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CHAPTER 2 

Human Supervisory Control Challenges in Network Centric Operations 

Mary L. (Missy) Cummings, Sylvain Bruni & Paul J. Mitchell 

ABSTRACT 

Network-centric operations (NCO), envisioned for future command and control systems in 

military and civilian settings, must be supported by sophisticated automated systems, so human-

computer interactions are an important aspect of overall system performance. This chapter 

identifies ten human supervisory control challenges that could significantly impact operator 

performance in NCO: information overload, attention allocation, decision biases, supervisory 

monitoring of operators, distributed decision making through team coordination, trust and 

reliability, the role of automation, adaptive automation, multimodal technologies, and 

accountability. Network-centric operations will bring increases in the number of information 

sources, volume of information, and operational tempo with significant uncertainty, all of which 

will place higher cognitive demands on operators. Thus, it is critical that NCO research focuses 

not only on technological innovations, but also on the strengths and limitations of human-

automation interaction in a complex system.  

In command and control settings, network-centric operations (NCO) is the concept of 

operations envisioned to increase combat power by effectively linking or networking 

knowledgeable entities in a battlespace. Mission success is achieved by leveraging information 

superiority through a network, rather than the traditional method of sheer numerical superiority 

through platforms and weapons. According to the United States Department of Defense (DoD), 

key components of NCO include information sharing and collaboration, which will promote 
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shared situational awareness and overall mission success (DoD, 2001). To realize NCO, 

significant improvements must be made in areas of communications, sensor design, and 

intelligent automation. More importantly, whereas technological advances are important for 

realizing the concept of network centric operations, equally if not more critical is the need to 

understand how, when, where, and why the technology supports human decision makers and 

front line soldiers.  

Command and control domains are complex socio-technical domains in that the technology 

is a means to an end (goal or mission), defined by human intentions. Thus, NCO systems are 

inherently socio-technical systems characterized by high complexity, high risk, time pressure, 

and dynamic goals. These same characteristics are hallmarks of naturalistic decision making, so 

any NCO technologies that are not designed with the express purpose of supporting military 

personnel decision making in these dynamic and uncertain situations with rapidly shifting goals 

are likely to fail. Even though this chapter will focus primarily on military NCO systems, since 

this is where the majority of research is primarily occurring, these results are extensible to all 

networked time-pressured systems such as first responder systems, real-time financial trading, 

and commercial air traffic control. 

The move towards NCO represents a shift in the role of humans both in mission planning and 

actual operation. As has already been evidenced in the development of fly-by-wire controls, 

highly automated aircraft and missile systems, military operators are less in direct manual control 

of systems, but more involved in the higher levels of planning and decision making. One 

example of a military network application is the Tactical Tomahawk missile, which can be 

launched from a ship or submarine. Any time during its approximately two hour flight, control 

can be handed off to anyone in the distributed network (connected via satellite communications), 
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and moreover, these missiles are typically fired in clusters so that one operator can theoretically 

control multiple missiles in flight (Cummings & Guerlain, 2007). An NCO example in the 

commercial realm includes the next-generation (Next-Gen) vision of the national aerospace 

system, which will include aircraft that can electronically deconflict with one another, while 

under positive air traffic control, as well as the presence of unmanned aerial vehicles (UAVs). 

The shift in control from lower level skill-based behaviors to higher level knowledge-based 

behaviors, which is inherent to NCO, is known as human supervisory control (HSC). HSC is the 

process by which a human operator intermittently interacts with a computer, receiving feedback 

from and providing commands to a controlled process or task environment, which is connected 

to that computer (Figure 2.1). 

 

 

 

 

 

 

HSC in military operations includes mission planning, passive and active intelligence 

operations, and payload delivery which could involve manned aircraft and ground vehicles, as 

well as unmanned air, ground, surface, and subsurface vehicles. The use of automated 

technologies and systems is a fundamental component of NCO; thus in the context of human 

interaction, NCO is a high-level human supervisory control problem. An example of a current 

NCO system is the use of multiple layers of unmanned and manned aircraft, as well as ground 

vehicles, to search for and destroy targets. It is not uncommon for the military to use unmanned 
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Figure 2.1. Human supervisory control (Sheridan, 1992). 
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aerial vehicles (UAVs) to search over long periods of time for hostile targets, and then once a 

target is found, coordinate through various agencies on the ground and in the air for threat 

neutralization. In some cases, these UAVs are operated from thousands of miles away (e.g., the 

Predator), so the DoD’s reliance on networked agents who remotely coordinate is a reality.  

These current NCO operations typically involve multiple personnel controlling a single 

UAV, who coordinate with various manned assets for mission success. Future NCO scenarios 

will invert this ratio, with small teams of people controlling an order of magnitude greater 

number of heterogeneous unmanned vehicles. For example, an operator aboard a Navy vessel 

may control a team of unmanned underwater vehicles (UUVs), as well as multiple UAVs 

engaged in coastal search and reconnaissance missions. This person will coordinate with Army 

personnel on land who supervise teams of unmanned ground vehicle (UGVs or robots) in 

minefield detection missions, all while coordinating with Air Force UAVs providing overhead 

security surveillance to ensure ground personnel safety. 

 As a consequence of this future vision of small teams of people controlling large teams of 

unmanned vehicles, there will be an exponential increase in incoming information. Given this 

influx of voluminous information from a variety of sensors (both human and automated), a 

particularly acute problem will be how to give operators enough information for well-informed 

decisions without reaching cognitive saturation. Moreover, there is little understanding of how 

functions should be allocated between humans and automation, what level of collaboration is 

needed, and how these functions can be supported with actual software and hardware (Sheridan 

& Parasuraman, 2006). These HSC NCO problems are further complicated by the dynamic, 

uncertain, and time-pressured elements typical of command and control environments. Due to 

the increasing importance of HSC in NCO, the DoD has recognized that a lack of automation 
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reliability and understanding of relevant HSC issues, as experienced both by individuals and 

teams, are among the primary barriers limiting the potential of NCO (DoD, 2001).  

Using historical case studies, as well as previous and current research studies, ten major 

human supervisory control issues are identified in this chapter as those HSC issues that are likely 

to cause degraded performance for both the system and the operators/decision-makers in 

futuristic network centric operations. These issues, listed in Table 2.1, fall into two general 

categories, those that describe human performance and those that address HSC technologies 

critical to NCO operations. Within these two major categories, these issues are not mutually 

exclusive, are not rank ordered, and will often overlap theoretically as well as in actual design 

and testing. The tenth and final category, accountability, is set apart from the others since it 

represents the intersection of both humans and technology in a societal context, and thus is a 

meta-attribute. These ten challenges will be detailed in the following sections. 

Table 2.1. Ten Supervisory Control Challenges in NCO 

Human Performance  
Information Overload 
Attention Allocation 
Decision Biases 
Supervisory Monitoring of Operators  
Distributed Decision Making through Team Coordination 
Trust and Reliability 

Technology 
Role of Automation 
Adaptive Automation 
Multimodal Technologies 

Accountability 
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THE HUMAN PERFORMANCE ASPECT OF SUPERVISORY CONTROL SYSTEMS 

Information Overload 

On March 28th, 1979, the worst US commercial nuclear power plant accident in history 

occurred at Three Mile Island in Middletown, Pennsylvania. The problem began when a 

main feedwater pump failure caused the reactor to automatically shut-down. In response to 

this, a relief valve opened to reduce the pressure of the system, but stuck in the open position. 

There was no indication to plant controllers that this had occurred. Due to the stuck valve, 

there was significant loss of reactor coolant water, subsequently causing the core of the 

reactor to overheat. There were no instruments that showed the level of coolant in the core, 

so it was thought to be acceptable based on the pressurizer coolant level. This led to a series 

of human actions that made the problem worse, ending with a partial meltdown of the core. 

Operators were overwhelmed with alarms and warnings, numbering in the hundreds, over a 

very short period of time. They did not possess the cognitive capacity to adequately deal with 

the amount of data and information given to them during the unfolding events. Instead, they 

coped by focusing their efforts on several wrong hypotheses, ignoring some pieces of 

information that were inconsistent with their incorrect mental model. 

According to the DoD, the Global Information Grid (GIG), the actual information technology 

network that will link command and control agents, will be the enabling building block for NCO. 

The GIG is the end-to-end set of information capabilities, associated processes and personnel for 

collecting, processing, storing, and disseminating information to those who require it, on the 

battlefield or elsewhere (DoD, 2001). Metcalf’s Law states that the usefulness, or utility, of a 

network equals the square of the number of users (Shapiro & Varian, 1999). For the purposes of 

this discussion, the term information also implicitly includes data which is the raw output of a 
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human or machine sensor, whereas information is aggregated data that is combined in some way 

to relate to some goal-directed process (Pfautz, et al., 2006). 

The GIG, and other such large networks, will give operators access to exponential amounts 

of information as compared to today’s operations, and the information intake for the average 

NCO operator will be higher than ever before in the command and control environment. Even if 

the information complexity does not increase (which is unlikely), mental workload will increase 

accordingly. The problem is predicting when and how increased mental workload, as a result of 

information overload, will occur for a dynamic decision-making environment so that the amount 

of information any single person or group is required to process is manageable.  

Predicting this point of saturation is difficult for operators in NCO systems because it is 

dependent on system-level attributes such as task, automation level, and operational tempo, as 

well as individual and team attributes such as training, experience, fatigue, etc. Modeling and 

simulation can aid in predicting where high mental workload points are likely occur, and there 

are a number of modeling techniques, including cognitive and psychophysiological (discussed in 

a subsequent section), that can be used to identify and predict high operator workload. However, 

we focus on the development of stochastic systems models that consider the performance of the 

human in conjunction with that of sensors, vehicles, and other sources of automation. 

Identifying and predicting high workload as a result of information overload. Discussed in 

this section, modeling a network-centric environment with stochastic representations of both 

operators and autonomous processes can be used to predict operator mental workload or the 

impact of high workload on overall performance in supervisory control settings. Such models are 

systems-level models as opposed to the information-processing level models that are typically 

used in cognitive models. This distinction is important because although these two techniques 
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can conceptually be used to predict the same outcome (occurrences of high mental workload that 

are associated with negative outcomes), they do so at two very different levels of granularity. 

Cognitive models account for low-level cognitive processes including working memory load, 

access to long-term memory, the use of contextual cues, etc. Stochastic operator-automation 

models assume an aggregation of these information processing functions with bands of 

variability and consider the performance of the human simultaneously with the performance of 

the relevant aspects of automated systems, which also has associated performance bounds. See 

Bryne and Pew (2009) for a more extensive discussion on human performance modeling. 

One common task envisioned for an operator in a NCO environment is the control of 

multiple unmanned vehicles. A significant concern is that operators are limited by how much 

information they can effectively manage from multiple vehicles, ultimately limiting the number 

that they can control. For this single-operator multiple-vehicle problem, one stochastic 

supervisory control model that can be used to predict operator workload is a queuing-based 

model, as represented in Figure 2.2 (Cummings & Nehme, 2009). Such a model is a system-level 

model because it considers the attributes of both the human and the automated components, (i.e., 

Vehicle Parameters 

Numbers of Vehicles 

Vehicle Team  Model 

External Environmental 

HUMAN 
SERVER

QUEUE 

Interaction Model 
Workload-Performance Model 

Attention Allocation Strategies 

Human Operator Model 

Figure 2.2. A queuing-based human-system performance model. 
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the vehicles), when attempting to make predictions about human or overall system performance.  

The model in Figure 2.2 represents an event-based system, where events that are generated 

by vehicles and the human operator form a queue of operator tasks. For example, vehicles that 

require operators to input new waypoints, as well as more abstract tasks such as resource 

allocation of vehicles across a set of mission requirements, are considered events that require 

operator attention. The queuing model in Figure 2.2 assumes that the human “server” (the 

operator) is inherently limited in how fast tasks can be serviced, and that the operator is not 

always an efficient and correct server.  

As seen in Figure 2.2, the model includes vehicle performance attributes (i.e., speed, range, 

etc.), as well as autonomy characterizations (how long and under what conditions vehicles can 

autonomously operate). Human models in these system account for operator strategies in 

managing multiple tasks (called attention allocation), how well they can do specific tasks 

(interaction models), and also, how performance can change as workload changes. This last 

workload relationship is typically represented as percent utilization (i.e., how busy an operator is 

over a given time period). In this modeling approach, the low-level cognitive interactions are 

subsumed by the interaction models 

and become just one of many 

variables in the overall system model.  

Although queuing models have 

been used historically in supervisory 

control settings (Liu, 1997; Schmidt, 

1978), the model in Figure 2.2 is 

unique in that it represents detailed 
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models of both vehicles and human performance in a networked setting, so such a model can 

predict, for example, how many vehicles one person can control with an expected skill set and a 

priori vehicle parameters. It can also pinpoint at which utilization levels (i.e., mental workload), 

human and system performance begins to degrade, particularly as levels of incoming information 

increase. The model in Figure 2.2 is explicit for unmanned vehicle supervisory control, but it is 

generalizable to supervisory control settings with multiple complex tasks.  

Figure 2.3 demonstrates this kind of modeling effectiveness, as it shows how well the model 

in Figure 2.2 can predict operator workload (as measured by percent utilization), given three 

different unmanned vehicle team architectures. The observed human performance measurements 

come from a multiple unmanned vehicle, single operator control simulation with 80 participants 

(Cummings & Nehme, 2009). Operators supervised multiple heterogeneous unmanned vehicles 

searching for targets, and then performed a visual identification task, similar to present-day 

intelligence, search, and reconnaissance (ISR) missions. All model predictions fell within the 

95th percent confidence intervals of the observed data, and it can be seen that team 1, the team 

that generated the most information for the operator to attend to, also required the most mental 

effort by operators. This approach to predicting operator workload as a function of unmanned 

vehicle team architectures is critical in allowing system designers to understand the implications 

on human performance for complex, networked systems. 

There are other variations of stochastic supervisory control models that attempt to predict 

human and system performance through the incorporation of workload. Simulated annealing has 

been used with a similar embedded queuing model to predict performance of humans in concert 

with dynamic mission needs for networked unmanned aerial vehicles (Cummings, Nehme, & 

Crandall, 2007). Operator attention allocation strategies and interaction efficiencies have been 
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modeled through stochastic representations in order to build models to predict overall human-

unmanned vehicle team performance (Crandall & Cummings, 2007). In addition, other 

researchers have adapted the previously described operator utilization model in cooperative 

control models of multiple unmanned vehicles to improve overall model prediction for optimal 

vehicle coordination strategies (Savla, Nehme, Frazzoli, & Temple, 2008).   

In summary, even though there is never one right modeling technique that is correct in all 

possible supervisory control settings, systems-theoretic models (i.e., those that consider all 

system entities in a holistic and integrated fashion), will be critical for building accurate models 

of network-centric environments. Moreover, because such environments contain significant 

uncertainty, both on the part of human operators as well as environmental events, stochastic 

modeling techniques that examine performance boundary limits in the presence of an 

optimization trade-space are likely to be more useful, especially given the large degrees of 

freedom inherent in NCO settings. 

Mitigating information overload through design. The preceding discussion focused on the 

need for identification and prediction of high operator workload caused by information overload.  

Another equally relevant consideration is the need for better human-system interface designs that 

mitigate potential high workload situations. As will be discussed in a subsequent section, 

multimodal technologies are potential technological interventions to reduce workload and 

improve operator efficiency when attending to multiple sources of information. An additional 

design technique that can be used to mitigate the negative effects of information overload, 

particularly in the domain of visual interfaces which dominates NCO environments, is the 

application of direct-perception interaction displays. 
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Since perception is a direct, non-inferential process, given a well-designed interface that 

supports direct-perception interaction, operators can directly perceive the environment and what 

the various elements of the environment afford them, without needing to access costly cognitive 

resources (Gibson, 1979). Because direct perception does not require inference, it is fast, 

effortless, and proceeds in parallel unlike analytical cognition which is slow and error-prone 

(Vicente & Rasmussen, 1992). Moreover, it can be substituted for higher, more demanding 

cognitive tasks (Sanderson, Flach, Buttigieg, & Casey, 1989), and produces proficient 

performance from lower levels of cognitive control (Vicente & Rasmussen, 1992). 

Numerous studies have shown that performance can improve when displays utilize direct 

perception-action visual representations that allow the user to employ the more efficient 

processes of perception rather than the cognitively demanding processes involved when relying 

on memory, integration, and inference (e.g., Bennett, 1992; Buttigieg & Sanderson, 1991). This 

kind of fast, low cognitive effort display aligns well with the dynamic, time-pressured NCO 

environments since the operator will need to take into account large amounts of information of 

varying degrees of uncertainty, but be expected to make high-consequence decisions accurately. 

Direct-perception displays have been successfully used in NCO experimental settings such as 

providing decision support for multiple unmanned vehicle resource allocation (Cummings & 

Bruni, 2009), and tasking of multiple unmanned vehicles in real-time (Fisher, 2008). Although 

such tools are generally effective for improving operator performance both in terms of decision 

accuracy and time, previous research has demonstrated that the application of direct perception 

tools is not guaranteed to improve performance (Cummings, Brzezinski, & Lee, 2007). In the 

case of providing scheduling decision support for multiple UAVs, this research demonstrated 

that direct-perception visualization contributed to significantly degraded operator performance 
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when applied using a globally optimal algorithm (across all vehicles), as compared to when the 

exact same visualization was powered by locally optimal algorithms (per vehicle). Thus, it is 

critical for designers to consider whether a direct-perception display (or any visualization 

designed to reduce workload) actually integrates information in a helpful manner, or adds to the 

workload by adding even more information for the operator to consider. 

 

Attention Allocation 

Instant messaging is rapidly becoming a primary means of communication between Navy 

ships and other operational units. Instant messaging, otherwise known as chat, has many 

advantages for rapid response in critical time-pressure command and control situations, but 

operational commanders have found it difficult to handle large amounts of information 

generated through chat, and then synthesize relevant knowledge from this information. Chat 

enables faster responses in time critical command and control situations, but as described by 

the military, managing and synthesizing the large amount of information transmitted can 

sometimes be a “nightmare” (Caterinicchia, 2003).  The addition of instant messaging in the 

command and control loop requires a division of attention from the primary task, which may 

not always be appropriate. Laboratory research has shown that when given the opportunity 

to chat in NCO environments, operators will routinely neglect the primary task in favor of 

the secondary, lower priority task of chatting (Cummings & Guerlain, 2004). Designing 

systems to promote effective allocation of attention highlights a challenge for future network 

centric operations which inherently will require divided attention across often disparate 

tasks  
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Due to the expected increases in the number of available information sources, volume of 

information, and operational tempo in NCO settings, greater attentional demands will be placed 

on operators. As a result, an important NCO issue is how to allocate attention across a set of 

dynamic tasks. In deciding on an optimal allocation strategy, the operator acts to balance time 

constraints with relative importance of the required tasks. There are three general attributes of 

attention allocation that need to be considered in NCO supervisory control systems: 1) task 

switching efficiency, i.e., selecting the right task at the right time to service, 2) minimizing 

switching costs, i.e., reducing the time it takes operators to reorient to the new situation, and 3) 

allocating just enough attention for the current task, i.e., once engaged in a task, how long should 

an operator spend gathering information on which to make a decision? 

Task switching efficiency. The first attention allocation issue, task switching, is essentially a 

task prioritization problem with significant design implications. For example, an air traffic 

controller attends to several aircraft at once, particularly for enroute sectors. Controllers must be 

aware of which aircrafts require commands in both space and time. Procedures often aid 

operators in such supervisory control domains, such as “the aircraft that is closest to a sector 

edge should be serviced first.” However, there are also design strategies that can provide 

affordances (Norman, 1988), so that proper attention allocation is supported in a more intuitive 

manner.  

For example, structure-based abstractions have been identified as key mental abstractions 

that help air traffic controllers effectively allocate their attention across multiple aircraft. These 

abstractions take on the form of standard flows (i.e., established traffic patterns), groupings (i.e., 

controlling groups of aircraft as one, effectively leveraging chunking strategies), and critical 

points (i.e., specific sector entry and exit points that all aircraft must pass through in three 
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dimensions) (Histon, et al., 2002). To ensure that operators effectively attend to certain tasks at 

certain times, designing the airspace to leverage operators’ use of these structure-based 

abstractions effectively promotes attention allocation. 

Other design considerations for efficient and accurate task switching include designing 

effective automation cueing through warnings, alerts, critiques (Guerlain, 2000), and user-

initiated notifications (Guerlain & Bullemer, 1996). Automation can be particularly useful for 

monitoring the large number of tasks that need attention; however, designers should also be 

mindful that alerts could represent interruptions to operators (Laughery & Wogalter, 2006; 

Trafton & Monk, 2007). Although such interruptions may be needed for high priority tasks that 

need immediate attention, overly salient alerts can be a nuisance and lead to inefficient attention 

allocation. Moreover, interruptions of a primary task by secondary task alerts can increase 

mental processing time and induce errors in the primary task (Cellier & Eyrolle, 1992).  

For NCO supervisory control tasks that will likely include monitoring of displays, which may 

change rapidly, operators will periodically engage in interactive control tasks such as changing 

the course of UAVs or launching weapons. When task engagement occurs, operators must both 

concentrate attention on the primary task and be prepared for alerts to switch attention to external 

events. This need to concentrate on a task, yet maintain a level of attention for alerts, causes 

operators to have a conflict in mental information processing. Concentration on a task requires 

“task-driven processing” which is likely to cause decreased sensitivity or attention to external 

events. “Interrupt-driven processing,” needed for monitoring alerts, occurs when people are 

sensitized and expecting distraction (Miyata & Norman, 1986). 

While interrupt- and task-driven processing can occur simultaneously, attention must be 

shared between the two and switching can incur cognitive costs that can potentially result in 



HUMAN SUPERVISORY CONTROL 18 

  

errors (Miyata & Norman, 1986). The conflict between focusing on tasks and switching attention 

to interruptions is a fundamental problem for operators attempting to supervise a complex system 

which requires dedicated attention but also requires operators to respond to secondary tasks, such 

as communications or alerts from non-critical sub-systems. Moreover, often what appears to be 

an innocuous peripheral, secondary display feature such as scrolling of text in a chat window can 

have negative consequences because the distraction requires cognitive effort in considering 

whether or not it needs attention (Maglio & Campbell, 2000; Somervell, Srinivasan, Vasnaik, & 

Woods, 2001). 

Switching times. The second area of concern in attention allocation for NCO time-pressured 

operators is minimizing the time needed to switch between tasks. Numerous studies have shown 

that there is a cognitive penalty when operators switch between tasks, i.e., there is a period of 

time where operators need to regain awareness of the nature of the task in order to develop a plan 

for resolution (Crandall, Goodrich, Olsen, & Nielsen, 2005). In addition, Gopher et al. (2000) 

demonstrated that not only is there a measurable cost in response time and decision accuracy 

when switching attention between tasks, but costs are also incurred by the mere contemplation of 

switching tasks. 

Interruptions inherently introduce additional switch time costs, and given the multi-tasking 

nature of NCO, this will likely be a significant future source of switching times. Altmann and 

Trafton (2002) have proposed that the interruption lag, the time between the interruption alert 

and the interruption event, is an intervention window that can be used to reduce task resumption 

time. However, the use of cues during the interruption lag has not been shown to decrease 

recovery time, and in one study, appeared to increase recovery time (Altmann & Trafton, 2004). 
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Increasing the role of automation, i.e., allowing a computer to determine appropriate task 

switch times is another possible intervention. Unfortunately, as will be described in detail in a 

subsequent section, increased automation often leads to degraded system performance as 

operators require more time to gain awareness of the need to switch tasks. This has been shown 

in a number of NCO laboratory experiments (Crandall, et al., 2005; Cummings & Mitchell, 

2008; Squire, Trafton, & Parasuraman, 2006), so it is critical that designers understand the limits 

of automation and support mutual collaboration between human operators and automation. One 

example of such a collaborative tool is an intelligent aiding system that prioritizes incoming 

interruptions (McFarlane, 2002), allowing automation to assist operators in determining which 

task should receive attention, but ultimately giving operators final authority to determine which 

task should be serviced in the queue.  

Allocating the right amount of attention. Attention allocation involves not only knowing 

when to switch attention to a relevant task, it also requires operators to be cognizant of how 

much attention they expect to allocate to a single task. In NCO, operators can expect sensor 

information at established time intervals to accomplish some task, and must act on this 

information, whether complete or not, before a deadline. For example, an air defense warfare 

coordinator (AWC) on a Navy ship could be responsible for several tasks: identifying unknown 

air tracks as friendly, enemy or commercial air; monitoring these identified tracks; providing 

warnings to enemy aircraft within a certain radius; and providing launch orders for additional 

defensive aircraft against encroaching enemies. Each of these tasks could involve numerous sub-

tasks such as air traffic communications, visual confirmations, etc. Some tasks are more 

important than others, for example, shooting down threatening enemy aircraft is higher priority 

than tracking a commercial air flight. The AWC receives information updates only at discrete 
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intervals as the radar sweeps by an area of interest. Thus the AWC operator expects information 

to arrive in a certain time interval, called preview time, which could reduce uncertainty. 

However, time-critical decisions may have to be made without updated information. 

A central issue with preview times is how to maintain task priority when additional 

information is expected in the future and how to assimilate this preview information during 

emergent situations. Tulga and Sheridan (1980) investigated these aspects in a generic multi-task 

supervisory control setting. They found that at high workloads, the time subjects planned ahead 

was inversely proportional to the inter-arrival rate of new tasks. Using a similar paradigm, Moray 

et al. (1991) found that even if subjects were given an optimal scheduling rule, they were unable 

to implement it under enough time pressure, resorting instead to significantly non-optimal 

heuristic rules.  

In recent work examining the use of intelligent agent predictions for future periods of high 

workload in order to aid operators controlling multiple UAVs, results revealed that subjects 

fixated on attempts to globally optimize an uncertain future schedule to the detriment of solving 

certain, local problems (Cummings & Mitchell, 2008). Another study relative to UAVs 

demonstrated that efficiency of instrument information presentation significantly affected 

operator attention scan patterns (Tvaryanas, 2004). These initial efforts demonstrate that more 

research is required to understand the effects of preview times, especially with information 

updates and unanticipated occurrences.   

A related issue to preview times is that of stopping-rule generation. Stopping rules are the 

criteria individuals use to “satisfice” in uncertain situations, i.e., choosing the current best plan 

that is good enough, but not necessarily best (Simon, et al., 1986). The general problem is as 

follows: an operator has initial information, such as locations of friendly and enemy forces, and 
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incoming information of various reliabilities and different times of arrivals, such as updates on 

enemy movements from voice communications and satellite images. The longer operators wait to 

make a decision on what to do with their forces, the more information they can gather (though 

not necessarily better due to communications uncertainty), but they have a time limit in which to 

act. An individual’s stopping rule would determine when the decision was made.  

NCO hinges upon successful information sharing. However, due to the stream of data from 

multiple sources and the need for rapid decisions, operators will have to weigh the benefits of 

gathering more information that will reduce uncertainty against the cost of a possibly delayed 

decision. Automation may be able to assist operators in better stopping rule-generation, as well 

as attention allocation strategies across multiple tasks in general. However, as will be discussed 

in the section on the role of automation, introducing automation to reduce the workload of 

humans carries other costs that must be considered in the context of overall human-system 

performance.     

                          

Decision Biases  

On July 3rd, 1988, 290 passengers and crew departed from Bandar Abbas airport in Iran 

on Iran Air Flight 655, bound for Dubai in the United Arab Emirates. Tragically, the 

Aegis class cruiser USS Vincennes shot down the flight over the Strait of Hormuz just 

minutes after takeoff, killing all on board. Many factors contributed to this accident, such 

as the tense atmosphere in the Gulf at that time due to the Iran-Iraq war, however, the 

root cause can be attributed to the complexity associated with USS Vincennes’ advanced 

tracking radar. It was designed in the 1980s for open water battles with the Soviet Navy, 

and as such, was capable of tracking hundreds of missiles and airplanes simultaneously. 
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However, it was not meant to operate in cluttered littoral regions. Given confusing data 

presentation, two pieces of wrongly interpreted data caused the ship’s commander to 

make the erroneous decision to fire on flight 655. First, flight 655 was reported as 

decreasing in altitude when it was, in fact, doing the opposite. As a result, the flight was 

thought to be on an attack profile. Second, the flight’s Identification Friend or Foe (IFF) 

signal, designed to differentiate between civilian and military aircraft, was misidentified 

as being Mode II (military) instead of Mode III (civilian). 

     A defining characteristic of NCO is the expected increased information-sharing tempo over 

platform-centric forces of the past, which will require rapid decision making with imperfect 

information. Humans in general, and especially under time pressure, do not make decisions 

according to rational decision theories. Rather, they act in a naturalistic decision-making (NDM) 

setting in which experience, intuition, and heuristics play a dominant role (Klein, 1989). Humans 

generally employ heuristics in order to reduce cognitive load (Tversky & Kahneman, 1974; 

Wickens & Hollands, 2000), which will likely be the case in NCO settings. Even though humans 

can be effective in naturalistic decision-making scenarios in which they leverage experience to 

solve real world ill-structured problems under stress (Zsambok, Beach, & Klein, 1992), they are 

prone to fallible heuristics and various decision biases that are heavily influenced by experience, 

framing of cues, and presentation of information. The Vincennes accident illustrates how the 

three general classes of heuristics (representativeness, anchoring, and availability), could be 

problematic in NCO environments. 

In the representative heuristic, probabilities are evaluated by the degree to which an 

unfamiliar situation resembles a familiar one. This heuristic can provide the illusion of validity 

because decision makers are generally insensitive to prior probabilities. In the case of the 
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Vincennes, the operators ignored the more likely prior probability that the plane was a 

commercial airliner which traveled on a fairly regular schedule and instead believed the much 

less likely event that the plane was a military fighter. Misconception of chance is a classic sign of 

the representative heuristic (Tversky & Kahneman, 1974).  

The anchoring heuristic, which occurs when an initial guess or hypothesis is not adjusted 

appropriately given new information, was also evident in the Vincennes incident. An initial 

hypothesis was made that the radar contact was an enemy fighter, and evidence was ignored that 

refuted this theory, including published commercial airline schedules and the climbing attitude of 

the plane, which would not be the case if the aircraft was attacking. Time pressure exacerbated 

this anchoring of the initial hypothesis, which will also likely be a significant problem in NCO.  

The availability heuristic in which probabilities of events are judged based on recency and 

retrievability was also evident in the Vincennes accident. One year prior, the USS Stark had been 

hit by two Exocet missiles in the Persian Gulf, fired from a relatively low, fast flying Iraqi 

Mirage. In addition, on the morning of the shoot down, the Vincennes had engaged with Iranian 

gunboats so tensions both locally and globally were high. Given human memory limitations and 

the known propensity for humans to resort to often flawed applications of heuristics, a significant 

challenge in the design of NCO decision support systems will be how to give operators timely, 

probabilistic, and unbiased information. 

These heuristics often lead to decision biases, such as confirmation bias, which takes place 

when people seek out information to confirm a prior belief and discount information that does 

not support this belief (Lord, Ross, & Lepper, 1979). Another decision bias, assimilation bias, 

occurs when a person who is presented with new information that contradicts a preexisting 

mental model, assimilates the new information to fit into the original mental model (Carroll & 
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Rosson, 1987). Evidence of these biases was present in the Vincennes case, as operators 

interpreted incoming information in light of their original hypotheses, and interpreted all new 

information through this filter. 

 Of particular concern in the design of intelligent decision support systems that will be 

fundamental to NCO processes is the human tendency toward automation bias, which occurs 

when a human decision maker disregards or does not search for contradictory information in 

light of a computer-generated solution which is accepted as correct (Mosier & Skitka, 1996; 

Parasuraman & Riley, 1997). Related issues of overconfidence and reliance will be discussed in 

a following section on trust. Human errors that result from automation bias can be further 

decomposed into errors of commission and omission. Automation bias errors of omission occur 

when humans fail to notice problems because the automation does not alert them, while errors of 

commission occur when humans erroneously follow automated directives or recommendations 

(Mosier & Skitka, 1996).  Operators are likely to turn over decision processes to automation as 

much as possible due to a cognitive conservation phenomenon (Fiske & Taylor, 1991), and 

teams of people, as well as individuals, are susceptible to automation bias (Skitka & Mosier, 

2000).  

Many studies have demonstrated evidence of automation bias in laboratory settings. Layton, 

Smith, and McCoy (1994) examined commercial pilot interaction with automation in an enroute 

flight planning tool, and found that pilots, when given a computer-generated plan, exhibited 

significant automation over-reliance causing them to accept flight plans that were significantly 

sub-optimal. Skitka, Mosier, and Burdick (1999) found that when automated monitoring aids 

operated reliably, they led to improved human performance and fewer errors as opposed to not 

having an aid. However, when the automation failed to detect and notify operators of an event, or 
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incorrectly recommended action despite the availability of reliable disconfirming evidence, 

human error rates increased significantly. More directly related to NCO processes, in a 

Tomahawk strike planning and execution task, Cummings (2006) found evidence of automation 

bias when an intelligent decision aid recommended a single course of action for retargeting 

missiles to emergent targets. Similar results were found for operator control of multiple 

unmanned aerial vehicles (Cummings & Mitchell, 2007), which resulted in operators dropping 

weapons on the wrong targets, reminiscent of the Vincennes incident.  

As these cases demonstrate, heuristics and decision biases are a very real concern in the 

development of intelligent systems that provide decision support for humans, especially those in 

time-critical domains with significant uncertainty. Designers of intelligent systems should be 

aware of the potential negative effects on decision making in terms of inappropriate heuristics 

and biases as the human is further removed from the decision control loop. Intelligent decision 

aids are intended to reduce human error and workload but designers must be mindful that 

automated recommendations combined with unreliable systems can actually cause new errors in 

system operation if not designed with human cognitive limitations and biases in mind. Design of 

an intelligent system that provides decision support must consider the human not just as a 

peripheral device, but also as an integrated system component that in the end will ultimately 

determine the success or the failure of the system itself. 

 

Supervisory Monitoring of Operators 

October 29, 1998, two Boeing 737s were on standard air routes from Darwin to Adelaide 

and Ayers Rock to Sydney, respectively, at the same flight level of 37,000 feet. They were 

scheduled to conflict with each other, so protocol dictated that a 2,000 feet vertical 
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separation standard be applied. This was noted by both the air traffic controller and a 

supervisor assigned to that particular sector 90 minutes before the conflict actually 

occurred, and marked for later action. In the next 90 minutes, traffic levels steadily 

increased and a third air traffic controller began to assist the other two already working 

in the conflict sector. The third controller assumed the coordinator position and 

attempted to deal with any items that seemingly required attention as he attempted to 

gain some idea of the traffic disposition. Despite the addition of a third coordinating ATC 

controller and the previous identification of the conflict, the pending conflict was 

subsequently overlooked. Instead, a violation of the minimum vertical separation distance 

occurred as one of the aircraft in question alerted ATC of the conflict at the last minute. 

This was an instance where the supervisor failed to detect a major failure of his 

supervisee, despite indications that one might occur. 

A common operating structure in the military is one where a single supervisor oversees 

several human subordinates for the purpose of managing overall performance and providing an 

additional layer of safety. Frequently, these operators engage in HSC tasks, so it is the job of a 

supervisor to observe and diagnose HSC issues in one or more team members. Most HSC tasks 

are primarily cognitive in nature, so the supervisor cannot easily infer accurate performance from 

the physical actions of operators. In most cases, a supervisor can only evaluate the quality of 

operator interactions with an automated system from the results of those efforts.  

In HSC settings, physical actions taken by operators are limited to activities like typing, 

button pushing, and body movements to position themselves for better screen viewing. 

Furthermore, the effects of operators’ actions can occur in remote locations from the supervisor. 

This physical separation means that all people involved with the process must form mental 
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abstractions to envision a complete picture of the situation. Complicating this is that interaction 

is usually done through artifacts with inherent limitations, such as voice communication, data 

links, and 2-dimensional screens. Clearly a problem for individual operators, it is an even larger 

one for supervisors, who must try to synthesize information from multiple operators at once. 

Furthermore, isolating a single cause for poor performance of an entire team can be difficult, 

especially in time-pressured scenarios characteristic of NCO environments. Lastly, decreases in 

performance may be the result of automation degradation and have nothing to do with the 

human. Supervisors may have difficulty separating the two. 

The main problem, then, is how to support supervisors of HSC tasks so that they are better 

able to understand how their subordinates’ performance relates to overall mission success. To 

quickly observe and diagnose HSC problems, supervisors must have a high level of situation 

awareness (SA) for both individuals and teams. Even more so than their subordinates, it is 

critical that HSC supervisors have a clear picture of the team’s overall situation. The building 

block to achieving this superior level of SA is access to and absorption of all relevant data. 

Therefore, information overload will be a particularly acute problem, as a supervisor could be 

responsible for any or all of the information available to numerous subordinates. Additionally, 

due to the greater range of information types received by HSC supervisors as compared to a 

single operator, the number of possible relationships and behaviors is higher, thus increasing 

situation complexity. 

Another problematic issue with supervisory monitoring is how to rectify HSC problems once 

they are detected. There are several options, as follows, which may be applied singly or in 

concert to varying degrees: 
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1) Provide a warning to the operator whose performance is deteriorating. It may be the 

case that an operator does not realize that his or her performance has dropped below 

acceptable levels, and merely need to be reminded of it and/or motivated to improve. An 

operator’s attention may be inappropriately allocated, so a warning provided by the 

supervisor (who is monitoring performance) could cue the operator to correct it. Of course, if 

an operator is already cognitively overloaded, then the warning could have no effect, or even 

a negative one due to the additional distraction it would introduce. 

2) Redistribute the task load among existing team members. Workload could be 

unevenly distributed within a team, or various team members could be more skilled at certain 

tasks than others at certain times, so dynamically shifting tasks could allow other team 

members to absorb the excess workload. If all team members are equally busy, or if others 

lack the expertise needed to perform certain tasks, this redistribution will not be possible. 

Additionally, the complexity of dynamically allocating tasks between team members puts a 

significant cognitive load on the supervisor. 

3) Change the number of team members or teams.  Poor performance can result from 

the overloading or underloading of teams or team members, and these team members can be 

humans, computers, or a combination of both. If a supervisor observes an unacceptable level 

of performance from a subordinate, he or she could initiate a process to either relieve that 

operator of the most problematic aspects of the tasks or add to their workload, as required. 

This change could be manifested in one of two ways: 1) increasing the role of the automation 

(e.g., letting a UAV land itself instead of the operator manually controlling it), or 2) adjusting 

the individual workload by the addition or subtraction of a human or computer team member. 

Changing the number of team members requires planning, as the new team members must 
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have access to the correct equipment and training to be effective. In addition, changing the 

number of team members may help in the longer term to reduce overall workload and/or 

improve performance, however, there will be a transition period with associated costs for 

team and individual SA as well as individual and team performance. 

4) Modify the mission objectives or timeline to accommodate lowered overall 

performance. This is a straightforward solution, but not one that will always be available in 

NCO situations. Many missions have time-sensitive deadlines that cannot be altered. 

Similarly, lower level mission objectives may be part of a larger operation, and therefore are 

not flexible. 

There are several design interventions that can aid NCO supervisors in amalgamating the 

numerous sources of incoming information. The use of large screen displays to provide “big 

picture” situation awareness is a common visualization technique used in command and control 

settings (Dudfield, Macklin, Fearnley, Simpson, & Hall, 2001; Scott, Rico, Furusho, & 

Cummings, 2007). Displays that aid supervisors through activity awareness have also been 

shown to promote effective supervision (Scott, Sasangohar, & Cummings, 2009). Activity 

awareness is a design approach in the collaborative technologies research field aimed at 

improved decision making, communication, and coordination in teamwork through intelligent 

sharing of group activity information (Carroll, Neale, Isenhour, Rosson, & McCrickard, 2003). 

Increasing the role of automation in this nested supervisory control problem is another 

possible intervention. At a lower level, automation can be used to aid the human supervisor in 

monitoring tasks and detection of anomalous events. Recent research has shown that in NCO 

settings, probabilistic models can be used to notify supervisors that operators are exhibiting 

anomalous behaviors, and possibly even predict when such deviations from expected behavior 



HUMAN SUPERVISORY CONTROL 30 

  

will occur (Boussemart & Cummings, 2008). However, one significant limitation of such 

models, especially ones that involve machine learning, is that in NCO settings with many 

degrees of freedom and significant uncertainty, such models can only be used to detect different 

patterns of behavior than those learned, as opposed to predicting good or bad behavior. In 

addition, probabilistic model predictions also carry a great deal of uncertainty and are likely 

difficult for supervisors to understand (Tversky & Kahneman, 1974). 

Lastly, whether the supervisor should be a human or a computer should be considered. A 

computer would eliminate information capacity issues and the need for refined HCI designs. 

However, it would operate on defined rules and would be relatively inflexible in the face of 

unknown situations, which are inherent in NCO settings. The computer would also lack the 

human capability to predict future performance based on subjective judgments from visual 

observations and face-to-face interactions. Furthermore, as will be discussed in the final section, 

issues with accountability and responsibility arise when computers are given authority for 

critical, life-threatening decisions. 

 

Distributed Decision Making and Team Coordination 

In 1994, Operation Provide Comfort provided humanitarian aid to over one million 

Kurdish refugees in northern Iraq in the wake of the first Gulf War. As part of this, the 

United Stated sought to stop Iraqi attacks on the Kurds by enforcing a no-fly zone. The 

no-fly zone was patrolled by USAF fighters (F-15s), supported by airborne warning and 

control system (AWACs) aircraft. On April 14, 1994, two US Army Black Hawk 

helicopters were transporting U.S., French, British, and Turkish commanders, as well as 

Kurdish para-military personnel across this zone when two US F-15 fighters shot them 
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down, killing all 26 on board. The Black Hawks had previously contacted and received 

permission from the AWACs to enter the no-fly zone. Yet despite this, AWACs confirmed 

that there should be no flights in the area when the F-15s misidentified the US 

helicopters as Iraqi Hind helicopters. The lack of teamwork in this situation was a 

significant contributing factor to the friendly fire incident, as the F-15s never learned 

from AWACs that a friendly mission was supposed to be in the area. It was later 

determined that the F-15 wingman backed up the other F-15 pilot’s decision that the 

targets were Iraqi forces despite being unsure, which was yet another breakdown in 

communication. Each team member did not share information effectively, resulting in the 

distributed decision making of the AWACs and F-15s pilots to come to incorrect and fatal 

conclusions. 

Platform-centric command and control in past military operations often avoided distributed 

decision making and minimized team coordination in favor of a clear hierarchy for both 

information flow and decision making. Many decisions were made by a select few at the top 

level of command, and pains were taken to decompose various factions of the military into small, 

specialized units that had little direct contact between one another. This has begun to change in 

recent times, and a fully realized vision of NCO will require that both local and global teams of 

distributed decision makers, not a few people at the top of a hierarchy, make decisions under 

time-pressure. Therefore, understanding the issues unique to team-based coordination and 

decision making takes on new importance in the context of NCO. The question is how to make 

effective decisions between and within distributed teams, particularly in the complex, data-rich, 

and time-compressed situations often seen in NCO scenarios. 
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A fundamental building block of good decision making is a high level of situation awareness 

(Endsley, 1995; Tenney & Pew, 2006), and in the case of distributed decision making a high 

level of team SA or shared situation awareness (SSA). The three levels of individual SA are: 1) 

perception of important environmental cues, 2) comprehension of the situation, and 3) projection 

of future events and dynamics (Endsley, 1995). Team SA involves individual SA for each team 

member, plus the SA required for overlapping tasks and team interactions (Endsley, 1995). 

Endsley and Jones (2001) expanded upon this definition by outlining a layered model of how 

teams achieve high levels of team SA. They detail what constitutes SA requirements in a team 

setting at each previously defined level (Table 2.2), the devices and mechanisms used to achieve 

shared SA, and SA processes that effective teams use. Team SA devices include spoken and non-

verbal communications, visual and audio shared displays, and a shared environment. Given the 

need to support team SA in dynamic NCO environments, more research is needed in three areas: 

1) technologies that can best support NCO team decision making and performance, 2) NCO team 

processes, both locally and distributed, that are most effective, and 3) the impact of different 

team architectures for network-centric operations. 

Table 2.2. Team SA Requirements for Shared Information (Endsley & Jones, 2001) 
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There has been extensive work in the computer-supported cooperative work (CSCW) 

community that examines how different types of technologies, to include both software and 

hardware, support effective team decision making. Of particular interest to NCO is the 

relationship between collaborative technologies over space and time as depicted in Figure 2.4 

(adapted from Johansen, 1988). Developing technologies that promote collaboration both locally 

and remotely in space as well as synchronous and asynchronous in time is highly relevant to 

NCO. For example, Navy personnel assigned to different watch sections for a ship’s power plant 

share a space but communicate across different times. One collaborative technology they use to 

pass knowledge is a log book. Logs are used by watchstanders to record significant events, times 

of occurrence, who was notified, what actions were taken, etc. Existing on paper for hundreds of 

years on ships, written logs are now giving way to electronic logs, with the added benefits of an 

easier search space and automated reminders. 

Many technologies developed for corporate settings show promise for NCO applications 

(e.g., electronic whiteboards (Price, Miller, Entin, & Rubineau, 2001), and table top displays 

(Scott, Carpendale, & Habelski, 2005)), however, more research is needed into both the 

promised benefits, as well as unintended consequences. For example, chat, a popular and 

ubiquitous synchronous communication tool for remotely distributed military individuals and 

teams, can have unintended consequences in terms of degraded human and system performance 

((Cummings, 2004b) and see the Attention Allocation discussion.) In another study focusing on 

the benefits of shared displays between co-located team members, the shared displays 

unexpectedly contributed to degraded performance due to an increase in workload (Bolstad & 

Endsley, 2000). Given the high risk and uncertainty of time-sensitive operations, more 
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investigation into the impact of new collaborative technologies is warranted, particularly in 

regards to how they support or detract from team SA. 

 

Figure 2.4.  NCO time and place communications tools, adapted from Johansen, 1988. 

Understanding team processes, the second area of import for distributed decision making in 

NCO settings, is yet another area that can benefit from research already underway in the CSCW 

community. However, the caveat remains that NCO settings carry unique constraints not 

experienced in business settings. Processing capabilities of humans are limited, especially in 

time-critical domains, so distribution of information, resources and tasks among decision-makers 

must be done in such a way that the cognitive load of each person on a team is not exceeded. 

However, as pointed out by Hutchins in aviation and ship navigation (Hutchins, 1995), cognition 

is distributed across persons and artifacts in a system such that teams often possess shared 

capabilities beyond the sum of individual contributions. 
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While difficult to capture, Cooke et al. (2003) measured distributed cognition in a command 

and control setting through team knowledge and succeeded in predicting subsequent team 

performance. However, distributed cognition across large-scale time-sensitive operations with 

multiple entities, both human and automated, is not well understood. For example, the 

misperception of system feedback may lead to catastrophic events and degraded performance in 

complex, tightly coupled, economic systems, as demonstrated in laboratory experiments 

(Sterman, 1989). Similarly, in the domain of multi-operator, multi-automation systems, 

experimental applications have shown that inappropriate reliance on automation hinders 

cooperation between human operators (Gao, Lee, & Zhang, 2006). This same bullwhip effect, 

i.e., the failure to perceive appropriate feedback cues and time delays resulting in oscillating 

behavior which may lead to highly degraded system performance, is an intrinsic risk of NCO 

systems. Indeed, research by Perrow (1984) has demonstrated that degrees of coupling between 

system elements are of particular importance to characterize and predict future system behavior. 

In particular, complex, tightly coupled technological systems (such as power plants) may 

invariably produce disasters due to this complex nature.  

Lastly, the design of team architectures to include role allocation, team geographic 

distributions, communication, and team sizes is critical to successful NCO distributed decision 

making and team coordination. Research has shown that organizations operate most efficiently 

when their structures and processes match their mission environments (Levchuk, Levchuk, Luo, 

Pattipati, & Kleinman, 2002), but it is not always clear whether traditional top-down hierarchies 

or more lateral heterarchies provide the most efficient structure (Baker, et al., 2004). Moreover, 

sensor quality and operational tempo can drive the need for distributed versus centralized control 
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(Dekker, 2002), thus further complicating the team architecture problem by adding technological 

artifacts. 

The problem of uncertainty, driven both by the lack of sensor and human information, will 

likely be a significant driver of NCO team decision-making success or failure. Price et al. (2001) 

hypothesize that teams organized by functional structure (a team that specializes in performing a 

task) perform better in terms of time and task accuracy when there is a high degree of certainty in 

the environment. When an environment is characterized by uncertainty and unpredictability, 

Price et al (2001) assert that instead of a functional structure, teams should be organized through 

a divisional structure that is relatively autonomous and independent. Unfortunately the very 

nature of NCO is high uncertainty, but since information sharing between teams is critical, they 

cannot be either independent or autonomous, thus the characterization of teams either as 

functional or divisional in NCO is problematic. Levchuk et al. (2004) propose that the most 

effective team architecture will be a hybrid organization which utilizes the beneficial 

characteristics of hierarchies as well as heterarchies such that control is an emergent property 

which is a function of the environment, scenario initial conditions, and adversary behavior. 

Given these three areas of distributed decision making that have particular relevance in NCO 

settings, one unifying theme is the need for better team performance metrics and models. 

Assessing team performance in a repeatable, objective fashion that is not strictly contextually-

based and developing predictive models of resultant behavior is a significant challenge. For 

example, efficient team performance has been shown to be related to the degree that team 

members agree on, or are aware of task, role, and problem characteristics (Fiore & Schooler, 

2004), which is essentially team SA. However, there is no common team SA measurement 

method or metric, and even overall mission performance measures cannot effectively measure 



HUMAN SUPERVISORY CONTROL 37 

  

team SA. Moreover, better performance does not necessarily mean all team members share a 

common picture (Gorman, Cooke, Pederson, Connor, & DeJoode, 2005). Thus, in order to 

describe, diagnose and predict team behavior, more effective measures of team awareness are 

needed.  

The emerging field of social network analysis may provide new insight into more objective 

team assessment methods, particularly in NCO settings. Theories of network analysis have 

emerged from various fields like sociology, anthropology, physics, mathematics, biology, and 

economics (see Watts, 2004, for a broad review), and have been successful at modeling 

uncertainty in complex, interconnected networks, like those in supply-chain management 

(Blackhurst, Wu, & O'Grady, 2004). It has also been argued that a network-based approach using 

non-linear dynamics is efficient at modeling and studying complex, coupled systems such as 

food webs, neurons, or power grids (Strogatz, 2001). Using social network analysis methods for 

NCO systems might therefore prove successful at identifying high-traffic, central nodes, 

providing a theoretical basis for describing team characteristics and dynamics that make NCO 

supervisory control different than typical supervisory control. 

 

Trust and Reliability 

A survey of Air Force and Air National Guard pilot attitudes regarding the role of UAVs as 

wingmen for manned aircraft revealed an inherent distrust in highly autonomous systems. 

Pilots generally thought UAVs were unsuited for a variety of missions, including close air 

support, search and rescue, and most strike missions. The pilots asserted that only humans 

are capable of operating in the “free flowing environment” of an offensive combat mission, 

which requires experience and knowledge to accurately assess the situation and determine a 
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course of action. In addition, pilots did not think that a group of UAVs should be allowed to 

self-organize because they thought UAVs could not make informed decisions about both their 

individual states and how their capabilities served the current mission. Furthermore, most 

pilots did not want UAVs operating anywhere near friendly forces on the ground and some 

did not think UAVs should operate in the same airspace with tactical manned aircraft. 

Fighter pilots, in particular, were hesitant to accept a role for UAVs in offensive combat 

operations, believing that a UAV could never replace a human wingman. An A-10 pilot 

described his relationship with his wingmen as one of trust and loyalty in that they trained, 

worked, and fought together, and that a UAV could never replace a human wingman 

(Cummings & Morales, 2005). 

Trust is an issue central to appropriate reliance on automation. Distrusting automation when 

it is perfectly capable has been shown to lead to disuse or misinterpretation of results in order to 

fit an operator’s mental model, even if the subsequent workload caused by the distrust is very 

demanding and/or time consuming (de Vries, Midden, & Bouwhuis, 2003; Lee & Moray, 1994; 

Muir, 1987; Parasuraman & Riley, 1997).  In contrast, other studies have found that users tend to 

trust automation even when it was failing (Conejo & Wickens, 1997; Gempler & Wickens, 

1998). This is a particular problem with unfamiliar, time-pressured scenarios most critical to 

NCO, which can cause operators to become complacent and overly trust unreliable automated 

systems to the detriment of the overall mission. These results have also been mirrored in the 

domain of highly automated process control settings (Manzey, 2008). Thus designers of NCO 

systems are faced with a conundrum – how to design a system that is trusted and utilized to its 

fullest extent, yet not overly trusted such that operators become complacent.  
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Calibrating an operator’s trust level to an automated system’s actual trustworthiness or 

reliability is one solution to the problem of too little or too much trust (Moray, Inagaki, & Itoh, 

2000; Muir, 1987). However, this is not an easy task because trust is dynamic in that it changes 

with exposure to, and time between, system failures. People initially exhibit a positive bias 

towards automation, expecting it to be perfect or at least better than humans. After an initial 

system failure, there is a sharp decrease in trust unless there is some level of transparency 

provided to the user as to why the system might fail (Dzindolet, Peterson, Pomranky, Pierce, & 

Beck, 2003). This is particularly important in NCO settings due to the potential for bad 

information to propagate through the network, possibly due to information warfare or deception 

tactics.  

Trust typically rebounds with consistently correct automation, and if the automation fails 

subsequent to this initial failure, trust decreases once again but it is regained more quickly (Lee 

& Moray, 1992; Moray, et al., 2000; Muir & Moray, 1996). Even though the loss of trust for a 

specific failure can be overcome, the danger is that such failures can cause long-term distrust in 

the automated system to the extent that it falls into disuse without further opportunity for the user 

to interact with it and properly re-calibrate trust (Ruff, Narayanan, & Draper, 2002). In NCO 

settings, research in trust and automation reliability in command and control tasks has 

demonstrated that reliable automation aids operators, and unreliable automation can significantly 

degrade performance (Dixon, Wickens, & McCarley, 2007; Rovira, McGarry, & Parasuraman, 

2007). Dixon et al. (2007) recommended that any automated decision support system that 

functions below 70% accuracy would result in unacceptable performance degradation.  

Although the reliability of automation is a primary factor affecting trust, how information is 

presented also affects a user’s perception of reliability (Lee & See, 2004; Sarter & Schroeder, 
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2001). Therefore, feedback in terms of self-evaluation and interaction with automated decision 

aids has been suggested as potential strategies for appropriate trust calibration (Lee & Moray, 

1994; Muir, 1987). Furthermore, Lee and See (2004) suggest that trust is more easily calibrated 

when the system is designed with the additional requirements of high resolution and specificity. 

Resolution measures how system reliability linearly maps to user trust, and specificity measures 

the degree to which a user is able to differentiate levels of trust between different parts of the 

system (functional) and current/past performance (temporal). Displaying and clearly 

differentiating the automation’s confidence in its components may facilitate better calibration of 

trust. However, displaying confidence information about an automated recommendation or 

solution is not a straightforward matter. Humans are not intuitive statisticians and tend to 

introduce biases in probabilistic reasoning (Tversky & Kahneman, 1974), which makes 

presenting probabilistic confidence information to operators so they can make unbiased decisions 

a challenging design problem.  

In NCO situations, confidence in information is a function of meta-information 

characteristics such as uncertainty, age of the data, and the source(s), which should be 

incorporated as feedback to the user in some manner. For example, if a vital network element 

such as a sensor stops updating in a timely manner, it is important to show the user that 

automated decisions made using the outdated information are less reliable, and therefore to be 

accorded less trust.  

Several techniques have shown promise for displaying confidence information to users. 

McGuirl and Sarter (2003) demonstrated that a categorical trend display of a computer’s 

confidence in its recommendations was superior to a probabilistic static representation for in-

flight icing interventions. Uncertainty in information has also been successfully conveyed 
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through degraded images using blended color icons. In addition, the addition of numeric 

probabilities provided no additional advantage (Finger & Bisantz, 2002). Bisantz et al. 2006) 

also showed that users could distinguish and rank display elements by differences in graphic 

saturation, transparency, and brightness.  

In terms of automation transparency, making probabilistic rules and algorithms used by the 

automation transparent to the user, particularly if they are context dependent also may help 

humans to better understand and interpret complex system decisions (Atoyan, Duquet, & Robert, 

2006). In a time-pressured navigation setting, Buchin (2009) demonstrated that operators can 

develop appropriate trust in an imperfect automated path planning tool when given the ability to 

adjust an algorithm’s level of risk in obstacle avoidance. 

Once an operator’s trust has been properly calibrated, Xu et al. (2004) have demonstrated 

that even with imperfect automation, human operators can still properly execute their tasking, 

which is an important design criteria in NCO settings with significant embedded autonomy that 

can never be perfect. Given the significant uncertainty that will exist within actual NCO 

environments, as well as the uncertainty introduced by imperfect automation, more research is 

needed in trust calibration techniques, especially as they apply to time-pressured decisions. 

Previous trust literature has generally not focused  specifically on trust in and across 

networks, so there is a need for further study of trust as it relates to human interaction, large-

scale network information uncertainty, system security, information verification, possible 

sources and impact of information deception, and sabotage. One exception is a study that focused 

on the influence of network reliability on human performance for the National Oceanographic 

and Atmospheric Administration (NOAA) Continuous Operational Real-Time Monitoring 

System (CORMS) (Bayrak & Grabowski, 2006). This study showed that decreased network 
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reliability resulted in degraded operator satisfaction, reduced operator confidence, and increased 

operator workload. What remains an open question is how to design systems (including the 

actual networks, levels of reliability, interfaces, etc.) to mitigate these effects on confidence an 

workload. 

TECHNOLOGICAL ASPECTS OF SUPERVISORY CONTROL SYSTEMS 

Role of Automation 

The Patriot missile system has a history of friendly fire incidents that can be partially 

attributed to a lack of designer understanding of human limitations in supervisory 

control. On March 23rd, 2003, a RAF Tornado GR4 was shot down in friendly airspace 

by a Patriot missile. Two days later, a USAF F-16 fighter pilot received a warning that 

he was being targeted by hostile radar, and fired a missile in self-defense. The “hostile 

radar” was, in fact, a Patriot missile battery aiming at him. On April 2nd, 2003, just nine 

days later, another Patriot missile shot down a US Navy F/A-18 returning to base from a 

mission. The Patriot missile has two modes: semi-automatic (management by consent – 

an operator must approve a launch) and automatic (management by exception – the 

operator is given a period of time to veto the computer’s decision). However, in practice 

the Patriot is typically left in the automatic mode and the friendly fire incidents are 

believed to be a result of problems in the automatic mode.  

 

There are known “ghosting” problems with the Patriot radar, which result in the 

appearance of  false targets on a Patriot operator’s screen, caused by close proximity to 

other Patriot missile batteries. Under the automatic model, operators are given 

approximately 15 seconds to reject the computer’s decision, which is insufficient for 
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operators to detect both false targeting problems as well as adequately address friend or 

foe concerns through other means of communication. After the accident investigations, 

the US Army admitted that there is no standard for Patriot training, that autonomous 

operations procedures (automatic mode) are not clear, and that operators commonly lose 

situational awareness of air tracks. Despite all the known technical and operational 

problems for Patriot, the US Army states, “Soldiers [are] 100% reliant on the Patriot 

weapon system” (32nd Army Air and Missile Defense Command, 2003).  

      Automating significant aspects of NCO is necessary so that information sharing can be both 

quick and comprehensive. However, what to automate and to what degree to automate a 

process/system are central questions in the design of NCO systems. Sheridan and Verplank 

(1978) outlined a scale from 1-10 where each level represented the machine (i.e., computer) 

performing progressively more tasks than the previous one, as shown in Table 2.3. Human 

interaction with automation represents a range of intermediate levels from 2-6 on this scale. For 

routine operations, higher levels of automation (LOAs) in general result in lower workload, and 

the opposite is true for low levels of automation (Kaber, Endsley, & Onal, 2000).  
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It is possible to have a LOA that is too high or too low, each with its own distinct set of 

problems (Billings, 1997). In supervisory control applications, a LOA that is too high can result 

in manual or mental skill degradation, loss of situational awareness due to lack of automation 

transparency and inadequate feedback, brittleness, and literalism. Automated systems may not be 

able to handle novel or unexpected events or operate effectively in conditions near, or at, the 

edge of the intended operating envelope (Smith, McCoy, & Layton, 1997). On the contrary, a 

LOA that is too low can results in problematic decision biases and heuristics discussed 

previously, complacency and boredom, and greater operator confusion when something fails, 

unless safeguards are in place. 

A significant design question in the context of developing HSC decision support systems for 

NCO is determining the appropriate LOA. Parasuraman et al. (2000) proposed that most tasks 

could be broken down into four separate information processing stages (information acquisition, 

          Table 2.3: Levels of Automation (Sheridan & Verplank, 1978) 
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information analysis, decision selection, and action implementation), and that each could be 

assigned a level of automation separate from the others. However, in the context of flexible 

human-automation interaction, subdividing a problem into these abstract stages may not go far 

enough. As proposed by Miller and Parasuraman (2007), each information-processing task can 

be further divided into simple sub-tasks with differential levels of automation. For NCO, 

examples of generalized cognitive tasks under these proposed information processing stages are 

given in Table 2.4. 

       Table 2.4. Generalized NCO Cognitive Tasks 

Information acquisition 
Monitoring resources (such as friendly forces) 
Monitoring systems (such as surveillance networks) 
Communications 

Information analysis 
Data fusion and display techniques 

Decision selection 
Planning 
Re-planning 
Rapid resource allocation 

Action implementation 
Individual vs. team interaction 

 

Human supervisory control interactions with automation primarily fall under the analysis and 

decision processes. As discussed in a previous section (information overload), the potential for 

cognitive saturation in these phases is likely to be caused by problems with data fusion. Data 

fusion in this sense is defined as the process by which raw information from disparate sources is 

filtered and integrated into relevant groupings before being displayed to users. LOAs for data 

fusion can vary such that low levels of automation could include trend or predictive displays for 

single or multiple variables of interest, such as for tracking of enemy forces. Higher levels could 
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include smart agents providing context dependent summaries of relevant information to users 

(Parasuraman, et al., 2000). 

Two different levels of automation for the same data fusion task are represented in Figure 

2.5, which represents the allocation of resources (weapons) to appropriate missions. At the top, 

operators are given detailed information about weapon capabilities as well as mission 

requirements and constraints and the automation provides low level filtering (LOA 2, Table 2.3). 

At the bottom of Figure 2.5, operators are given the same information at a higher, more graphical 

level using a configural display, but a “smart” search algorithm narrows the solution space to 

nominally assist the operators (LOA 3, Table 2.3). The graphical display may seem more 

intuitive, however, results with military personnel highlight a significant general problem with 

more advanced LOAs. While operators generally agreed that low level display caused excessive 

workload, users felt that the high level graphical display did not provide sufficient detail to 

completely understand the problem (Cummings & Bruni, 2009). Designers of NCO systems 

struggle with this same conundrum of selecting automation levels that both relieve operator 

workload, yet provide enough information for operators to make informed decisions.  
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In addition, the dynamic and stochastic nature of NCO often requires flexibility in human-

automation task allocation. For example, whereas a high level of automation may be desired 

during monotonous extended periods of time of monitoring, when an off-nominal problem 

occurs that requires human judgment, lower levels of automation are likely preferable. One way 

to achieve this flexibility in NCO systems is through adaptable automation, which differs from 

adaptive automation in that the operator can dictate when to change some level of automation, as 

opposed to some automated agent changing the system state. Adaptive automation will be 

Figure 2.5.  Low vs. high level displays for data fusion. 
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discussed in detail in the next section, and an additional discussion of human-automation 

interaction issues can be found in Klein, Woods, Bradshaw, Hoffman, and Feltovich (2004). 

An example of adaptable automation is pictured in Figure 2.6. Similarly to those in Figure 

2.5, this interface supports the data fusion and planning task of allocating weapons to missions. 

However, this interface operates on a range of levels of automation, from LOA 2 to LOA 4, 

rather than at one specific LOA. Indeed, operators using the interface of Figure 2.6 may choose 

between the following three levels of automation: 1) LOA 2 – the operator solves the data fusion 

task manually, similarly to the leftmost interface of Figure 2.5, where automation only provides 

low-level filtering and sorting functionalities, 2) LOA 3 – a multi-criteria, heuristic search 

algorithm (Automatch) may be used by the operator to produce feasible solutions, which can be 

saved, compared, and manually completed, updated or modified by the operator, and 3) LOA 4 –

the automated search algorithm creates one feasible solution upon direct request by the operator. 

 

Figure 2.6.  Multi-LOA display for data fusion 

 



HUMAN SUPERVISORY CONTROL 49 

  

This multi-LOA interface’s adaptable automation therefore allows the operator to select the 

extent to which automation supports the data fusion task, from a mostly manual setting (LOA 2) 

to intermediate collaboration between the operator and the automated algorithm for building 

solutions (LOA 3), to fully automated solution construction (LOA 4). Such flexible approaches 

to planning problems have also been used in the single operator control of multiple unmanned 

ground vehicles (Parasuraman, Galster, Squire, Furukawa, & Miller, 2005), so their use across 

different NCO cognitive tasks will likely be widespread. Even though such approaches are 

powerful in improving human understanding and possibly improving system performance, as 

time pressure and incoming information increases, providing operators with too much flexibility 

could lead to attention allocation problems as previously discussed. 

 

Adaptive Automation 

Research is underway to develop the Cognitive Cockpit which mitigates excessive pilot 

workload through augmented cognition (Dickson, 2005; Diethe, Dickson, Schmorrow, & 

Raley, 2004). The Cognitive Cockpit contains a Cognition Monitor that hypothetically 

provides a real-time analysis of the cognitive–affective state of the pilot through 

psychophysiological measures as well as inferences about current attentional focus, 

ongoing cognition, and intentions. These inferences become inputs to a task manager that 

changes the levels of automation (as described in Table 2.3) for relevant tasking and 

workload. This process is termed Adaptive Dynamic Function Allocation, which 

increases automation levels in periods of high workload and vice versa. Adaptive 

automation is thought to benefit operators during periods of high workload, however, 

using a psychophysiological state as a trigger for adaptation is problematic due to the 
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large amount of noise present in these signals and extreme individual variability. 

Although preliminary research in lab settings suggests psychophysiologic adaptive 

automation is possible, the current state of-the-art technology does not support 

operational use. 

Military operations are often characterized by long periods of inactivity followed by intense 

periods of action, during which time-critical decisions must be made. At these times performance 

is most critical, yet it will likely suffer due to temporary information overload placed on the 

operator and the need for the operator to cognitively reorient to the new situation. With NCO, the 

amount of information available to personnel at all levels will be greater than in previous 

operations. Therefore, the problem of information overload, particularly during bursts of actions, 

will become much more common. In addition, vigilance must be sustained between high-demand 

cognitive states, when detrimental boredom and lack of attention may loom (Wiener, 1984, 

1987). 

One method to alleviate these problems is the use of adaptive automation (AA), where 

changes in the level of automation are made based on some sensed operator state change. 

Automated-driven changes in the level of automation (Table 2.3) can be driven by specific 

events in the task environment, models of operator performance and task load, physiological 

responses, or by changes in operator performance (Parasuraman, Bahri, Deaton, Morrison, & 

Barnes, 1992). AA has been shown to improve task performance (Hilburn, Jorna, Byrne, & 

Parasuraman, 1997; Prinzel, Freeman, Scerbo, Mikulka, & Pope, 2003), to enhance situational 

awareness (Kaber & Endsley, 2004), and reduce workload (Prinzel, et al., 2003), including single 

operator control of multiple unmanned vehicles (Parasuraman, Cosenzo, & de Visser, 2009). 

Two important questions to address when developing an adaptive automation decision support 
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system are: 1) When should adaptive automation be used? (i.e., under what circumstances should 

LOAs change?), and 2) Should the computer or the human should change the LOA? 

Specific cues in the environment used to change the LOA may be either time or event-

related. For example, it may be determined that in order to maintain appropriate levels of 

vigilance, automation will be turned off during periods of low workload. Alternatively, it may be 

known that particular events in the environment cause higher levels of workload than desired for 

a short time, during which the automation could increase to compensate. An example of this 

would be an operator responsible for multiple UAVs performing a bombing mission. Cruise and 

loiter phases of flight are relatively low workload, but approach and bombing phases 

significantly increase operator workload. As a preemptive measure, adaptive automation could 

increase the LOA for some aspect of the approach and bombing phases. However, this approach 

is problematic since it is scenario specific. It will likely not handle unexpected situations 

correctly because desired changes in LOA must be pre-determined. In addition, this method does 

not take into account operator variability. Some operators may have a much higher threshold for 

handling workload than others and thus, may not require a change in LOA. 

AA cueing can also be accomplished through models of operator performance which can 

predict the effectiveness of humans during particular processes and behaviors. Thus, such a 

model’s forecasted level of operator mental workload or performance on any number of 

specified tasks can be used to change the LOA. What defines an acceptable level of a predicted 

measure by the model must be carefully defined in advance. As defined by Laughery and Corker 

(1997), there are two main categories of human performance models: reductionist models and 

first principles models. Reductionist models break down expected behaviors into successively 

smaller series of tasks until a level of decomposition is reached that can provide reasonable 
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estimates of human performance for these task elements. First principles models are based on 

structures that represent basic principles and processes of human performance. Performance 

models offer the advantage of flexibility in the sense that they can apply to a large range of 

situations, even unexpected ones, but often are costly and difficult to develop, especially if 

higher reliabilities are desired. 

One modeling approach to adaptive automation cueing in supervisory control systems is 

through mental workload models that correlate a level of workload with some undesired 

performance level, and then change the LOA accordingly. The key in this AA approach is 

correctly identifying an undesired mental workload state. Psychophysiological measures such as 

the electroencephalogram (EEG), event-related brain potentials (ERPs), eye movements and 

electroculography, electrodermal activity, heart rate and heart rate variability, breathing rate, and 

blood pressure have all been correlated with mental workload to varying degrees of success. 

Experimentally, these methods are advantageous because they are not task specific and they can 

continuously record data.  

Analysis of brain waves has historically been the primary method of investigating neural 

indexes of cognition (Fabiani, Gratton, & Coles, 2000). Numerous studies have successfully used 

EEG measures of workload to discriminate between differences in operator attention and arousal 

(Berka, et al., 2004; Kramer, 1991; Pope, Bogart, & Bartolome, 1995). However, as Prinzel et al. 

(2003) notes, EEG-based systems are only able to measure gross overall changes in arousal, not 

different types or finer levels of cognitive load. The P300 component of ERPs has been 

associated with the availability of information processing resources, (Polich, 1991; Rugg & 

Coles, 1995), and as a measure of mental workload (Donchin, Kramer, & Wickens, 1986; 

Kramer, 1991). However, use of ERPs in non-laboratory settings to measure workload in real-
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time has proven difficult, as they are obtained from averaging EEG signals over a number of 

trials.  

Eye movements have also been used extensively in a variety of studies, particularly in 

distraction studies to identify areas of attention. Measures of blink duration, frequency and pupil 

diameter have been correlated with visual and cognitive workloads. In general, eye blink 

duration and frequency decrease as both visual and/or cognitive workload increases (Hankins & 

Wilson, 1998; Orden, Limbert, Makeig, & Jung, 2001; Veltman & Gaillard, 1998). Simon et al. 

(1993) demonstrated that the more general visual behavior of scanning patterns becomes more 

organized when task difficulty increases. Though pupil diameter is affected by ambient light 

levels, stimulus perception, and habituation, the degree of pupillary dilation has been shown to 

increase with higher cognitive loads (Andreassi, 2000; Hess & Polt, 1964; Orden, et al., 2001). 

However, specific characteristics of eye movements, such as fixation duration, dwell times and 

saccade durations are task-dependent, and thus are extremely difficult to tie to changes in mental 

workload in a generalizable way.  

One significant problem for psychophysiologic devices is that they can be obtrusive and 

physically uncomfortable for subjects, creating a possible anxiety effect as well as interfering 

with external validity. Other significant problems include the large amount of noise present in 

readings, and extreme individual variability. One way to lessen these effects is to use 

combinations of measurements taken in concert for an individual, as done by Wilson and Russell 

(2003). They showed accuracies in excess of 85% classifying operator states in real-time using 

artificial neural networks trained on a set of 43 physiological features.  

Unfortunately, the engineering obstacles in combining measures from psychophysiologic 

devices such as EEG and eye trackers to adapt automation in actual NCO settings are substantial. 
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For example, how to measure EEG signals in a dynamic, noisy environment, which is critical to 

the success of field technologies, is still illusive. One major hurdle is the development of a 

wireless EEG device that is unobtrusive, does not require the use of conducting gel (otherwise 

known as a dry EEG), and is able to process on-board signals, all while personnel are in motion, 

often under hostile environmental conditions. Even though some advances have been made in 

wireless EEGs, the signals from these devices are substantially weaker than more traditional 

EEG devices. Eye tracking devices suffer from similar problems in that they currently require 

sophisticated head tracking devices in addition to the eye tracking devices for field operations, so 

encapsulating this technology into an unobtrusive device that can be worn in the field is a 

significant engineering challenge.  

In addition to the hardware limitations for psychophysiologic adaptive automation 

technologies, all adaptive automation approaches that rely on predictive probabilistic algorithms 

to change automation tasking suffer from the inherent uncertainty typical in NCO settings, which 

limit their ultimate usefulness. Actual battlefield conditions and the large number and degrees of 

freedom of information states will mean that much more precision will be needed in predictions. 

This means that not only will the sensors and signal processing algorithms have to improve 

substantially as has been noted by others (Kramer & Weber, 2007), but also significant advances 

are needed in decision-theoretic modeling. In addition, the impact of information visualization 

and decision authority in adaptive automation command and control environments is not well 

understood and deserves further scrutiny (Parasuraman, Barnes, & Cosenzo, 2007). 

Lastly, in order to change LOAs, such predictive systems assume that they can determine an 

optimal cognitive load for an individual in dynamic, highly uncertain settings. The problem with 

this assumption is that optimality is dynamic and contextual, and precise individual workload 
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models are extremely difficult to build. So unless dramatic leaps are made in the miniaturization 

of these technologies as well as improved signal processing algorithms in the near-future, the 

realization of programs like the Cognitive Cockpit or many others envisioned under the 

augmented cognition umbrella (Stanney, et al., 2006) are in the very distant future.  

 

Multimodal Technologies 

Since UAV operators are primarily tasked through their visual channel (i.e., computer 

screens are the primary conduit for communication in remote UAV control), the military 

branches are interested in extending human information processing capabilities through 

other channels, i.e., auditory and touch. Laboratory research has shown clear performance 

improvements in command and control tasks when operators are given multimodal displays 

such as spatial audio in concert with visual displays. Although multimodal displays have 

been beneficial in laboratory settings, their success in operational settings is not as clear. 

This disconnect primarily stems from a lack of designer understanding of the environmental 

context of such displays. In one case, despite careful research and development, the 

introduction of spatial audio target alerting for UAV operators failed when actual operators 

would wear only one of two ear cups (both are required for proper spatial audio effects). 

Operators insisted on wearing only one ear cup since they wanted the other free to hear 

conversation in the command center. In a related case, the introduction of touch displays for 

operators in command centers was not as successful as hoped, primarily because operators 

would aggregate around a single operator’s screen and point close to the screen in an 

explanatory gesture, which would cause inadvertent changes in displays, leading to high 

levels of user frustration. 
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Given the likely overload of information in a NCO supervisory control system, one possible 

avenue for mitigation of high mental workload is the use of multimodal displays, which allow 

operators the ability to utilize multiple sensory channels to increase the amount of information 

processed (Wickens, Lee, Liu, & Becker, 2004). Multiple resource theory (MRT), a theory of 

attention and workload, asserts that people can process some tasks in parallel without sacrificing 

performance because there are distinct attentional and cognitive resources that differ along three 

dimensions (Wickens, 2002). The first dimension, processing stages, encompasses the three 

major information processing stages of perception, cognition and response. Processing codes, the 

second dimension, refers to verbal (i.e., listening and speaking) and spatial processes (i.e., 

navigation and shape rotation). The last dimension, perceptual modalities, includes visual and 

auditory modalities as the two major channels where information is perceived.  

MRT predicts that tasks will less likely interfere with each other if they occur during 

different information processing stages (i.e., perception and cognition vs. response), with 

different cognitive coding (i.e., spatially-coded tasks vs. verbally-coded tasks), and requiring 

different response outputs (i.e., manual output like toggling a switch vs. vocal output like saying 

a command). Multimodal displays essentially try to maximize this use of multiple, but 

orthogonal channel processing in order to improve human performance. This form of dual-

coding of information has been shown to reduce workload and speed information processing, 

particularly for visual and auditory, or visual and tactile modalities (Burke, et al., 2006; Miller, 

1991). However, it should be noted that even though humans can theoretically integrate 

information from multiple channels, functional MRI research has demonstrated that when 

humans attempt to accomplish two concurrent cognitively demanding tasks, responses are 

inferior to those of the individual tasks had they been performed separately (Just, et al., 2001). 
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The use of audio displays to augment visual ones for alerts and warnings is standard practice 

in many time-pressured, supervisory control systems such as process control and aviation. For 

example, audio displays in cockpits allow pilots the ability to successfully divide their attention 

so that they can listen for relevant audio signals, while still attending to visual information. 

Audio displays work best when the inputs are short, simple, do not have to be remembered for 

long periods, and relate to an action required immediately (McCormick, 1976), so they are 

primarily used for alerts and warnings in the cockpit. Pilots have been shown to respond faster to 

auditory alerts than visual ones by up to 30-40ms. In current UAV operations, discrete auditory 

alerts are used to supplement visual information, and research shows that providing audio alerts 

to UAV operators enhances their performance in monitoring automated tasks, as well as their 

overall mission performance (Dixon, Wickens, & Chang, 2005). 

Recent research has shown that more advanced forms of auditory displays can also improve 

performance. In terms of operators working in NCO environments that are inherently visually 

intensive, one example of a multimodal auditory intervention shown to be effective in laboratory 

environments is spatial (sometimes referred to as 3D) audio, which presents information spatially 

in three dimensions so operators can determine the longitude and latitude of auditory signals. 

This kind of information presentation, when combined with visual cues, has been shown in 

command and control settings to improve target acquisition, enhance alert and warning detection, 

and lower overall perceived workload (see Nehme & Cummings, 2006, for a review). 

Another type of advanced auditory display that shows promise in reducing workload and 

improving overall operator performance in supervisory control settings is the use of 

sonifications. Leveraging preattentive processing, sonifications are a form of continuous audio 

that map alerts to the state of a monitored task, allowing operators to quickly determine a task’s 
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current and projected state (Kramer, 1994). Research has shown sonifications to be beneficial for 

anesthesiology time-shared tasks, especially when coupled with visual displays (Loeb & Fitch, 

2002; Watson & Sanderson, 2004). In terms of NCO settings, a study examining the effect of 

sonifications for different task types in the single operator control of multiple UAVs 

demonstrated that sonifications can lead to superior performance in this demanding task, as 

compared to the current state-of-the-art discrete alerts. However, sonifications masked other 

auditory alerts in some cases, and interfered with other monitoring tasks that require divided 

attention (Donmez, Cummings, & Graham, 2009). These results highlight the importance of 

understanding the systems implications of inserting a new technology. Sonifications can be 

generally helpful, but they may not always be an effective alerting scheme in the presence of 

other aural cues. 

Often command and control settings are very noisy, resulting in masked auditory alerts even 

with simple discrete alerts. One other sensory channel that can be utilized to provide feedback to 

operators is the haptic channel. Haptic feedback has been shown to support operator performance 

in the domains of driving (Schumann, Godthelp, Farber, & Wontorra, 1993; Suzuki & Jansson, 

2003), and aviation (Sklar & Sarter, 1999). A common haptic alert in many cockpits is the use of 

“stick shakers”. As an aircraft detects the onset of a stall, the stick/yoke column will shake, 

which simulates the movement that a plane would experience if approaching a fully-developed 

stall. The shaking of the stick alerts the pilot through vibrations and is an extremely salient cue, 

which immediately informs the pilot that preventative action must be taken. In everyday life, 

similar haptic alerts can be seen in actual or virtual rumble strips on the sides of highways that 

alert drivers to a possible departure from the roadway. 
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Sklar & Sarter (1999) showed that when compared to visual cues, tactile and redundant 

visual and tactile cues resulted in faster responses to higher detections rates for mode transitions 

in cockpits. Employing a meta-analysis of previous literature, Burke et al. (2006) demonstrated 

that, in general, an additional modality enhances operator performance overall, with visual-

auditory feedback as the most effective in moderate workload conditions, and visual-tactile 

feedback more effective for high workload conditions. Furthermore, other natural language 

multimodal design interventions can potentially be useful in supervisory control settings such as 

voice recognition (Draper, Calhoun, Ruff, Williamson, & Barry, 2003), speech-to-text 

applications (and vice versa) and gesture recognition (Perzanowski, Schultz, Adams, & Marsh, 

2000). How to best design adaptive multimodal systems, as well as cross-modal systems that 

leverage multiple concurrent modalities is still an area of burgeoning research (Sarter, 2006). 

Although multimodal designs can promote reduced workload and increased performance in 

laboratory settings, the more important considerations in designing field applications, 

particularly in high risk supervisory control settings, are what characteristics and constraints of 

the environment, both physical and social, affect the system. As demonstrated in the vignette at 

the beginning of this section, in the case of spatial audio applications which provide benefit for 

some laboratory tasks, not understanding the social infrastructure caused a design intervention to 

fail. This was also the case for the touch displays, which are generally effective for single user 

applications, but in group settings where people gesture as part of their natural interactions, such 

applications may cause high levels of frustration, which is contrary to the intended effect. 

Such potential application issues highlight the critical need to take a more holistic systems 

engineering approach in the design and introduction of multimodal technologies, so that all 

stakeholders’ requirements are considered. A systems approach assumes that thorough 
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requirements are identified, which in human-in-the-loop settings generally means that a 

comprehensive cognitive task/work analysis is conducted to understand users, the intended use 

of the technology, and the context of the use. Failing to address even one of these three critical 

elements will likely result in deficient technology.  

 

Accountability 

Figure 2.7 (courtesy of Dr. John Pye of Exponent) illustrates the potentially tragic, albeit 

unintended, consequences of autonomous system design. The purpose of the unmanned 

ground vehicle (UGV) in the center of the picture is to enter a hostile area and autonomously 

kill enemy soldiers using its twin double-barreled shotguns. In the scenario in Figure 2.7, the 

UGV entered a village thought to be inhabited by insurgents, only to be greeted by curious 

children, obviously fascinated by the seemingly innocent toy. Fortunately the guns were not 

loaded that day and the automatic firing capability was not enabled. However, research is 

currently underway in industry and academia to develop unmanned systems that can 

independently engage targets without human approval. 
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In addition to the myriad of technical issues that surround NCO human supervisory control 

problems, there are also social and ethical considerations, especially for weapon systems that 

impact humans in such a dramatic fashion. What might seem to be the most effective design 

from a technical viewpoint may not be the most responsible. In one of the few references in the 

technical literature on humans and automation that considers the relationship between 

automation and moral responsibility, Sheridan (1996) is wary of individuals “blissfully trusting 

the technology and abandoning responsibility for one’s own actions.”   

Many technical design issues can be resolved through modeling and testing, however, 

degradation of accountability and abandonment of responsibility when using automated systems 

is a much more difficult question to address. Automated tools are designed to improve decision 

effectiveness and reduce human error, but they can cause operators to relinquish responsibility 

Figure 2.7.  Unintended consequences of automation, courtesy of Dr. John Pye.  
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and accountability because of a perception that the automation is in charge. Sheridan (1983) 

maintains that even in the information processing role, “individuals using the system may feel 

that the machine is in complete control, disclaiming personal accountability for any error or 

performance degradation.”  

This possible abandonment of accountability will likely also be exacerbated by the remote 

distances inherent in NCO. Remote warfare is thought to significantly reduce human resistance 

to killing (if not eradicate it) (Grossman, 1998), so the combination of distance and autonomous 

computer agents, expressed through human-computer interfaces, could erode operators’ senses of 

accountability and create moral buffers between operators and the world they are influencing 

(Cummings, 2004a). 

In theory, increased accountability motivates people to employ more self-critical and 

cognitively complex decision-making strategies (Tetlock & Boettger, 1989). In one of the few 

studies attempting to examine the effects of automation on accountability, Skitka, Mosier, and 

Burdick (2000) performed an experiment in which subjects were required to justify strategies 

and outcomes in computerized flight simulation trials. The results showed that not only did 

increased accountability lead to fewer instances of automation bias through decreased errors of 

omission and commission, but also improved overall task performance. 

How then could systems be designed to promote accountability, especially in the context of 

NCO? One tangible system architecture consideration for accountability is the number of people 

required to interact with a given decision support system. Research indicates that responsibility 

for tasks is diffused when people work in collective groups as opposed to working alone. This 

concept is known as “social loafing” (see Karau & Williams (1993) for a review). This is of 

particular concern in distributed systems like those expected in NCO systems since task 
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responsibility will often be delegated to many. Although research indicates that people 

experience degraded task responsibility through collective action, the potential loss of a sense of 

moral responsibility and agency for operators interacting collectively through human-computer 

interfaces is not as clearly understood. It is likely that the computer interface becomes another 

entity in the collective group so that responsibility, and hence accountability, can be cognitively 

offloaded not only to the group, but also to the computer (Cummings, 2006).  

Recognizing that such complex systems embedded with autonomy could make it difficult for 

humans to make correct ethical judgments, another proposed solution is to embed ethics in 

autonomous agents such as in robots (Arkin, 2007), which are expected to play a large role in the 

military’s instantiation of NCO. Arkin (2007) believes that robots can actually behave more 

ethically than humans, particularly on the battlefield, since they are not predisposed to the 

decision biases as previously discussed, and can act more rationally than humans under stress. 

However, one significant caveat to this approach is the assumption that the correct rule-based 

algorithms can be encoded in autonomous agents in engineering and design phases. In addition, 

another major hurdle is ensuring that the appropriate sensors can effectively distinguish friend 

from foe. 

It is well-established that algorithms are notoriously brittle, particularly in uncertain dynamic 

settings like command and control (Smith, et al., 1997), so reliance on an a priori set of rules to 

guide robot ethical behavior, especially in areas like weapons release, seems risky. Moreover, 

reliance on brittle algorithms in the presence of highly imperfect sensors mounted on robots 

brings into question the ability of a robot embedded with an ethical governor to make good 

“judgments.” Ultimately, even if robots can be embedded with some degree of ethical decision 

making, when something goes wrong and a robot accidentally kills a human, who will be held 
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accountable? Thus, it seems that even if we artificially embed ethics in machines, the problem of 

accountability does not disappear. 

CONCLUSION 

     Both the military and the commercial sectors will be able to capitalize on the benefits from 

network-centric operations such as rapid access to information across the network and overall 

increased productivity. However, synthesizing the voluminous data intrinsic to the network and 

executing decisions in real-time, often with high-risk consequences under significant uncertainty 

will likely be a major bottleneck and possible point of failure for these futuristic systems. One 

important source of uncertainty often not considered in these systems are the interactions 

between known entities in the network and possibly unknown agents, such as general aviation 

aircraft with no electronic signature operating near commercial aircraft corridors. In the presence 

of such sources of uncertainty, the adoption of NCO principles will be problematic for human 

decision makers who need to execute supervisory control across complex, distributed networked 

systems under time pressure.  

When considering the human aspect of dynamic, time-pressured NCO settings, the dominant 

human performance concern is the addition of the number of available information sources as 

well as the volume of information flow. Without measures to mediate this volume, information 

overload will be problematic, and operators will struggle with appropriate attention allocation 

strategies. Because NCO systems inherently contain webs of people working together to achieve 

some overarching goal, these concerns also affect personnel responsible for supervisory 

monitoring of operators, as well as those people engaged in distributed decision making and 

team coordination.  
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To manage the increase in information across the network, increasing the role of automation, 

including adaptive automation will be needed. Moreover, using multimodal technologies may be 

able to reduce operators’ workload. However, technological interventions should be considered 

in light of decision biases both for individuals and groups. Often these decision biases will result 

in complacent behavior such that operators overly trust a complex automated system, but 

significant distrust of automated systems can also result, which is particularly linked to a 

system’s reliability. Lastly, this potentially displaced trust in automation and complacency can 

lead to a loss of accountability and erosion of moral responsibility. 

Despite the fact that networked systems are envisioned to support human intentions, 

technological determinism is pervasive in that the primary thrust of NCO research is directed 

toward improvements and innovations in technology (Alberts, Garstka, & Stein, 2000), and not 

towards human interaction with these complex systems. The typical, but naïve, assumption is 

that advancements in automated systems will naturally improve both system and human 

performance. Without dedicated focus on the impact of NCO technologies for both individual 

and team cognitive processes, the vision of a network with self-synchronization, shared 

situational awareness, and increased speed and effectiveness of operations will be replaced with 

a problematic, sub-optimal, and reactive network with significantly increased risk for errors.  

Unfortunately, there is no set of design guidelines that can always be true for all NCO 

systems because, as is true in all human-centered systems, context is critical. More importantly, 

government agencies and industrial system integrators should ensure they have qualified human 

–system engineering personnel on staff to conduct critical cognitive task analyses, provide 

human-centered design guidance, and develop effective assessment strategies to evaluate the 

impact of technologies on human and system performance. 
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