
 

American Institute of Aeronautics and Astronautics 
 

 

1 

Identifying Suitable Algorithms for Human-Computer 

Collaborative Scheduling of Multiple Unmanned Vehicles 

Andrew S. Clare
1
 and Mary L. Cummings

2
 

Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 

and 

Luca F. Bertuccelli
3
 

United Technologies Research Center, 411 Silver Lane, E. Hartford, CT 06042 

Real-time scheduling and task assignment for multiple Unmanned Vehicles (UVs) in 

uncertain environments will require the computational ability of optimization algorithms 

combined with the judgment and adaptability of human supervisors.  Identifying the 

characteristics that make a scheduling algorithm suitable for human-computer collaboration 

is essential for the development of an effective scheduling system.  This high-level systems 

analysis paper begins the process of deriving requirements for collaborative scheduling 

algorithms by conducting a survey of 117 publications within the past five years in academia 

and industry on multiple UV scheduling algorithms.  The goal of the survey is to determine 

the types and frequency of scheduling algorithms that are currently in use and to classify the 

characteristics and capabilities of these algorithms.  Results show that academia has settled 

on meta-heuristic and auction-based algorithms as providing the best balance of 

performance and computational speed.  In industry, however, the most widely used solution 

methods are “iterative” approaches that monotonically improve the schedule with further 

iterations.  Industry-developed algorithms are more likely to be capable of scheduling 

heterogeneous UVs, but university researchers have developed more algorithms that can 

account for uncertainty and provide estimates of robustness.  The different objectives of 

industry practitioners and academic researchers may be driving these disparities.  

Addressing this gap will be essential to the development and adoption of future human-

computer collaborative scheduling systems. 

Nomenclature 

J = objective function of the optimization algorithm 

x = decision variables 

f, g = generic functions 

θ = generic variable 

I. Introduction 

eal-time scheduling in uncertain environments is crucial to a number of domains, including Air Traffic Control 

(ATC),
1
 rail operations,

2
 space satellite control,

3
 and Unmanned Vehicle (UV) operations.

4
  Specifically, the 

use of UVs has increased dramatically over the past decade
5-7

 and recent advances in the autonomous capabilities of 

UVs allow for single-operator supervisory control of multiple UVs.
8
  Many advanced UVs can execute basic 
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operational and navigational tasks autonomously and can collaborate with other UVs to complete higher level tasks, 

such as surveying a designated area.
9, 10

   

 In order to effectively control multiple semi-autonomous UVs, some method is necessary for scheduling tasks.  

For the purposes of this paper, scheduling is defined as creating a temporal plan that assigns tasks among a team of 

UVs and determines when the tasks will be completed.  While this paper will not focus on path planning, it should 

be noted that path planning is coupled with the scheduling problem, due to the need to estimate how long it will take 

for a UV to travel to a certain location to accomplish a task. A variety of optimization algorithms have been 

developed to address the problem of scheduling tasks for multiple UVs.
11-17

  While varying in their method of 

formulating the scheduling problem and solving the optimization, all of these approaches utilize an autonomous 

scheduler with little to no human input during the development of the schedule. 

In the presence of unknown variables, possibly inaccurate information, and changing environments, automated 

scheduling algorithms do not always perform well.
18, 19

 Though fast and able to handle complex computation far 

better than humans, optimization algorithms are notoriously “brittle” in that they can only take into account those 

quantifiable variables, parameters, objectives, and constraints identified in the design stages that were deemed to be 

critical.
20

  In a command and control situation such as supervising multiple UVs, where events are often 

unanticipated such as weather changes and unexpected target movement, automated planners have difficulty 

accounting for and responding to unforeseen changes in the environment.
21, 22

  Additionally, the designers of 

optimization algorithms often make a variety of assumptions when formulating the optimization problem, 

determining what information to take into account, or, in the case of receding horizon algorithms, deciding how far 

into the future to plan.
23, 24

 

One approach to deal with the “brittleness” of these algorithms is to have a human operator and an algorithm 

collaboratively develop schedules.  A number of studies have shown that humans collaborating with algorithms can 

achieve higher performance than either the human or the algorithm alone under certain conditions.
25-31

 While 

extensive research has been conducted to develop better algorithms for planning, comparatively little research has 

occurred on the methods by which human users utilize these tools, especially when working in dynamic, time-

critical situations with high information uncertainty.
32

  Additionally, operators can become confused when working 

with automation, unaware of how the “black box” algorithm came to its solution or the assumptions made by the 

algorithm in modeling the problem.   Fig. 1 is a representation of the fact that there are often differences between the 

real world, the automation/engineer’s model, and the human operator’s models of the world.  

 

 
 

Figure 1. Differences between real world, algorithm’s model, and operator’s model of the world. 

Designing an effective human-computer collaborative scheduling system could provide the ability to supervise 

multiple UVs while addressing the inherent brittleness and opacity of algorithms.  As shown in Fig. 2, the system 

could include the human operator, the graphical interface which displays information to the operator and allows the 

operator to interact with the system, the scheduling algorithm, and the semi-autonomous UVs which act in the 

environment, all with information flowing between components.  It should be noted that the scheduling algorithm 

could exist as a stand-alone component, as pictured, or as sub-system of each UV, as in many decentralized 

systems.
33, 34

  In the development of any complex system, the definition of requirements is a fundamental step in the 

systems engineering process.
35

  While others have attempted to develop requirements for the graphical interfaces in 

human-computer collaboration,
20, 32, 36, 37

 few have attempted to develop requirements for the scheduling algorithms 

to be used in such systems. 
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Figure 2. Human-computer collaborative scheduling system diagram. 

 The goal of this paper is to begin to identify algorithms that have the sufficient or required properties to support 

real-time human-computer collaborative schedule creation for multiple UVs in uncertain environments.  While some 

algorithms may provide optimal schedules almost instantaneously, the algorithm may lack certain characteristics 

that are essential for effective human-computer collaboration.  For example, the algorithm may not be capable of 

taking into account uncertainty in the environment, taking real-time feedback or guidance, or providing a level of 

certainty about the merits of the schedule that it produced. Our goal here is not to criticize the tremendous amount of 

important work that has been done towards developing better scheduling algorithms.  Instead, this high-level 

systems analysis paper aims to analyze how these scheduling algorithms can successfully be paired with a human 

operator to operate in real-world scenarios.  By identifying the characteristics of the most suitable algorithms from a 

systems-level perspective, we can guide the development of algorithms that will enhance the performance of human-

computer collaborative systems.   

As a first step towards identifying suitable algorithms for human-computer collaborative scheduling, this paper 

describes a survey of algorithms developed in both industry and academia for multiple UV scheduling.  The purpose 

of the survey was to determine the types and frequency of scheduling algorithms that are currently in use and to 

classify the characteristics and capabilities of these algorithms.  A secondary purpose was to compare the algorithms 

in use in academia and industry, which provided some insight into the differences in objectives between researchers 

and practitioners.  Finally, the survey provided data on the algorithms that are available for use in human-computer 

collaborative scheduling systems and identified the areas where more research is necessary to enhance the 

capabilities of such systems. 

II. Methods 

The survey was intended to cover a broad spectrum of publications in order to analyze the types and frequency 

of scheduling algorithms for multiple UVs that have been developed in both academia and industry.  The survey 

utilized conference papers, journal articles, and technical reports, primarily relying upon papers that have undergone 

some kind of peer-review process.  The survey covered the years 2006-2011, in order to emphasize what is currently 

in use or in development.  Papers included in the survey were chosen based on searching for resource allocation or 

scheduling algorithms specifically meant for assigning tasks to multiple UVs in real-time.  A general assumption 

was that the authors chose to formulate the scheduling problem as an optimization, as shown in Eq. 1. 

 

   
       

                 

   

 (1) 

Eq. 1 is a very general representation of the scheduling problem and in fact could represent any optimization 

problem.  Again, for the purposes of this paper, scheduling is defined as creating a temporal plan that assigns tasks 

among a team of UVs and determines when the tasks will be completed.  We placed no restrictions on the type of 

objective function, J, used by the algorithm, which may or may have not taken into account the decision variables, 

may or may not have been linear, may or may not have been convex, and could simply have been 1 and thus a 

Constraint Satisfaction Problem (CSP) as opposed to an optimization.  We also placed no restrictions on the 

constraints applied to the problem as well.  For example, one paper
10
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accumulated given that each task has a specific value.  The decision variables, xij, were binary in the set       where 

xij =1 if agent i is assigned to task j.  The optimization was subject to constraints including the maximum number of 

tasks that one vehicle could perform, a minimum number of tasks that needed to be assigned, and that the schedule 

was “conflict-free,” where each task is assigned to no more than one UV.  In a different paper,
38

 the objective 

function, J, was to minimize the cumulative flight time of all UVs.  The decision variables were once again, xij, 

which are binary in the set       where xij =1 if agent i is assigned to task j.  The constraints in the problem 

formulation included a conflict-free assignment and timing constraints on each task.  

Once a paper was found that fits the general category, we attempted to collect data on certain characteristics of 

the algorithm and to classify the algorithm into broad categories.  Simple data such as the year of the paper and the 

primary institution of the authors was collected.  The paper was classified as either originating from academia or 

industry based on the institution of the authors.  Academia was defined as any university or academic research 

institution, while industry was defined as any private company or research organization outside of academia, 

including any of the research laboratories of the armed forces or the National Aeronautics and Space Administration 

(NASA). 

While previous methods of classifying the characteristics of algorithms have been developed for logistics
39

 and 

computer science,
40, 41

 the problem of real-time, human-computer collaborative scheduling of multiple UVs in a 

dynamic and uncertain environment required a new classification method.  Our methods drew from those previous 

classification techniques while extending the state of the art. 

We began by examining the method chosen by each paper for solving the combinatorial optimization problem.  

Typical methods of solving the optimization included enumeration, the simplex method, dynamic programming, 

branch and bound, and greedy algorithms.  Meta-heuristic methods were often inspired by biological processes and 

included Genetic Algorithms, Simulated Annealing, Tabu Search, Particle Swarm Optimization, and Ant-Colony 

Algorithms, among others. Market-based auction algorithms were often applied to solve a variety of scheduling 

problems.  Also, Dynamic Vehicle Routing (DVR) methods using Voronoi partitions were identified as a potential 

solution method that could guarantee a certain level of performance without the need to replan constantly in a 

dynamic environment.  DVR methods produce policies or decision rules, as opposed to specific task assignments, 

typically by optimizing the expected value of performance. 

Finally, a variety of other algorithm characteristics were analyzed. What guarantees did the algorithm make 

about the optimality of the solution?  Did the algorithm take into account uncertainty in the environment, uncertainty 

in the inputs or constraints used by the algorithm, or the potential movement of targets?  Was the solution method 

centralized or decentralized?  Can the algorithm handle heterogeneous UVs or only homogeneous UVs? 

Obviously, many of these designations are subjective and dependent on the authors’ written descriptions of their 

algorithms. While others have performed computational comparisons of the performance of these different 

algorithms,
42, 43

 the point of this paper is to glean some insights on what researchers and practitioners are focusing 

on when designing new multiple UV scheduling algorithms, and to analyze the implications for human-computer 

collaborative scheduling. 

III. Results 

Based on the previously mentioned criteria, 117 papers
*
 published between 2006 and 2011 were identified as 

describing the development of a scheduling algorithm for assigning tasks to multiple UVs in real-time. Thirty-nine 

different conferences and journals were represented in the survey, with the majority of the contributions from: AIAA 

Guidance, Navigation, and Control Conferences, AIAA Infotech@Aerospace Conferences, American Control 

Conferences, IEEE Conferences on Decision and Control, AIAA Journal of Aerospace Computing, Information, and 

Communication, AIAA Journal of Guidance, Control, and Dynamics, IEEE Transactions on Control Systems 

Technology, and IEEE Transactions on Automation Science and Engineering.  While it is likely that some papers 

were missed, a large enough sample has been collected to analyze general trends in the development of scheduling 

algorithms for multiple UVs. 

A. Institutions Researching Scheduling Algorithms  

Fig. 3a shows the distribution of these papers over the past 5 years.  Approximately 20 papers per year were 

found on the topic at hand.  Fig. 3b shows the distribution of the papers based on the geographic location of the 

                                                           
*
 The references for all papers included in the survey can be found here: 

http://web.mit.edu/aeroastro/labs/halab/algorithmsurvey.shtml  

http://web.mit.edu/aeroastro/labs/halab/algorithmsurvey.shtml
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primary author’s institution.  Seventy-two percent of the papers were published by United States based institutions, 

followed by Chinese and Israeli institutions. 

 
(a)  Number of Papers per Year     (b) Geographic breakdown of sources 

Figure 3. Year and geographic location breakdown of relevant papers. 

  Seventy-two percent of the papers analyzed were from academia, as shown in Fig. 4a.  As expected, based on 

the choice to use primarily peer-reviewed conference papers and journal articles, the majority of the papers were 

from academia.  Access to industry information was often limited due to algorithms being declared proprietary or 

even classified.  Of the 33 papers published by authors working in industry, 43% of them were published by the Air 

Force Research Laboratory (AFRL), as shown in Fig. 4b. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

(a)  Industry/Academia papers         (b) Breakdown of industry sources 

Figure 4. Percentage of relevant papers from academia and industry/government sources. 

B. Guarantees of Optimality 

Next, we investigated the guarantees of optimality made by the solution method of the scheduling algorithm.  

Since we analyzed real-time UV scheduling algorithms in uncertain, dynamic environments, the authors were likely 

planning in situations with unbounded indeterminacy,
41

 where the set of possible preconditions or effects either is 

unknown or is too large to be enumerated completely.  Depending on the problem formulation chosen by the 
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authors, the problem could have been NP-hard, meaning that the algorithm cannot find an optimal solution in 

polynomial time.
41

 Finally, the objective function may be non-convex, meaning that certain algorithms may become 

stuck in local minima.  In many of these cases, where either the environment is stochastic or the search space is 

large, it is unlikely that an optimal plan can be found or will remain optimal throughout the mission.  In addition, the 

definition of “optimal” in uncertain, dynamic, command and control environments may be difficult to quantify and 

represent in a single, static objective function.  Thus, we assume that the algorithm must continuously replan to 

adjust to the environment. 

In classifying the guarantees of optimality made by scheduling algorithms for multiple UVs, we investigated 

whether or not the algorithm could generate a schedule that was guaranteed to be optimal based on the given 

objective function and data at that time. Examples include branch and bound and dynamic programming.  As 

explained above, due to the size of the solution space, many of these algorithms may not scale in polynomial time 

with greater numbers of UVs and tasks. 

The broad category of suboptimal algorithms consists of a number of different methods of solving the 

optimization problem.  A heuristic may be used to guide the algorithm’s search for a solution that approaches 

optimality.  Often times, these methods utilize a finite number of steps to solve the problem, where the quality of the 

solution can be improved upon with increased iterations or larger bundle sizes
24

.  Examples include receding horizon 

methods or iterative bundling methods.  These methods are typically more useful on larger problems because they 

can predictably achieve near-optimal results with faster computational times than other algorithms.   

Another commonly used solution method for combinatorial optimization problems is the meta-heuristic 

algorithm.  These algorithms solve the problem by iteratively trying to improve the solution based on a given 

objective function, typically through pseudo-random changes to the solution.  Examples include genetic algorithms 

or simulated annealing.  No guarantees of optimality are made, but with proper tuning, meta-heuristics can achieve 

near-optimal results.
44

   

Auction algorithms were generally classified as sub-optimal, depending on the information provided in the 

paper.  These decentralized market-based approaches, where each vehicle bids on tasks to perform, can scale in 

polynomial time with increasing numbers of vehicles and tasks, and have been shown to perform within 93% of the 

optimal solution.
10

  Finally, DVR methods using Voronoi partitions were classified as a sub-optimal solution method 

that could produce policies which guarantee a certain level of performance without the need to replan constantly in a 

dynamic environment. 

Figs. 5a and 5b show the guarantees of local optimality made by algorithms developed in academia and industry.  

Forty-two percent of industry-developed algorithms guaranteed that their schedules would be optimal based on the 

given objective function and data.  Whereas in academia, only 14% of the algorithms used a solution method that 

explicitly guaranteed optimality.  As shown in Figs. 6a and 6b, the most widely used solution methods in academia 

are meta-heuristic and auction-based algorithms.  It is clear that academia has settled on these methods as the best 

balance of performance and computational speed.  In industry, however, the most widely used solution methods are 

“iterative” approaches, which include branch and bound and any solution method other than meta-heuristics that 

monotonically improves the schedule with further iterations. 
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Figure 5. Comparison of whether academia and industry algorithms guarantee local optimality. 
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(a)  Academia             (b) Industry 

Figure 6. Comparison of solution methods chosen by academia and industry. 

The vast majority of academia-developed algorithms allowed for near-optimal solutions in favor of acceptable 

computational times.  The different objectives of industry and academia are reflected in these results, where 

academia may have been more interested in solving large-scale futuristic problems, while industry was looking for 

small-scale problem solving, with reliable, repeatable solutions that take into account realistic operating conditions.  

These objectives are reflected in the written comments by industry authors.  For example, one industry author, who 

advocates for auction-based algorithms, admits that: 

 

 “while in theoretical and academic models, where one can assume infinite bandwidth and negligible 

latency, global information exchange and even auctions perform well, systems in the production world 

must acknowledge and mitigate the cost of sharing information between nodes.”
45

 

 

  Another industry paper requires their scheduling algorithms to be “fault tolerant” and “take into account real 

world constraints” while stating that “there is an acceptable algorithm processing delay time…of 5-15 seconds.”
46

  

Finally, another industry paper states that they formulated their problem as a MILP and: 

 

 “solved to optimality using commercial or open-source optimization software. To guarantee a solution in 

real time, if the optimal solution is not found within a specified time (e.g. 1 minute), the current best, yet 

feasible solution is used. This procedure has produced good results for the types of scenarios the…system 

was designed to execute.”
47

 

 

For human-computer collaborative scheduling, the computational speed of suboptimal algorithms is appealing 

because it allows the human operator to view automation-generated schedules quickly.  “What-if” testing by 

modifying the plan slightly to see the results can also be conducted if the algorithm is fast enough.  Of course, 

certain solution methods such as linear programming also enable sensitivity analysis of the effect of changes to the 

problem on the quality of the solution as well.  The scalability of meta-heuristic and auction algorithms is also 

appealing as human operators begin to supervise greater numbers of UVs.   

An open question, however, is how human operators react to the unpredictability of working with these types of 

algorithms, where the algorithm’s behavior is non-deterministic.  A number of recently developed meta-heuristic 

algorithms, such as Particle Swarm Optimization or Cross-entropy optimization, may have potential performance 

benefits, but it is unclear how human operators would react while collaborating with these new advanced algorithms.  

A prime concern for any human operator collaborating with a scheduling algorithm is gaining a sufficient 

understanding of how the algorithm created the solution.
48

  Increasing automation transparency may be difficult with 

the use of meta-heuristic and auction algorithms, whereas deterministic solvers such as greedy algorithms often 

emulate the method by which humans would choose to solve the problem.
49

  Would a human operator collaborating 
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with an “inferior,” but understandable algorithm perform better than a human operator collaborating with a more 

“advanced” but less predictable and more opaque algorithm? 

Finally, one of the largest issues with the adoption of stochastic algorithms for UV scheduling may be 

regulatory
50

 – how does one certify that an algorithm with no guarantee of repeatability is safe or ready for 

deployment in safety critical missions?  This crucial question will need to be answered by both the military and the 

Federal Aviation Administration (FAA) if the benefits of stochastic algorithms are to ever be realized in real-world 

operations. 

C. Algorithm Structure and Types of UVs 

 

Scheduling algorithms for multiple UVs can also be classified as either centralized or decentralized 

implementations.
40

  Centralized scheduling algorithms typically have a central node that collects information from 

all of the UVs and attempts to create a globally optimal schedule which is then communicated to all of the UVs.  

The drawbacks to a centralized scheduling algorithm are the high communication bandwidth necessary to collect 

global information, the increased computational resources necessary to plan for the entire team of UVs, and the 

vulnerability of the system to single node failures.  Decentralized algorithms, which have become popular recently, 

allow each UV to compute its locally optimal plan while attempting to achieve conflict-free schedules, where each 

task will be serviced by the minimum number of vehicles necessary to accomplish the task.  Decentralized 

algorithms can potentially respond to changes in the environment more quickly, scale to larger numbers of UVs 

while taking advantage of each UV’s added computational power, and are potentially more robust to 

communications failures.
9, 34

  However, it can be difficult to reach a conflict-free schedule without needing a large 

amount of communication between the vehicles.  In addition, the behavior of the UVs is emergent and sometimes 

difficult to predict in advance.  Finally, decentralized algorithms cannot always guarantee optimal schedules. 

No differences were found between academia and industry in terms of whether algorithms were centralized or 

decentralized.  In both cases, 61% of the papers utilized centralized algorithms.  As expected, since decentralized 

algorithms are a more recent development and are more difficult to implement, centralized algorithms remain 

prevalent in the literature.   

It has been shown that human operators are capable of collaborating with decentralized algorithms for 

scheduling multiple UVs.
4, 29, 31

  The addition of a human operator creating tasks and issuing commands to the UVs 

necessitates a “central” node to which all of the UVs are connected to provide the human operator with global 

Situational Awareness (SA).  It remains an open question whether decentralized algorithms maintain their 

theoretical advantages over centralized algorithms when used by a human operator due to the need for a centrally 

connected node.
51

  Initial results indicate that under high task-load, decentralized systems may be robust enough to 

prevent the human operator from becoming cognitively overloaded while experiencing only mild performance 

decrements.
52

 

The ability of a scheduling algorithm to handle heterogeneous UVs, defined here as vehicles of different types, 

speeds, or capabilities, was also analyzed in the survey.  It was found that 49% of academia-produced scheduling 

algorithms could perform scheduling for heterogeneous UVs, while 67% of industry-developed algorithms could 

handle heterogeneous UVs.  This may reflect the fact that academia is more likely to use the simplifying assumption 

of homogenous vehicles, while industry understands that there is a strong desire for coordination between UVs in 

the air, ground, and sea.
53

  The impact of controlling heterogeneous UVs on operator workload has been studied,
54

 

showing that the added complexity of heterogeneous UVs leads to higher operator workload.  Collaboration between 

humans and more suitable scheduling algorithms for heterogeneous UV control could aid in mitigating the workload 

increase and merits further research. 

D. Taking into Account Uncertainty 

Finally, we compared whether algorithms in the survey took into account uncertainty.  If the problem 

formulation assumed a deterministic, static environment with perfect information accuracy, then the algorithm was 

classified as not taking into account uncertainty.  On the other hand, if the problem formulation a) took into account 

a dynamic environment with potential disturbances or changes, b) could handle uncertain constraints, c) or utilized 

probabilistic transitions between states, then the algorithm was classified as taking into account uncertainty.  While 

the definition of uncertainty is not agreed upon within the community, it was decided that these three forms of 

uncertainty would be used for classification purposes.  As shown in Figs. 7a and 7b, 56% of algorithms developed in 

academia took into account sources of uncertainty while only 42% of industry-developed algorithms made the 

realistic assumption of imperfect information and a dynamic environment.     
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(a)  Academia             (b) Industry 

Figure 7. Comparison of whether academia and industry algorithms take into account uncertainty. 

In addition, 10% of academic papers not only took into account uncertainty but provided a calculation of the 

certainty or robustness of the schedule developed.  The movement to perform robust scheduling under uncertainty is 

a fairly recent development for multi-UV scheduling, but has been emphasized in manufacturing and operations 

research for many years.
55

 In academic publications, however, the methods for quantifying uncertainty usually made 

substantial assumptions about the problem or environment.  For example, while the length of time to complete a task 

may not have been known with certainty, the authors may have assumed that the task length had a known 

distribution.  For academic purposes, this is useful, but industry practitioners may feel that quantifying uncertainty is 

too fraught with assumptions and therefore choose not to take into account uncertainty. 

With regards to human-computer collaborative scheduling, understanding whether algorithms take into account 

these forms of uncertainty is essential because overly simplistic problem formulations can lead to human operators 

placing too much trust in algorithm-developed schedules or to operator frustration due to poor algorithm 

performance in real-world situations.  Also, providing operators with certainty estimates could be beneficial in 

developing appropriate trust between the human operator and scheduling algorithm.  Caution must be taken when 

providing human operators with probability estimates, however, as humans are notoriously poor at understanding 

variance and probability.
56, 57

  Further research into the most appropriate way to display certainty during real-time 

collaborative scheduling is required. 

IV. Conclusion 

 

A survey of 117 publications within the past five years in academia and industry on multiple UV scheduling 

algorithms has been conducted.  The purpose of the survey was to determine the types and frequency of scheduling 

algorithms that are currently in use and to classify the characteristics and capabilities of these algorithms.  Results 

show that academia generally favors scheduling algorithms that are slightly sub-optimal, but have much faster 

computational times and scale better to larger problems.  Academics have found that meta-heuristic and auction-

based algorithms provide the best balance of performance and computational speed.  In industry, however, the most 

widely used solution methods are either locally optimal methods such as branch and bound or other “iterative” 

approaches that monotonically improve the schedule with further iterations.  Industry practitioners generally work 

with smaller numbers of vehicles and tasks, thus potentially slower, but reliably optimal algorithms are adequate for 

the mission. These algorithms are likely also easier to certify for systems that must operate with real vehicles. 

We found little difference in the prevalence of decentralized vs. centralized implementations between academia 

and industry.  More centralized algorithms have been developed overall, but interest has increased recently in 

decentralized algorithms for their potential ability to scale to larger problems, reduce communication bandwidth, 

and maintain robustness to single node failure.  Results showed that industry had developed a higher percentage of 

algorithms that could schedule tasks for heterogeneous UVs, likely because of the intense focus in industry on 

cooperation between UVs with different speeds or coordinating air, land, and sea UV operations.  Finally, academia 
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had developed more algorithms that take into account uncertainty, especially algorithms designed for generating 

robust schedules and providing estimates of the certainty of the schedule.  Taking into account uncertainty is 

essential for successful operations in dynamic environments with new tasks emerging, changing weather, and 

potential UV failures.  While we recognize that academic researchers and industry practitioners have different 

objectives, understanding the strengths and the needs of each community can be valuable for guiding future work on 

this important topic. 

The limitations of this kind of algorithm survey should be noted.  As shown in Fig. 4, industry sources were 

underrepresented due to less available publications.  Access to industry information was often limited due to 

algorithms being declared proprietary or even classified.  Also, the frequency of publications about an algorithm 

may not necessarily be an accurate measure of how widely used an algorithm is.  Despite these limitations, however, 

the data gathered through this method can still provide useful information on the types of algorithms in use for 

multiple UV scheduling. 

The implications of these results for real-time human-computer collaborative scheduling of multiple UVs are 

three-fold.  First, while decentralized, near-optimal algorithms have obvious performance benefits, the emergent 

behavior of the algorithm is a significant concern when pairing a human operator with a scheduling algorithm.  

Research should be conducted into how well human operators can understand the method by which the algorithm 

reached its solution and whether they are able to develop the appropriate level of trust in the algorithm.  Second, in a 

human-computer collaborative scheduling system, a central node is necessary for the human operator to maintain 

SA and issue commands to the UVs.  It remains an open question whether decentralized algorithms maintain their 

proposed advantages over centralized algorithms when used by a human operator due to the need for a centrally 

connected node.  While decentralized systems may be capable of continuing a mission even with a communication 

interruption, the need for consistent updates to the human operator and the need for approval for major schedule 

changes from the operator may negate some of the proposed advantages of decentralized algorithms.  Third, 

providing operators with robust schedules and certainty estimates could be beneficial to both system performance 

and developing appropriate trust between the human operator and scheduling algorithm.  Further research is 

necessary into the most appropriate way to display certainty levels during collaborative scheduling to enable the 

human operator to use the certainty estimates effectively to make decisions under time pressure. 
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