interpreting feature weights 

If an analyst decided that such a model was acceptable, the next step would be interpreting the feature weights. 
NN results do not provide any clarity in terms of how individual features contribute to predictions, so we explored 
various ways to determine the influence of the relative weighting of individual features, similar to that of LR. We 
selected different approaches for NN feature interpretation given their prevalence on various machine learning 
discussion boards [19, 20], which suggests these are commonly used methods in practice.  
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The first method we explored is a widely-used method in selecting important features in machine learning 
models is called “leave one out,” e.g., [21, 22]. In this form of a sensitivity analysis, a single feature is removed, 
and the NN model is re-developed with the remaining features. If the removal of a feature leads to decreased 
model accuracy, this feature can be considered important, and vice versa. For this application, ten NN models 
were separately developed with the original 16 features, and the average accuracy of the ten models became 
the threshold to evaluate the performance change of removing a feature.  

Using this method on the model, Figure 7a demonstrates that features 13 (vehicle type) and 14 (sobriety) 
are the most important. An interesting observation is that after individually removing features 4 (left shoulder 
width), 5 (right shoulder width), 6 (number of lanes), 15 (urban/rural), or 16 (lane width) the performance of the 
new model increased. This increase suggests that under this model, those individual features may introduce 
noise in the model.  

The second method used in interpreting feature weights looks at the weights of the first layer in a shallow 
neural network, which is a NN of 1-2 layers  [23, 24]. We trained ten shallow NNs with no hidden layers just for 
the purpose of feature selection, and Figure 7b shows the average weight and standard deviations of each 
feature across the 10 different models. Figure 7b also illustrates another issue with subjectivity, which is where 
to draw the line of criticality for feature weights, which is up to the individual practitioner. 
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Because the use of weights only to assess feature importance ignores how much the weights vary 

through multiple model iterations, as seen by the error bars in Figure 7b, the third method we applied used a 
weighted mean metric of mean feature weight/standard deviation (SD), as seen in Figure 7c. While features 13 
(vehicle type), 14 (sobriety), 9 (light), and possibly 15 (urban/rural) could be seen as the most important, but 
this is clearly a subjective judgment.  Using this interpretation, no road or infrastructure design variable would 
be seen as important. 

Lastly, while normalizing the feature weights by their variance helps to address the instability of some 
features, such a method does not examine how each feature ultimately influences overall model accuracy.  To 
account for this, the fourth method of feature interpretation weighted each feature weights/standard deviation 
by the overall model accuracy drop if that variable was removed (Figure 7d). Thus, we combined methods 1 

Figure 7: Four different methods of feature interpretation, (a) Leave one out, (b) Shallow neural networks (c) Feature 
weighted by standard deviation (d) Feature weighted by standard deviation and drop in model accuracy. 
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and 3 for a new evaluation method 4. This method, similar to other feature permutation approaches [25, 26], 
suggests feature 13 (vehicle type) and 14 (sobriety) were dominant in the model, with negligible contribution by 
other features. 

2.3 Model Comparison 

Given the four different methods for NN feature interpretation, we wanted to compare these outputs with the LR 
model outcome. In order to make meaningful comparisons, we ranked the variables in order of importance for 
each method, understanding that the distance between these rankings is not directly comparable, particularly 
between LR and NN models. The results are listed in Table 3 with the top five features shaded in each set, 
given that there were five models. The exception is the fourth NN interpretation method which only 
demonstrated two important features.  

Table 3: HSIS rank orderings by different feature interpretation methods. 

    Feature LR Method 1 Method 2 Method 3 Method 4 

1. Speed limit 14 11 11 11 - 

2. AADT 1 3 1 9 - 

3. Access control 15 7 16 15 - 

4. Left shoulder width 6 14 5 10 - 

5. Right shoulder width 16 12 15 13 - 

6. Number of lanes 11 13 8 12 - 

7. Median width 5 6 12 16 - 

8. Section length 3 4 2 5 - 

9. Light 7 9 6 3 - 

10. Weather 13 5 13 7 - 

11. Maximum age 9 10 9 6 - 

12. Minimum age 10 8 10 8 - 

13. Vehicle type 2 1 3 1 1 

14. Sobriety 4 2 4 2 2 

15. Urban / Rural 8 15 7 4 - 

16. Lane width 12 16 14 14 - 

 
Not surprisingly, the LR model and Method 2 were in close, but not exact alignment. Method 2 uses a shallow 

NN which is similar to LR. Method 4 for NN interpretation is a derivative of Methods 1 and 3, so this outcome is 
also not surprising, save for the fact that 14 of the 16 feature contributions were negligible. In aggregate, all 5 
models agreed that sobriety and vehicle type (where people driving motorcycles were at higher risk for fatalities) 
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were relatively strong predictors of fatal or near-fatal accidents, but there was not strong consensus across the 
NN models about other features. 

It is important to recognize that while the model interpretations are not radically different, they are different 
enough to cause issues if such results were used to justify policy decisions. It is clear from Table 3 that the 
choice of machine learning model can affect results, as can the choice of feature weight interpretation if NNs 
are used. Moreover, understanding that interpretation of these results is a highly subjective process, and 
experience can significantly affect such outcomes. For example, when three different engineers of various levels 
of experience were asked to interpret these results, the following was reported: 

• Interpretation #1 (Student Engineer):  
The LR model, method 3 and method 4 are the most reasonable models so features are important if at 
least two of three metrics rank in the top 5. So, features 8 (section length), 13 (vehicle type), and 14 
(sobriety) are the most important.  

• Interpretation #2 (Junior Engineer):  
By counting how many times a feature ranked in the top 5, features were divided into three groups. 
Group 1 has features 8 (section length), 15 (vehicle type), and 16 (sobriety), all ranked in the top 5 at 
least four times. Group 2 has feature 2 (AADT) which ranked three times in the top 5. The remaining 
features belong to Group 3.  

• Interpretation #3 (Senior Engineer): 
This analysis adds more evidence that sobriety and vehicle type are significant causes of fatalities for 
drivers, but because the model accuracy is too low, no other conclusions should be drawn from this 
data.  

If such an approach was used by transportation engineers to determine whether some aspect of road or 
infrastructure design is a good candidate for investment, the choice of the model could dramatically affect the 
outcome and ultimately dollars spent. If these engineers do not fully understand the ramifications of their choices 
and assumptions in the modelling process, it is not clear that the outcomes would be in the best interest of 
public safety. 

In summary, for this first data set of factors influencing driver fatalities and injuries, two different machine 
learning models and five quantitative representations of the results were generated. The two models and five 
representations were similar in some aspects, but not in alignment, illustrating that the choice of model and 
representation strategy can alter the results. Such differences in model prediction performance has been noted 
in the use of other machine learning models applied to similar data sets [27]. Moreover, three different 
interpretations of the results by practitioners with different levels of experience demonstrate how much variability 
can be introduced when drawing conclusions from such studies.  

In the next section, this same approach will be replicated with a pedestrian accident data set to determine 
how such approaches affect results from a smaller data set.  
 

3 A SMALL TRANSPORTATION DATA SET ANALYSIS. 

While the first data set was very large with hundreds of thousands of accidents and 248 features, not all data 
sets are as populated, so we wanted to examine a traffic safety data set that was not as large. With the recent 
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rise in pedestrian deaths [28], we elected to use the 1996 National Automotive Sampling System (NASS)3, 
which attempts to establish the relationship between vehicle and pedestrian contact parameters along with 
injury type and severity, as well as impact speeds in Buffalo, Fort Lauderdale and Hollywood FL, Dallas, 
Chicago, Seattle, and San Antonio. As with the driver fatalities, transportation engineers would be interested in 
determining if any relationships between roadway and infrastructure elements and pedestrian fatalities could 
be elucidated. 

Despite the large number of cities, there were only 549 observations of pedestrian fatalities in this data set, 
with 189 possible features. Such a large number of predictor variables would cause overfitting so we down-
selected to preserve degrees of freedom. In addition, there were many invalid variable values. We ended with 
310 observations of pedestrian fatalities with 16 features listed in Table 4, categorized similarly as in the first 
section with the additional category of pedestrian characteristics. Appendix A.2 details these parameters. We 
elected to use 16 variables to show a comparison with the large HSIS model that also had 16 independent 
variables. The target variable indicated the level of injury with 1 = fatal injury and 0 = non-fatal injury. There 
were no missing data in this set. 

Table 4: Variables selected for the NASS data set, including the associated number. Gray shading indicates a potential 
road or infrastructure design variable. 

Month (1) Time (2) 
Pedestrian 
weight (3) 

Pedestrian 
age (4) 

Pedestrian 
gender (5) 

Pedestrian 
motion (6) 

Pedestrian 
action 

relative to 
vehicle (7) 

Pedestrian 
first 

avoidance 
action (8) 

Sobriety (9) 
Speed 
limit (10) 

Vehicle curb 
weight (11) 

Driver 
distraction 

(12) 

Traffic way 
flow (13) 

Number of 
lanes (14) 

Roadway 
surface 

condition 
(15) 

Traffic 
control 
device 

function (16) 
 

This data set is substantially smaller than the first, which represents real world constraints but is also limiting 
in that machine learning algorithms perform best with much more data. In addition, this data set is also 
imbalanced with 26 fatal observations and 284 non-fatal observations, so there are only 8.39% positive 
observations. While not as imbalanced as the HSIS data set, there are similar issues in determining the relevant 
thresholds.  

As with the first data set, Logistic Regression (LR) and Neural Network (NN) models were developed as in 
the previous data set exploration, with similar feature weight investigations. The overall accuracy of the LR 
model was 84.84% with an area under the prevision-recall curve of 0.4254. The NN model accuracy was 
76.77% with an average area under the prevision-recall curve of 0.3612 (standard deviation of .1329). While 
LR is clearly the better choice for such a model, given the small data set size, it is very common mistake for 
practitioners to use NN models on smaller data sets, so we include it here to show how such a choice could 
influence overall interpretation.  

                                                
3 https://ftp.nhtsa.dot.gov/PED/96PedMan.pdf 
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3.1 Model Comparison 
As with the HSIS data, we ranked the features by order of importance for the different methods, with the top 5 
highlighted in Table 5. For the LR model, only variables that were statistically significant are listed (alpha = 
0.05). There is overall agreement across the methods that pedestrian age (feature 5) is a significant factor in 
whether a pedestrian will be killed if hit, which has been seen in other research [29]. However, there was no 
consensus across the models for the leading factor. The speed limit and whether a driver had been drinking 
compete for the first and third spots, but none of the NNs agree with the LR model about speed limit. 

If the goal of a transportation engineer in analyzing this data was to determine roadway and infrastructure 
elements that could contribute to pedestrian deaths, the only variables that seemed potentially relevant were 
the traffic way flow, ranked 4th in method 1 and whether a traffic light was functioning, ranked 4th for method 3. 
However, there was no strong model consensus and whether tax payer dollars should be spent due to 
recommendations from such models is questionable. Again, to demonstrate how much interpretation of these 
results can vary, three different perspectives are given regarding the outcomes. 

Table 5: NASS rank orderings by the different models and feature interpretation methods 

Feature LR Method 1 Method 2 Method 3 Method 4 

1. Month - 3 16 16 7 

2. Time - 14 7 7 - 

3. Pedestrian weight - 5 6 5 5 

4. Pedestrian age 2 2 2 2 2 

5. Pedestrian gender - 8 11 9 8 

6. Pedestrian motion - 1 5 8 1 

7. Pedestrian action relative to 
vehicle 

- 15 13 11 - 

8. Pedestrian first avoidance 
action 

- 6 4 3 4 

9. Sobriety - 7 1 1 3 

10. Speed limit 1 12 3 6 - 

11. Vehicle curb weight - 16 12 13 - 

12. Driver distraction  - 11 9 10 - 

13. Traffic way flow - 4 15 15 6 

14. Number of lanes - 9 10 12 9 

15. Roadway surface condition - 10 14 14 - 
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16. Traffic control device 
function 

- 13 8 4 - 

 
• Interpretation #1 (Student Engineer):  

Features are important if at least three ranked in the top 5. Given this, feature 3 (pedestrian weight), 
4 (pedestrian age), 6 (pedestrian motion), 8 (first avoidance action), and 9 (driver drinking) are the 
most important features.  

• Interpretation #2 (Junior Engineer): 
By counting how many times a feature ranked in the top 5, features were divided into three groups. 
Group 1 has only 1 feature, 4 (pedestrian age), that ranked five times in the top 5. Then Group 2 has 
features 3 (pedestrian weight), 6 (pedestrian motion), 8 (first avoidance action), 9 (driver drinking), 
and 10 (speed limit) which ranked in the top 5 three times and twice. Other features belong to Group 
3, the least important group.  

• Interpretation #3 (Senior Engineer): 
Given the low model accuracy of the NN model as well as its instability, I have more confidence in 
the LR model. Speed limit and pedestrian age appear to be strong predictors for fatalities, which 
agrees with previous studies, and so future work should target interventions that specifically address 
these two variables.  

 
These three interpretations have some overlap but there is disagreement about a key aspect, which is the 

posted speed limit. The most experienced person felt this was a critical variable that should be acted upon, i.e., 
that DOTs should potentially lower speed limits in places where pedestrians were at high risk. However, the 
student engineer did not list this variable as important and the junior engineer felt speed limit might be important 
but ranked it 6th in order of importance. If the student or junior engineer’s results were deemed correct, speed 
limits may not be deemed critical and such an error of omission could cause tangible safety concerns. Speed 
has an exponential relationship to pedestrian injury [30], so if data scientists who build ML models are not 
familiar with domain-specific literature, they could miss an important clue that suggests predictive models that 
do not include speed for pedestrian injury are likely wrong.  

4 DISCUSSION 

Transportation analysts are inundated with requests to apply popular machine learning modelling techniques to 
data sets to uncover never-before-seen relationships that could potentially revolutionize safety, congestion and 
mobility. To demonstrate some of the subjectivity and bias pitfalls in engaging in such analytics, two case studies 
were developed to answer the notional question of which road and infrastructure design variables in a dataset 
mattered for possibly reducing deaths in driving and pedestrian accidents.  

To demonstrate how different choices in modelling technique could lead to different outcomes, Logistic 
Regression (LR) and Neural Network (NN) machine learning models were constructed on a large and a small 
transportation data set. We then developed 5 different representations for each data set, one LR and one NN 
with 4 different feature interpretations commonly used in the machine learning community. The models were 
then interpreted to determine which variables mattered in terms of possible interventions.  
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We chose two different data sets, one with 968,371 observations and the other at just 549 because with 
the rising popularity of ML techniques, there are increasing efforts to demonstrate the effectiveness of using of 
neural networks on small data sets. While some researchers claim that deep learning algorithms can achieve 
superior classification accuracy on data sets of only a few hundred points [31], others disagree and argue that 
ML-based methods are inherently brittle, even with large data sets [32, 33]. Thus, we wanted to explore just 
how much results could vary if a modeler chose to use a NN on a small data set instead of a more traditional 
and appropriate model like LR 

For both data sets, results varied significantly depending on the model selected. Results also varied for the 
large and small data sets when four different approaches were used for NN feature weighting interpretation. 
Our results across both data sets and modelling approaches showed that when attempting to determine if road 
design variables significantly influenced driver injuries and fatalities, the answer is unclear, with many possible 
interpretations of the results.  No set of outcomes was dominant, even for the large data set, demonstrating that 
for real-world data sets, the choice of modelling approach and interpretation can dramatically influence possible 
results, and therefore any accompanying recommendations.  

To illustrate why such varying model interpretations are so important, suppose the Junior Engineer’s Group 
1 variables in the first case study were decided to be the ones that received attention. Such people are the ones 
typically assigned these analyses, and increasingly organizations have few senior people to cross-check such 
results [34]. Recall that the goal was to determine where a Department of Transportation should spend money 
on infrastructure to reduce fatalities, for the large data set, the section length was the only road variable that 
the Junior Engineer ranked high in reducing fatalities. The practical implications of this potential error of 
commission are that some roads would need to be redesigned to reduce fatalities, since section length refers 
to the lengths of straightaways, curves, etc. (longer section lengths are better). On average, it would cost 
$4M/mile to expand and reconfigure such a road [35], so a wrong decision can have significant fiscal 
consequences.   

The pedestrian model suffered from similar problems of extreme model variability. In this case, the neural 
network models were considered to be good enough models by the student and junior engineers, which led to 
them not adequately considering the role of speed limit. In this case study, speed limit is likely a critical variable 
that could have been missed. This error of omission could lead to inaction in reducing speed limits, which 
ultimately could save pedestrian lives if its importance is understood. 

When looking at both the construction and the interpretation of the models through the lenses of these two 
case studies, we propose that that beyond ensuring that the underlying data is free from bias, there are a 
number of other opportunities for the introduction of subjectivity and bias which include: 

• Picking the modelling approach to be used, 
• Picking which features should be included out of large data sets, 
• Determining whether to drop cases with missing data or to generate missing data estimates, 
• Picking a p value for statistical significance,  
• Deciding numbers of neurons for hidden NN layers,  
• Picking the maximal training iteration for the NN training process,  
• Picking stopping rules for training performance factors (software dependent), 
• Selecting data training and testing ratios, 
• Picking threshold values between binary unbalanced outcomes,  
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• Choosing thresholds between important/unimportant features, 
• Determining whether model accuracy is good enough, 
• Deciding what the actual important features for a model. 
 
This effort also highlights other core issues not often discussed in practical applications of these methods 

which include issues with imbalanced data, i.e., when one class of data (non-fatalities in our data sets) 
significantly dominates over the other (fatalities). Unfortunately, such imbalance is a typical characteristic of 
transportation data sets as well as in other domains like healthcare with infection rates, and also in the financial 
world for events like fraudulent transactions. If practitioners blindly apply statistical packages without 
understanding the underlying nature of the assumptions, then results could be negatively affected.  

It is possible that the underlying transportation data sets in the public repositories we accessed carry more 
uncertainty due to human construction, which led to the widely varying outcomes. However, data quality is a 
problem that is rampant across most domains where ML models are constructed. Moreover, we only 
demonstrated the use of two machine learning modelling approaches in the two transportation case studies, so 
these results cannot generalize to all forms of ML models (Fig. 2). However, there will be similar sources of 
subjectivity and bias in any application of a probabilistic analysis that requires making judgments about model 
parameters and thresholds, as well as the inherent subjectivities in interpretation.  

5 CONCLUSION 

While often heralded as transformative decision support tools, machine learning models can be significantly 
biased and subjective, and these weaknesses are a real problem for the commercial sector today. Because of 
such problems, recently Alphabet warned investors that AI can present serious risk to companies, stating 
“…new products and services, including those that incorporate or utilize artificial intelligence and machine 
learning, can raise new or exacerbate existing ethical, technological, legal, and other challenges, which may 
negatively affect our brands and demand for our products and services and adversely affect our revenues and 
operating results. [4]” 

While it has been well established that underlying data can bias machine learning outcomes, how other 
subjective decisions about model construction and interpretation can influence such outcomes is less well 
known. To this end, this paper demonstrated that for both large and small data sets, two different machine 
learning approaches had twelve distinct points of subjectivity. The resulting models had similar accuracies, but 
very different outcomes in terms of determining which variables in the model should be considered critical 
actionable variables. Experience with such models produced very different interpretations of the outcomes, 
which could lead to errors of commission and omission, i.e., when some variables are thought to be more 
important than the really are or when critical variables are overlooked because of their low ranking in feature 
importance interpretation. Such errors have real world cost and safety consequences. 

A significant issue with the use of such powerful but potentially brittle analytical tools is a lack of checks and 
balances for result generation and interpretation. In this study, we generated five different interpretations for 
two different data sets but it would be very unusual for practitioners to go to this level of analysis to determine 
how different models may differ and why. Experience (or lack thereof) ultimately guides the construction and 
interpretation of such models, and this reality represents a significant source of subjectivity. Thus, there is a 
very real possibility that decisions could be made from results generated by models that are not exactly wrong, 
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but also are not exactly correct. Such inherent data analytic weaknesses need to be accounted for when 
policymakers make decisions based on machine learning-generated results. 

Given the potential high number of sources of subjectivity and bias in both data selection and model 
development and interpretation, the data science community needs to be more transparent about these points 
of weakness. Moreover, courses should be developed that combine probabilistic modeling tools with decision 
science courses that look at biases in how humans perceive data relationships and how modelers’ own 
experiences influence their perceptions of outcomes. Other future work includes the need to investigate data 
quality and stability of resulting model outcomes. For example, it may be that transportation data is especially 
susceptible to unstable models due to significant human interpretation in accident reports which is not seen in 
financial data sets. Another rich area of inquiry is how to optimize model feature selection given previous 
findings and sensitivity analysis results. 

Understanding then that subjectivity and bias in ML models can come from more than just the underlying 
data, how should practitioners develop models that are robust, and more importantly, do no harm? First, this 
case study suggests it is important to both have experience in a data modeling team as well as subject matter 
expertise. Applying models of any kind to a domain that is not well understood raises the risk of irrelevant results, 
at best, but potentially serious consequences at worst. Taking the time to deeply understand a domain takes 
time and money, but it is not clear companies are willing to commit the resources for assumption and limitation 
checking, as well as in-depth sensitivity analyses. In addition, marketing departments are often disconnected 
from the actual engineers so performance claims are sometimes made to win a contract that engineers may 
struggle to meet. Experienced management that understands realistic timelines, the importance of gathering 
critical background information and conducting comprehensive sensitivity analyses is the key to ensuring 
models can be deployed with confidence.  
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A  APPENDICES 

Variable descriptions, ranges and categories are detailed in the following sections for the two data sets used 
for the two case studies. 
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A.1 	HSIS Data Parameters  
 

 Variables Description 
1 Speed limit Miles per hour from 10 to 70. 
2 AADT Average annual daily traffic ranging from 0 to 775,446 cars. 
3 Access control 0: no access control; 1: expressway - partial access control; 2: freeway 

- full access control. 
4 Left shoulder width Left should width (in increasing direction of the roadway), feet, ranging 

from 0 to 80. 
5 Right shoulder width Right shoulder width (in increasing direction of roadway), feet, ranging 

from 0 to 40. 
6 Number of lanes From 1 to 25. 
7 Median width Feet ranging from 0 to 800. 
8 Section length Stretch of road that is consistent in terms of certain road characteristics 

(e.g. shoulder widths, lane number, lane width …). Miles, ranging from 
.01 to 13.543. 

9 Light 0: daylight, 1: dusk/dawn, 2: dark but with street light, 3: dark without 
street light, 4: dark with street light not functioning. 

10 Weather 0: clear or cloudy, 1: weather may influence driving, including raining, 
snowing, wind and fog. 

11 Maximum age Maximum age of driver involved in the accident, ranging from 0 to 105. 
12 Minimum age Minimum age of driver involved in the accident ranging from 0 to 104. 
13 Vehicle type 0: normal, 1: heavy, 2: motorcycle. 
14 Sobriety 0: not impaired, 1: impaired. 
15 Urban / Rural 0: rural, 1: urban. 
16 Lane width Feet ranging from 0 to 150. 

 
 

A.2 NASS Data Parameters 
 

 Variables Description 
1 Month 1-12: the month. 
2 Time 3 or 4 digits representing time, e.g. 1523 means 15:23, 830 means 8:30. 
3 Pedestrian weight Weight in kg ranging from 9 to 150. 
4 Pedestrian age Actual age ranging from 2 to 93. 
5 Pedestrian gender 1: male, 2: female. 
6 Pedestrian motion 0: not moving, 1: walking slowly, 2: walking rapidly, 3: running or jogging, 4: 

hopping, 5: skipping, 6: jumping, 7: falling/ stumbling or rising. 
7 Pedestrian action 

relative to vehicle 
00: stopped, 01: crossing road straight, 02: crossing road diagonally, 03: moving 
in road with traffic, 04: moving in road against traffic, 05: off road approaching 
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road, 06: off road going away from road, 07: off road moving parallel, 08: off road 
crossing driveway, 09: off road moving along driveway. 

8 Pedestrian first 
avoidance action 

00: no avoidance actions, 01: stopped, 02: accelerated pace, 03: ran away (along 
vehicle path), 04: jumped, 05: turned toward vehicle, 06: turned away from 
vehicle, 07: dove or fell away, 11: vault corner of vehicle, 12: vault onto vehicle, 
13: brace against vehicle, 14: crouched and braced hands against vehicle. 

9 Sobriety 0: not drinking, 1: drinking. 
10 Speed limit Speed limit in km/h ranging from 16 to 105. 
11 Vehicle curb weight Actual value / 10 in kilogram ranging from 73 to 293. 
12 Driver distraction 1: full attention to driving, 2: distracted by other occupant, 3: distracted by moving 

object in vehicle, 4: distracted by outside person/object/event, 5: talking on 
cellular phone or CB radio, 6 sleeping or dozing while driving. 

13 Traffic way flow 1: not physically divided (two-way traffic), 2: divided traffic way - median strip 
without positive barrier, 3: divided traffic way - median strip with positive barrier, 
4 one-way traffic way. 

14 Number of lanes Ranging from 1 to 7. 
15 Roadway surface 

condition 
1: dry, 2: wet, 3: snow and slush, 4: ice, 5: sand/dirt/oil. 

16 Traffic control device 
function 

0: no traffic control, 1: not functioning, 2: functioning. 


