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Introduction 
At least 10% of new cars sold in the US include features enabling partial automation (1), defined as 

Level II Autonomy in SAE standard J3016 (2). Such vehicles include an advanced driver-assist system 
(ADAS) which can simultaneously perform automated steering and acceleration. However, these systems 
require human drivers to be alert and available at all times in case they need to take over. The interface 
between the human and the machine is of critical importance in ADAS-equipped vehicles as changes in 
human attention and behavior with high levels of automation make the handover regime particularly 
dangerous (3–5). Therefore, Level II autonomous vehicles typically employ some type of driver monitoring 
system for assessing and alerting drivers during these types of events. Currently, there are no US regulations 
addressing how driver monitoring should be implemented or the performance standards such systems should 
meet. 

Formal testing of ADAS systems in general is limited. The National Highway Traffic Safety 
Administration’s (NHTSA) New Car Assessment Program (NCAP) does not cover driver assist features, 
limiting its assessment to collision and rollover survival (6). The Insurance Institute for Highway Safety (IIHS) 
covers some ADAS features such as pedestrian detection and automated emergency braking (AEB), but 
does not address driver monitoring (7). The European NCAP has similar scope, but has announced that it will 
begin assessing driver monitoring in the 2022 revision of its protocols (8). The Korean Ministry of Land, 
Infrastructure, and Transport (MOLIT) is the only major authority regulating driver monitoring, and as of June 
2020, it provides specific guidance regarding how the driver monitoring system should handle engagement 
and disengagement of automated features (9).  

Even in the few cases where guidance is provided on how driver monitoring should be evaluated, 
certain aspects of testing are still highly ambiguous. In particular, there is little to no specification as to how 
individual differences in vehicles or variations in operating environment should be considered in the test 
procedure. None of the NHTSA, IIHS, NCAP, or MOLIT test protocols address how vehicles should be 
sampled to ensure the test results are robust to differences in vehicle trim, configuration, or wear-and-tear. 
Likewise, these test processes either take place in sterile laboratory settings or make assumptions about the 
generalizability of the results to different atmospheric conditions or road environments. Such tests may 
underestimate the effects that subtle changes in atmospheric conditions have on vehicle performance.  

The goal of this research was to assess between- and within-ADAS-equipped vehicle variation in four 
key scenarios involving the interface between a human driver and an ADAS system. These scenarios were: 
(1) Assessing driver-monitoring system performance during automated highway driving; (2) alerting a 
distracted driver of unexpected road patterns during automated driving; (3) assisting a distracted driver in 
response to an inadvertent lane departure; and (4) initiating driver handover to a distracted driver when the 
vehicle can no longer confidently operate. In addition, where variation was present, the goal was to evaluate 
the impact of the under-studied environmental parameters. Given that Teslas have ADAS systems that can 
be used on interstates, divided highways, and urban and rural roads and thus, can face a range of potentially 
demanding environments, a Tesla Model 3s was used as the test platform.  

 

Background 
In order to develop a testing protocol, a model is needed to better understand the major elements of 

the human-vehicle system and how they interact. To this end, the model in Figure 1 includes a driver model, a 
vehicle model, and a model of the environment, which includes not only atmospheric issues such as 
brightness and weather, but also the road environment including, for example, lane markings, possible 
obstacles, and road characteristics. These model elements are further described in the following sections. 
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Figure 1: Influence model of autonomous system configuration, driver beliefs about the system and environment, and driver 
attention level 

In this model, when operating an ADAS-equipped vehicle driver attention includes three states: 
Baseline, Reduced, and Hypervigilant (Figure 2). Baseline attention is characterized by relatively small 
fluctuations within a modest range around the baseline average. For example, drivers pay attention to the 
road, but occasionally change the radio station or read a billboard on the highway. Reduced attention is 
characterized by a prolonged period of consistently below-baseline attention levels. This is the state that 
subsumes the large volume of distracted driving research.  

Hypervigilance is characterized by a brief surge in attention far above baseline levels, followed by a 
regression back to baseline and eventual dip below baseline. Such a state occurs, for example, when a 
distracted person almost runs off the road, and then pays close attention for some period of time. For this 
effort, a driver is always assumed to be in the reduced attentional state, but more research is needed in how 
cycles between reduced and hypervigilant attention affect longer-term focused attention. 

 

Figure 2: Model of attention levels over time: baseline, reduced, and hypervigilant 

In Figure 1, the vehicle model includes the software, the computational systems, sensors, and 
actuators. This study focuses on the automated driving system composed of the key functional components. 
Tesla Model 3s (and indeed all Teslas) have the option of including Autopilot, which is made up of several 
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components including Autosteer, Traffic-Aware Cruise Control, Navigate on Autopilot, Self-park, a torque-
monitoring driver detection system, forward, side, and rear facing visible light cameras, sonar, radar, 
ultrasonic sensors, Nvidia’s processing computer, the neural network system for signal processing and 
decision-making, the console, and the auditory alert system.  

The automated driving system also has a “presentation”, which is the way it appears to the driver of 
the car. The presentation is a direct consequence of the system state, which is a function of the particular 
configuration of the components, i.e., which state each of the components is in, as well as the inputs that 
each component receives. The presentation to the driver is thus a function of the set of its components, which 
in turn are each a function of the set of their inputs. For instance, a functioning Tesla driver detection system 
has a different presentation when a driver’s hands are detected on the wheel versus when they are not, and 
this detected state then can have consequences in regards to the vehicle performance. For example, if a 
driver’s hands are not detected on the wheel after three successive attempts to alert the driver to take over, 
the car will come to a stop.  

The presentation space is thus the set of all possible presentations that can arise from the various 
configurations of the system components. The driver has a belief about the underlying configuration of the 
system components and the inputs driving their behavior, and this belief is based on the presentation. 
However, the relationship is ambiguous as certain presentations may convey their underlying component 
configurations less saliently than others. Mode confusion occurs when the driver’s belief about the 
configuration of the system is inconsistent with the true configuration (10). Tesla is no stranger to such 
problems and has had significant issues with drivers misunderstanding the release of their “Full Self Driving” 
option, which is only an enhanced version of Autopilot (11).  

Drivers who think their cars are more capable that they are may be more susceptible to increased 
states of distractions, and thus at higher risk of crashes. This susceptibility is highlighted by several fatal 
crashes of distracted Tesla drivers with Autopilot engaged (12,13). Past research has characterized a variety 
of ways in which autonomous systems can influence an operator’s attentional levels. When an operator’s task 
load is low while supervising an autonomous system, he can experience increased boredom which results in 
reduced alertness and vigilance (ability to respond to external stimuli) (14). One study reported that once 
attention levels are reduced, they do not necessarily rebound to baseline levels once an autonomous system 
disengages and attention may stay at reduced levels (4). Furthermore, when an operator has initially 
sustained very high attention, she may experience psychological fatigue, which is a feeling of prolonged 
exhaustion and reduced capacity for work. This fatigue is not relieved by rest, and so under these 
circumstances, relying on the autonomous system for primary control may not return attention levels to 
baseline (14).  

Given that ADAS-equipped cars have led to increased reduced attentional states, characterizing how 
reliable the driver monitoring and alerting system was between different Tesla Model 3s, as well as within 
these vehicles is critical for understanding possible variation in such systems. In addition, this effort sought to 
determine if there are additional vehicle and environmental factors as illustrated in Figure 1 that could have an 
impact on such outcomes. The next section outlines the experimental methods used to address four basic 
areas of inquiry: (1) Assessing driver-monitoring system performance during automated highway driving; (2) 
Alerting a distracted driver of unexpected road patterns during automated driving; (3) Assisting a distracted 
driver in response to an inadvertent lane departure; and (4) Initiating driver handover to a distracted driver 
when the vehicle can no longer confidently operate. In addition, where variation was present, other potentially 
important test parameters were identified. 

 

Methods 
Three 2018 Tesla Model 3s from the Triangle metropolitan area of North Carolina were randomly 

selected for study using a car sharing service over a period of two weeks during March 2020. All tests were 
conducted during daylight, between 12:00pm and 5:00pm, under similar environmental conditions (Appendix 
A: Environmental Conditions by Test Day). The software versions and Autopilot settings used are detailed in 
Appendix B: Vehicle Software Configurations by Test Day. The same person drove the vehicle for all tests. 



 6 

Prior to each trial, the vehicle was placed in park, with the driver exiting and using the key card to lock and 
deactivate the vehicle before entering the car to begin a test. 

Tests were either performed on a public highway or at the North Carolina Center for Automotive 
Research (NCCAR), a closed test track facility. For each vehicle, the highway tests were performed on one 
day while the track tests were performed on a second day, with the order of these two test days randomized 
for each car. The NCCAR test track is a two-mile long, 40-foot-wide paved loop with a mix of straightaways 
and curves of a widely varying range of angles. Some tests involved the use of painted lane markings, which 
included lanes 13 feet wide marked with 10 foot long by 6 inch wide white lane markings and 30 feet of 
longitudinal distance between each marking (15). 

Four different experiments were performed, one assessing each of four key driver monitor behaviors: 
(1) Assessing driver-monitoring system performance during automated highway driving, labeled Highway 
(HW); (2) Alerting a distracted driver to unexpected road patterns during automated driving, such as 
construction lane shifts, during automated driving, labeled Lane Shift (LS); (3) Assisting a distracted driver in 
response to an inadvertent lane departure, labeled Lane Departure (LD); and (4) Initiating driver handover to 
a distracted driver when the vehicle can no longer confidently operate, labeled CRV since this test was 
performed on a S-curve road. The LS, LD, and CRV tests were all conducted at the NCCAR track and the 
order trials was randomized for each vehicle. These tests are described in more detail below. 

 

Highway Test 
The goal of the first experiment was to 

determine if a significant within- and between-vehicle 
difference existed in the type and timing of feedback 
presented to a driver when the vehicle sensed driver 
inattention during highway driving. Per the stated 
design specifications, the vehicle should request that 
the driver put their hands on the wheel approximately 
once every 25 seconds, as described in official 
documentation (12). 

 The highway test was conducted on two 5.2 
mile sections of Interstate 540 between Cary and 
Apex, NC. The two routes were mirror images of one 
another, with a posted speed limit of 70 mph.  All 
highway tests occurring before 4:00pm to minimize 
the influence of rush hour traffic. Each vehicle 
experienced 10 repetitions of each test, 5 alternating 
in each direction. 

The southern route began at the entrance to 
the westward I-540 lanes at the junction with state 
route 55, and concluded at exit 59. The northern 
route began at the entrance to the eastward I-540 
lanes beginning at the junction with state route 64 
and concluded at exit 66 (Figure 3). In the 
southbound route, upon passing under the 
McCrimmon Parkway underpass after entering the 
highway, the car was placed in Autopilot at 70 mph 
and data collection was initiated. 

Because this section of road has between 3 
and 5 lanes at various points, the car was driven in 
Autopilot in the third lane from the left, which allowed 
it to be driven without the need to change lanes. 

Figure 3: Route used for highway testing, which included 
two equivalent 5.2 mile sections of I-540: The southbound 

route between exits 66 and 59, and the corresponding 
northbound route. 
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Once the vehicle was in Autopilot, the driver did not interact with the controls other than to provide the 
minimum steering wheel input necessary to respond to any alerts for the driver to apply force to the steering 
wheel.  

The alert consists of a message on the car’s 15 inch, 1920 x 1080 pixel display mounted on the 
center of the dash that says “Apply slight turning force to steering wheel” and is accompanied by a quick pair 
of beeps. Tesla vehicles recognize that a driver has taken control through a torque monitoring system on the 
steering wheel that measures how forcefully the steering wheel has been rotated in an attempt to infer 
whether the driver has deliberately manipulated it.  

The required force was applied immediately upon presentation of the alert and was continued until 
the alert disappeared. Then the driver took his hands off the steering wheel again and waited until the next 
alert, with this sequence continuing for each 5.2 mi section. The test was concluded after 5.2 mi (passing 
under the Jenks Road underpass near the conclusion of the route), at which time Autopilot was disengaged. 
The same protocol was used for the northbound route, with data collection and autopilot initiated after passing 
under the Jenks Road underpass, and concluded after passing under the McCrimmon Parkway underpass 
(Figure 3). 

Given the posted speed limit, the car was expected to take approximately 4.5 minutes to complete the 
route. With the permitted hands-free interval of about half a minute, up to 8 cycles of hands-free driving 
followed by a vehicle request for steering input could have occurred in each trial. Because the driver only 
responded to alerts requesting steering input, the car was not maneuvered around other traffic. In a few 
instances, the Tesla slowed behind other vehicles traveling at slower speeds. In these cases, the Tesla was 
allowed to travel at sub-70 mph speeds until the other vehicle changed lanes. The driver only took control in 
response to safety issues including (1) changing lanes due to a police lane closure, (2) steering to avoid 
workers on the roadway, and (3) taking over to mitigate unsafe behavior by the vehicle. 

 

Lane Shift Test 
The goal of the second experiment was to determine if a significant within- and between-vehicle 

difference existed in a vehicle’s ability to avoid obstacles while encountering an unexpected road pattern with 
a distracted driver. Also investigated was the type and timing of feedback presented to the driver upon 
encountering this anomaly. Given that the Tesla Autopilot is not designed to be operated in construction sites 
or other areas with similarly confusing road markings or obstacles, the hypothesis was that all vehicles would 
present a driver takeover alert immediately upon encountering the lane shift and would steer to avoid 
obstacles.  

For this test, the vehicle began at the position marked ‘start’ in Figure 4. The car was driven manually 
along a 515 foot curved section of track and accelerated to 25 mph. At the conclusion of the curve, there was 
a 330 foot section of straight track marked with three highway-style lanes, with the car aligned with the 
rightmost lane. Immediately upon passing a cone at the beginning of this straightaway, the car was placed in 
Autopilot with the speed fixed at 25 mph. After 200 feet, a solid yellow line marked a lane shift in which the 
right-hand lane merged into the central lane. The original dashed white lines were also visible. In the final 40 
foot section of the straightaway, an angled barricade of 7 orange traffic cones blocked the rightmost lane. If 
the car failed to follow the lane shift, it would collide with the cones, although the driver, only simulating a 
distracted driver, took evasive steering if a collision was imminent. 
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Figure 4: Setup of test track for Lane Shift (LS) tests. The cars started between two traffic cones at the position marked ‘start’. 
There was a 330-foot section of straightaway painted to depict three highway style lanes. The last 130-foot segment included a solid 

yellow painted line indicating a lane shift that forced the outermost lane to merge into the central lane. The last 40-foot segment 
included an angled barricade of 7 traffic cones blocking further travel in the outermost lane.  

 

Lane Departure Test 
The goal of the third experiment was to determine if a significant within- and between-vehicle 

difference existed in the type and timing of feedback provided to a distracted driver when the vehicle drifted 
out of its lane at a very low level of automation, in this case, automated cruise control. The vehicles were 
configured to provide emergency lane departure assistance, meaning the car should have provide evasive 
automated steering to prevent the vehicle from exiting the lane. Therefore, the hypothesis was that all 
vehicles would provide alerting and emergency assistive steering as the cars drifted out of their lanes 
relatively close to the road’s edge. 

For this test, each vehicle began between two traffic cones at the position marked ‘start’ in Figure 5. 
Starting from an inactive, parked state, the vehicle was driven towards the painted lane lines in the inner most 
lane. After accelerating to 35 miles per hour, the car was immediately placed in Adaptive Cruise Control to fix 
the speed, Autopilot was not initiated. Upon passing the cone marking the beginning of the painted section of 
track, the driver “nudged” the steering wheel 3-5° so that the front of the car was aimed just to the left of a 
second cone on the right outer edge of the track 130 feet away. The car was allowed to move in that direction 
with no steering input until either the car left the lane or the lane-keep assist feature activated, steering the car 
back into the lane. The trial was concluded as soon as the vehicle passed the final set of white lane markings.  
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Figure 5: Setup of test track for LD tests. The cars started between two traffic cones at the position marked ‘start’. There was a 
330-foot section of straightaway painted to depict three highway style lanes. A cone at the beginning of this section marked the 

point where the driver was supposed to apply a slight nudge to the steering wheel. This nudge was meant to aim the car just left of 
a cone 130 feet further down on the right side of the track. 

 

Curve Test 
The goal of the fourth and final experiment was to determine if there is significant within- and 

between-vehicle variability in the type and timing of feedback presented to a distracted driver when Autopilot 
can no longer adequately track lane markings. Given that computer vision is based on probabilistic reasoning 
with a potential large performance range, the hypothesis was that there would be significant variation in the 
timing and duration of events in the driver handover alerting sequence both between vehicles as well as for 
successive tests for the same vehicle. 

A demanding driving scenario was created on the NCCAR test track in which the Teslas encountered 
the disappearance of lane markings and extreme curves. Prior to the data collection, the 330-foot section of 
straightaway was marked with highway-style white lane lines (10 feet long by 6 inches wide with 30 feet of 
longitudinal spacing between) to form three lanes 13 feet wide. The straightaway lane markings ended 250 
feet after the start position, followed by two sharp curves, approximately 120 and 190 degrees. (Figure 6). 
This setup was intended to degrade the vehicle’s model of the roadway to force initiation of the driver 
takeover sequence.  

When Tesla Autopilot can no longer confidently track lane markings on the road, it requests that the 
driver take control of the car. As discussed in the highway test, requests in the Tesla Model 3 are displayed 
on a touch screen centered between the driver and passenger seat, shown in Figure 6. This display also 
displays all information about the car, including speed, rpm, and map.  

If the driver does not grasp the steering wheel after the first request (Figure 6a), after approximately 
10 seconds the top left of the Autopilot display on the console flashes blue with a progressively increasing 
intensity (Figure 6b), culminating in two pairs of beeps. If the second request for driver control is ignored, after 
approximately 5 seconds the small icon and text are replaced with a large red icon and red highlighted text 
(Figure 6c), accompanied by three pairs of beeps. The hazard lights then activate and the car will slow to a 
stop. The combined total alert duration from the first to third alert is designed to last 15 seconds (12).  



 10 

  

 

Figure 6: Progression of alerts in the takeover sequence. Left: The first alert includes a black bubble with an icon and the message 
“Apply slight turning force to steering wheel.” Center: The second alert has the same icon and text, but introduces a flashing blue 
light at the top of the screen. Right: The third alert displays a large red icon with hands on the steering wheel and includes a red 

bubble with the message “Autosteer unavailable for the rest of the drive.”  

To test whether and when these alerts would be triggered by the loss of lane markings, the vehicle 
began between a pair of traffic cones at the position marked “start” in Figure 7. Starting from its inactive, 
parked state, the vehicle was manually driven towards the painted lane lines in the inner most lane. After 
accelerating to 35 mph, the car was immediately placed in Adaptive Cruise Control to fix the speed. After 
passing the cones at the end of the fourth lane marking, Autopilot was activated and the confederate driver 
never responded to any takeover alerts. The car was allowed to drive autonomously until the system reached 
the third alert without driver response, which should result in Autopilot shutting down the vehicle. 

 

Figure 7: Test track setup for CRV tests. The cars started between two traffic cones at the position marked ‘start’. There was a 330-
foot section of straightaway painted to depict three highway-style lanes. A pair of cones on the outer edges of the track 130 feet past 

the beginning of the lane markings indicated the point at which Autopilot was engaged. Beyond this point, the driver allowed the 
car to drive autonomously without intervention until the car came to a stop on its own. There were no painted lane markings 

beyond the end of the straightaway and the car encountered two sharp curves with angles of approximately 120 and 190 degrees. 

a. First Alert                              b. Second Alert                        c. Third Alert 
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Data Collection 
 
Video Data 

Video data were collected using three GoPro Hero 7 Black cameras synchronized with SyncBac Pro 
devices and mounted at fixed positions in the vehicle interior. These cameras obtained views of the roadway, 
the driver, and the center console (Figure 8). The console-facing camera was intended to provide exact timing 
of when various alerts were presented on the center console. The time-synchronized data identified events of 
interest from the other camera views (i.e., actions taken by the driver or views of the road as seen from the 
forward-facing camera). 

The road-facing camera was placed on the dashboard on a flat adhesive mount so that it was 
centered laterally with the front edge of the mount set back two inches from the front curved lip of the 
dashboard. The driver-facing camera was adhered to the dashboard with a curved mount, facing directly 
backwards, perpendicular to the edge of the dashboard. The center of the mount was 20 inches from the 
driver-side edge of the dashboard and the front of the mount was aligned with an angled crease on the 
dashboard surface.  

The console-facing camera was attached to the sunroof with a suction-mount and six-inch extender 
arm. The camera was positioned so the center of the suction mount was over the “T” logo on the sunroof with 
the rear edge of the mount flush against the edge of the sunroof. The camera was angled downward so that 
the entire console was visible and centered. All cameras were set to 1440 pixels per inch resolution, 25 
frames per second, wide field of view, and automatic stabilization, with protune off. The next section details 
the results from the tests and data collected. 

 

Figure 8: Data collection camera positions 

 

Brightness 
Given that brightness could influence camera perception, for those tests with directional changes (the 

lane shift, lane departure and curve tests), a measure of environmental brightness was developed. To do this, 
information about scene brightness was extracted from video frames by converting the videos from RGB to 
YCrCb color space using the Python OpenCV image processing toolkit (16). The brightness emanating from a 
particular region in a visual scene is defined as that region’s luminance, and is measured in candela per 
square meter. It can be obtained from a weighted sum of the red, green, and blue light in that region (17).  
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Since humans have limited capability in perceiving differences in light intensity, commercial cameras 
generally do not store data on the full spectrum of captured light. Instead, they compress data on the intensity 
of captured light by several orders of magnitude through a process called gamma compression, where some 
information is lost (18). The “Y” channel in a YCrCb image encodes the image’s Luma, which is as close of an 
approximation of true luminance as can be obtained from gamma compressed digital imagery (19). Luma is a 
unitless index taking a value between 0 and 255. Other color models that encode light intensity, such as HSV, 
HSI, or HSL, do not match the perceptual qualities of brightness as well for certain colors (20), making YCrCb 
superior for extracting brightness from images.  

The analysis of brightness was restricted to only the top 380 rows of pixels in the images from the forward-
facing roadway camera, which corresponded to regions of the scene that only contained the sky. This was 
done to reduce the influence of sudden changes of color, such as variations in the treeline or the appearance 
of distant objects. A number of studies have shown strong results in image processing tasks using luminance-
based color models, including for tasks related to perceiving pixels in the sky (21–25).  

 

Results 
Videos for specific test metrics were manually scored to identify the first frame at which events of 

interest occurred and SyncBac timecode annotations were used to link the corresponding frames taken from 
different cameras. All alpha values for the statistical tests are .05 unless otherwise noted. 

Highway Test 
The goal of this test was to determine how consistent and timely the cars were in notifying drivers that 

their hands were no longer on the wheel. An alert cycle was defined as the following: (1) a period of hands-
free automated driving, (2) the presentation of an alert requesting that the driver apply light force to the 
steering wheel, (3) a driver response , and (4) the disappearance of the alert, removal of the driver’s hands 
from the wheel, and beginning of the next cycle (i.e., a return to automated driving). The driver response to 
alerts was a two-handed continuous “wiggle” of the steering wheel, deflecting it approximately 5 degrees in 
each direction, for as long as necessary to make the alert disappear. The driver continuously monitored the 
alert console so as to respond as quickly as possible when an alert appeared (Appendix C.1: Highway (HW) 
Test, Table 6). Over the course of the 5.2 mi course, a typical run would include 7-8 such cycles. 

Based on the observed data, there were three possible outcomes for each event cycle: success, 
shutoff, or failure. A cycle was a success if, after the driver responded to the alert, the alert disappeared and 
the car returned to automated driving, which is what it is supposed to do. A cycle concluded in a shutoff if, 
after the driver responded to the alert, the car did not return to automated driving and instead ceded control to 
the driver. This handover in control was associated with an auditory alert consisting of two chimes. A cycle 
concluded in failure if at any point during the cycle the car failed to operate safely while in Autopilot, such as if 
the vehicle veered off the road and struck a rumble strip.  

Car Total Success Shutoff Failure 

Car 1 62 61 1 0 

Car 2 23 15 1 7 

Car 3 64 61 3 0 

Table 1: Counts of event cycle outcomes in the HW test. 

Table 1 and Figure 9 summarize the counts of the event cycle outcomes observed for each car. Car 2 had a 
higher number of event cycles ending in failure, which resulted in fewer observed total event cycles. If the 
driver was forced to takeover, Autopilot was not reengaged during the remainder of the 5.2 mi route for safety 
reasons. As a result, trials with a “shutoff” or “failure” event occurring early in a test trial led to fewer observed 
event cycles than trials in which the car drove the entire route on Autopilot. Frequencies of the outcomes were 
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assessed using a chi-squared independence test, and the distributions were determined to be significantly 
different across cars (χ2= 52.703, p < 0.0001). 

 

Figure 9: Counts of event cycle outcomes in the highway test. 

 Next, variability in the duration of hands-free driving during each event cycle was assessed. This 
interval is defined as the time between when the driver’s hands left the wheel to when the next alert appeared 
on the vehicle’s console. According to Tesla documentation, this interval is designed to decrease linearly with 
increasing speed (12), with a maximum duration of 60 seconds at 25 mph and a minimum of 10 seconds at 
90 mph. Therefore, at 70 mph, the expected duration of hands-free driving between alerts is 25.38 seconds. A 
mean duration of this interval of just over 30 seconds occurred for all three cars (Appendix C.1: Highway 
(HW) Test, Table 7). Several durations of longer than 40 seconds were observed during cycles when the 
Tesla traveled slower than 70 mph due to slower-moving lead vehicles.  

 

Figure 10: Distribution of event cycle hands-free driving intervals for each car. 

To determine if there was any statistical difference in the duration of hands-free driving intervals 
between cars, controlling for possible speed changes, an analysis of covariance test was conducted with 
average speed as the covariate. Speed was estimated by averaging the displayed speed at the beginning and 
end of the alerting interval. This analysis was significant for both speed (F(1,139) = 260.25, p < 0.0001) and 
car (F(2,139) = 5.58, p = 0.0047; see Appendix D.1: Highway (HW) Test, Table 17). A Tukey-post hoc test 
with Bonferroni-adjusted significance level of 0.0167 revealed that there was a significant difference in the 
main effect between car 3 and car 2 (p = 0.003). Additionally, a contrast between car 3 and the pooled data of 
cars 1 and 2 revealed a significant difference in the mean interval of hands-free driving (p = 0.016).  
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A regression model of speed vs. the hands-free driving interval revealed that, at least for the speed 
ranges observed in testing, for every .93 mph decrease, there is a 1s increase in the hands-free driving 
interval. By comparison, Tesla documentation indicates that by design, this time interval should increase by 
1s for every 1.3 mph decrease in speed (12). See Appendix D.1: Highway (HW) Test, Table 18 for additional 
details. 

 The times from when hands first touched the steering wheel to the time when the alert disappeared 
from the console (Appendix C.1: Highway (HW) Test, Table 8) were also analyzed. This is important since a 
driver may become overly focused on clearing the alert, and so this represents another possible source of 
distraction. The ANCOVA model did not detect a significant effect for either car (F(2,138) = 2.164, p = 0.1188) 
or speed (F(1,138) = 3.094, p = 0.0808; Appendix D.1: Highway (HW) Test, Table 19). 

 

Lane Shift Test 
The goal of this test was to determine within- and between-vehicle variability in the vehicle’s behavior 

when encountering an unexpected road pattern, in this case a construction site. The vehicles autonomously 
navigated a simulated construction site including a painted lane shift and a barricade of traffic cones (Figure 
4). Whether vehicles presented a driver takeover alert was assessed, as well as what point in the trial such an 
alert occurred and whether the vehicle successfully maneuvered to avoid hitting the traffic cones. 

In terms of maneuvering to avoid obstacles, Cars 1 and 3 avoided all cones on all 10 of their trials, 
while Car 2 failed to maneuver away from the cones on all 10 of its trials (Figure 11). Differences in the counts 
of each observation for each car were analyzed using a chi-squared independence test, which detected a 
significant difference between cars (χ2 =130.0170, p < 0.0001).  

 

Figure 11: Counts of trials avoiding vs. not avoiding all cones for each car in the LS test. 

Separate from the cars’ ability to avoid the traffic cones, variability existed for each car in terms of 
whether an alarm was presented upon nearing the cones. While it was not clear whether Cars 1 and 3 guided 
on the cones or the yellow line, whether an alert was generated indicates if a car detected the obstacles. Cars 
1, 2, and 3 had 6, 3, and 7 trials in which an alarm was presented, respectively (Figure 12). Differences in the 
counts of each observation for each car were analyzed using a chi-squared independence test, which did not 
detect a significant difference between cars (χ2 = 3.4821, p = 0.1753). Overall, the driver was not alerted in 
47% of trials. If Car 2 is disregarded, this rate is 35%. 
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Figure 12: Counts of trials with vs. without an alarm for each car in the LS test. 

Whether atmospheric brightness contributed to differences in whether cars presented an alert was 
examined. The luma for each car was computed as outlined in the Methods section at the moment the car 
passed the first roadside cone indicating the beginning of the lane shift. An analysis of covariance model was 
developed with the luma as the dependent variable and alert presence/absence as the main factor. Sun angle 
(azimuth), based on the date and time each trial was conducted, was included as a covariate because it has 
been cited as a potential source of problems for Autopilot (26).  

With alert as an independent variable, car as a block and sun azimuth as a covariate, an ANCOVA 
found that luma was significantly predicted by both car (F(2,25) = 34.163, p < 0.0001) and sun azimuth are 
(F(1,25) = 5.064, p = 0.0335; Appendix D.2: Lane Shift (LS) Test, Table 20). These results indicate that each 
car experienced different brightness levels, which again is likely related to sun angle, but that the presence of 
an alert was not a likely contributor to sensed brightness levels. 

Data from the forward-facing camera was used to estimate the location at which the alarm was 
sounded (Appendix E: Views of Road at Time of Alert in Lane Shift Test) by computing the area of traffic cone 
visible, to the nearest 10% of a cone (Appendix C.2: Lane Shift (LS) Test, Table 9). This metric is robust 
because cones were placed at fixed locations that did not vary across trials. Using this analysis, a one-way 
ANOVA detected a significant difference in the quantity of cones visible between cars (F(2,13) = 25.52, p < 
0.0001; Appendix D.2: Lane Shift (LS) Test, Table 21). A Tukey Kramer post hoc test with Bonferroni adjusted 
significance threshold of 0.0167 revealed a significant difference between car 3 and car 2 (p = 0.0055) as well 
as between car 3 and car 1 (p < 0.0001). This means that while there was no statistical difference between 
the cars for the number of alerts generated, there was a statistical difference in where the cars generated 
alerts, illustrated by Figure 13. 

 
Figure 13: Approximate average location of alarm and collision events for each car in LS test. 
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Figure 13 also depicts Car 2’s approximate trajectory toward the traffic cones, as this was the only 
vehicle that failed to avoid all of the obstacles during the test. However, even though it failed to steer the car 
away during any trial, it alerted the driver in 30% of the trials. When an alarm occurred, each car was 
internally consistent in where it presented the alarm, but cars did not present alarms at the same locations as 
one other. Car 3 progressed furthest through the construction site before presenting an alarm, approximately 
10 ft beyond where Cars 1 and 2 sounded their alarms.  

Lane Departure Test 
The goal of this test was to evaluate between- and within-car variation in the timing of emergency 

assistive steering application if the car drifted towards the edge of the road during automated cruise control 
driving. This was simulated by having cars drive along a straightaway on the test track and at a fixed point, 
the driver provided a slight nudge to the steering wheel to aim the car towards an area on the outer edge of 
the road (Figure 5). Because all cars were configured to provide emergency assistive steering, emergency 
assistive steering should have engaged in all trials. Two trials were discarded because the driver’s nudge did 
not result in a trajectory that took the car outside the lane.  

There were three different outcomes across trials: emergency assistive steering in conjunction with 
an alarm, an alarm only, and neither alarm nor steering. Counts of these three outcomes per car are shown in 
Figure 14 as well as Appendix C.3: Lane Departure (LD) Test, Table 11. While cars were not consistent in 
terms of their individual performances, a chi-squared independence test did not reveal a significant difference 
between the distribution of counts between cars (χ2 = 3.4375, p = 0.4874). Overall, in 50% of trials, no alert 
or assist was provided, meaning that if the driver had been truly distracted, half the trials would likely have 
resulted in a crash. 

To determine the consistency of the driver’s angular input to nudge the car on a road departure 
trajectory, the angle of wheel rotation was estimated from the forward-facing cameras by computing the 
degree of rotation of the cross bar on the steering wheel from the point at the beginning of the driver’s nudge 
to the point of maximum deflection. Video frames were manually extracted for the beginning and peak 
deflection of the nudge for each trial, annotating the pixel locations of the upper right and left corners of the 
crossbar, and computing the rotation of that line between the two timepoints. Mean peak angle of rotation was 
approximately 4 degrees for each car (Figure 15; Appendix C.3: Lane Departure (LD) Test, Table 10). 

 

Figure 14: Trial outcomes by car in the LD test. 

A blocked ANOVA was used to assess whether systematic differences in how the steering nudge was 
applied contributed to different trial outcomes. With the angle of nudge as the dependent variable, there was 
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no significant effect for either car (F(2,23) = 0.242, p = 0.7870) or the trial outcome (F(2,23) = 0.122, p = 
0.8860), indicating that variation in wheel rotation was not systematically different between cars and not 
obviously correlated with particular trial outcomes (Figure 15; Appendix D.3: Lane Departure (LD) Test, Table 
22).  

 
Figure 15: Trial outcomes by car and degree of wheel rotation during “nudge” phase in lane departure test. 

  To assess the role of lighting immediately prior to the event of interest (presence and type of 
feedback upon exiting the roadway), sky luminosity was measured at the moment the car reached its peak 
lateral position (i.e., when it had travelled furthest to the edge of the road just before corrective steering was 
applied, regardless of whether that steering was initiated by the driver or by the ADAS system). Using sun 
azimuth as a covariate, an analysis of covariance was conducted to determine whether individual vehicle or 
type of feedback was associated with luminosity, (Appendix D.3: Lane Departure (LD) Test, Table 25).  

Type of trial outcome was not associated with a significant difference in luminosity (F(2,22) = 0.037, p 
= 0.964), though car was (F(2,22) = 6.695, p = 0.005). Additionally, the covariate sun azimuth was not 
significant (F(1,22) = 0.065, p = 0.801), indicating that different luminosity was observed through the front 
windshield of each vehicle, but sun angle in these tests was not a factor. It should be noted that the lane 
departure tests were conducted 180 degrees longitudinally from the lane shift test, where sun angle was a 
factor.  Lane departure tests were conducted with the sun generally facing the car (which was headed west), 
while the lane shift tests generally had the sun shining from the rear of the car (which was headed east.) 

 

Curve Test 
Because the curve test was designed to simulate a challenging driving environment in which Autopilot 

may not be able to maintain control after the loss of lane markings, a driver takeover alert should be 
presented in all cases. The key metrics assessed were (1) The time duration between the first alert and the 
second alert, (2) The time duration between the second alert and the final alert, (3) The distance traveled 
before the alarm sequence was initiated, and (4) Whether brightness played a role in these alerts. It is worth 
noting how well the cars performed in general in terms of controllability. Despite the challenging course and 
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the driver’s intentional ignoring of the takeover requests, Autopilot successfully maintained control through the 
test durations and brought the cars to a safe stop in all 30 trials without human input.   

Variation in the time period between the first and second alert was minimal and corresponded with 
the 10s specification provided by Tesla (12), with a mean of 10s and a standard deviation of approximately 
0.1 seconds across the entire dataset (Figure 16a). A repeated measures ANOVA did not reveal any 
significant differences between cars or within cars across the different trials (F(1,25) = 0.001, p = 0.973; 
Appendix D.4: Curve (CRV) Test, Table 26). 

Variation in the duration of the second alert stage was also small, although car #2 skipped this 
second alerting stage (Figure 16b). Regardless of this outlier, all three vehicles had a median value of 5.0 
seconds, again matching the 5s Tesla specification. A repeated measures ANOVA did not reveal any 
significant differences between cars or within cars across the different trials (F(1,26) = 0.721, p = 0.404; 
Appendix D.4: Curve (CRV) Test, Table 27). 

Variation in the overall duration of the alert sequence was also small (Figure 16c). Again, the data for 
all three cars closely matched the Tesla specification with a median duration of 15s across the dataset. A 
repeated measures ANOVA did not reveal any significant differences between cars or within cars across the 
different trials (F(1,26) = 0.772, p = 0.388; Appendix D.4: Curve (CRV) Test, Table 28). 

   

a. Time duration between 1st and 
2nd alerts 

b. Time duration between 2nd 
and 3rd alerts 

c. Time duration of entire alert 
sequence 

 

Figure 16: Duration of alert stages across cars. Left: Duration of interval between first and second alert. Center: Duration of 
interval between second and third (final) alert. Right: Duration of total sequence. 

While no meaningful variation in the timing of the takeover alert sequence was detected once 
initiated, significant variation was detected in where the first alert was initiated. The first alert location was 
estimated by comparing the time the first alert occurred with the time the vehicle first entered the curved 
portion of the track (marked by a pair of traffic cones that were easily identifiable in the frames of the video 
data collected, Figure 7). Approximate distance was computed from this time interval by multiplying the 
vehicle’s reported speed (fixed at 35 mph for the duration of each test) over the time interval traveled with the 
position confirmed through a manual inspection of the video. 

Figure 17 shows the approximate position of each car when the alert sequence was first initiated for 
every trial. Each trial is represented with a car-specific mark, where car #1 is depicted by a red X, car #2 a 
yellow circle, and car #3 a blue plus sign. The mark illustrates the approximate longitudinal position along the 
track, with lateral variation included solely to improve readability. It is important to remember that all 30 trials 
began in the same place and at the same speed, with Autopilot engaged. 

It is clear from Figure 17 that there were three distinct areas where the first alert occurred, with 
separation between cluster centers. An iterative K-means analyses using 1-10 clusters and assessed with the 
Gap statistic yielded K = 3 statistical clusters (Figure 18). The first cluster (Zone 1) was centered at 121 feet 
after the beginning of the curve, with a range of 43 to 172 feet; the second cluster (Zone 2) was centered at 
637 feet with a range of 609 to 768 feet; and the third cluster (Zone 3) was centered at 1248 feet with a range 
of 1240 to 1255 feet. The distribution of these distances for each car are shown in Figure 19a. 
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Clusters were not equally represented across cars; Car #1 and Car #3 experienced alert initiation points in Zones 2 and 3, while 
Car #2 experienced alert initiation points in Zones 1 and 3 ( 

Table 2; Figure 19b). A chi-squared independence test revealed a significant difference in the counts 
between cars (χ2 = 22.4, p = 0.0002). 

 
Figure 17: Approximate location of the first alert for each trial in the Curve test. 

 

 

Alert location Car #1 Car #2 Car #3 

Zone 1 0 5 0 

Zone 2 9 0 6 

Zone 3 1 5 4 

 

Table 2: Counts of alert location cluster by car in the Curve test. 
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Figure 18: Optimal number of clusters in data for distance from curve to alert sequence initiation based on K-means clustering 
with the Gap statistic in CRV test. 

 

 
 

a. Distance traveled by each car from first curve         
until first takeover alert is presented 
           

b. Number of alerts at each zone by car 

Figure 19: Position on the track of first alert in the takeover sequence (left) and counts of where the first alarm was initiated for 
each car in CRV test (right). 

Given that there were clear differences in where the cars experienced the first alert due to each car’s 
loss of lane marker tracking, any differences between the brightness levels perceived by the cars in Zone 1 vs 
all other events were investigated. The luma was computed for each car as outlined in the Methods section 
for the 150-foot segment of track immediately preceding Zone 1, a distance of roughly 3s prior to the alert. 
Appendix F illustrates the brightness at each of the initial alert locations. An analysis of covariance model was 
developed with the luma as the dependent variable and alert zone as the main factor. Sun angle (azimuth), 
based on the date and time each trial was conducted, was included as a covariate because it has been cited 
as a potential source of problems for Autopilot (26). 

The results were marginally significant (F(1,27) = 3.87, p = .06), meaning that the trials with alerts in 
Zone 1 experienced different brightness levels than those without alerts. The sun angle covariate was 
marginally significant (F(1,27) = 3.39, p = .08). Car 2, the only car to experience the initial alert in Zone 1, had 
a mean luma of 178 and the rest were at a mean of 163. The mean sun angle for car #2 in Zone 1 was 189 
degrees and 212 degrees for the no alert group in Zone 1. Thus, one possible influencing factor is not only 
how much brightness is experienced when lane lines are lost, but also the sun angle. 

A backwards logistic regression (LR) model was used to predict whether the alert occurred in Zones 1 
and 2 as a function of sun angle and brightness in the 3s prior to each alert. In this model, luma was also 
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marginally significant (p=.06, B = -.176) and sun angle was not (model accuracy = 85%). Because LR models 
produce regression coefficients for each feature that are log odds, taking the exponential of the coefficient 
weights estimates the expected change in the log odds of the target variable per unit increase in the 
corresponding predictor variable, holding the other predictor variables constant. This means that as luma 
increased by one unit, there was a 12% increase in the likelihood the car would experience a Zone 1 initial 
alert. 

 

Discussion 
 The goal of this study was to examine whether there were significant between- and within-vehicles 
driver-alerting differences in three randomly selected Tesla vehicles of the same model and year (Model 3, 
2018). Table 3 summarizes the general levels of consistency of each vehicle platform across the four driving 
tests. As will be discussed in detail, the bulk of tests yielded dramatic inconsistencies both within a single 
vehicle as well as across the vehicles.  

Between-vehicle differences were observed across numerous metrics. Cars 1 and 3 generally 
performed similarly, but not always. Overall behavior of Car 3 tended to appear less “cautious” than Car 1. 
For example, compared to Car 1, Car 3 tended to drive in autopilot for longer durations in the sharp curve 
scenario before forcing the driver to take control. It was also less likely to provide lane departure alerts on the 
lane departure test, and when it did, it was less likely to supply emergency assistive steering in conjunction 
with the alert. Car 3 also traveled further into the simulated construction site before presenting an alert to the 
driver.  

Despite the performance differences between Cars 1 and 3, they were overall more similar than they 
were different and varied primarily in subtle aspects of their execution of the different driving tasks. 
Conversely, the behavior of Car 2 was substantially different from both the other cars. During track testing, 
Car 2’s behavior was erratic on multiple tasks. Despite having an overall flawless record of successfully 
braking on the sharp curve task, it had the highest degree of within-vehicle variability in distance traveled 
before presenting a takeover alert, as it accounted for the 5 shortest distances as well as the longest 3 
distances. Similarly, on the construction test, Car 2 failed to maneuver around the obstacles in any trial, and 
in spite of this was also least likely to initiate a takeover alert. 

Car 2’s behavior during highway testing was very unpredictable. The car vigorously pinballed from 
side-to-side in the lane almost immediately upon autopilot engagement and routinely hit the rumble strips, 
triggering an end to the test, which is why there were far fewer total observations for Car 2. Curiously, the 
car’s performance seemed to improve marginally over progressive trials. This behavior was also observed for 
Car 2 outside the formal test context; when driving to the track, the test driver struggled to use autopilot 
consistently on the highway. Additionally, during both automated and driver-operated control, on multiple 
occasions the vehicle produced abrupt lane departure alarms. 

Other abnormalities were noted as well, such as Car 2 inexplicably skipping an alert cycle during one 
trial of the curve test, as well as presenting a hands-on-wheel alert after only 11 seconds while driving at 70 
mph, with the typical alert occurring at 32s. Because the most recent over-the-air update had occurred the 
evening before testing began, the owner had not used autopilot while the car was using the most recent 
version of the software. However, the owner reported that while using prior software versions, he had 
experienced similar issues during the first 1-2 hours after supercharging and that they gradually improved 
over time. The vehicle was supercharged immediately prior to the highway tests as well as approximately 1 
hour prior to the track tests, which may explain some of the odd behaviors seen in testing. Future research 
efforts should look at the interaction between charging and vehicle control. 

In addition to the significant between-vehicles differences that were present, within-vehicles 
differences were observed on multiple metrics. The only metrics that were generally consistent were (1) the 
interval of hands-free driving prior to an alert in the highway task, (2) the intervals between takeover alerts in 
the curve task, and (3) the location of takeover alert (when they occurred) in the construction task. In the 
construction task, while vehicles were internally consistent in where they presented an alert, they were not 
consistent in whether they presented an alert.  
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Test Metric Car 1 Car 2 Car 3 

Highway 

Alert interval  C2 CI I 

Time to clear  CA CA CA 

Unsafe behavior 2% 35% 5% 

Lane Shift 

Sounding of alert I I I 

Location sounded CW CW CW 

Unsafe behavior 0% 100% 0% 

Lane Departure 

Alert sounded I I I 

Steering Assist  I I I 

Unsafe behavior 30% 60% 63% 

Curve 

1st Alert  CW I I 

2nd Alert  CA CA CA 

3rd Alert  CA CA CA 

Unsafe behavior 0% 0% 0% 

CA = Consistent All, C(1,2,3) = Consistent with Car 1, 2, or 3, CW = Consistent Within a single car, I = 
Inconsistent, percentages represent proportion of trials the behavior was exhibited 

Table 3: Overall vehicle consistencies across tests 

In the lane departure test, arguably the most interesting source of within-vehicle variation was the 
type of feedback presented when the vehicle approached the edge of the lane and roadway edge. Although 
the cars were configured to provide emergency assistive steering in all trials, they did so in only 21% of 
cases. However, they did present an alarm without providing assistive steering in another 30% of cases, 
indicating that the vehicle had at least acknowledged the imminent lane departure but could not provide 
steering.  

 Perhaps most concerning were the unsafe behaviors exhibited in all the tests but the curve test. In 
this effort, unsafe behaviors are defined as behaviors (or lack of alerting) that would have likely led to an 
adverse event given a distracted driver. For the highway tests, Car 2 was the most unsafe car primarily 
because the driver had to manually take over due to unsafe Autopilot behavior with no warnings. While Cars 1 
and 3 were less unsafe, they did experience high risk events when Autopilot unexpectedly disengaged, which 
may not be observed by a distracted driver. The Lane Departure tests exposed many unsafe behaviors in that 
Car 3 had the highest number of unsafe lane departure incidents where no alert was sounded, nor was any 
steering assistance provided. Car 1 did not alert the driver to 3 out of 10 imminent road departures in the 
Lane Departure tests, so its performance was also highly variable and occasionally unsafe. 

While there were no unsafe events for the Curve test by the previous definition, there was significant 
increased risk for an adverse event as 30% of the cars traveled ¼ of mile without a lane marking and with no 
alert to a driver with no hands on the wheel. At 35mph, this translates into 26s. Similar to the highway tests 
where cars traveled ~30s with no hands on the wheel, the question must be asked as to whether it is safe or 
advisable to let a car that requires driver attention to travel on a highway or on an extremely curvy road with 
the driver not paying attention and with no hands on the wheel?  Finally, in the curve test while Car 1 was 
somewhat consistent in where it initiated the takeover alert sequence, Car 3 showed modest variation and 
Car 2 showed extreme variation. 

 Another issue with potential significant impact is that even where vehicles performed consistently with 
themselves and with each other, they did not behave consistently with stated design specifications. For 
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instance, according to Tesla documentation, during automated driving on 70 mph highways, hands-on-wheel 
alerts should be presented every 25 seconds (12), but this actual interval was 32 seconds, a 25% 
discrepancy. Similarly, Tesla notes that during automated driving if there is a disappearance in lane markings, 
a takeover alert should be presented within 400ms. However, not only did none of the cars present an alert 
with 400ms during the Curve test, in 30% of trials the vehicles drove autonomously for nearly 30 seconds on 
extreme curves that lacked even a single lane marking. The potential for safety-critical events under these 
circumstances is enormous. 

 This research also highlights the possibility that environmental factors could influence camera vision 
systems in potentially surprising ways. In the curve test there was some evidence that brightness and 
possibly sun angle could be influencing factors. The lane shift tests indicated a strong association between 
brightness and different cars, whereas this relationship was not true for the lane departure tests, held 180 
degrees opposite. Sunlight has been shown to cause anomalies in the perception systems used in these and 
other autonomous vehicles (27–30), so it is possible that sun angle could contribute to a camera system’s 
degradation. While these results suggest that there could be an important connection between brightness, 
sun angle and the triggering of camera vision-based alerts, more work is needed to further investigate these 
findings. 

 

Limitations 
The analysis of brightness-based contributors to vehicle performance variation is limited by the choice 

of camera used to collect the data. For this study, the camera was set to automatically adjust its exposure; 
this provided a consistent level of image contrast, enabling us to detect console alerts under a variety of light 
conditions, but also masks some of the variation in natural light present in the environment. While variations in 
luma of up to approximately 20% were detected across images, this may not have represented the true 
variation in light across the different scenes. More work is needed with light meters for better accuracy. In 
addition, the vulnerability of computer-vision systems engaging in lane tracking and obstacle detection to 
different sun angles deserves further scrutiny. 

Small sample size was also a limitation of this study. One major difference across the three vehicles 
that could account for some of the observed variation was that despite their identical model and year, the cars 
had different software versions at various points in the 11-day testing time period. Car 3 completed all testing 
using software v10.2 (2020.4.1 4a4ad401858f). Car 1 completed the track tests with this same software 
version, but completed the highway tests with software v10.2 (2020.8.1 ae1963092ff8). Car 2 completed all 
tests with a third software version, v10.2 (2020.12 4fbcc4b942a8). 

In addition to the different software versions, Car 2 included a full-self driving chip and All Wheel 
Drive while Cars 1 and 3 just had standard autopilot and a single motorized axle. Although the full-self driving 
chip was present on Car 2, the associated full-self driving visualization was disabled to make the car’s driver 
monitoring and alerting system as consistent as possible with the other vehicles. As a result of these 
hardware and software variations, some driving configuration options differed between cars and it was not 
possible to operate them in exactly the same settings. For example, Car 1 was set to only allow “chill” 
acceleration mode, while Car 2 did not have this option and was instead operated in “sport”, and where Car 3 
used the factory default acceleration mode “standard”. None of the tests theoretically should have been 
impacted by the acceleration mode, but since the logic of the cars’ decisions is a black box, this cannot be 
certain. 

Overall, the small sample size makes it difficult to distinguish individual vehicle differences from 
differences arising from the unique software configurations present in each vehicle. However, the presence of 
these significant differences is itself noteworthy, regardless of the root cause. Modern vehicle certification 
frameworks do not consider variation across individual vehicles in a class, so significant between-vehicles 
differences are not currently accounted for regardless of their source. 
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Conclusions 
The goal of this research was to assess between- and within-ADAS-equipped vehicle variation in four 

key scenarios involving the interface between a human driver and an ADAS system. To this end, three Tesla 
Model 3 vehicles displayed significant between- and within-vehicle variation on a number of metrics related to 
driver monitoring, alerting, and safe operation of the underlying autonomy.  

 These results suggest that the performance of the computer vision systems was extremely variable, 
and this variation was likely responsible for some, but not all, of the delays in alerting a driver whose hands 
were not on the steering wheel. Ironically, in some trials the cars seemed to perform the best in the most 
challenging driving scenarios (navigating extreme curves while the driver ignored takeover requests), but 
performed worse on seemingly simpler scenarios like detecting a lane departure or responding to obstacles in 
the roadway. 

 This finding highlights a common misconception that what humans perceive to be hard in driving may 
not necessarily be what an autonomous system finds difficult. It may be that the extreme road angles in the 
curve test were detected more easily as opposed to the road edges in a much more gradual drift in the lane 
departure test. Another possibility is that Tesla engineers spend more effort on the more difficult problems 
and spend less time on seemingly easy problems. Whatever the reason for such variable and often unsafe 
behaviors, these results indicate that more testing is needed for these vehicles before such technology is 
allowed to operate without humans in direct control. It also suggests that driver monitoring systems need to 
have both a high degree of certainty as well as rapid response times. 

These results should be interpreted in light of the discrepancies in the software/hardware 
configurations of the vehicles, which present a confound for assessing the nature of performance variation. 
Despite the very similar configurations of Cars 1 and 3, they completed the tests using different versions of 
software. Car 2 possessed the purported “full self-driving chip”, so in theory should have the most advanced 
Autopilot system, but this car objectively performed the worst. 

Such results also indicate that the concept of over-the-air updates needs to be revisited when safety-
critical functionalities may be changed. While agile software engineering techniques may be suitable for 
smartphones and other similar devices, these techniques likely cause significant problems in safety-critical 
systems. Unfortunately, these processes have never been formally studied or evaluated by a regulatory body. 
Indeed, these results highlight the need for more scrutiny of the cars and software embedded in them, as well 
as the certification processes, or lack thereof, that allow these cars on the road. 
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Appendix 
 

 

Appendix A: Environmental Conditions by Test Day 
Test Start 

time 
(hour) 

Temperature 
(F) 

Wind 
speed 
(mph) 

Wind 
origin 

Precipitation Visibility 
(miles) 

Pressure 
(in) 

Humidity 
(%) 

Reported 
sky 

cover 

Highway 1 1400 67 20 SW None 10 30 42 Cloudy 

Highway 2 1300 71 6 N None 10 29.6 49 Cloudy 

Track 1 1600 63 6 N None 10 30.3 45 Fair 

Track 2 1300 63 11 SW None 10 30.2 69 Mostly 
Cloudy 

Highway 3 1200 59 8 E None 10 30 65 Cloudy 

Track 3 1300 84 18 SW None 10 30.1 47 Fair 

Table 4: Atmospheric conditions by test day 

 

Appendix B: Vehicle Software Configurations by Test 
Day 

Vehicles were standardized with respect to the driver customization preferences to the greatest extent 
possible; because vehicles were rented from private owners, certain settings were subject to security 
restrictions and could not be manipulated. While the entire set of vehicle customizations is not described here, 
the autopilot configuration was set as follows: 

• Cruise follow distance: 4 
• Autosteer: On 
• Navigate on Autopilot: Off 
• Full-self-driving visualization: Off 
• Summon: On 
• Speed limit warning: Display 
• Speed limit mode: Relative 
• Speed limit offset: 0 
• Forward collision warning: Medium 
• Lane departure warning: Assist 
• Emergency lane departure avoidance: On 
• Blind spot collision warning chime: On 
• Automatic emergency braking: On 
• Obstacle-aware acceleration: On 

 

Because Tesla transmits over-the-air updates to vehicles, vehicle software was updated over the course of 
the test battery, and vehicles did not necessarily use the same software version as each other or across 
different days of testing. Table 5 shows the Autopilot and Navigation software versions installed on the vehicle 
during each test. 
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Vehicle Test type Software Navigation data 

Highway 1 Highway v10.2 (2020.4.1 4a4ad401858f) NA-2019.20-10487 

Highway 2 Track v10.2 (2020.4.1 4a4ad401858f) NA-2019.20-10487 

Track 1 Highway v10.2 (2020.4.1 4a4ad401858f) NA-2019.20-10487 

Track 2 Track v10.2 (2020.12 4fbcc4b942a8) NA-2019.20-10487 

Highway 3 Highway v10.2 (2020.12 4fbcc4b942a8) NA-2019.20-10487 

Track 3 Track v10.2 (2020.8.1 ae1963092ff8) NA-2019.20-10487 

Table 5: Software configurations for each test 

 

Appendix C: Descriptive Statistics by Test 
Appendix C.1: Highway (HW) Test 

Car Count Mean Min Max Median SD 

Car 1 62 0.92 0.64 3.44 0.84 0.349 

Car 2 16 1.28 0.72 3.64 0.96 0.837 

Car 3 64 0.91 0.60 2.04 0.84 0.287 

Table 6: Descriptive statistics for time of driver response (seconds) to alerts in HW test. 

Car Count Mean Min Max Median SD 

Car 1 62 32.3 31.0 43.4 31.7 2.00 

Car 2 17 30.2 11.0 32.5 31.2 4.97 

Car 3 64 33.0 30.9 43.8 31.8 3.26 

Table 7: Descriptive statistics for duration in seconds of interval of automated driving between alerts in HW test. 

Car Count Mean Min Max Median SD 

Car 1 62 1.24 0.40 5.88 0.64 1.22 

Car 2 16 0.69 0.44 1.72 0.60 0.30 

Car 3 64 1.38 0.40 10.40 0.58 1.66 

Table 8: Descriptive statistics for duration (seconds) of hand contact required to remove an alert during event cycles in HW test. 

 

Appendix C.2: Lane Shift (LS) Test 
Car Count Mean Min Max Median SD 

Car 1 6 6.6 6.3 6.9 6.6 0.237 

Car 2 3 6.3 5.8 6.6 6.5 0.436 

Car 3 7 5.67 5.5 5.8 5.7 0.111 

Table 9: Number of cones visible at time alarm occurred for trials where an alarm was presented in LS test. 
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Appendix C.3: Lane Departure (LD) Test 
Car Count Mean Min Max Median SD 

Car 1 10 4.36 2.88 6.03 4.21 1.16 

Car 2 10 4.07 2.05 7.92 4.01 1.62 

Car 3 8 4.05 0.68 6.52 4.31 1.55 

Table 10: Descriptive statistics for angle of wheel rotation used to initiate nudge in LD test. 

Car Count Mean Min 

Car 1 3 3 4 

Car 2 6 3 1 

Car 3 5 1 2 

Table 11: Count of trial outcomes by car in the LD test. 

 

Appendix C.4: Curve (CRV) Test 
Car Count Mean Min Max Median SD 

Car 1 10 9.98 9.88 10.00 10.00 0.051 

Car 2 9 9.99 9.96 10.00 9.96 0.040 

Car 3 10 10.00 9.92 10.40 9.96 0.153 

Table 12: Descriptive statistics for time from first alarm to second alarm in CRV test. 

Car Count Mean Min Max Median SD 

Car 1 10 5.02 4.96 5.08 5.02 0.034 

Car 2 10 5.54 4.96 9.84 5.08 1.510 

Car 3 10 5.03 4.60 5.16 5.06 0.162 

Table 13: Descriptive statistics for time from second alarm to third alarm in CRV test. 

Car Count Mean Min Max Median SD 

Car 1 10 15.00 14.90 15.10 15.00 0.053 

Car 2 10 14.50 9.84 15.10 15.00 1.650 

Car 3 10 15.00 14.90 15.20 15.00 0.084 

Table 14: Descriptive statistics for duration of overall alarm sequence in CRV test. 
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Car Count Mean Min Max Median SD 

Car 1 10 736.9 628.3 1252.5 680.7 185.7 

Car 2 10 686.0 43.1 1254.6 710.5 596.5 

Car 3 10 895.7 609.8 1246.4 692.0 300.6 

Table 15: Descriptive statistics for distance from first curve traveled by each car at moment of alert. 

Car Count Mean Min Max Median SD 

Cluster 1 
(earliest) 5 121.1 43.1 172.5 117.0 53.0 

Car 2  
(middle) 15 673.2 609.8 767.9 673.5 38.8 

Car 3    
(latest) 10 1248.2 1240.2 1254.6 1248.4 4.6 

Table 16: Descriptive statistics for location of each cluster measured as distance from beginning of first curve. 

 

Appendix D: Statistical Models 
Appendix D.1: Highway (HW) Test 

 Degrees of 
freedom 

Sum of 
squares 

Mean square F-value P-value 

Speed 1 897.6 897.6 260.25 < 0.0001 

Car 2 38.5     19.2    5.58 0.0047 

Residuals 139 479.4      3.4   

Table 17: ANCOVA table for analysis of covariance in duration of automated driving interval during event cycles in HW test. 

 Estimate Standard error T-value P-value 

Intercept (Car 1) 96.51 4.14 23.28 < 0.0001 

Car 2 -1.57 0.51 -3.09 0.0024 

Car 3 0.07 0.33 0.22 0.8248 

Speed -0.92 0.06 -15.52 < 0.0001 

Table 18: Linear regression for effect of speed and car on duration of automated driving interval during event cycles in HW test. 

 Degrees of 
freedom 

Sum of 
squares 

Mean square F-value P-value 

Speed 1 5.79 5.79 3.09 0.0808 

Car 2 8.10 4.05 2.16 0.1188 

Residuals 138 258.29 1.87   

Table 19: ANCOVA table for analysis of covariance in duration of seconds of hand contact required to remove an alert during 
events in HW test. 
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Appendix D.2: Lane Shift (LS) Test 
 

 Degrees of 
freedom 

Sum of squares Mean square F-value P-value 

Car 2 3466 1733.1 34.163 < 0.0001 

Alert 1 33 32.7 0.644 0.43 

Sun azimuth 1 257 256.9 5.064 0.0335 

Residuals 25 1268 50.7   

Table 20: ANCOVA comparing luma values observed for trials with or without an alert blocked by car, with sun azimuth as a 
covariate. 

 

 Degrees of 
freedom 

Sum of 
squares 

Mean square F-value P-value 

Cones visible 2 2.88 1.44 25.52 < 0.0001 

Residuals 13 0.7343 0.0565   

Table 21: ANOVA table for analysis of variance in quantity of cones visible at moment of alarm in LS test. 

 

Appendix D.3: Lane Departure (LD) Test 
 Degrees of 

freedom 
Sum of squares Mean square F-value P-value 

Car 2 1.16 0.58 0.242 0.787 

Trial outcome 2 0.59 0.29 0.122 0.886 

Residuals 23 55.22 2.40   

Table 22: ANOVA table for analysis of variation in wheel angle rotation in LD test. 

 Estimate Standard error Z-value P-value 

Intercept (Car 1) 8.97 18.77 0.478 0.633 

Car 2 -1.22 0.97 -1.252 0.211 

Car 3 -1.20 1.17 -1.028 0.304 

Luma -0.07 0.16 -0.403 0.687 

Wheel angle -0.10 0.29 -0.342 0.732 

Table 23: Logistic regression table for effect of car, wheel angle rotation, and luminosity on whether trial had any sort of feedback 
in LD test. 
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 Estimate Standard error Z-value P-value 

Intercept (Car 1) -108.52 65.80 -1.649 0.099 

Luma 0.94 0.58 1.632 0.103 

Wheel angle -0.39 0.71 -0.551 0.582 

Car 2 -0.89 2.12 -0.421 0.674 

Car 3 -0.46 2.33 -0.197 0.844 

Table 24: Logistic regression table for effect of car, wheel angle rotation, and luminosity on whether trial had assistive steering 
given that it had an alarm in LD test. 

 Degrees of 
freedom 

Sum of squares Mean square F-value P-value 

Trial outcome 2 10.2 5.1 0.037 0.964 

Car 2 1838.4 919.2 6.695 0.005 

Sun azimuth 1 8.9 8.9 0.065 0.801 

Residuals 22 3020.4 137.3   

Table 25: ANCOVA table for effect of car and trial outcome in predicting observed luminosity with sun azimuth as a covariate. 

 

Appendix D.4: Curve (CRV) Test 
 Degrees of 

freedom 
Sum of squares Mean square F-value P-value 

Between Car:      

Trial 1 0.001 0.001 0.138 0.774 

Residuals 1 0.008 0.008   

Within Car:      

Trial 1 0.000 0.000 0.001 0.973 

Residuals 25 0.248 0.010   

Table 26: Repeated measures ANOVA for duration of interval between first and second takeover alert. 

 Degrees of 
freedom 

Sum of squares Mean square F-value P-value 

Between Car:      

Residuals 2 1.748 0.874   

Within Car:      

Trial 1 0.563 0.563 0.721 0.404 

Residuals 2 29,287 0.781   

Table 27: Repeated measures ANOVA for duration of interval between second and third takeover alert. 
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 Degrees of 
freedom 

Sum of squares Mean square F-value P-value 

Between Car:      

Residuals 2 1.678 0.839   

Within Car:      

Trial 1 0.706 0.706 0.772 0.388 

Residuals 26 23.775 0.914   

Table 28: Repeated measures ANOVA for total duration of takeover alert sequence. 

 

Appendix E: Views of Road at Time of Alert in Lane 
Shift Test 

Figure 20, Figure 21, and Figure 22 show the camera viewpoints at the point of alert for Car 1, Car 2, 
and Car 3 respectively. Note that images are only present for those trials in which an alert occurred, since the 
alert did not occur in all trials. For Car 1, all seven cones are visible in all trials; their apparent positions range 
from being somewhat ahead of the car to aligned with the car’s front. In all trials, several feet of the second-
to-last white lane marking are visible, though the visible length also varies across trials. For Car 2, the 
distribution of stopping points is similar to Car 1, though there is more apparent variability in the car’s position, 
as can be seen by comparing the visible length of the white line in the upper left image to that in the upper 
right. For Car 3, the seventh cone is never visible and the white line is not visible in all but one trial. 

 

Trial 1

 

Trial 2
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Trial 3

 

Trial 6

 

Trial 7

 

Trial 9

 

Figure 20: Test track location at point of alarm for Car 1 in LS test. 

 

Trial 3 

 

Trial 5 

 



 35 

Trial 7 

 

 

Figure 21: Test track location at point of alarm for Car 2 in LS test. 

Trial 1 

 

Trial 3 

 

Trial 4 

 

Trial 7 
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Trial 8 

 

Trial 9 

 

Trial 10 

 

 

Figure 22: Test track location at point of alarm for Car 3 in LS test. 

 

Appendix F: Road View at Time of Alert in Curve 
Test 

Trial Car 1 Car 2 Car 3 

1 
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2 
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 38 
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10 

   

Figure 23: View of roadway at point of alarm initiation in each trial for each car in CRV test. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


